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Excecutive Summary
Surface ships, submarines and other submersibles all have a hydroacoustic signature that is reveal-
ing for passive sonar in stationary and mobile surveillance systems, and may also interfere with the
ship's own sonar. The sources of the hydroacoustic signature can be divided into internal and ex-
ternal sources. The internal sources mainly consist of onboard machinery whilst the external sourc-
es mainly consist of the hydrodynamic noise, i.e. the sound from the turbulent boundary layer.
The internal sources depend on the operating conditions and the tactical situation, and advanced
signature reduction has been used for a long time. Considering the external sources not much has
been done due to the lack of knowledge about the fluid dynamics and the prediction methods. The
present study is divided into two parts where part 1 is a contribution towards a better understand-
ing of the fundamental physics of hydrodynamic noise produced by the turbulent flow around a
rigid hull whereas part 2 focuses on hydrodynamic noise produced by a vibrating hull excited by
the turbulent flow. Because of the prohibitive cost of direct calculation of noise or sound from the
Navier Stokes Equations and the conflicting requirements for the accurate calculation of both the
viscous flow and the acoustic field, it is necessary to perform a two-step calculation, where the
flow field is calculated separately from the acoustic field. Such a two-step approach is particularly
attractive for a nearly incompressible flow, since a fully compressible simulation of a virtually in-
compressible flow is both too expensive (since the acoustic time scales need to be properly resolv-
ed) and unnecessarily complicated. The approach that will be taken here is based on that the flow
field is evaluated in the first step using Large Eddy Simulations (LES) where the acoustic pertur-
bations are neglected. In the second step, equations for the acoustic variables are solved. These
equations are here derived from first principles by decomposing all variables into incompressible
and acoustic components. The resulting model consists in an ordinary incompressible LES flow
model from which the flow is obtained, and equations for the acoustic components, from which a
source term to the wave-equation of the pressure is obtained. Separate simulation models for solv-
ing this wave-propagation problem, taking into account environmental effects, complex geo-
metrical as well as physical boundary conditions, have been developed by others. Finally, we ap-
ply this calculation method to the flow around a prolate spheroid in order to demonstrate the
method. Qualitative or quantitative comparison with experimental data is planned in a future study.
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1. Introduction
Surface ships, submarines and other submersibles all have a hydroacoustic signature that is reveal-
ing for passive sonar in stationary and mobile surveillance systems, such as the sonar of a subma-
rine, and also interferes with the ship’s or submarine’s own sonar. The sea-state and the environ-
mental factors of the sea contribute to the fact that the range of the signature can be very extensive,
especially during certain seasons. The hydroacoustic signature is used also in minesensors and in
passive torpedo homing devises, which detects, classifies and positions the target. Advanced sign-
al processing methods have been developed for this purpose. Hence the weapons effect can be op-
timized and a mobile weapon can be guided to the target. The sources of the hydroacoustic signa-
ture can be divided into internal and external sources. The internal sources mainly consists of on-
board machinery, such as pumps, valves, generators and engines, whereas the external sources
mainly consists of the hydrodynamic noise, i.e. the sound that is being produced by the turbulent
boundary layer and wake in the vicinity of the hull, and the propulsor. Furthermore, the turbulent
boundary layer may also excite the ship itself causing noise which propagates in the surrounding
fluid. As regards the internal sources, the levels and frequencies of the internal sound sources de-
pends critically on the operating conditions and the tactical situation. Advanced signature reduction
has been used for a long time on submarines, and has recently also been introduced on surface
ships. Machinery is isolated from vibrations, sometimes with elastic fittings and covering hoods to
reduce the transmission of sound. Considering the external sources not much has been done due to
the lack of knowledge about the basic physical phenomenon, such as boundary layer turbulence,
and our inability to investigate these effects, either experimentally or theoretically, [1]. The present
study, part 1, is a contribution towards better understanding of the fundamental physics of hydro-
dynamic noise produced by the turbulent flow around a rigid hull, whereas part 2 focuses on hy-
drodynamic noise produced by a vibrating hull excited by the turbulent flow.

An accurate prediction of the sound radiated by a surface ship, a submarine or other under-
water vehicles requires a method capable of reproducing the near-field turbulence dynamics with
sufficient fidelity to allow the direct evaluation of the non-compact (i.e. distributed) sound sources.
Obviously, Reynolds Averaged Numerical Simulations (RANS) based methods require too much
empirical input and are not suitable to accurately describe the distribution of the acoustic sources in
space and time. A great deal of recent understanding of turbulence physics in viscous wall-bound-
ed flows has emerged from Direct Numerical Simulations (DNS) at low Reynolds (Re) numbers.
However, as DNS is restricted to Re-numbers well below the values of ship and submarine hy-
drodynamics, LES techniques appear to be the only realistic available tool to obtain the necessary
near-field flow data upon which to base the prediction of sound emitted by turbulent boundary lay-
ers and wakes, which dominate ship hydrodynamics. Though still significantly more expensive
than RANS methods, LES offers the advantage that little or no empirical input is required, which is
a significant advantage when one is interested in a robust method to predict the radiated sound
field. This should allow us to better understand the role of coherent structures to the noise genera-
tion. The fact that the sound spectrum is dominated by the contribution of the large coherent struc-
tures justifies the use of LES as a base for noise calculations. However, at very high Re-numbers
the contribution of the smaller scales to the sound spectrum may be non-negligible in the range of
the frequencies of interest, and this problem is yet to be investigated.

Over the last decade LES techniques have advanced to a point where they have been shown
to predict complex flows (characterized by a large disparity between the different spatial and tem-
poral turbulent scales) fairly accurately, [2-4]. The use of LES for aeroacoustics problems, [5-6],
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and hydroacoustics applications is a natural development which presents new challenges. The ma-
jor challenge is related to the large disparity which exists between the energy levels associated with
the fluctuations from the large-scale turbulent motions and those associated with the acoustic fluc-
tuations. As most of the acoustic sources are situated within the boundary layer, a first requirement
is to simulate correctly this flow to be able to calculate accurately the distribution and strength of
the acoustic sources. Only the information about the high-frequency turbulence, and hence its as-
sociated sound is lost in LES, due to the inherent low-pass filtering. Furthermore, no simplifying
assumptions about the acoustic wave propagation are required. The only difficulty is numerical –
accurate simulations of sound waves, especially in complex confinements such as littoral waters,
concomitantly with the flow structures of the underlying turbulent flow is a considerable task. An
important consequence is that accurate prediction of the radiated flow induced noise requires the
use of numerical schemes with low dispersion and dissipation errors. Moreover, the quality of the
noise data can be easily compromised by the boundary layer treatment. Higher Re-number and
coarser grids put, in turn, a higher burden on the robustness and accuracy of the numerical meth-
ods used in aeroacoustic or hydroacoustic simulations. This is why attempts to simulate submarine
or ship hydrodynamics and their radiated noise using LES is quite recent.

Most classical approaches in aero- and hydroacoustics are based on solving a wave-equation
of the form c p div gradp Kt0

2 2− ′− ′ =∂ ( ) , where c0 is the ambient speed of sound, p´ the acoustic pres-
sure fluctuations and K a source term taking non-zero values only outside of the boundary layer. In
Blake, [1], different methods are discussed for modelling the term K. One of these models dates
back to the pioneering works of Corcos, [7],  where closure models for K are formulated entirely
from experimental data. Most other models discussed in [1] are also related to experimental data.
Not only until recently, methods based on first principles have been used for determining K, e.g.,
[8-9]. In particular, the field of aeroacoustics has been pioneering in using high-level computatio-
nal fluid dynamic methods, involving RANS, LES and even DNS, for calculating the sound emis-
sion properly, cf. [10-11], but considering virtually incompressible flows not much have been
done, mainly due to the technical (i.e. computational) problems previously discussed.

The outline of the present report is as follows. First we give an overview of the state-of-the-
art in turbulent flow modeling in order to review the current simulation models, and their abilities.
Then we derive a hydroacoustic computational model based on splitting the calculation into sepa-
rate viscous and acoustic simulation models. Following this we discuss the numerical methods re-
quired for solving viscous problem in the context of LES and the associated acoustic problem. Af-
ter this we present a computational example – the flow past a prolate spheroid at incidence. Simula-
tion data are compared to experimental data in order to validate the LES model. Unfortunately, no
data is available for comparison of the acoustic calculation. Finally, some concluding remarks are
presented together with a brief discussion of future work related to hydroacoustics.

2. Turbulent Flow Modeling
Computational Fluid Dynamics (CFD) is accomplished by numerical solution of the Navier-Stokes
Equations (NSE), which are the governing equations of fluid flow, [12]. These equations consist
of conservation and balance laws for mass and momentum supplemented by constitutive equations
for a Newtonian fluid. Numerical solution is currently the only practical way of solving the NSE
due to their non-linearity and corresponding extensive range of eddy scales. The ratio of the largest
eddies (with characteristic size λI) to the smallest Kolmogorov eddies (with size λK) can be related
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to the Reynolds (Re) number, i.e. the ratio of inertial to viscous forces, as λ λI K/ Re /= 3 4 . This im-
plies that the number of degrees of freedom required in a Direct Numerical Simulation (DNS), in
which all scales are resolved, scale as Re9/4. For high Re-numbers, present-day computers are not
powerful enough to handle such problems and thus alternative methods have to be devised for tur-
bulent flow simulations. In order to handle the wide spectrum of eddy scales we need to reduce the
number of degrees of freedom. The common way of doing this is by means of RANS, [13]. Here,
equations for a statistical average 〈·〉 of the variables are accomplished by averaging the NSE over
homogeneous directions, time or across an ensemble of equivalent flows. Since most engineering
flows involve inhomogeneous flow time averaging is most appropriate. The turbulent fluctuations
are not represented directly by the simulation but are included by way of a turbulence model. This
averaging makes it possible to reduce the number of scales (i.e. degrees of freedom) considerably.
The statistical character of RANS prevents a detailed description of the physical mechanisms, and it
is thus unsuitable for problems where the fluid dynamic details are important. On the other hand,
RANS is appropriate for analyzing performance characteristics as long as the turbulence models are
able to represent the turbulent stresses sufficiently. The most advanced turbulence modeling
method at hand is LES, [14-15]. In LES a separation between large supergrid and small subgrid
scales is imposed by means of a spatial filtering related to the characteristic size of the grid – ∆. The
effects of the subgrid scales on the supergrid scales are accounted for by way of a model – a sub-
grid model. LES contains more information of the flow than RANS but is also more expensive and
is not presently suitable for screening of design parameters but rather for detailed studies and to
gain qualitative and quantitative understanding of phenomena.

In LES, the motion is separated into small and large eddies and equations are solved for the
latter. The separation is achieved by means of a low-pass filter, for further details see [16]. For an
incompressible viscous fluid, the LES-equations are obtained from the NSE by convoluting the
latter by a pre-defined filter kernel G=G(x,∆), so that the LES equations becomes,

div

div gradp divt

( ) ,

( ) ( ) ( ) ,

v

v v v S B f

=
+ =− + − +



 ⊗

0

∂
(1)

where v is the velocity, p the pressure, S=2νD the viscous stress tensor, D L L= +1
2( )T  the rate-of-

strain tensor, ν the viscosity, L=gradv and f the body force. Specific to LES is the resolved com-
ponents, denoted by an overbar and the subgrid scale stress tensor B v v v v= −⊗ ⊗( ). The subgrid
stress tensor B represents the effects of the subgrid flow on the resolved flow, and must be model-
ed using information from the resolved flow prior to discretization at a resolution near ∆ – more af-
fordable than DNS. Such models must, in absence of a universal theory of turbulence, include ra-
tional use of empirical information. Presently, two modeling strategies exist: Functional modeling
consists in modeling the action of the subgrid scales on the resolved scales. This is basically of en-
ergetic nature so that the balance of the energy transfers between the two scale ranges is sufficient
to describe the subgrid scale effects. Structural modeling consists of modeling B without incorpo-
rating any knowledge of the nature of the interactions between the subgrid and the resolved scales.
Such models can be based either on series expansion techniques, transport equations, scale similar-
ity or other deterministic approaches. These methods are different and each contains individual
classes of subgrid models. For the purpose of this study we use functional modeling in which the
energy transfer mechanism from the resolved to the subgrid scales is assumed analogous to that of
a Brownian motion superimposed on the motion of the resolved scales. Hence,
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B B B I DD ktr= − =−1
3 2( ) ,ν (2)

where BD is the deviatoric part of B and νk is the subgrid viscosity. The non-deviatoric part 1
3 trB

is added to the filtered pressure p, and does thus not require modeling in the incompressible case.
Thus, the generalized pressure π= +p k2

3  and the filtered pressure p may be different when k be-
comes large. To close (2) we need models for νk and k, and for this we assume the existence of
characteristic length and velocity scales and we infer total separation between resolved and subgrid
scales. Hence, ν ν εk k k E= ( , , , )∆ , where ε is the dissipation of k, and E=E(|k|), with k being the
wavenumber vector, represents the shape of the spectrum. For a Kolmogorov spectrum,

ν εα
α α α

k c k= − +/ ( )/ / ,3 1 2 1 3∆ (3)

where c A K Kα
α απ π= − −/( )( / )/ ( )/ ( )/

0
4 3

0
1 2 1 33 2 , with K0≈1.5, A≈0.4 and α is a parameter to be varied.

Interesting forms of νk can be obtained for different α-values. For α=1 we obtain ν εk c= 1
1 3 4 3/ /∆ ,

which in conjunction with ε ε= ′c ∆2 3|| ||D  yields the Smagorinsky model (SMG) νk Dc= ∆2|| ||D , with
cD=0.03, [17]. For α=0, νk kc k= ∆ 1 2/ , where ck=0.06. This model only uses k, which is a subgrid
quantity, and ensures that νk will be zero if the flow is well resolved, and thus offers better physi-
cal consistency than the subgrid models based on the resolved scales. Different ways can be used
to determine k: e.g. in the One-Equation Eddy Viscosity Model (OEEVM), [18-19],

∂ ν ν εt kk div k div gradk c k( ) ( ) (( ) ) / ,/+ =− ⋅ + + + ′v B D 3 2 ∆ (4)

in which the diffusion term is modeled by a gradient hypothesis whilst the dissipation term is mod-
eled using dimensional arguments, e.g. [18].

3. Mathematical Modeling of Hydrodynamic Noise
In attempting to develop a computational hydroacoustic technique several questions arise which are
less critical in other applications of computational fluid dynamics. Among these we can mention: (i)
The small amplitudes of the acoustic variables relative to other variables in the flow; (ii) The high
frequencies of interest; (iii) The need for long time solutions to obtain adequate spectral resolution;
(iv) The different numerical and computational requirements required for simultaneous viscous
solution (i.e. high spatial and temporal resolution) and acoustic wave tracking (i.e. large computa-
tional domains and long time solutions) are contradictory. Hence, because of the prohibitive cost of
direct calculation of noise or sound from the NSE, and the conflicting requirements for the accurate
calculation of both the viscous flow and the acoustic field, it is, if possible, to perform a two-step
calculation, where the flow field is calculated separately from the acoustic field. Such a two-step
approach is particularly attractive for incompressible flow, since a fully compressible simulation of
a virtually incompressible flow is both too expensive (since the acoustic time scales needs to be
properly resolved) and unnecessarily complicated. The approach that will be taken here is based on
that the flow field are evaluated in the first step using LES where the acoustic perturbations are ne-
glected. In the second step, equations for the acoustic variables are solved.

The LES-equations for a compressible viscous fluid can be formulated using density-weight-
ed or Favré filtering, in which ˜ /Φ Φ=ρ ρ  where Φ is any variable, in the following form,
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∂

∂

∂

ρ ρ
ρ ρ ρ
ρε ρ ε ρσ

t

t u u

t u

div

div gradp div

div pdiv grad div

( ) ( ˜ ) ,

( ˜ ) ( ˜ ˜ ) ( ) ˜,

( ˜ ) ( ˜ ˜ ) ( ) ˜ ,

+ =
+ =− + − +
+ =− + ⋅ + − +






⊗

u

u u u S B f

u u S u h b

0

(5)

where ρ is the density, u the (compressible) velocity, S u u uu
Tdiv grad grad= + + +( ) ( )λ µ µ2

3  the vis-
cous stress tensor, p the pressure, B u u u uu = −⊗ ⊗ρ( ˜ ˜ )~  the subgrid stress tensor, f the specific body
force (which will be neglected), ε the internal energy, pdivu  the pressure-dilatation, S uu grad⋅  the
dissipation function, h=κgradT̃  the heat flux vector, b u u= −ρ ε ε( ˜ ˜ )~  the subgrid heat flux vector and
σ the non-mechanical energy supply, which henceforth will be neglected. Moreover, p p= ( ,˜ )ρ ε  and
˜ ˜( ,˜ )ε ε ρ= T , where λ, µ=ρν and κ denote the coefficients of viscosity and thermal conductivity, re-
spectively. For future reference, we note that the energy equation (53) can be reformulated by using
the thermodynamic identity Td d pd dh dpη ε ρ ρ= + = −−( ) /1 , where η is the entropy and h the enthalpy,
respectively, of the fluid, so that (53) is replaced by the equation,

ρ η ρ η η∂˜ ( ˜ ) ˜ [ ( ˜ ) ˜ ˜ ] ( ),TD T grad grad divt t u= + ⋅ = ⋅ + −u S u h b (6)

where p p= ( ,˜ )ρ η  and D gradt t( ) ( ) ˜ ( )⋅ = ⋅ + ⋅ ⋅∂ u  denotes the material time derivative. Similarly, for an

incompressible isothermal viscous fluid with (constant) density ρ0, the governing equations are,

ρ
ρ π∂

0

0

0[ ] ,

[ ( ) ( )] ( ) ,

div

div grad divt v v

v

v v v S B f

=
+ =− + − +



 ⊗

(7)

where ρ0 is the constant density, v the (incompressible) velocity, S v vv
Tgrad grad= +ρ ν0 ( ) the vis-

cous stress tensor, π the pressure, B v v v vv= −⊗ ⊗ρ0 ( ) the subgrid stress tensor, and f the specific
body force, which will be neglected in analogy with the compressible case. The equation-of-state
for the incompressible pressure can thus be expressed as π ρ η=p( , )0 , where η is the entropy of the
incompressible fluid, from which we further conclude that π π η= ( ).

Assuming that (7) can be solved for the flow of interest, given a subgrid model and appro-
priate initial and boundary conditions, it is natural to define the acoustic components (or fields) as
the difference between the compressible and the incompressible components (or fields),

′= − ′= − ′= − ′= −ρ ρ ρ π η η η0 , ˜ , , ˜ ,      v u v p p (8)

where { , , }′ ′ ′ρ   v p  denotes the acoustic components of the density, velocity and pressure, respecti-
vely. When | |′ <<p cρ0 0

2 , we have no heating by shock waves, i.e. ′=η 0, and the entropy in the in-
compressible case equals that of the compressible case. The governing equations for { , , }′ ′ ′ρ   v p  can
be obtained by combining (5), with (53) replaced by (6), and (7), using the definitions (8), to give
the following non-linear acoustic equations,

∂

∂

ρ ρ ρ ρ
ρ ρ ρ ρ

t

t

u v u v

div grad div

div div

gradp div

( ) ( ) ,

( ( )) ( ) ( (( ) ( )))

[( ) ( )].

′ + ′+ ′⋅ + ′ ′ =
′+ ′ + ′ + ′+ ′ + ′ ′ + ′ + ′ + ′

=− ′+ − − −






⊗ ⊗ ⊗ ⊗

0

0 0

0v v v

v v v v v v v v v v v v v

S S B B

(9)

The combined viscous and subgrid term, div u v u v[( ) ( )]S S B B− − − , on the right-hand-side of (9) can
be reformulated by using (82), (71) and the definition µ ρ ν= 0  to give,
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δ λ ρ ν ρ ν
δ µ ρ ν ρ ν

S S S v v v

B B B B B D D v v

= − = + ′+ ′+ ′
= − ≈ − =− − − ≈− ′+ ′





u v
T

u v u
EVM

v
EVM

k D k k
T

div grad grad

grad grad

( ) ( ),
˜ ( ) ( ),

2
3 0 0

0 02 2
(10)

where we have assumed that the subgrid model chosen is of eddy-viscosity type (cf. 2), and that
the eddy viscosities νk and µk, respectively, are related in such a way that µ ρ νk k= 0 . Furthermore,
by introducing the linear combination w v v v= ′+ ′ + ′ρ ρ0 ( )  equation (9) simplifies to,

∂

∂

ρ
ρ δ δ

t

t

div

div gradp div

( ) ( ) ,

( ) ( ( ) ) [ ].

′ + =
+ + ′ + ′ =− ′+ −



 ⊗ ⊗

w

w w v v v v S B

0

0

(11)

In order to be closed the equations (11) must be supplemented by a relation between ′p , ′ρ  and π .
When η̃ η=  and η η π= ( )  the equation-of-state for the fluid can be expressed as p p= + ′( , )ρ ρ π0 .
Equation (8a) then yields ′= + ′ −p p p( , ) ( , )ρ ρ π ρ π0 0 , which, by means of a Taylor series expansion,
results in the expression,

′= ′+ ′p c O2 2ρ ρ(( ) ), (12)

where c p c2
0

2= =′=( / ) ( )∂ ∂ρ πρ  defines the speed of sound in the fluid in the limit of vanishing dila-
tation (or compression). Experimental studies, [20], give for the pressure dependence,

c c G patm atm
2 2

0 0= + −( )/ ,π ρ (13)

valid up to about 50 MPa, where G0 is around 5 and catm is the speed of sound at atmospheric pres-
sure patm. Introducing c c G patm atm0

2 2
0 0= − /ρ  we have c c G2

0
2

0 0= + π ρ/  Inserting this in (12) yields,

′= + ′+ ′p c G O( / ) ( ).0
2

0 0π ρ ρ ρ (14)

Differentiating expression (14) yields,

δ π ρ δρ ρ ρ δπ ρ′= + ′+ ′ + ′p c G G O( / ) ( / ) ( ).0
2

0 0 0 0 (15)

By combining the time derivative of (111) and the divergence of (112), using equation (12) or
rather the simplified version of (15), an inhomogeneous wave-equation for ′ρ  is obtained,

˜ ( ) ( ) ( ) ( ) ( ( / ) ),o ′ = ′ − ′ = + ′ρ ρ ρ ρ ρ π∂t div c grad div div div G grad2 2
0 0T (16)

where ˜ ( ) ( ) ( ( ))o ⋅ = ⋅ − ⋅∂t div c grad2 2  and the r.h.s. is given by a double divergence of the term,

T w v v v v S B

w v v v v v v v

= + ′ + ′− −
= + ′ + ′− + ′+ − ′+ ′

⊗ ⊗

⊗ ⊗

( ) ( )

( ) (( ) ( )( )),

ρ δ δ
ρ λ ρ ν ρ ν ν

0

0
2
3 0 0div grad gradk

T
(17)

and a correction term of generalized Laplace-type. Contrary to what is first believed, this term may
be of considerable importance even if ′ <<ρ ρ/ 0 1 for the amplitude, phase shift and wave form of

′ρ . In the same manner, another inhomogeneous wave-equation can be obtained for ′p , viz.,

  o ( ) ( )) ( ) ( ) ( / ) ( )),( (′ = ′ − ′ = + ′− −p c p div gradp div div c Gt t t t∂ ∂ ∂ ∂ρ ρ π2 2
0 0T (18)
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where o ( ) ( ( )) ( ( ))⋅ = ⋅ − ⋅−∂ ∂t tc div grad2 . For our purposes it is more natural to consider ′p  as de-
pendent variable and we thus use (18) in the rest of this study. When the noise emitter is a turbu-
lent boundary layer, as will be the case for a surface ship and a submarine, the source region is of
limited size, and outside of the boundary layer the right-hand-side of (18) is zero. For low turbu-
lent Ma-numbers the turbulent fluctuations have little effect on sound propagation, so that the
sound can propagate through the fluid as the medium were undisturbed. Hence,

o

o

( ) ( ( )) ( ) ( ) ( / ) ( )),

( ) ( ) ( ) ,

(′ = ′ − ′ = + ′
′ = ′ − ′ =





− −

−

p c p div gradp div div c G

p c p div gradp
t t t t

t

∂ ∂ ∂ ∂

∂

ρ ρ π2 2
0 0

0
2 2 0

T   within ,

  outside ,

V

 V
(19)

where the source volume V is implicitly defined by the r.h.s of (191). The physics involved in this
term includes convection, subgrid turbulence and viscous stresses, all of which are important in
different parts of the boundary layer. This term can be decomposed into its parts, and analyzed in
order to determine which mechanism gives rise to different parts of the pressure wave. This is of
interest mainly to minimize the hydrodynamic noise from a submarine, and will not be further
elaborated on here. In order to solve (20) we therefore first have to compute (18), which in turn,
requires the solution of (11) for the primary acoustic variables ′ρ  and ′v .

The full acoustic model (consisting of equations (11), (17) and (19)) is non-linear, but may
be simplified by assuming Stokes relation 3 2 00λ ρ ν+ =  and T to be linear in ′ρ  and ′v ,

o ( ) ( ( )) ( ) ( ) ( / ) ( )),

( ) [ ( )( )],

( ) ( / )

(

(

′ = ′ − ′ = + ′
= ′ + ′+ ′ + − ′+ ′
= + ′

− −

−

⊗ ⊗ ⊗

p c p div gradp div div c G

grad grad

K div div c G

t t t t

k
T

t

∂ ∂ ∂ ∂

∂

ρ ρ π
ρ ρ ν ν

ρ ρ

2 2
0 0

0
2

0 0

T

T v v v v v v v v

T

where  

and      ∂∂ πt ( )),

(20)

where the primary acoustic variables ′ρ  and ′v  satisfies the linearized equations,

∂

∂

ρ ρ ρ
ρ ρ ρ ρ

π ρ ρ ν ν

t

t

k
T

grad div

div

grad c G div grad grad

( ) ,

( ) ( ( ))

[( / ) ] [( )( )].

′ + ′⋅ + ′=
′ + ′ + ′ + ′+ ′ =

− + ′ + − ′+ ′






⊗ ⊗ ⊗

v v

v v v v v v v v

v v

0

0 0

0
2

0 0

0

(21)

The equations (21) are linear in ′ρ  and ′v , given the (incompressible) velocity field v , and are
therefore easy to solve in comparison to the full non-linear NSE.

Considering far-field sound propagation in isotropic unrestricted waters, unrestricted waters,
and littoral waters a very important consideration, besides the local variations in the speed of sound
that are due to temperature, density and salinity, is the reflections from the sea-bed, which may be
composed of layered material with different properties. In isotropic unrestricted waters the inhomo-
geneous wave equation (21) can be solved analytically, whereas in non-isotropic unrestricted wa-
ters and in littoral waters special techniques must be developed in order to account for the varia-
tions in c and the reflections in the sea-bed. In the simplest case of isotropic unrestricted waters
Green’s function of the inhomogeneous wave equation (20) satisfies,

( ) ( , ; , ) ( ) ( ),∂ δ δt c G t t t t2 2− ′ ′ = − ′ − ′∆ x x x x (22)

where δ is the Dirac function, c=c0, and where G is found to be (e.g. Morse & Feshbach, [21]),

G t c t r( , ; , ) ( ) ( )| | ,x 0 x0 4 2 1 1= − −π δ (23)
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where tr is the retarded time t t cr= − − ′| |/x x . For the problem at hand, i.e. equation (20), shows that
the emitter(s) behave like quadrupoles, and the corresponding solution for the far field is,

′ = + ′∫∫ ′−
− ′ + ′∫∫ ′

− ′ ′
− ′ ⋅ ′
− ′ − ′

−

p t p t p t dS

p t c p t dS
rA

r rA t

( , ) ( , ) ( ( , ))

( ( ( , ) ( , ))) ,
| |

( )
| | | |

x x x

x x
x x n

x x n
x x x x

1

1
4

1 1

1
4

1

2

π
∂

∂
∂
∂π

(24)

where we have introduced,

  p t K t dVr1
1

4( , ) ( ( , )/ | |) ,x x x x= ′ − ′∫∫∫ ′π V (25)

and where n denotes the normal to hull of the body considered. In order to describe the noise emit-
ter, we hence need the source term K=K(x,t) and the pressure acting on the hull. Note that in the
source term we adopt the retarded time tr since otherwise we eliminate the possible interference of
signals that arrive simultaneously at x but that were emitted from different locations x within the
volume V. For an estimate of how the hydrodynamic noise scales with the characteristic flow para-
meters we assume that T and π  scale with ρ0 0

2U , where U0 is the speed of the ship. The time scale
will thus be proportional to δ/U0, where δ is the boundary layer thickness, whereas the volume of
integration scales with δRL, where L is the length of the ship and R is the hydraulic radius. Accor-
dingly, the pressure scales as ′ ∝p Ma U RL r  (2

0 0
2ρ δ)( / ).

4. Numerical Methods
LES requires high-order schemes to avoid masking the subgrid term by the leading order truncati-
on error. In general, ∆ is related to the grid, i.e. ∆∝|d|, where |d| is the grid size, which makes the
modeled subgrid stresses O(|d|2) terms. In LES, spectral and high-order finite volume, element or
difference methods are used for spatial discretization, whilst explicit semi-implicit or predictor-cor-
rector methods are used for time-integration. For complex geometries the Finite Volume (FV) met-
hod is the most convenient technique. In the FV method, the domain D is partitioned into cells ΩP

so that ∪P(ΩP)=D∪∂D and ∩P(ΩP)=∅. The cell-average of f over the Pth cell is f fdVP V= ∫1
δ Ω  so that

Gauss theorem may be used to formulate the semi-discretized LES-equations. By integrating these
over time, using e.g. a multi-step method, [22], the discretized LES-equations become,

β
δ

ρ

β
δα β

i

P

i

P

t
V f

C n i
f

i P
n i t

V f
C v

f
D v

f
B v n i

f i P
n i

i
m

F

gradp t

∆ +

+ ∆ + +
=

∑ =
+ + +∑ =− ∆∑







[ ] ,

( ( ) [ ] ) ( ) ,

,

, , ,

0

0 v F F F
(26)

where m, αi and βi are parameters of the multi-step method, whereas,

F d d grad d df
C

f f
C v

f f f
D v

f f
B v

f
, , , ,( ) , ( ) , ( ) , ( ) ,ρ ν= ⋅ = ⋅ = =v A F v A v F v A F B A      (27)

are the convective, viscous and subgrid fluxes. To close the FV-discretization the fluxes (at face f)
need to be reconstructed from the variables at adjacent cells. This requires flux interpolation for the
convective fluxes and difference approximations for the inner derivatives of the viscous and sub-
grid fluxes, Ff

D v,  and Ff
B v, , respectively. Typically, for second order accuracy,

  

F A v v d d d v

F v v v d d v
f
D v

N P

f
C v

f
C

f f
C

P N

d

F F

,

, , ,

| |( )/ | | ( ) ,

( ( ) ( ) ),

= − + ∇
= = + − − ∇





⊗

⊗

ν ν
ρ ρ

1
6

3

1
8

21l l
(28)
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where 1
6

3ν( )d d v⊗ ∇  and − ∇⊗1
8

2( )d d v  represent the leading order truncation errors. The equations
(28) can be decoupled by combining (281) and (282) into a Poisson equation for p, which is to be
solved together with (282). The scalar equations are usually solved sequentially with iteration over
the explicit coupling terms to obtain convergence. The segregated approach yields a Courant (Co)
number restriction with Co<0.5, but a value of Co≈0.2 is preferable since LES attempts to resolve
the dynamics of the smallest resolvable structures with a size of O(∆).

The acoustic equations (20) and (21) are discretized using the same methodology as for the
LES-equations. More precisely, the inhomogeneous wave equation (20) becomes,

c p p p gradp div

c
P
n

P
n

P
n t

V f
n

f
t

V f
n

f

P
n

P
n

P
n

P P

− + + ∆ + ∆ +

− + +

′ − ′ + ′ − ′ =∑ ∑ +
+ ′ − +

2 2 1 2 2

2
0 0

2 1

2

2

2 2

[( ) ( ) ( ) ] [( ) ] [( ) ]

( ( / ))[( ) ( ) ( ) ]
δ δ

ρ ρ π π π
T

Γ
(29)

where the inner derivatives in T are replaced by central difference approximations of second order
accuracy, and whereas the linear equations for the acoustic variables ′ρ  and ′v  becomes,

( ( ) [ ] ) ( ) ,

( ( ) [ ] ) ( ((, , ,

α ρ β ρ
α ρ ρ β

β
δ

β
δ

ρ ρ
i P

n i t
V f

C n i
f i P

n i
i
m

i P
n i t

V f
C

f
C

f
D B n i

f i

i

P

i

P

div t

grad c G

′ + ∑ = ′ ∆∑
′ + ′ + + +∑ =− +

+ ∆ + +
=

+ ∆ ′ +

F v

v v F F F
00

0 0
2

0
0 ππ ρ ρ/ ) )) ,00 ′ ∆∑






+

= P
n i

i
m t

(30)

where F v Af
C

fd= ′ ⋅( )ρ  is the convective flux function in (211) and F v A v v A vf
C

f f f fd d, (( ) ( ) )ρ ρ0
0= ′⋅ + ⋅ ′ ,

F v A vf
C

f fd, ( )′ = ′ ⋅ρ ρ , and F v v Af
D B

k
T

fgrad grad d, (( )( ))= − ′+ ′ν ν  are the convective and viscous fluxes
in the linear equations (212). The scalar equations are solved sequentially with iteration over the ex-
plicit coupling terms to obtain convergence, with a time-step limitation of Co<0.2.

5. The Flow Around an Inclined Prolate Spheroid
A complex flow of great interest to the aeronautical and marine communities is the flow past a 6:1
prolate spheroid at incidence. This type of flow has been studied both experimentally, [23-25], and
numerically, [26-27], for various angles of attack and body-length Re-numbers. From the experi-
mental studies it is well-known that at low angles of attack (α<20°) the flow separates on the after-
body whereas at high angles of attack (α≥20°) the flow separates on the leeward side proximate to
the nose region. In the present investigation, extending the work of Hedin et al, [28], we focus on
α=20° and a body-length Re-number of 4.2·106. The computational domain consist of a rectilinear
model of the wind-tunnel, with the same hydraulic radius as the tunnel used in the experiments, in
which the prolate spheroid is mounted. The grid consists of two blocks: an inner O-type grid that
wraps around the spheroid and an outer O-type grid that fills the region between the inner grid and
the wind-tunnel walls. Figure 1 shows a perspective view of the computational domain together
with representative grid surfaces. The grid is concentrated around the prolate spheroid, in order to
capture as much as possible of the boundary layer, having a wall-normal-distance of y+≈90, where
y u y+ = τ ν/ , in which u wτ τ= 1 2/  is the friction velocity, τw the wall-shear-stress, and y the distance to
the wall. Two grids have been constructed, with the coarse grid including some 500,000 cells and
the fine grid some 1,000,000 cells. In the present study, we only aim at demonstrating the com-
putational method for flow induced noise, and we therefore only use results from the coarse grid.
At the inlet, v v= ∞  and ∂ ∂p/ n 0= , where n is the outward unit normal, at the outlet, ∂ ∂( )/v n n 0⋅ =
and p p= ∞ , and at the windtunnel walls slip conditions are used and at the hull no-slip conditions
are used. The LES calculations are initiated with quiescent conditions and the unsteady flow
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evolved by itself. Different subgrid turbulence models, including different versions of SMG and
OEEVM are being evaluated and other models, besides the most common LES subgrid models will
be evaluated on this case due to its complexity, and in particular its demands on accurate handling
of grid and flow anisotropies, which has proven very complicated, cf. [4].

Figure 1. Perspective view of the computational domain and the grid system used. Note the refine-
ment of the mesh towards the hull of the prolate shperoid.

5.1. Global Flow Features
Figure 2 presents perspective views of the flow at α=20° in terms of instantaneous (a) and time-
averaged (b) streamtubes released at arbitrary locations just above the hull. The streamtubes are ob-
tained from the resolved velocity field by integrating the equation d s t ds s tv x v x( , , )/ ˙ ( , , )= , where s is
the arc-length coordinate and where the dot denotes the material time-derivative. The integration is
carried out using a fourth-order accurate Runge-Kutta method. The streamribbons clearly show the
complexity of flow and the difference between the mean flow and the instantaneous flow. On the
windward side, an attached three-dimensional boundary layer is formed, which detaches from the
hull on the leeward side as a result of the circumferential adverse pressure gradient and roll-up into
a counter-rotating pair of longitudinal vortices on the back of the body. Below these primary vor-
tices a pair of counter-rotating secondary vortices can also be observed. By comparing figure 2a
and 2b the variations in the flow, as well as the dynamics of the separation line, can be found. On
average, fluid from the windward side is convected across the ellipsoid, engulfed into the primary
vortices, and finally ejected into the near-wake. The primary vortices are symmetric with respect to
the body in the mean, and appear fairly stationary for different angles of attack. Transition occurs
naturally at x1/L≈0.15±0.02 on the forebody, depending on the subgrid model. In the experiments
the flow was tripped at x1/L≈0.20, using a tripp wire, forcing the transition to occur at this locati-
on. It is likely that the difference in transition affects the distance between the primary vortices and
the hull at all downstream locations. Since transtion occurs too early in the computations, the pre-
dicted primary vortices should be expected to be located further from the hull than what is found in
the experiments. In turn, this would also alter the pressure distribution on the hull itself. The quali-
tative agreement between the predicted and measured flow is however satisfactory taking into ac-
count the complexity of the flow, the differences due to fixed and natural transition, and the simple
subgrid models used. In particular, trends related to incidence effects, [28], i.e. the roll-up of fluid
and subsequent formation of the vortices, and the associated flow features are well captured.
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 (a)

(b)

Figure 2 .  Instantaneous (a) and time-averaged (b) perspective views of the flow around the prolate
spheroid in terms of streamtubes released at a small distance (y+=O(25)) above the hull. The streamtubes
are colored by the instantaneous and time-averaged streamwise velocities, respectively.

Figure 3 shows secondary streamlines superimposed on contours of the time-averaged veloc-
ity magnitude |v| and contour lines of the resolvable turbulent kinetic energy k= 〈 〉−〈 〉1

2
2 2( )v v  at (a)

x/L=0.600 and (b) x/L=0.772, respectively. Here, x is the major axial distance from the nose and
L the total length of the ellipsoid. The highest fluid velocity is found to be on the side of the ellip-
soid (ϕ≈90°), where the flow has accelerated around the model, and underneath the primary vor-
tex. The lowest velocities are found just downstream of the separation lines. Moreover, a trough of
low-velocity fluid can be observed between the two separation lines corresponding to regions with
large values of vrms and low values of prms. The explanation for this trough of low-velocity down-
stream of the separation lines is that the primary vortices sweep up the low momentum fluid in the
vicinity of the wall and that this fluid then accumulates between the primary vortex itself and the
separation line. Some of the low-velocity fluid gets pulled out of the region near the wall and into
the vortex itself. This can be observed in figure 3b where a finger of low-velocity fluid stretches
from the wall out towards the core of the vortex. The contours of k indicate that the lifting of the
secondary streamlines at separation is accompanied by the lifting of a sheet of turbulent fluid. This
sheet appears to be drawn by the primary vortex from the boundary layer into the vortex core. The
regions of maximum k correspond to regions of low momentum fluid (i.e. low velocity magnitude,
|v|) that also is associated with the downstream corner of the primary vortex.
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(a) (b)

Figure 3 .  Secondary streamlines (black) superimposed on contours of the time-averaged velocity
magnitude | |v  and contour lines (white) of the resolvable turbulent kinetic energy k= 〈 〉−〈 〉1

2
2 2( )v v  at

(a) x/L=0.600 and (b) x/L=0.772, respectively.

5.2. Comparison with Experimental Data
Figure 4 presents the measured and predicted secondary velocity field at x/L=0.600 and x/L=0.772
from LES using SMG and OEEVM. We first notice that the difference between the subgrid models
is virtually insignificant, and we therefore focus our comparision with the experimental data on the
OEEVM model. At x/L=0.600 the predicted primary vortex is considerably stronger than in the ex-
periments. The reason for this is believed to be the early transition, but an additional reason may be
that the eddy-viscosity subgrid models overpredicts the viscosity in the first cell, and therefore also
the thickness of the boundary layer. At x/L=0.772 the primary vortex is located at 3.6 cm above
the hull surface at ϕ=155°, which is to be compared with the experimental values of 3.1 cm above
the hull surface at ϕ=155°, which corroborates the previous conclusions. In addition, the secon-
dary vortex is located at ϕ=140° in both the simulations and the experiments. The associated sepa-
ration lines are at ϕ=118° and ϕ=142°, respectively, which is in good agreement with the experi-
mental values of ϕ=112° and ϕ=135°, respectively. By comparing measured and predicted pres-
sure coefficients CP at x/L=0.600 and x/L=0.772 it appears that the primary vortex is located too
far from the hull, giving further evidence to the previous results. On the windward side the subgrid
model has little or no influence on the results, whilst on the leeward side some differences can be
observed between LES using different subgrid models and the measurements.

It is very hard to accurately represent the forced transition of the experiments in the computa-
tional model without resolving all details, including the tripp-wire itself. The experimentalists claim
that the influence of tripping the flow at x/L=0.20 is marginal to that of a natural transition, and
based on that we should seek improved subgrid models. The subgrid model must take into account
the near wall effects – the best way to accomplish this appears to be by using a subgrid model that
can automatically adjust the model coefficients to the local flow. A pragmatic approach would be to
use van-Dreist damping functions, but this approach fails to produce the correct scaling of τw, and
is not general enough considering the wide ranges of applicability we face. A more elaborate and
general approach is to use a differential subgrid stress model, which is a more general model, ca-
pable of handling simultaneous grid and flow anisotropies. A third possibility is to alter the defini-
tion of the filter width ∆ in LES to better represent the situation with strong anisotropy both in the
grid (with pancake-type cells close to the hull and cube-type cells in the freestream flow). This is
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however beyond the scope of the current study, but should be mentioned for completeness. At pre-
sent these improvements, along with others, are being tested.

Figure 4. Comparison of measured (a, b) and predicted secondary velocity vectors at x/L=0.600 (a, c
and e) and x/L=0.772 (b, d and f) for LES using SMG (c and d) and OEEVM (e and f).

5.3. Implications on Flow Induced Noise
Based on the previously discussed LES results we now aim at analyzing these databases in order to
investigate the turbulent wall-pressure fluctuations, known to be an essential source for flow in-
duced noise, and sound generation by means of the derived model (20)-(21). Again, we emphasise
that this is mearly a demonstration of the model developed and not an attempt to validate its quanti-
tative or qualitative features, for which specific experiments are required. Such a detailed validation
study will, however, be performed in the near future.

Figure 5 shows the instantaneous incompressible pressure distribution (a), the time-averaged
pressure distribution (b), the pressure fluctuations (c), and the rms-pressure fluctuations (d) on the
hull of the prolate spheroid at an arbitrary instant in time, some time after the first order statistical
moments have converged. The peak pressure is found on the windward side of the nose, wheras
the minimum pressure occurs on the sides of the prolate spheroid, towards the nose region. This
low pressure region coinsides well with the region of transition, which is further supported by the
conjecture of Casarella, [29], suggesting that transition occurs at the point of minimum pressure
for high Re-number flows. The complexity of the flow becomes apparent by comparing figures 5a
and 5b, or by examining the instantaneous pressure fluctuations in 5c and the rms-pressure fluctu-
ations in 5d. The instantaneous incompressible pressure fluctuations show patches of alternating
positive and negative values, suggesting high spatio-temporal intermittency. The negative values
are most frequently observed either on the windward side of the nose region or on the shoulders of
the prolate spheroid, towards the downstream end of the hull. The rms-pressure fluctuations show
very high values on the windward side of the nose region, and large coherent patches of low valu-
es across the rear parts of the shoulders of the prolate spheroid. Additional patches of high rms-
pressure fluctuations can be observed on the back of the prolate spheroid, forming a symmetric
pattern localized just below the cores of the primary vortices. Furthermore, based on the pressure
distribution we get further evidence for a too early separation in the LES. This may be caused by
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the subgrid turbulence model, or by the fact the the LES does not take into account that in the expe-
riments the flow was tripped by a tripp-wire at x/L=0.20.

 (a)

(b)

(c)

(d)

Figure 5. Characterization of the pressure distribution on the hull of the prolate spheroid: (a) instan-
taneous pressure, (b) time-averaged pressure, (c) pressure fluctuations and (d) rms-pressure fluctuations.

Figure 6 shows the instantaneous distribution of K div div c Gt t= + ′−( ) ( / ) ( ))(T ∂ ∂ρ ρ π2
0 0  on the

hull of the prolate spheroid. Here, T v v v v v v v v= ′ + ′+ ′ + − ′+ ′⊗ ⊗ ⊗ρ ρ ν ν( ) [ ( )( )]0 k
Tgrad grad  in which

′ρ  and ′v  have been obtained by solving equation (21). Alternating patches of high and low values
of K are observed in the nose region but also at the stern. Along the main part of the hull the peak
values occur less frequently, and are often separated by coherent patches of low K-values. By in-
specting either iso-surfaces of K or contour lines of K on selected planes we find that outside of
the boundary layer K is virtually zero everywhere. This indicates that it is only within the turbulent
boundary layer that noise is produced in terms of the source term K in the wave-equation (20). The
wall-pressure fluctuations (figure 5c) show some topological similarities with K, but the correla-
tion coefficient r K p p K p pK p p, cov[ , ]/ var[ ]var[ ]−〈 〉= −〈 〉 ⋅ −〈 〉  is less than 0.6. However, the regions
of peak |K| coincides well with regions of high pressure upstream of separation (ie. in the nose re-
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gion) and after complete separation (i.e. in the stern). As indicated in equations (24) and (25) both
K and the pressure fluctuations on the hull itself contribute to the sound pressure levels at arbitrary
location outside of the bounadry layer, which becomes similar to the the source volume V which
was introduced in equation (19). An interesting observation is that the primary vortices on the back
of the prolate spheroid does not give any visible imprint in K. This was also the case for the pres-
sure fluctuations (figure 5c), but the average location of these vortices could easily be observed in
the rms-pressure fluctuations (figure 5d). To this end it would be valuable also to examine the sta-
tistics of K, which however is beyond the scope of this report.

Figure 6. Instantaneous distribution of the source term K div div c Gt t= + ′−( ) ( / ) ( ))(T ∂ ρ ρ π∂2
0 0  on the

hull of the prolate spheroid. Dark blue corresponds to large negative values of K whereas pink corre-
sponds to high positive values of K.

In figure 7 we present typical time-series of the incompressible pressure π  from points with-
in the boundary layer of the prolate spheroid and the corresponding energy spectra together with
the characteristic f–5/3 curve, significant of the inertial subrange part of the energy spectrum. The
four points are all located within the boundary layer but at different positions and at different dis-
tances from the hull. We present a time sequence of 0.08s capable of resolving all frequences of
interest. Figure 7a supports the previous observations (e.g. the streamline patterns in figure 2) that
the flow field is dominated by large scale coherent structures and their intrinsic dynamics. Howev-
er, within the boundary layer the flow alters and boundary layer turbulence is observed. The ener-
gy spectra shows a clear f–5/3 region, indicating that the cut-off wave-number is well within the in-
ertial subrange, suggesting that the LES computations are sufficiently well resolved, at least outsi-
de of the boundary layer. The energy spectra also show a region with a much steeper decay-rate,
approximately f–4. This corresponds to the modified viscous part of the spectra. Towards the high
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Figure 7. Time series (a) and energy spectra (b) of the incompressible pressure at four different loca-
tions within the hull boundary layer of the prolate spheroid.
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wave-numbers in this area the subgrid model is active and drains kinetic energy from the system.
Since most conventional subgrid models are not adapted to viscous region, this drainage is too in-
tense, causing too much damping and a too thick boundary layer. The remedy is to use a model
which can recognize the viscous subrange, see Fureby [4] for additional details.
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Figure 8. Probability density functions ℘ of the incompressible pressure at four different locations
within the hull boundary layer of the prolate spheroid.

Figure 8 shows the corresponding Probability Density Functions (PDF) of π . The probabil-
ity density ℘ is conventionally defined according to 1

0
1p d℘∫ =π , and is constructed from the pres-

sure histories sampled during the time sequence shown in figure 7. The PDFs are all quite similar,
and have a typical Gaussian shape, with a variance of about 100 m2/s2. The corresponding variance
in the velocity field is obtained from the resolvable turbulent kinetic energy k (not shown), and is
approximately 7 m/s. From this value the turbulent intensity can be estimated to be about 15%. The
Gaussian-shaped PDFs of the incompressible pressure (figure 8) suggests that the wall-pressure
fluctuations are predominantly random, and are fairly typical of a fully developed turbulent bound-
ary layer. In addition, the PDFs of the wall-normal velocity components (not shown) correlate well
with the incompressible pressure fluctuations (figure 8), whereas the other velocity components
show virtually no correlation with the incompressible pressure fluctuations.

6. Concluding Remarks
The present study is a contribution towards a better understanding of the fundamental physics on
hydrodynamic noise produced by the turbulent flow around a rigid hull. Because of the prohibitive
cost of direct calculation using the compressible Navier Stokes equations and the conflicting re-
quirement for the acoustic calculation of both the viscous flow and the acoustic field, it is appropri-
ate to perform a two-step calculation, where the incompressible flow field is calculated separately
from the acoustic field. Such a two-step approach is particularly attractive for nearly incompressi-
ble flow, which is the case with ship speed less than 50 knots, since a fully compressible simulati-
on of a virtually incompressible flow is both too expensive (since the acoustic time scale need to be
properly resolved) and unnecessarily complicated. The approach taken here is that the incompres-
sible flow field is evaluated using Large Eddy Simulation(LES). In the second step, equations for
the acoustic variables are solved and the source terms for the wave equation for the acoustic pres-
sure field are obtained. We have applied this calculation procedure to the flow around a prolate
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spheroid in order to demonstrate the method. Qualitative and quantitative comparisons with experi-
mental data concerning the hydrodynamic nose is planned for a future study.
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