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1 Introduction
Pressure sensitive sea mines reacts on the depression generated by a passing vessel. To design
trigger criterions for sea mines or construct mine sweepers, it is important to be able to
calculate how the depression depends on the vessel hull design, speed and sea depth.

In general, the most accurate computational methods include the effects from viscous
dissipation and surface tension and are based on the full Navier-Stokes equations coupled
with a free surface condition. This system of equations is usually solved using a finite
element, finite volume or finite difference method. If viscous effects are of less or no
importance, a potential flow model can be used. In potential flow the velocity is assumed to
have a scalar potential, which satisfies Laplace equation. A tractable method for solving
Laplace equation is the Boundary Integral Method, BIM, in which the potential is expressed
as a convolution surface integral of a kernel (the Greens function) and the potential over the
enclosed boundary. The free surface condition on the water surface, which is not known in
advance, is in general non-linear.  An iterative method is thus required to find a water surface
consistent with the boundary condition for the potential on the water surface. Furthermore, the
surface integral over the water surface must be extended far enough to eliminate influence
from artificial boundaries. If the hull is entirely submerged, the free surface can be linearized
around the undisturbed water surface. By using a Greens function that satisfies the linearized
free surface condition, the complications mentioned above can be avoided.

In the present study the wave pattern, pressure signature and flow field around a
submerged sphere advancing at constant speed on calm water is considered. A comparison is
made between two different approaches, a potential flow model and a viscous flow model, to
compute the free surface waves and pressure signature resulting from the motion the sphere.
The potential flow model is solved with a linearized free surface condition. The viscous
model adopted here is the Navier-Stokes equations with gravitational forces acting on the
fluid together with the Volume of Fluid method, VOF. In VOF the free surface is represented
by a transported scalar field representing the volume fraction of water to air in the
computational volume. The effective density of the fluid is then averaged using the volume
fraction in each computational cell. The system of equations is solved using a finite volume
method.

In section 2 we give a brief description of the two methods used in the present study for
computing the flow field around the submerged sphere. In section 3 we present some
computational results for the pressure field and the wave pattern using the two methods. The
choice of a submerged body was dictated by the inability of the potential flow solver in its
present form to treat surface ships. In section 4 we summarize the results and comments on
discrepancies between the computed values and discusses the advantages and disadvantages
with each method.

2 Computational models

2.1 Problem assumptions and definitions
We consider a sphere traveling at constant speed u0 in calm water. The sea bottom is assumed
rigid and is located at the constant depth h. The water is considered incompressible with the
density ρ  and the acceleration of gravity is denoted by g. We choose a coordinate system
moving with the vessel with the propagation direction along the negative x-axis and the z-axis
directed upward. Above the water surface the pressure has the constant value patm.
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2.2 Potential flow model with linearized free surface boundary condition
In the potential flow model the fluid is assumed to be inviscid and the flow irrotational. In this
case the flow velocity has a scalar potential, u e= + ∇u x0 φ, which satisfies the Laplace
equation

∇ =2 0φ . (1)

From Bernoulli’s law the pressure can be expressed as

p p u x t= − + + ∇0 ρ φ φ φ( | | ),0
1
2

2 (2)

where p p gz0 = −atm ρ  is the hydrostatic pressure. If the water surface is defined by z x y=η( , )
and the surface tension is neglected, the requirement that the pressure at the water surface
equals the air pressure gives an equation for the wave elevation,

η φ φ φ= − + + ∇( | | ) / ,u gx t0
1
2

2 (3)

which is augment by the kinematic condition

∂ η ηt x y t x y t z( , , ) ( ( , , ) ) .+ ⋅ ∇ − =u 0 (4)

If the body is fully submerged, the perturbation velocity at the water surface is small
compared to the inflow velocity. If terms quadratic in the perturbation velocity are neglected,
a linearized boundary condition on the unperturbed surface z= 0 is obtained as

η φ φ
η η φ

= − +
− + + =





( ) /

( )
.

u g

u
x t

x t z

0

0 0
(5)

Eliminating η  from these equations gives the linearized free surface condition

∂
∂

∂
∂

φ νφ
x u t z+









 + =1

0
0

2

, (6)

where ν = g u/ 0
2. The Laplace equation (1) with boundary condition (6) can be rewritten as a

boundary integral equation for the perturbation potential on the hull H,

− ′ + ′ = − ′ ∈∫∫1
2 0φ φ( ) ( ) ( , ) ( , ) , ,r r r r r r rG dS u n G dS Hn x

HH

(7)

where G( , )r r ′  is the Greens function for the Laplace operator which satisfies the linearized
free surface condition (6) and the sea bottom condition Gz( , )r r ′  at z h= − . A detailed
discussion of the computation of the free surface Greens function and the numerical method
used for solving the boundary integral equation is given in reference [1].

2.3 Viscous flow model
For the viscous solution we solve the Navier-Stokes equations together with transport
equation for a scalar field representing the volume fraction of water in a computational cell.
This method is termed Volume of Fluid and is widely used in flow computations where two
different fluids coexist and where the interfaces are not explicitly defined. Hence, the density
ρ is averaged over a control volume using the volume fraction α and the densities of the two
fluids. The indicator function α takes the value 1 in the water and 0 in the air, and satisfies a
Lagrange invariant. In mathematical terms the system of equations becomes,
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where u is the velocity vector, 21 )1( ρααρρ −+=  is the density, DS µ2=  the viscous stress
tensor, 21 )1( µααµµ −+=  the viscosity, with indices referring to water as fluid 1 and air as
fluid 2, and f the surface tension. Surface tension is a tensile force tangential to the interface
separating the fluids with its magnitude depending mainly on the nature of the fluids. For
wavelengths on the meter scale, however, the surface tension can usually be neglected. The
definition of the indicator function implies that α  is a step function and thus ρ  is
discontinuous. In order to model the two fluids as a continuum by using (83), ρ should be
continuous and differentiable over the domain, [2]. To accomplish this we give the
transitional region between the two fluids a small but finite thickness d, i.e. α=1 in fluid 1,
α=0 in fluid 2 and 0<α<1 within the transitional region. To capture the dynamics of the thin
interface separating water and air a particular reconstruction algorithm, the Compressive
Interface Capturing Scheme for Arbitrary Meshes (CICSAM), for the convection term in the
α-equation is used. Further details of the used CICSAM scheme is given by Ubbink, [3].

The system of equations (8) is not solved for directly, as in Direct Numerical
Simulations, DNS, but filtered in space using the mesh size, resulting in the Large Eddy
Simulation, LES, model. LES has emerged as a promising alternative to the Reynolds
Averaged Navier-Stokes, RANS, model in order to confront the scale-complexity problem
inherent to high Re-number flows. In RANS the NS are averaged in time, dividing the
velocity into mean and fluctuating parts, resulting in a model most suitable for stationary
applications. In LES the motion is separated into small and large scale eddies (eddies being
the most appropriate fluid mechanical components to consider) and equations are solved for
the latter.

3 Results for the excess pressure and wave pattern generated by a submerged sphere
To compare the quality of the two different models, the excess pressure at the sea bottom and
the wave elevation generated by a submerged sphere were computed with the two methods.
The radius of the sphere was set to 0.5 meters, the total depth 4 meters, the forward velocity 2
m/s and the distance from the sphere center to the unperturbed water surface 1 m. For the
potential flow model, no exterior boundaries are necessary to introduce. For the NS-solver the
computational domain was extended 4 m upstream and 10 m downstream. The channel width
was 8 m. At the inlet boundary u e= u x0  and ∇ ⋅ =p xe 0. At the outlet boundary p p= 0 and

0/ =x∂∂ u .
The viscous solution is subject to physical dissipation phenomena as well as dissipation

and dispersion through the numerics applied in the discretisation process. These effects
becomes evident when comparing the wave cuts from the two models along lines parallel to
the direction of flow at different distances from the symmetry plane, see figures 1. Compared
with the non-viscous solution, the wave elevation is in good agreement close to the sphere but
decreased significantly faster in the viscous solution further downstream. It should be noted
that the LES model produces a time accurate solution. Hence, the solution and wave elevation
changes significantly over time. A remedy to this problem is time averaging of the surface
elevation but this was not made in the present study.
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Figure 1: The computed wave elevation along four different cuts in the y-axis. Solid lines are from the potential
flow solver and dotted lines are from the NS-solver.

In figure 2 the free surface elevation is shown for both models. The wave pattern predicted by
the two models has the same character but differs in amplitude. Also the shape differs slightly
where the viscous solution has a wider crest, perpendicular to the direction of flow, than the
non-viscous model.

          
Figure 2: Surface wave pattern on the water surface.

In figure 3 contours of the pressure distribution at the bottom, z = 4 m, is shown for both
solutions. The hydrostatic pressure has been subtracted to show the pressure change due to the
motion of the sphere. It shows a significant pressure drop under the sphere of about –25 Pa for
both the potential flow model and the Navier-Stokes solution. The excess pressure at the
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bottom predicted by the viscous model, at this speed, is too small to easily be distinguished
from the random pressure fluctuations in the turbulent flow field. Again, a remedy to this
problem, as for the surface elevation, is time averaging.
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Figure 3: Contours of the pressure distribution at z = 4 m. Non-viscous solution (left) and viscous solution (right)

In figure 4 the turbulent wake behind the sphere in the viscous solution is shown. An
isosurface of the magnitude of the vorticity vector colored with its component in the direction
of flow reveals a thick swirling tail of intense vorticity downstream of the sphere. Also shown
in figure 4 is the free surface colored with the x-component of the vorticity vector showing
the vortical structures responsible for some of the physical dissipation of the surface waves.

Figure 4: Perspective view from below showing the free surface and an isosurface of the vorticity magnitude,
both colored with the streamvise component of the vorticity vector.

4 Conclusions
In the present study a comparison has been made between two different methods for
computing the wave patter and pressure field generated by a submerged sphere. A non-
viscous method was used based on a potential flow model with a linearized free surface
condition. Also, a viscous method based on the Navier-Stokes equations together with a
volume of fluid method was used. The computed results show good agreement for the wave
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patterns close to the sphere but the viscous model has a greater damping of the wave elevation
further downstream. This is likely caused by the lack of viscous forces in the potential flow
model or by the numerical dissipation and dispersion through the numerics applied in the
discretisation. Also, the boundary conditions used for the viscous solver have some damping
influence on the free surface elevation.

Regarding the pressure distribution computed with the viscous method there are some
difficulties in resolving the small amplitude pressure distribution resulting from the sphere in
the fluctuating pressure from the turbulent flow field. However, the computed minimum
pressure is of the same magnitude for both models.

Both methods applied in this study have their benefits and drawbacks. The non-viscous
method used in this study cannot handle surface ships due to the linearized surface condition
and also neglects viscous effects. However, the method does not suffer from artificial
boundaries conditions and computationally inexpensive. Also, the pressure distribution is
easily computed. On the other hand, the viscous solution depends on initial and boundary
conditions that introduces errors in the computation, especially close to the boundaries. Also,
the numerical dissipation and dispersion acts deteriorating on the free surface waves. Its
benefits are the ability to give a more physical and detailed flow field in general, and to add
the viscous effects to the problem in particular, since these are important close to the sphere.

In conclusion it is found that LES is too computationally expensive to use in a domain
large enough for the effects of the boundary conditions to be negliable. If only the pressure
distribution at the bottom is of interest, than a potential flow model with non-linear surface
conditions, or possibly a RANS model, is more appropriate. However, the best solution would
be a combination of the LES model, for near field calculations, with a potential flow model
for the far field. In this case the linearized surface condition used in this study can be applied.
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