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Abstract

Optimal control of transition in channel flow and boundary layer flow is attempted.
First the optimization problem is stated and the corresponding adjoint equations
used to compute the gradient of the objective function are derived for both the
channel flow and boundary layer flow problems. Implementation and numerical
issues are discussed. The governing equations are the incompressible Navier—
Stokes equations with appropriate boundary conditions for the two cases. The
boundary condition on the wall normal velocity at the walls of the channel, or at
the single wall in the boundary layer case, is used as control and is determined
in the iterative optimization procedure. The objective function used for the opti-
mization problem contains the perturbation energy and a regularization term con-
taining the control. The optimization problem is formulated using the primitive
variables — velocity and pressure — and is then rewritten in a formulation con-
taining only the wall normal velocity and the wall normal vorticity. An existing
solver for the incompressible Navier—Stokes equations using this formulation can
then also be used to solve the associated adjoint problem. The implementation is
straightforward using this formulation and the efficiency of the original solver is
maintained. To test the performance of the solver of the optimization problem,
it is applied on different stages of the oblique transition scenario in the channel
flow case. In a parallel Falkner—Skan—Cooke flow successful control of an invis-
cid instability is reported, and in the spatial Blasius flow the energy growth of a
Tollmien-Schlichting wave is efficiently inhibited.
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1

Introduction

In the last decade, one topic in fluid mechanics that has been subject to an increas-
ing interest is flow control. The explosive development in computer technology
has made it possible to approach these problems from a numerical point of view,
and also to manufacture small devices to be used for measurements and actuation
in experiments. The numerical approach to flow control can for example be used
to design the shape of a wing to minimize drag or to solve some other optimiza-
tion problem. Mathematical aspects of the flow control problem is the topic of
the books edited by Gunzburger (1995) [8] and Sritharan (1998) [22]. Computa-
tional approaches to flow control are reviewed in the paper by Hinze & Kunisch
(2000) [9]. Optimal control of channel flow using direct numerical simulations
was previously considered using by Bewley, Moin & Temam (2001) [2] and us-
ing large eddy simulations by Collis et al. (2000) [5]. In addition to channel
flow, Joslin et al. (1997) [14] also considered the boundary layer case with a two
dimensional flow in direct numerical simulations.

In this work we consider the problem of control of transition from laminar
to turbulent flow in a channel and a boundary layer. In many applications there
is a large potential benefit from the ability to prevent transition whereas in other
applications the turbulent state is the desired one. Our objective is to delay or
prevent transition at low Reynolds numbers, particularly focusing on the bypass
transition (Morkovin (1969) [18]), that is, transition scenarios not emanating from
exponential growth of disturbances in the linearized equations. These effects are
particularly important for flows involving strong shear. We refer to the recent
book by Schmid & Henningson (2001) [21] for a comprehensive treatment on the
subject.
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2 Optimization problem formulations

The formulation of an optimal control problem is based on three important deci-
sions. The choice of governing equations, determining what means of actuation
to use, and what properties of the flow to control. For a particular flow geometry
and with given fluid properties, these choices have to be made with care.

In this work the governing equations are the incompressible Navier-Stokes
equations. In a recent study, successful application of feedback controllers com-
puted from the linearized Navier—Stokes equations was performed by Hogberg
& Bewley (2001) [11] in temporal channel flow. Changes in the mean flow is
not easily taken into account using this formulation. Thus, a proper treatment of
problems where this is important, such as a flow with local separation, requires
the use of the full Navier-Stokes equations.

Since no particular quantity is known that establishes where we are on the path
to transition the choice of objective function is difficult. The mean skin friction
drag could be used as an indicator, since it has a jump at transition, and can be
used to define a transition point, as for example in Reddy et al. (1998) [20]. On
the other hand, Bewley, Moin & Temam (2001) [2] showed that the mean drag was
not a good choice for the objective function when the purpose was to relaminarize
turbulence in a channel flow, and concluded that the turbulent kinetic energy was
a more appropriate choice. Since we are interested in control of transition rather
than turbulence, the energy of the deviation from the mean flow appears to be
an appropriate quantity to minimize. An increased physical understanding of the
transition process and the crucial mechanisms of turbulence could provide a guide
to the best choice of objective function as pointed out by Kim & Lim (2000) [15].

It is important to choose the properties of the control in such a way that it is
able to do its task in an efficient way. For our study, we have chosen to use blowing
and suction at the wall during a specified period in time. The state of the flow is
observed during another, possibly overlapping, period in time. When a spatially
rather than a temporally evolving flow is considered, it is physically meaningful to
specify also the spatial extent of the control and observation regions. The control
is restricted to have zero mass flux, in order to limit the ability to affect the mean
flow and focus the control effort on the perturbations.

The gradient of the objective function may be expressed in terms of the so-
lution of an adjoint equation. Here, we discretize the expressions for the adjoint
equations and the gradient that have been derived on the “continuous” level. An
alternative is to discretize the Navier—-Stokes equations and the objective function
and derive the adjoint equations and the gradient expression on the discrete level.
The latter approach leads to more accurate gradient directions, but it seems diffi-
cult to apply for the present discretizations. Issues related to the errors introduced
by the approximative (continuous) formulation are discussed in e.g. Glowinski &
He (1998) [6] and Gunzburger (1998) [7]. The use of the continuous formulation
is motivated by the findings in Hogberg & Berggren (2000) [10] where one con-
clusion was that it is sufficient to use the approximative (continuous) formulation
in order to control strong instabilities. It was noted that in such cases most of
the reduction of the objective function is achieved in the first few iterations, and
additional iterations only result in a fine tuning of the control. The drawback is
that it will require more iterations to reach the true optimal solution, if it is even
possible, than with the discrete formulation.
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2.1 Governing equations

In this section we consider the channel flow problem and the details of the method
used to solve the optimization problem. The boundary layer problem is basically
an extension of the channel flow case. The differences are outlined in section 2.3,
and a full description is provided in appendix A.

Our computational domain depicted in figure 1 is

Q= (—zr/2,21/2) x (=1,1) x (—2L/2,21/2),
in z,y, z, and we define

I, =Qy=-1), Ty=Q0y=1) and Q=Qx(0,T).

The non-dimensional, incompressible Navier—Stokes equations with a Reynolds
number, Re, based on the centerline velocity and half the channel height are

ou 1 .
Vou=0 in Q, @
uli=o = uo,

where u = (u1,v,w) is the velocity vector, 7 is the pressure and V P represents
the pressure gradient driving the flow and can either be constant or used to ensure
constant mass flux. Periodic boundary conditions in x and z, and control through
blowing and suction together with a no-slip condition for the directions parallel to
the wall gives the complete set of boundary conditions,

u‘xzfo/Q = u‘:)::xL/%

u|z:—zL/2 = u|z:zL/27
e uly s = ol =Yy orm(®) Yrm(z,2)  in(T¢,T5) fori=2,
L 0 otherwise,

ey = | P00 = X eum() Yum(@,2) 0 (], T5) fori=2,
s 0 otherwise,

()
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where e; are unit basis vectors in the coordinate directions, and v/ are basis func-
tions for the control designed to have zero net mass flux. We can now introduce
the control variable ¢ defined as:

)T

)

YL = (SDL,1, vy PLM
¢ = (eL,ov)", e
ou = (pui,---,Pumy) -

To completely specify the optimal control problem we also need an objective func-
tion. If we choose to minimize the energy of the deviation from a target velocity
distribution, the objective function is:

Ty T3
1
sy =5 [ [rards [ [lu-uwlPdo ®
Te T To Q

where (77, T%) is the control time period and (77, T%) is the observation time
period. The target velocity profile is denoted u7. The optimization problem is
then: find ¢* which satisfies

J(p%) < J(p) Vo(p)lr € Uad
where U, 4 has been used to denote the set of admissible controlswhich is a subset

of L2((Tf, Tg); RMr+Mo),

2.2 Derivation of objective function gradient.

The gradient of the objective function VJ is defined by

J(p 4 s5¢0) — J(p)

dJ(p) = lim = (VJ,0p)
s—0 S (4)
B < oJ 5 >+< oJ 5 >
aSOL’ PL 880U’ YU )

where d¢ is a first variation of the control. The functional 6. is the first variation
of .J with respect to 6. To find an expression for VJ we start by differentiating
the objective function (3) to get,

TS TS
5J(cp)25//5vvdf‘dt+//(5u-(u—uT)dQ, (5)
Te T Te Q

where dv = es - du and Ju is the first variation of » with respect to 4. To find an
expression for the relation between du and 6 we differentiate state equation (1),

odu 1
— 4+ (0u-V)u+ (u-V)ou — T

o ASu+Vér=0 inQ,

V.su=0 ing, ©
5u]t:0 = O,
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and boundary conditions (2),

5u|x=71L/2 = 5“":1::3@/27
6u|z:—zL/2 = 5u’z:zL/27

o0 Sul = Splpr, = M0 Sopm( O m(z,2) in (Tf,Ts) fori=2,
P 0 otherwise,

o1 5ul_y = | P00 = Znly Seum(Oum(z.2) - in(TfT5) fori =2,
’ = 0 otherwise.

(")

Now we introduce a vector function p = p(z,v, z,t) such that e; - p = p; and
require p to satisfy the boundary conditions:

p|ac:—zL/2 :p|x:$L/27
p|z:7zL/2 :p|z:zL/27 (8)
p‘y:—l = p’yzl =0.

Appropriate boundary conditions will emerge from the derivation but in order to
simplify the presentation they are introduced already at this point. Taking the dot
product between p and equation (6) and integrating over () yields

5 1
/p. (% +(0u- V)u+ (u-V)ou— R—A6u+V57r> dQ=0. (9
1 T T 64 V5

O

Then, step by step, we apply integration by parts to move derivatives from Ju to
p. We start with the first term in the integral (9), containing the time derivative:

(10)

10
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where we have used that du(t = 0) = 0. Then consider the fourth and fifth terms
in integral (9), involving Adu and o

%/p-A&udeL/(p-V)éwdQ
Q Q

T
:—L/[ @ pdll — /Vp:Vc?udQ]dt
e on
0 Q

T
1 9du
:/ p-(néﬂ—ﬁa—n) dl'dt (11)
r 0
+ie/[/5u pdr /(5u Ade]dt—/éwV p)dQ
0 Q

2
1 o
[¢L/¢L dF+5g0U/1/JU der}dt
Re
5

1

1
— R/ u'Ade—/éw(V-p)dQ.
Q Q
where : denotes a complete contraction; that is,

d(e; - p) d(e; - ou)
8xj 8.Tj '

3
Vp:Vou= Z

ij=1

(12)

In the third equality of (11), we use the boundary condition on §« from (7) and on
p from (8).

We can simply rewrite the second term in (9):

/p- (0u-V)udQ = /&u‘ (Vu)'pdQ. (13)
Q Q

For the third term in (9), we use Gauss theorem, the boundary condition on p in

11
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(8) and the incompressibility condition,

/p- (u- V)dudQ

Q
T
:O/F/(p-au)(n.u)drdt

(14)
- [V wda- [ou - VipdQ
Q Q
— [ou (- Vipda
Then by inserting (10), (11), (13) and (14) into (9) we get:
/ p(T) du(T) 92
Q
/ [(m / v 22 ar + agt / v 22 dr} d
(15)
/5 (—— - —eA p+ (Vu)Tp— (u- V)p) dQ
—/(57r(V-p)dQ—O.
Q
If we then require p to satisfy the adjoint equations:
( Op 1
5 R—Ap + (Vu)'p
_Ju—ur in (7T7,15) .
~(u-Vipt Vo = { 0 otherwise nQ. (16)
V.p=0 inQ,
p|t:T = 07

with the boundary conditions from (8) and where o is a scalar field (the “adjoint
pressure™). Then (15) becomes

//(m w—ur)dQ — /5u VodQ =0, (17)

TO

since Op2/On is zero at the boundaries y = +1. This follows from the fact that
the no-slip condition implies

9p1 _ Ops _
ox 0z
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on the walls and from the condition requiring p to be divergence-free. Also, note
that the initial condition for the adjoint equations (16) is set at ¢ = 7" and that the
equations are integrated backwards in time.

Integrating the second term in the integral (17) by parts yields

T
—/6u~VUdQ:—//n‘éuadl“dt—i—/av‘éudQ
Q or Q

T
:—//n~5uadfdt,
or

since V - du = 0. Inserting the boundary condition on Ju from (7) into (18) we

get,
T
—//n~(5uadf‘dt
or
Te

c
2 T2

= / / SpFappodldt — / / Splypyodrdt.

TeT, Te Ty

(18)

(19)

If we now insert (18) and (19) into (17) we get,
T3

/ [&of / Yrodl — dp; / ¢UadF} dt
l—‘L FU

H 20
9 (20)

+//5u-(u—uT)dQ:O.
Q

Ty
Finally we can now insert (20) into (5) using (2) to eliminate ou

oJ oJ
6J(p) = <ﬂ7590L> + <%,580U>

1

— /{&o{ :F[% (epitpL — o) dr} (21)

Ly

+ dpt; /1/1[] (epibu + o) dl“} }dt.
L

From expression (21) we can identify the gradient of the objective function (3),

oJ

o =F/ v, (ohur — o) dr, 22
and

oJ

8(’7 :F/ 1/)U (5905¢U + O') dr. (23)

13
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Figure 2. Geometry for bound-
ary layer flow simulations.

14

Note that these gradients are vector-valued (dimensions M7, and M) functions
of time.

2.3 Extension to boundary layer

Only minor changes are needed to rephrase the channel flow problem to the
boundary layer flow depicted in figure 2. A complete derivation of the bound-
ary layer counterpart of the channel flow optimization problem can be found in
appendix A. In this section only the key differences will be pointed out and com-
mented.

The growing boundary layer is modeled by

ou 1 .
E—F(U'V)U—EAU—}—VTF—)\(ZL‘)(U—’LL) inQ,
Vou=0 inQ, (24)
ul=0 = o,

with periodic boundary conditions in the horizontal directions, that is, the x- and
z-directions,

u’x:—xl/2 = u|x=xl/27 (25)

u|z:—zl/2 = u|z:zl/2-

The term A\(x)(U — u) is a forcing term used to make the flow situation sketched
in figure 2 periodic, enabling the use of Fourier discretization in simulations of
the physical flow. This is known as the fringe region technique and is described
further in Lundbladh et al. (1999) [17] and analyzed by Nordstrom, Nordin &
Henningson (1999) [19]. Left to be specified are the conditions on the wall and in
the free-stream. On the wall, the boundary condition for the horizontal velocities
is a non-slip condition, whereas the wall normal velocity v, is given by the control.
The free-stream condition is that u — (Uso, 0, Woo) as y — oco. We may thus

specify
u’Fu - (UOO7 07 WOO)7

ulr, = nue, (26)
uppr, = 0,

where I', and I'; represent the upper and lower part of the boundary respectively.
The part of the boundary where the control is applied is denoted T'...

In the code there are numerous, alternative, less intrusive choices for the free-
stream condition than the Dirichlet condition above, in order to keep the height
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of the box as small as possible. The one that is actually used for the numerical
experiments is

ou
—| =0. 27
on .. 27)

As for the channel flow case we expand the control v, in basis functions v ,
with zero mass flux, where ¢; ,,, are time dependent coefficients for the basis
functions,

M
SolTwl = Z ‘Pl,m(t)wl,m(xv Z) in (Tlca TQC)a

m=1

(28)

Uc(x> 2 t) =

0 otherwise.

Where we have introduced the control vector ¢; defined as:

o1 = (P11, PLM)-

Comparing with the corresponding equation for channel flow, equation (1) and
the associated boundary conditions, there are two differences. The boundary con-
dition at the upper wall is now replaced by a free-stream velocity condition. Also
the aforementioned fringe forcing term which is needed only for spatial simula-
tions is added to the right hand side. The scalar function A = A(x) is nonzero
only in the fringe region and is defined as follows:

L — Tstart & — Tend
= A | S [ o start) g (T Tend 4y
A#) = A [S ( Arige ) S ( Agan i )}

where Amax, Zstarts Zend, Arise and Agay) are parameters used to specify the strength,
extent and shape of the fringe forcing. The S-function is defined as

0 r <0,
1
S(r) = 1+exp(l/(1—7r)+1/r) 0<r<i,
1 r>1.

Another difference from the channel flow problem formulation appears in the
second term of the objective function J, equation (3), where the observation of
state can now be limited in space as well as in time which yields,

T3 T3
€ 1
Hen=5 [ [lpards [ [u-wldo (29)
T¢ e T7 Qo

where (77, Ts) is the control time period and (77, 7%) is the observation time
period and €2, is the part of the spatial domain 2 where the state of the flow is
observed. This is only used for spatial simulations.

15
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As for the channel flow derivation, we get to the stage where the adjoint equa-
tions with the variables p and ¢ are introduced:

(V)T (- V)p
1 u—up in(T7,15) X Q.
——Ap+ A =
RSP T M@ Vo { 0 otherwise ne @0
V.p=0 inQ,

pli=r = 0.

along with the boundary conditions:

p’w:—zl/Q = p|x:;vl/27

p|z:7zl/2 :p’z:zl/% (31)
p‘Fl == O?
p|Fu = 07

The solution to the adjoint equations will vanish far above plate, so the condition at
I',, may be regarded as a zero free-stream condition for the adjoint equations. Fol-
lowing the same reasoning as for the free-stream condition in the Navier-Stokes
equation, we actually use the Neumann condition

dp

% . - O (32)

instead for the zero Dirichlet condition in the numerical experiments. It is possible
instead to use the exact adjoint boundary condition associated to the Neumann
condition (27). However, this would substantially complicate the implementation,
since the pressure is not easily available with the current solution procedure (see
section 3.1).

Due to the fringe forcing, the additional term A(z)p will appear in the adjoint
equations. The forcing v — up is now confined to the spatial domain €2, due to
the variable spatial extent of the observation. These adjustments lead to following
the expression for the gradient:

% - F/ by (el by — o) dT. (33)

16



FOI-R-0182-SE

3 Adapting to the simulation codes

3.1 Reformulation of the adjoint equations

To be able to use existing spectral channel flow and boundary layer flow codes by
Lundbladh, Henningson & Johansson (1992) [16] and Lundbladh et al. (1999) [17]
respectively, we need to reformulate the adjoint equations into a similar form to
the one used there. The simulation code for the boundary layer problem is based
on the channel flow code and the solution procedure is identical. The Navier—
Stokes equations are implemented in a v — w formulation, where linear and non-
linear terms are treated separately. We can write the adjoint equations (16) or (30)
as

dp 1
e (34)
p’t:TZO,

with the boundary conditions (8) or (31), and where H in the following denotes
either Hg, or Hp corresponding to the forcing terms in the channel and boundary
layer cases respectively. In order to avoid derivatives of v in the adjoint equations,
terms involving such derivatives are reformulated. Using the identity

ux (Vxp)—2(Vp)lu+V(u-p) = (Vu)'p—(u-V)p
the forcing in the channel flow case is given by

u—up in(17,73),

Hep = —ux (V 2(Vp)"
ch = —u x (V xp)+2(Vp) “+{ 0 otherwise,

and in the boundary layer case we use

u—up in(17,T5) x Qy,
Hy = —u x (V x 2(Vp)Tu — A
bl u x (V xp)+2(Vp)u (x)er{ 0 otherwise,

but apart from this, the procedure is the same in both cases. If we take the diver-
gence of equation (34) we get a Poisson equation for the adjoint pressure:

Ac=V-H—-A(u-p). (35)

We can then apply the Laplace operator to equation (34), take the second compo-
nent, and combine with (35) to get:

8Ap2 1 2 62 82 0 8H1 8H3 .
— A 2—<@+@ H2+— a—xﬁ-g =0. (36)

dy
Then we take the second component of the equation obtained by taking the curl
of equation (34) and again making use of (35) to get,

ot Re

OV xp) 1
ot Re

OH, O0H;

A(V X p)a — <W - W) = 0. 37)

17
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We can write equation (36) as a system of two second order equations:

dp 1
_E - hpz + EA¢7
Aps = ¢, (38)
I
where
0? 0? 0 (0H1 OHjs
hp2<w+@>f{2_8_y<a—x+ 82) (39)

Written on the same form equation (37) reads:

IV x p)2 1
{ - Ve h(vxp), + EA(V X p)2, (40)
(V xp)a(y ==%1) =0,

where

0H; 8H3> (41)

h(xp)2 = (W ~ o

Equations (38), (39), (40) and (41) are identical to those solved by the spectral
channel flow and boundary layer codes with slight changes to H and a negative
time derivative. Since the adjoint equations are solved backwards in time, we can
in practice use the same solver.

3.2 Gradient evaluation

In the gradient of the objective function we need the adjoint pressure at the wall.
This is not available directly since we have eliminated the adjoint pressure term
from the equations, and thus the pressure is not computed explicitly. If we evaluate
equation (16) or (30) at the walls, we get

o — L&m| . Om

“lw Re 0y? | o lw’ 42)
o L] O

“lw Re 0y? |y o |w’

where T denotes the value at the wall and v is the wall normal velocity at the
wall, or rather the control input. Note that in the channel flow case there are two
walls and in the boundary layer flow there is only one. Since the constant part of
the adjoint pressure disappears in the integral over the basis functions v in (22)
and (23) we can compute the objective function gradient by integration of these
adjoint pressure gradients at the wall.
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4 Implementation issues

4.1 Simulation codes

The implementation of the adjoint solver is based on existing direct numerical
simulation codes for channel and boundary layer flow. These codes have been
extensively used and are thoroughly verified. The channel flow code is described
in Lundbladh, Henningson & Johansson (1992) [16] and the boundary layer code
in Lundbladh et al. (1999) [17]. The time marching is performed with a Runge-
Kutta method for advective terms and a Crank—Nicolson scheme for the viscous
terms. A spectral method described in Canuto et al. (1988) [4] is used with a
Fourier discretization in = and z, and a Chebyshev method in 3. The discretiza-
tion of, and the solution procedure for, the Navier—Stokes equations is described
in Lundbladh, Henningson & Johansson (1992) [16]. The adjoint equation is
solved in exactly the same way, with the formulation of the equations described
in section 3.1. For the boundary layer case the code described in Lundbladh et al.
(1999) [17] is used and since it is based on the channel flow code the implemen-
tation is similar.

The solution of the adjoint equations require knowledge about the full state in
space and time from the solution of the Navier—Stokes system. This is achieved
by saving a large number of velocity fields equidistant in time and interpolating
linearly in time when the adjoint equations are solved. This introduces an error,
but if the time step between saved field is small enough, we expect a sufficiently
accurate approximation. The number of saved velocity fields can become large
especially if the time domain is long. An efficient way of reducing the mem-
ory requirement is to use a check-pointing technique, see for example Berggren
(1998) [1]. This decreases the memory requirement at the cost of increased com-
putational time. For the simple test cases presented in this paper check-pointing
has not been necessary, but for larger cases, especially simulations requiring high
spatial resolution, it will be needed.

4.1.1 Implementation of control

The control is implemented as the Fourier coefficients of the v velocity at the
wall(s). The control function is discretized in time with a fixed time step that
can be used to change the time resolution of the control and there is one set of
coefficients for each control time. Linear interpolation is used for the control in
times between the discrete control times. The control always starts and ends with
zero velocity, and has zero mass flux. The time step in the solution of both the
forward and adjoint equations is adjusted to be small enough to at least resolve
the control in time, even if the time step allowed for numerical stability is larger.

When simulating a spatial boundary layer the control is applied only on I,
which extends over the interval (x¢, z5) in the chordwise direction. In the code a
filtering is added to handle this and to enforce the zero mass flux condition on the
control,

/ vedl = 0. (43)

V]

19
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The control is then modified to have zero velocity outside T,
[ tuar = [T+ et a5 ar =0 (44)
I, I
which yields,
T c ..c
/901 Y x (21, 25) dT

Iy

c=— , (45)
[ s a5y ar
Iy
and where x(r1,72) = x[r1, 2] (r) is defined as:
1 ifre(r,r),
= 46
xlra, ral(r) { 0 otherwise. (46)

The procedure for modifying the control can be summarized as follows:

_ FFT -

. inverse FFT Filtering and mass flux correction
Yl Y1 2 Pl

assuming that we denote the original Fourier space control with ¢; and the fi-
nal control in Fourier space with ¢;. This final control constitutes the boundary
condition in the simulation when the spatial extent of the control is limited.

4.1.2 Computing the objective function gradient

The gradient of the objective function is evaluated from the adjoint pressure on
the walls as described in section 3.2. When the adjoint equations are solved,
the adjoint pressure on the walls must also be computed simultaneously in the
control interval. Since the p; and p3 velocities are available at each time step
we can compute the pressure gradients o, and o, using (42). The corresponding
pressure is then computed by integrating these gradients with the constant part of
the adjoint pressure set to zero, since it does not enter the gradient computation.
The adjoint pressure is then projected onto the basis functions of the control using
(22), (23) or (33). In the spatial boundary layer case the gradient (33) is computed
in Fourier space, but we should only integrate over I'.. The gradient is transformed
to physical space and there a step function which cuts out the region I is applied.
This filtering procedure is similar to that for the control. The resulting gradient is
then transformed back to Fourier space.

4.2 Optimization routine

Optimization is performed with a limited memory quasi-Newton method. The
algorithm, L-BFGS-B (Byrd et al. (1994) [3]), is available on the Internet (the
web-link is given in the reference list next to Byrd et al. (1994) [3]) and was
downloaded and compiled without modifications. It is an algorithm well suited
for large non-linear optimization problems, with or without bounds on the control
variables. The BFGS method uses an approximation of the Hessian matrix of the
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Figure 3. The flow in the opti-
mization with L-BFGS-B.

Initial guess
for ¢.

40

Compute objective-

function and Pi+1
gradient. "

J, VJ, p;

Compute new
search direction
(L-BFGS-B)

Check convergence. 1
J Not converged

Converged J,

Write results

objective function, instead of the full matrix. The algorithm has been shown to
work well for many different types of optimization problems. The flow of the
optimization process is described in figure 3. The limited memory BFGS algo-
rithm differs from the standard BFGS algorithm in that Hessian approximations
are build from a fixed number of gradients and control updates from earlier op-
timization iterations. This number is then much smaller — say 5-10 — than the
order of the Hessian matrix, which may be of the order of hundred thousand for
the current problem. Consult Byrd et al. (1994) [3] for details. The inputs to the
optimization routine are the control, the gradient of the control and the value of
the objective function. A new control is then obtained as output and applied in
the next iteration until the convergence criterion has been met. There are a few
different convergence criteria that can be used simultaneously or separately such
as the norm of the gradient and the relative reduction of the objective function
between iterations.
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5 Results

5.1 Gradient accuracy

To verify that the implementation is correct as well as that the problem has been
formulated correctly, one can check the accuracy of the gradient of the objective
function. By perturbing one degree of freedom of the control and computing the
resulting change in the objective function the gradient with respect to that degree
of freedom can be approximated. Performing this procedure for all degrees of
freedom gives the complete objective function gradient. The gradient so com-
puted can then be used to verify that the gradient obtained from the adjoint equa-
tion approach is correct. This has been done at different stages of the optimization
process for a number of different cases, varying the flow perturbation as well as
the initial guess for the control. The accuracy of the gradient direction is quanti-
fied by normalizing the two gradients and computing the norm of the difference
between them. This difference is less than 1% for all channel and boundary layer
flow cases tested when the optimization routine is in the initial iterations. When
the gradient accuracy is computed for solutions close to the optimal solution, the
accuracy is degraded and the error can be as large as 10% — 20%. This degraded
accuracy is expected when using the current approach. In order to keep the accu-
racy of gradient directions also for small values of the gradient, one would need
to calculate the exact gradient of the discrete objective function, and to take into
account the form of the free-stream conditions that is actually used (cf. section
2.3). It is questionable, however, to what extent this is possible with the current
discretization and solution method. The current approach can thus be expected to
work well when there is a sufficiently high sensitivity on the objective function
to changes in the control, something that is reasonable to assume for transition
phenomena. However, when the sensitivity is low, the gradient will be small, and
the optimization convergence may be slow.

5.2 Control of oblique transition in channel flow

As a first test case, we study the oblique transition scenario. Oblique waves are
introduced in the flow, where they grow and induce streamwise vortices. The
vortices then produce streamwise streaks that grow until they finally break down
and transition occurs. The threshold energies for this type of bypass transition
are studied in Reddy et al. (1998) [20]. The initial stage of this scenario is the
growth of oblique waves. If the amplitude is low, this is all that happens before
the flow returns to the laminar state. With a higher amplitude, the oblique waves
induce enough streamwise vorticity to generate streaks. The streaks grow to a
much higher amplitude than the oblique waves. If the initial disturbance is large
enough, we get transition to turbulence.

Testing the optimal control on this scenario is done at three different stages and
with different time resolution. First, control is applied at the very beginning where
only the oblique waves are present. Second, the control is applied in the beginning
of the streak growth, where both streaks and oblique waves are present. In the last
case, the control is applied to the growing streaks. The results in this section were
previously reported in Hogberg, Henningson & Berggren (2000) [13].

Five different simulations are performed using the same initial condition. The

23



FOI-R-0182-SE

Figure 4. [a] Solid: the energy
growth without control ; dashed:
case la ; dotted : case 2 ; dash-
dot: case 3. [b] solid: case 1a ;
dashed: case 1b ; dotted: case
1c.
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objective is to minimize the integral of the deviation from the laminar flow profile
from time 77 to 7 = 100. The Reynolds number is 1500 and the box size is
2 x 2 x 27 in z,y, z. In case lab,c the control is applied from time 77 = 0
until 7% = 50 in a,b and 7% = 25 in ¢. The objective function is measured from
TP = 50 in case la and from 77 = 0 in cases 1b and 1c. For cases 2 and 3
the control is applied from 77 = 25 and T = 50 respectively, and the objective
function from 77 = 50. The resulting control velocity in all cases is of the order
2% of the centerline velocity. The reduction of the gradient norm is about three
orders of magnitude after 10-15 optimization iterations.

The energy evolution of the controlled flows is shown in figure 4a. The growth
of the oblique waves is efficiently hindered by the control formulation in 1a,b,c
and the growth of streaks is eliminated also in cases 2 and 3. In case 2 the control
is applied during the formation of the streaks. Initially the energy is allowed to
grow but then the growth is hindered by the control and energy decays as. In case
3 the streaks have formed and are growing when control is applied.

In figure 4b the differences between the controlled flows in cases 1la,b and ¢
are shown. In case 1a the energy is not penalized by the objective function initially
asitisin 1b, and this results in lower energy after ¢ = 50 than in case 1b. A higher
temporal resolution of the control is applied during a shorter time in case 1c. The
result is a smoother energy curve but not as low energy at a later time as in the
other two cases.

5.3 Control in a parallel boundary layer flow

In order to evaluate this type of control strategy for a parallel boundary layer
flow we consider an inviscid instability. Inviscid instabilities can exist only if
the velocity profile has an inflection point. In a boundary layer flow with a three-
dimensional velocity profile, there is always a direction in which such an inflection
point exists. In this direction an unstable eigenvalue to the linearized problem was
found. The corresponding eigenmode is added to an undisturbed base flow, and
the sum is then used as the initial velocity field for the simulations. The base
flow is chosen as a Falkner—Skan—Cooke (FSC) flow with the same parameters
as are used in the investigation by Hogberg & Henningson (2001) [12] where the
Reynolds number is Res: = 337.9. The spatial variation of the chordwise mean
flow is given through,

where 2o = 354.0. Furthermore, the cross-flow velocity was W, = 1.44232 and
m = 0.34207. The box dimensions for our simulations are 25.14 x 20 x 25.14
measured in 6* with a resolution of 4 x 129 x 4 in z x y x z respectively. The
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Figure 5. Solid: the disturbance
energy growth with optimal con-
trol ; dash-dot: the disturbance
energy growth for temporal FSC
flow without control.

resolution in the y-direction is chosen fairly large to ensure high accuracy for the
y-derivatives needed in the adjoint computation.

For the temporal simulation we use the Falkner-Skan—Cooke flow at 2 = 0.
The eigenvalue of the mode used in the simulation is w = (—0.15246 + i0.0382),
for the parameter choice o = 0.25, 5 = —0.25. The control is applied from
TY = 0 to Ty = 150 and over the entire boundary (I'. = I';). The objective
function is measured from 77 = 0 to 7'y = 150 and over the whole spatial domain
(2 = Q).

Figure 5 shows the disturbance energy growth due to the eigenmode and also
the result when the optimal control is applied. As we can see from the figure,
the exponential energy growth is stopped almost immediately by the control. The
first energy peak is mostly due to the energy expenditure to exert control. The
maximum magnitude of the control is of the order of 0.02% of the free-stream
velocity. The gradient norm is reduced about two orders of magnitude after 5-10
optimization iterations.

8

10

log(FE)

0 50 100 150

5.4 Control in a spatial boundary layer flow

A more general flow case to study is when we let the boundary layer grow in the
chordwise direction. For this case we have chosen to study a Tolimien—Schlichting
(TS) wave in a Blasius boundary layer. The dimensions of the simulation box are
200 x 20 x 10 measured in d5 with a resolution of 96 x 129 x 4inx x y x 2
respectively. The TS wave is triggered by an oscillating volume force at x =
10 which is slightly upstream of branch I, located at + ~ 40 where it becomes
unstable. The volume forcing does not introduce a pure TS eigenmode into the
flow and this will result in a varying growth of the total energy of the perturbation.

The control is allowed to be active between 77 = 0 and 7% = 400 and is
located on I'. = (20, 70) x (—5,5). The control is localized in space to give us a
region to observe its action downstream of the control area.

The observation time interval is also limited to give the control enough free-
dom to act initially since we are more interested in the final results. Thus, the
objective function is measured from 77 = 380 to 7 = 400 over the domain
2, = (20,150) x (0,20) x (—5, 5) that includes only the physical solution mean-
ing that the fringe region is omitted.
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Without the control we can see how the disturbance energy grows in figure 6,
whereas with the optimal control applied on I'. the energy growth is efficiently

interrupted.
Figure 6. Solid: the disturbance 1X 10
energy growth with optimal con-
trol ; dash-dot: the disturbance K T I
energy growth for a spatial Bla- o8l i P |
sius boundary layer flow without e
control. 7
>, 06f 1
>
S
[
c
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6 Summary and conclusions

First we conclude that optimal control of transition appears to be possible to com-
pute with the approximative discretized adjoint technique used in this work. This
was also what the preliminary study by Hogberg & Berggren (2000) [10] sug-
gested. In addition, the optimization problem was derived using the primitive
variables velocity and pressure but solved using a velocity—vorticity formulation.
This made it easy to implement a solver for the adjoint equations using already
developed codes as templates. The adjoint solver thus benefited from the efforts
put into making the existing codes computationally efficient.

The optimization routine BFGS by Byrd et al. (1994) [3] was found to per-
form well for the present optimization problems. No modification of the code was
necessary.

The test cases for the boundary layer code provide confirmation that this kind
of optimization problem is tractable. From the simple parametric study of control
of oblique waves in channel flow we can draw a few conclusions.

e The temporal extent of the control appears to be more important than
the resolution.

¢ Allowing a higher energy initially can result in lower energy at a later
time.

e It appears that there is enough control authority using blowing and
suction on the wall to handle all the different stages of the oblique
transition scenario.

e The choice of objective function in terms of time intervals is very
important for the performance of the resulting control.

The simple flow cases studied to test the code can now be replaced with more
complicated flows. In particular flows where non-linear effects are dominating are
of interest, and so are flows with spatial variations in the mean flow profile.
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Appendix A

Derivation of gradient for boundary layer flows

A.1 The governing equations

The domain where we solve the governing equations, given 0 < T < +o0, is

Q= (—xl/Q,Il/Q) X (O,yl) X (—zl/2,zl/2),

Q=0x(0,T7). 47)

The boundary of Q2 is denoted T", and

Fl = Q(y - 0)7 Fu = Q(y = yl)v (48)

and I'. C T represents the part of the lower boundary where control is applied.
For temporal simulations I'. coincide with I;.

The governing equations for boundary layer flow are the same as for the chan-
nel flow except for an extra term which is added to enforce periodicity of the
physical flow in the streamwise direction. This is only needed for spatial simula-
tions.

ou 1 .
E+(u-V)u—EAu+V7T—/\(x)(U—u) inQ,
V.ou=0 inQ, (24)
ult=0 = uo,

with periodic boundary conditions in the horizontal directions, that is, the x- and
z-directions,

u’z:—zl/Z = u|:c:a:l/2a

(25)
u|z:7zl/2 = u|z:zl/2‘
Left to be specified are the conditions in the free-stream and on the wall,
U’|Fu = (UOO, Oa WOO)7
ulp, = nue, (26)
UFZ\FC = 0
However, in the code the Neumann boundary condition
ou
—1 =0. 27
on r, 27)

is used as the free-stream condition. See section 2.3 for more details regarding the
free-stream boundary condition.

In equation (24), U = U (=, y) is the velocity field that we force the solution
towards in the fringe region. Pressure is denoted 7 and the Reynolds number Re
is defined based on the free-stream velocity and the displacement thickness ¢*.
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The scalar function A\ = A(z) is nonzero only in the fringe region and is defined

as follows:
T — Tstart L — Tend
- max - A - 1 9
A@) = dna [S ( Avise ) S ( Afan * )]

where Amax, Zstart, Tend, Arise aNd Ay are parameters used to specify the strength,
extent and shape of the fringe forcing. The S-function is defined as,

0 r <0,
1
SOV =\ Trepa—n+ijpm °<r<t
1 r>1.

As for the channel flow case we expand the control v, in basis functions v ,
with zero mass flux, and where ¢, ,,, are time dependent coefficients for the basis
functions,

M
(plT 1/11 = Z @l}m(t)lbl,m(%,z) in (TlchQC)ﬂ
m=1

ve(x, 2,t) = (28)
0 otherwise.

Where we have introduced the control vector ¢; defined as:

o1 = (P11, PLM)-

A.2 The objective function

We minimize the deviation energy from a given target velocity distribution ur and
add a regularization term including an £ > 0:

Ty Ty
1
He =5 [ [lparass [ [lu-wPa. e
Te T, T? Q,

where (T, T%) is the control time period and (77, 7%) is the observation time
period and €2, is the part of the domain € where the state of the flow is observed.
The control problem can now be defined as:
Find ¢* € U,q such that
J(SO*) < ‘](Sol) v 'Uc((Pl) € Uag,

where ¢* is the optimal control. The set of admissible controls is denoted ¢4,4 and
is a subset of L2((T¢, Ts); RM).

(49)

A.3 Derivation of the objective function gradient
We begin by differentiating the objective function (29)

Ty T3
dJ (1) 25//(5vcvcdfdt+//5u-(u—uT) da, (50)
Te T, T Q,
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where the gradient of .J is defined through the directional derivative of .J in the
dpy-direction as done in (4). The differentiated Navier—Stokes equations have the
form

A e e )
e
V- -6u=0 inQ, (51)
5“‘15:0 = 07

with the boundary conditions

6“’1:—33[/2 = 6u|m:$l/2v
5u|z:7zl/2 = 5“’2:21/27

dulr, = ndv,,

dulppr, = 0,
where
M
Svo(, 2, 1) = dpi = mzl 0p1,m () tbrm (2, 2) in (T1, T3), 6

0 otherwise.

Now, let us consider the adjoint variable p = p(z,vy, z,t) and the adjoint
pressure o = o(x,y, z,t) and require p to satisfy the boundary conditions:

p’x:—xl/Q = p|a::acl/27
p|z:le/2 = P’z:zl/%
plr, =0,
plr, = 0.

(31)

As for the free-stream condition in the Navier-Stokes equations we actually use
the Neumann condition

op
on

=0, (32)
Ty

instead of the Dirichlet condition in the numerical simulations. See section 2.3 for
more details regarding the boundary condition.

By multiplying the first equation in (51) with p and then integrating over @
we obtain

/p~ <@ + (0u - V)u+ (u-V)du
ot —_——— N——
Q Y 2 3

1
Re

(54)
Adu+ Vi + A(x)éu) d@ = 0.
——

1 5
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We apply integration by parts in space and time to move the derivatives from « to
the adjoint variable p. For clarity we perform this step by step for each term. The
first term gives

/ p_aau dQ = / — p(0) - 6u(0)) d2
— [ p)-sumyda— [ 2 sud
—/p<>-u<> -~ [ sude,

Q Q

where we have used the fact that Ju(t = 0) = 0. Next, we consider the fourth
term

R | P AéudQ—l—/p-V&rdQ

T

|

0

dt

/ @dF—F/Vp:VdudQ

+

St —

{/p-ndwdth/V-p&rdQ] dt

T
://p. o — 90U drdt+—//8p sudl'dt  (56)
Re on
0

—L/Ap-5udQ—/V~p67rdQ
Re
Q Q

TS<
2

T
1 Op
:E//a - ou dth—i——/ (5gol /lepg ndl'| dt

0T

—L/Ap-éudQ—/Vp&rdQ,
Re
Q Q

where p = (p1,p2,p3). In the second equality we used the boundary condition
(31) for p on I'; and enforced symmetry. In the third equality the condition for ju
on I'; in (52) was used. We also assumed that p goes to zero on I',,. The : denotes
a complete contraction defined as

3
' B d(e; - p) d(e; - ou)
Vp: Véu = Z oz, o (12)
2,j=1
The next term to rewrite, in relation (54), is the second term
/p- (0u-V)udQ = /(Vu)Tp Soud@. (57)

Q Q
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Finally, we rewrite the third term in (54)

/p- (u- V)dudQ

Q
T
zo/r/(p-du)(n-u)dfdt

—/<p-6u><v-u)d@—/(u-wp‘audcg
Q Q

:i/(p-éu)(n-u)dfdt—/(u-V)p-éudQ,
Q

0T

(58)

where we have used the continuity condition on « and the boundary conditions
(31) for p on I';. The fifth term needs no rewriting.
Substituting (55), (56), (57) and (58) into (54) yields

C

/(T) dQ—i——/ Sof /¢1Vp2 ndl'| dt

/5u <— + (Vu)Tp — (u-V)p — EAP + /\(x)p) dQ
(59)
/57rV pdQ + — // W sudrdt
0T
+//(n'u)(p-5u)dfdt = 0.
0T
Now, require p to satisfy the adjoint equations:
Jp T
g T (Vu)p—(u-V)p
u—up in(T7,75) x Q,.
——A A =
RSP (@)p+ Vo { 0 otherwise @ 30
V-p=0 inQ,
p|t=T = Oa

with the boundary conditions (31). With these assumptions equation (59) becomes

TO

//5u u— ur)dQ — /5u Vo dQ

TeQ,
1 op _
w2 swsrars [ finoip wora o

0Ty 0Ty,

(60)
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since p and dp2/dn is zero on the boundary y = 0 due to the no-slip and continu-
ity conditions. The second term in (60) can be rewritten

T
—/5u'VJdQ:—//5u-nadth+/V-5uadQ
Q or Q
T
—//5u-nadfdt,
or

since V - du = 0. The final step is now to substitute the terms involving du.
When that is done the second term in the perturbed objective function (50) can be
replaced with terms involving dp. Since du is known on parts of the boundary we
can proceed as follows

(61)

T
—/ ou-nodldt
0T
. (62)
//(5u nodth+/ {&ol /zpladF] dt.
TC

Combining equation (61) and (62) and inserting that into (60) yield

//5u u — ur dQ—I—//5 <E%—an+(n-u)p> drdt

Ty

/lésol /wzadF] dt = 0.

Tc

(63)

Applying the fourth boundary condition (31) for p together with the assumption
that p = 0and also o = 0 on ', we get

TC
//5u u—ur)d@Q = /|:(5g0l /wladf‘] dt. (64)
Remains only to substitute (64) into (50) which yields

7(a) = (5001 ) = / ol / v (eefvi o) d0at (@)

where the gradient of the objective function can be identified as:
aJ
Bor — / Y (ef y — o) dT. (33)
L.

This is exactly the same expression for the gradient as for the channel flow case,
equation (22) and (23), except that this gradient is restricted to information from
r..
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governing equations are the incompressible Navier-Stokes equations with appropriate boundary conditions for the
two cases. The boundary condition on the wall normal velocity at the walls of the channel, or at the single wall in
the boundary layer case, is used as control and is determined in the iterative optimization procedure. The objective
function used for the optimization problem contains the perturbation energy and a regularization term containing the
control. The optimization problem is formulated using the primitive variables — velocity and pressure — and is then
rewritten in a formulation containing only the wall normal velocity and the wall normal vorticity. An existing solver
for the incompressible Navier-Stokes equations using this formulation can then also be used to solve the associated
adjoint problem. The implementation is straightforward using this formulation and the efficiency of the original solver
is maintained. To test the performance of the solver of the optimization problem, it is applied on different stages of
the oblique transition scenario in the channel flow case. In a parallel Falkner—Skan—Cooke flow successful control of
an inviscid instability is reported, and in the spatial Blasius flow the energy growth of a Tollmien-Schlichting wave
is efficiently inhibited.
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Rapporttitel
Optimal styrning i vaggbunden skjuvstromning

Sammanfattning

Forsok av optimal styrning av omslag till turbulens i kanal och gransskiktsstromning har gjorts. Forst formuleras
optimeringsproblemet och sedan hérleds motsvarande adjunkta ekvationer for att berdkna gradienten av objektsfunk-
tionen for bade kanal och gransskiktsproblemet. Implementation och numeriska problem diskuteras. De ekvationer
som loses &r Navier—Stokes ekvationer for inkompressibel stromning med adekvata randvillkor for de tva fallen.
Randvillkoret pa normalhastigheten pa kanalens vaggar eller pa den enda véggen i gransskiktsfallet anvands som kon-
troll och bestdms genom en iterativ optimeringsprocedur. Objektsfunktionen som anvéands for optimeringsproblemet
innehaller storningsenergin och en regulariseringsterm pa kontrollen. Optimeringsproblemet formuleras i primitiva
variabler — hastighet och tryck — och skrivs sedan om s att endast normalhastighet och normalvorticitet ingar.
En existerande Igsare for inkompressibla Navier—Stokes ekvationer for denna formulering av ekvationerna kan sedan
ocksa anvandas for de associerade adjunkta ekvationerna. Implementationen har gjorts sa att effektiviteten av den
ursprungliga l6saren bibehalls. For att undersoka prestandan av losaren for optimeringsproblemet prévades kontroll
av olika faser i omslagsprocessen for tva sneda vagor i kanalstromning. | ett parallellt Falkner-Skan—Cooke flode
rapporteras kontroll av en inviskds instabilitet och i ett spatiellt Blasius gransskikt dampas effektivt energitillvaxten
av en Tollmien-Schlichting vag.
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