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1 Introduction

Insensitive high explosives have become increasingly more important due to the stricter
requirements for ammunition safety. They are non-ideal in the sense that the reaction
zone is so broad that initiation and size effects can’t be neglected. To accurately simu-
late the propagation of a detonation in a non-ideal explosive, the physics in the reaction
zone must be properly described. This can be accomplished by incorporating a reac-
tion rate law, which describes the conversion of explosive to reaction products, in the
hydrodynamic equations. Thus, to predict performance and safety aspects for weapons
containing insensitive explosives, a carefully calibrated reaction rate law is needed.

To directly measure reaction rates is very difficult, which suggests that an indirect
method should be used. A well-established method relies on the fact that the deto-
nation velocity for a cylindrical charge depends on the charge diameter. For finite
charges, radial flows will curve the detonation front, which leads to incomplete reac-
tion in the reaction zone. A lower reaction rate implies a larger curvature and lower
detonation velocity. By measuring the curvature and velocity of the detonation front
for several different charge diameters, a reaction rate law can be constructed. In a
direct method, the detonation process is simulated in a hydrodynamic computer code
where the reaction rate law contains a number of parameters. The parameters are ad-
justed until agreement with measurements is reached. Such a method is very time
consuming, considering the large amount of simulation that must be done and output
files which must be analyzed to completely parameterize a reaction rate law. In this
work, a one-dimensional code will be presented that calculates the flow in the reaction
zone for a weakly curved self-sustained steady detonation. The code is based on the
Detonation Shock Dynamics (DSD) theory [1], which has its origins in the pioneering
works by Wood & Kirkwood [2] and Bdzil [3] who extended the ZND theory for plane
detonations to weakly curved detonations. The advantage with this code is that a large
number of simulations can be performed in a short time. A typical run for thousands of
different parameter values and ten different charge diameters only takes a few minutes.

In section 2, the governing equations for steady two-dimensional flow in the re-
action zone are presented and it is shown how these can be rewritten as a system of
ordinary differential equations. In section 3 follows a discussion on the equation of
state for a reacting media. In section 4 the one-dimensional code for calibrating re-
action rate laws to experimental curvature-velocity measurements are presented. In
section 5 the results from the one-dimensional code are compared with results from
a full two-dimensional simulation using the hydrodynamic computer code DYNA2D
[4]. Finally, the results are summerized in section 6.

2 Flow equations for steady weakly curved detonations

If viscosity and heat transfer are neglected, the flow in the reaction zone is given by
the Euler equations, which follows from the laws of mass conservation

dρ

dt
+ ρ∇ · �u = 0, (1)

momentum conservation

ρ
d�u

dt
+∇P = 0, (2)
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Figure 1: The shock attached coordinates.

and energy conservation
dE

dt
− P

ρ2

dρ

dt
= 0. (3)

Here ρ is the density, P is the pressure, �u is the flow velocity, E is the specific internal
energy and d/dt = ∂/∂t+ �u · ∇ denotes the total time derivative. In the present work
it is assumed that the reaction is described by a single variable λ, the burn fraction,
which is the mass fraction of the explosive that has reacted. The decomposition of
explosives is governed by a rate law

dλ

dt
= R(ρ, P, λ), (4)

and the equation of state is expressed as

E = E(ρ, P, λ). (5)

Now consider a detonation wave moving in a cylindrical charge with constant ve-
locity D0 along the z-axes and introduce a shock-attached coordinate system (ξ, η)
moving with the front. Here ξ is the arc-length along the shock and η is the distance
behind the shock measured along the extension of the local shock normal, see Fig. (1).
It is also convenient to define the angle φ that the shock normal makes with the z-axis
and the total curvature defined by

κ =
dφ

dξ
+

sinφ

r
=

z′′s
[1 + (z′s)2]

3/2
+

z′s
r
√
1 + (z′s)2

, (6)

where zs(r) is the position of the front as function of the radius.
When the flow in the reaction-zone is steady and the radius of curvature is much

larger than the reaction-zone length, the Euler equations reduce to a set of ordinary
differential equations in one variable [1]

(Dn − uη)ρ,η − ρuη,η + ρκuη = 0, (7)
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ρ(Dn − uη)uη,η − P,η = 0, (8)

(Dn − uη)E,η − P

ρ2
(Dn − uη)ρ,η = 0, (9)

(Dn − uη)λ,η = R, (10)

where terms of order κ2 have been dropped. Here

Dn = D0 cosφ, (11)

is the normal component of the detonation velocity.
We will now show that Eqs. (7-10) only permits a continuous solution for certain

combinations of Dn and κ. If the relation

E,η = E,PP,η + E,ρρ,η + E,λλ,η,

is substituted into Eq. (9), the energy conservation law can be written

(Dn − uη)P,η − c2(Dn − uη)ρ,η +
RE,λ

E,P
= 0, (12)

where c is the frozen sound speed defined by

c2 =
(
∂P

∂ρ

)
s,λ

=
1

E,P

(
P

ρ2
− E,ρ

)
. (13)

Using Eqs. (7) and (8) to eliminate ρ,η and P,η in Eq. (12), a relation called the master
equation is achieved:

[
(Dn − uη)2 − c2

]
uη,η = −c2κuη − RE,λ

ρE,P
. (14)

At the sonic point where c+ uη = Dn, the left hand in Eq. (14) vanishes and thus we
impose the condition

κuη +Rχ = 0 when c+ uη = Dn, (15)

where we have defined the thermicity coefficient

χ = E,λ/ρc
2E,P . (16)

For given value on Dn the condition (15) can only be satisfied for an unique value of
κ, i. e. Eq. (15) predicts a universal relation κ = κ(Dn), independent of the charge
size. The relation is valid not only on the charge axis as in Ref. [2], but along the
whole shock front where the assumption of small curvature is valid. The solution
which satisfies Eq. (15) is called an eigenvalue solution.

When the relation between the normal detonation velocity and local curvature is
known, the shock front shape can be calculated from Eq. (6),

rs(φ) =
∫

cosφdξ =
∫ cosφdφ

κ(D0 cosφ)− sinφ/rs
, (17)

7



zs(φ) = z0 +
∫

sinφdξ = z0 +
∫ sinφdφ

κ(D0 cosφ)− sinφ/rs
. (18)

If the angle φedge that the shock normal makes with the z-axis at the charge edge is
known, Eq. (17) results in a relation between the detonation velocity at the charge
axis D0 and the charge diameter d = 2rs(φedge). For a bare charge, the edge angle is
determined by the condition that the flow behind the shock must be sonic [5],

c2 = (un,edge −D0 cosφedge)2 +D2
0 sin

2 φedge.

3 Equation of state for reacting systems

The unreacted explosive and the reaction products are described by two separate equa-
tion of states (EOS)

E(explosive) = Ee(ve, Pe), E(products) = Ep(vp, Pp),

where indices e and p denotes the unreacted explosive and the reaction products re-
spectively. We assume that the two phases are in mechanical and thermal equilibrium,

Te(ve, P ) = Tp(vp, P ), (19)

and that the specific energy and volume are given by,

E(v, P, λ) = (1− λ)Ee(ve(v, P, λ), P ) + λEp(vp(v, P, λ), P ), (20)

v = (1− λ)ve + λvp, (21)

where ve and vp are given by Eqs. (19) and (21).
Our primary interest here is to calculate various energy derivatives to get the frozen

sound speed c and the thermicity coefficient χ, given by Eqs. (13) and (16). Using the
chain rule the energy derivatives can be written

∂E

∂v
= (1− λ)

∂Ee

∂ve

∂ve

∂v
+ λ

∂Ep

∂vp

∂vp

∂v
, (22)

∂E

∂P
= (1− λ)

[
∂Ee

∂ve

∂ve

∂P
+

∂Ee

∂P

]
+ λ

[
∂Ep

∂vp

∂vp

∂P
+

∂Ep

∂P

]
, (23)

∂E

∂λ
= (1− λ)

∂Ee

∂ve

∂ve

∂λ
+ λ

∂Ep

∂vp

∂vp

∂λ
− (Ee − Ep). (24)

In equations (22-24), the derivatives of ve and vp appears, which can be obtained by
differentiating Eqs. (19) and (21).

Constant P and λ.

Differentiating Eqs. (19) and (21) for constant P and λ gives{
∂Te
∂ve

∂ve
∂v − ∂Tp

∂vp

∂vp

∂v = 0,
(1− λ)∂ve

∂v + λ∂ve
∂v = 1,

(25)

from which ∂ve/∂v and ∂vp/∂v can be obtained.
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Constant v and λ.

Differentiating Eqs. (19) and (21) for constant v and λ gives{
∂Te
∂ve

∂ve
∂P − ∂Tp

∂vp

∂vp

∂P = ∂Tp

∂P − ∂Te
∂P ,

(1− λ)∂ve
∂P + λ∂vp

∂P = 0,
(26)

from which ∂ve/∂P and ∂vp/∂P can be obtained.

Constant v and P .

Differentiating Eqs. (19) and (21) for constant v and P gives{
∂Te
∂ve

∂ve
∂λ − ∂Tp

∂vp

∂vp

∂λ = 0,

(1− λ)∂ve
∂λ + λ

∂vp

∂λ = ve − vp,
(27)

from which ∂ve/∂λ and ∂vp/∂λ can be obtained.

4 The one-dimensional computer code

A computer code that solves the flow equations in the reaction zone has been devel-
oped. The code requires as input a table of experimentally measured Dn − κ values
and two equation of states, one for the unreacted explosive and one for the reaction
products. The reaction rate R is assumed to be on the form

R = Af(ρ, P, λ;�σ), (28)

where A is a rate multiplier and f is a function which describes the burn model, nor-
malized to some suitable value. �σ is a parameter vector of rank n which will be varied
to reproduce the measured Dn − κ relation.

If we denote the particle velocity in the shock attached frame by w = Dn−uη and
introduce the burn fraction as the independent variable, the flow equations (7), (8) and
(14) can be written in conservative form as

d

dλ
(ρw) = −κuη

R
ρw,

d

dλ
(P + ρw2) = −κuη

R
ρw2, (29)

dw

dλ
= −w

χ+ κuη/R

1 − (w/c)2
,

with initial conditions given by the Rankine-Hugoniot relations [6]

ρsws = ρ0Dn,

Ps + ρsw
2
s = ρ0D

2
n, (30)

E(ρs, Ps, 0)− E0 =
1
2
(Dn −ws)2,

where the subscript s denotes the value just behind the shock front. Two auxiliary
functions ψ and Φ are defined as

ψ = 1− w2/c2,
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and
Φ = χ+ κuη/R,

to examine the sonic condition (15). In the reaction zone, ψ > 0 (the flow is sub-sonic)
and Φ < 0 (the chemical energy release is greater than the transverse energy flow), and
at the sonic point where ψ = 0 we have the constraint Φ = 0.

For given values of Dn and κ, the code searches for the rate multiplier which
permits an eigenvalue solution. Starting with an initial guess A = A0, the flow equa-
tions (29) are integrated from the shock with initial values given by Eq. (30), using a
fourth order Runge-Kutta method. After each integration step the functions ψ and Φ
are inspected to check if either ψ ≤ 0 or Φ ≥ 0. If both conditions are satisfied, the
rate multiplier is accepted; otherwise the rate multiplier is changed according to the
following rule:

1. decrease A if ψ ≤ 0 and Φ < 0: Amax = Ai, Ai+1 = 1
2(Ai +Amin);

2. increase A if Φ ≥ 0 and ψ > 0: Amin = Ai, Ai+1 = 1
2(Ai +Amax);

and a new calculation is performed. Using this scheme for a set of M different experi-
mentally measured pairs {(Dn, κ)}k gives a set of rate multipliers {A}k . For a correct
reaction rate law the rate multipliers should all take the same value. Hence we define
the merit function

Π =
M∑

k=1

(
Ak − 〈A〉

〈A〉
)2

as a measure of deviation from a constant rate multiplier. A Levenberg-Marquardt
algorithm is used to find the parameters �σ which minimize the merit function.

5 Comparison between a full two dimensional simulation and
the DSD-code

To test if the one-dimensional DSD-code can be used instead of a full two-dimensional
simulation to calibrate reaction rate laws, a numerical experiment has been performed
with DYNA2D where the detonation velocity and shock curvature were calculated for
a number of different sized cylindrical charges (rate sticks) of the explosive TNT. For
the simulations, the DYNA2D equation of state 7 (Ignition and growth of reaction in
HE) was used, which contains the JWL EOS described in Appendix A for both the
unreacted explosive and the reaction products, and the two-term Ignition and Growth
reaction rate law described in Appendix B. The parameters for cast TNT were taken
from Ref. [7] and are listed in Table 1. A very fine mesh with 10 elements/mm was
used to resolve the reaction zone. The detonation was initiated at one end with a TNT-
booster described by a simple programmed burn model. The length of the charge was
extended long enough for flow to be stationary at the opposite end, where the arrival
times were tracked at eight different points, equidistantly placed along a constant z-
plane. The position of the shock front, zs(r), was fitted to a polynomial in r2 and
the normal component of the detonation velocity and the local curvature was then
calculated from Eqs. (6) and (11). The results for five rate sticks with charge radius
30 mm, 15 mm, 10 mm, 6 mm and 5 mm are presented in Fig. 2, together with the
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Table 1: Data for cast TNT.
Performance

ρ0 (cm/cc) E0/v0 (Mbar) D (cm/µs) pCJ (Mbar)
1.61 0.07 0.6972 0.21

Unreacted JWL
A (Mbar) B (Mbar) αv0 βv0 ω

17.98 -0.931 6.2 3.1 0.8926

Reacted JWL
A (Mbar) B (Mbar) αv0 βv0 ω

3.712 0.0323 4.15 0.95 0.3

Specific heat
cv(explosive)/v0 (Mbar/K) cv(products)/v0 (Mbar/K)

2.05 × 10−5 1.0× 10−5

Ignition term
I (µs−1 ) a x µc fmax,ig

50 0.2222 4.0 0.0 1.0

Growth term
G1 (µs−1Mbar−y ) b c y fmax,gr

40 0.222 0.667 1.2 1.0

prediction from the DSD-code. For charges with radius less than 5 mm the detonation
failed to propagate. It is clear from these simulations that for κ ≤ 1.5 cm−1, the
points closely follow a single curve in agreement with the DSD prediction. For points
close to the critical radius there is a small deviation from the DSD-prediction, but the
agreement is still quite good.

6 Summary

A computer code has been developed to facilitate the calibration of reaction rate laws
using detonation front curvature experiments. The code searches for the functional
form of a reaction rate law that best fits the experimental relation between the normal
detonation velocity and the local shock front curvature. By using the asymptotic be-
havior of the flow equations for small curvature, a very fast method to parameterize
a reaction rate law is achieved. The present method was inspired by the work in Ref.
[8].

With the computing power available today, usage of direct numerical simulations
(DNS) is extremely time consuming. To get convergent results with a DNS a very fine
mesh is required to resolve the reaction zone, and the simulation must proceed long
enough for a steady detonation to be established. If a large number of simulations must
be performed, this is not a viable alternative. We think that DNS is mainly useful for
verifying a calibrated reaction rate law.

The universal relation between Dn and κ is only valid to first order in κ. If higher
order terms are included in the analysis, a more complex relation exist between Dn and
κ, which also involves the detonation velocity at the charge axis [9], κ = κ(Dn,D0).
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Figure 2: Calculated detonation velocity and curvature for 5 rate-sticks of different
radius.

From the numerical experiment in Sec. 5 we found that the different curves almost
coincide for TNT. Considering the errors in calculating curvatures from experimental
data and the differences from batch to batch, it is doubtful if the more advanced method
is more appropriate. We conclude that the described code is a valuable tool to calibrate
reaction rate laws.
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A The JWL equation of state

The JWL is a constant Grunisen gamma equation of state and has the form

P = A

(
1− ω

αv

)
e−αv +B

(
1− ω

βv

)
e−βv +

ω

v
(E − E0). (31)

The pressure can also be written as a function of specific volume and temperature.
From the thermodynamic relation(

∂E

∂v

)
T
= T

(
∂P

∂T

)
v
− P,

and the identity (
∂E

∂v

)
T
=

(
∂E

∂P

)
v

(
∂P

∂v

)
T
+

(
∂E

∂v

)
P
,

it follows that (
∂E

∂P

)
v

(
∂P

∂v

)
T
+

(
∂E

∂v

)
P
= T

(
∂P

∂T

)
v
− P.

Using Eq. (31) to evaluate the energy derivatives we get

v

(
∂P

∂v

)
T
−ωT

(
∂P

∂T

)
v
+ (1+ω)P = A(1 +ω−αv)e−αv +B(1+ ω− βv)e−βv .

This is a hyperbolic partial differential equation, which can be solved with the method
of characteristics. The general solution is

P (v, T ) = Ae−αv +Be−βv + f(vωT )/v1+ω ,

where the function f is related to the specific heat at constant volume cv through the
relation

cv =
(
∂E

∂T

)
v
=

(
∂E

∂P

)
v

(
∂P

∂T

)
v
= f ′(vωT )/ω.
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Assuming a constant cv we get

f = ωcvTvω + C,

where C is an integration constant. The pressure and energy can now be written as
functions of v and T as

P =
ωcvT

v
+Ae−αv +Be−βv +

C

v1+ω
,

E = E0 + cvT +
A

α
e−αv +

B

β
e−βv +

C

ωvω
,

which, with C = 0, is the form used in DYNA2D.

B The ignition and growth model

The reaction rate model used in DYNA2D was suggested by Tarver et. al. [10], which
is an extension to the model proposed by Lee & Tarver [7] to model the ignition and
growth of reaction in high explosives. The reaction rate law has the form

R = R1 +R2 +R3, (32)

where R1 is an ignition term which describes the reaction of a small amount of ex-
plosive soon after the shock wave compresses it, R2 is a slow growth of reaction term
which models the spread of this initial reaction and R3 is a rapid completion of reac-
tion term which dominates at large pressure and temperature. The form of the ignition
term is

R1 = I(1− λ)a(µe − µc)x,

where µe = ρe/ρ0 − 1 is the compression of the unreacted explosive and µc is the
minimum compression required to start the reaction. The ignition term is set to zero
when λ ≥ λmax,ig. The form of the growth and completion terms are

R2 = G1(1− λ)bλcP y,

R3 = G2(1− λ)dλeP z.

The growth term is set to zero when λ ≥ λmax,gr and the completion term is set to zero
when λ ≤ λmin,gr.

In the original work of Lee & Tarver, only the two first terms in Eq. (32) were
present and this form is called the two-term model. The third term was added to
accurately simulate short pulse duration shock initiation. The burn fraction exponents
a and b are usually set to 2/9 in the two-term model and to 2/3 in the three-term model.
The burn fraction exponent c is usually set to 2/3 in the two-term model and to 1/9
in the three-term model. The compression exponent x is usually set to 4, or with
λmax,ig < 1 to a higher value. The pressure exponents y and z are usually in the range
1 ≤ y ≤ z ≤ 3.
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