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1 Introduction 
 

At the Department of Laser Systems, 3D-models of landscapes have been developed 
using laser radar data. The method of using elevation data from airborne laser scanners 
has been shown to be very suitable for the generation of 3D-models. 3D-models of 
landscapes, cities, forests, etc, are used in many applications and the need for more 
complex models is increasing. While the requirements of accuracy and details in the 
models are increasing, the time to construct the models needs to be reduced.  
 
Today, the generation of complex 3D-models is time-consuming with many manual 
adjustments. Therefore, it is of interest to study how different types of data processing 
methods could ease the work. Ideally, it is desirable to automatically generate the 3D-
models using laser radar data. Different types of objects, such as buildings, trees, roads, 
etc, can automatically be extracted and modeled by analyzing the data. In a current 
project, a new landscape model is under development and the work presented here is a 
part of this project. 
 
The purpose of the study was to automatically extract individual trees using laser scanner 
data. The position, height and crown diameter of the detected trees were estimated. A 
segmentation based on texture measures of local variations in height and recording of 
double echoes was first performed to separate man-made objects (buildings) and natural 
objects (vegetation). Single trees were then segmented in the identified areas of 
vegetation. When knowing the location and size of the trees, models of trees can directly 
be placed out in the 3D-landscape model. To evaluate the results, the algorithm was used 
over an area where ground measurements had been performed and the estimated position, 
height, and crown diameter of the detected trees were compared with the manual field 
measurements. 
    

2 The Data of Laser Scanners 
 

Laser scanners are used to measure the elevation of the terrain surface and elevation data 
from large areas can be collected in only a few hours. Laser scanners, which are operated 
from an airplane or helicopter, scan the ground in a zigzag pattern across the direction in 
which the plane is flying and measure the surface of the Earth in three dimensions (see 
Fig 2.1). 

 
 
 
 
 
 
Fig 2.1. Laser scanners scan the ground in a zigzag pattern. 
 
The range to the surface is obtained by measuring the time for the laser pulse to return. 
The exact geographic position of the surface points (latitude, longitude, and elevation) 
can be obtained with decimeter accuracy if the position of the airplane and the direction 
where the scanner is pointing are known. The position of the airplane is determined using 
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a GPS-receiver (Global Positioning System) and the direction where the scanner is 
pointing is obtained by an INS (Inertial Navigator System) onboard the airplane [4]. As a 
result, for every surface point that was hit by a laser pulse, the x-, y-, and z-coordinate 
can be calculated where x and y are the position and z the elevation. The laser scanner 
used in this thesis was the TopEye System. The data set was acquired over a 1000x2000 
m area in Linköping. The point density was approximately 5 points/meter (yielding a 
density of about 25 points/m2), and the accuracy of the surface points was one decimeter 
in the x-, y-, and z-direction. In some areas a lower density of approximately 15 points/m2 
was used. Fig 2.2a shows a part of the elevation data set.  
 
In addition to the elevation value, the reflectance of the returning pulse is recorded (see 
Fig 2.2b). Since the reflectance differs for many materials, these values have been shown 
to be useful when segmenting the data. Most artificial materials like buildings and roads 
have relatively low reflectance while vegetation in general has higher values [3]. 

 (a) (b) 
 

Fig 2.2. Data from the TopEye System. (a) Elevation data. (b) Reflectance data. 
 
Another useful source of information from the laser scanners is that more than one echo 
can be recorded from the same pulse, so called double echoes. Due to the size of the area 
that is covered when a beam reaches the surface, double echoes occur when two different 
ranges have been detected in the returning pulse. In Fig 2.3, the locations of the points 
giving double-echoes are shown. As shown in Fig 2.3, double echoes occur mainly in 
vegetation and at edges of buildings where discontinuities exist. 
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Fig 2.3. Positions where double echoes have occurred. 

2.1 Pre-processing of Data 
Since the beam of laser altimeters scans the ground in a zigzag pattern and the pulses are 
recorded in a temporal order, two subsequent pulses are not necessarily positioned next to 
each other depending on the height of the surface. Furthermore, the raw data points are 
usually not evenly spaced but have an irregular grid (see Fig 2.4a). Before processing, the 
data points were sorted into a rectangular array of cells and a model of the surface 
elevation is created which describes the shape of the surface where elevation is a function 
of position (see Fig 2.4b). This type of model is referred to as a digital surface model 
(DSM). A grid size of 0.33 meter was used. When sorting the data into a grid, some cells 
may contain more than one value. 
 
 

 
 
 
 
 
 
Fig 2.4. (a) Raw data. (b) Horizontal 0.33 m grid. 
 
Furthermore, some pulses with different elevation may have the same x- and y-
coordinate. For example, at edges of buildings, points with different elevation can have 
the same coordinates (see Fig 2.5a). Also, since the laser beam may penetrate the canopy 
of trees, some pulses may hit the top of the trees and some the ground below (see Fig 
2.5b). 
 
 
 
 
 
 
 
 
 
Fig 2.5. (a) Pulses may have the same x- and y-coordinate. (b) Pulses may penetrate vegetation. 
 
Two grids were saved, one containing the largest value in each cell and one grid 
containing the smallest value. In addition, some cells may not be covered by the laser 
radar (see black dots in Fig 2.2b). These cells were filled by averaging the height values 
of the 8 neighboring cells where values existed. 
 
In comparison to aerial photographs that need illumination, laser scanners work both day 
and night and the data will not contain shadows that make object recognition more 
difficult [4]. The elevation values and the recordings of double echoes were used to 
separate vegetation and buildings. 
 
 

(a) 

  

(b)

(a) (b) 
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3 Object Extraction 
 

To segment the objects as artificial or natural, the objects need first to be extracted from 
the ground. Thus, a first step is to identify the ground. In the thesis by Elmqvist [1], a 
segmentation of the ground was performed where objects are removed from the terrain. 
Fig 3.1a shows the elevation data over an area of 100x100 m when the maximum value in 
each cell was used. In Fig 3.1b, the ground segmentation of the area is shown. This type 
of model is referred to as a digital terrain model (DTM). The ground segmentation was 
based on the theories of active contours where the contour can be seen as a net being 
pushed upward from underneath the surface and sticks to the ground points. By 
subtracting the elevation of the ground from the measured elevation data, all objects 
above the terrain are left on a zero-elevation plane and a normalized digital surface model 
is obtained (see Fig 3.1c). 
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Fig 3.1. Extraction of objects above the terrain. (a) Elevation data. (b) Ground segmentation. (c) 
Ground elevation subtracted from surface elevation. 
 
By thresholding the image in Fig 3.1c at 2 meters, all objects with a height of 2 meters 
above the ground level can be found (see Fig 3.2) [3].  

 object

 
Fig 3.2. Object mask containing objects above 2 m. 
 

m m m 

(a) (b) (c) 
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Ideally, one would like to find the boundary of each individual object and classify each 
object separately. However, using the boundaries of the thresholded image will not 
perform well since trees are very close and connected to buildings in some regions. Only 
the pixels of the objects are known but not to which object the pixels belong. Thus, a 
pixelwise segmentation of the pixels above the threshold was performed. 
 

4 Segmentation of Vegetation and Buildings 
 

Segmentation of the data consists of dividing the data until the objects of interest have 
been found. First, the areas of vegetation needed to be identified; thus, the data set was 
separated into natural and artificial objects. Based on texture measures of local 
differences in height, artificial surfaces can be distinguished from the natural shape of 
natural objects [2]. While artificial objects such as buildings consist of continuous, 
compact surfaces that are bounded by discontinuous edges, natural objects such as 
vegetation have large vertical variations throughout the objects since the beam can 
penetrate the canopy of the trees and some pulses may hit the top of the trees and some 
pulses within the trees or the ground. In addition, the information acquired from double 
echoes was used for the separation. 

4.1 Initial Segmentation Using Texture Measures 
 

A pixelwise segmentation of the laser radar data was performed using measurements of 
local differences in elevation. First, a set of elementary properties that described the 
characteristics of the object (pixel) was chosen (see Fig 4.1). Several texture measures 
can be calculated directly from the laser scanner elevation data. These measurements are 
referred to as features. Finally, a classifier was used to recognize the objects from the 
chosen set of object descriptors. 
 
  
 
 
 
 
 

Fig 4.1. Segmentation process to distinguish vegetation and buildings. 
 

4.1.1 Feature Extraction 
To describe the characteristics of the object, measurements of local differences in height 
were used. Many different features can be extracted from the height data such as the 
slope, the second derivative, the Sobel operator, the variance in height in a window 
around a pixel, etc. However, most of these features show a large correlation with each 
other and the segmentation can therefore be based on a subset of these measurements [2]. 
The measurements used in this study were the second derivative and the slope. Adding a 
new feature such as the variation in height in a window around a pixel did not improve 
the segmentation. 
 
 
 

pixel 

object feature, x 

vegetation, ω1 

building, ω2 

second 
derivative, x1 

slope, x2 

classification, ω 
Feature 

Extraction 
Classifier
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Laplace operator 
The Laplacian of a 2D function f(x,y) is a second derivative and is defined as 
 

2

2

2

2
2

y
f

x
ff

∂
∂+

∂
∂=∇       (4.1) 

 

One way to implement the Laplacian operator in digital form for a 3x3 region is [5] 
 

 
 
                  (4.2) 
 
 
When the data was sorted into a grid, some cells contained more than one value. The 
maximum value was used for the value in the center of the mask and the minimum value 
for the neighbors to enhance the measures of the variation in height. In vegetation, where 
the height between neighboring pixels varies, the second derivative is larger than within 
buildings where the change in height of a flat or tiled roof is constant and the second 
derivative is close to zero (see Fig 4.2b). However, at the edges of buildings the 
Laplacian will be large.  

(a)  
 

(b)  
Fig 4.2. (a) Elevation data over an area of 130x200 m. (b) Laplacian filter output for the elevation 
image. 

-1 

-1 

-1 

-1 4 
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Slope 
The second feature used was the slope. The local slope in height was calculated for each 
pixel and its eight neighboring pixels and the maximum value was saved for each pixel 
(see Fig 4.3).  
 

 
81,2,..idistancehhslope i ,)/max( minmax =−=  

  







+
=

22

,

dydx

ordydx
distance  (4.3) 

           
 

Similarly to when calculating the second derivative, the maximum value in the cell was 
used for the center and the minimum value for the surrounding pixels. As shown in Fig 
4.3, the slope over vegetation is in general larger than over flat or tiled roofs. 
 

 
Fig 4.3. Maximum slope of the elevation image. 
 
As Fig 4.2 and Fig 4.3 show, the second derivative and the slope will be large at edges of 
buildings and where antennas, chimneys, etc exist. To reduce this noise caused by the 
discontinuous parts of the objects on the roofs and the edges of buildings, the texture 
measures were median filtered (see Fig 4.4) [2]. Without the median filter, pixels within 
objects and edges of buildings will often be misclassified.  

(a )  (b ) 
 

Fig 4.4. Median filtering. (a) Second derivative. (b) Maximum slope. 

dy 
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hmin7 
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The sizes of the masks were chosen so that in general the noise was completely removed. 
The median filtered texture measurements were the inputs to the classifier. 

4.1.2 Classifier 
When having obtained the features representing the characteristics of the objects, a 
classifier was used to recognize the objects. The feature vector is denoted  
 









=

2

1

x
x

x   

      
Classification is based on automatically assigning the feature vectors to the two pattern 
classes ω1 and ω2 where ω1 and ω2 represent vegetation and buildings, respectively. 
Thus, each pixel was classified as vegetation or building depending on its value of the 
feature vector. Fig 4.5a shows x1 and x2 from training regions of vegetation and buildings.  

 
 
Fig 4.5. Feature vectors. (a) Median filtered slope, x2 vs. median filtered second-order derivative, 
x1. (b) Decision boundary. 
 
Distance measures 
Classification deals with the problem of finding decision functions d1(x) and d2(x) for the 
two pattern classes ω1 and ω2. The decision functions should have the property that, if the 
pattern belongs to vegetation, d1(x) > d2(x), and similarly, x belongs to buildings if d2(x) 
> d1(x). Therefore, the unknown feature x belongs to the decision function yielding the 
largest value. The decision boundary separating ω1 and ω2 is given by the values of x 
when d1(x) = d2(x) or d1(x) – d2(x) = 0. 
 
One way to find the decision functions is to use a minimum distance classifier where 
each class is represented by its mean vector and the feature vector is assigned to the class 
with the closest mean vector. This classifier performs well when the spread of each class 
around its mean is small compared to the distance between the means. However, to have 
large mean separation and small class spread occur seldom in practice. The 

x1 – second derivative 
x2 - slope 
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measurements will vary to some degree within the class. For example, the Laplacian and 
slope are in general small for pixels inside the edges of a building. However, at the edges, 
the slope and Laplacian may be as large as over vegetation. As Fig 4.5 shows, the feature 
space is non-separable (see lower left corner). 
 
On the other hand, a statistical classifier is useful in the present case because of the 
randomness under which pattern classes normally occur. A classifier that is optimal in the 
sense that, on the average, it yields the lowest probability of committing classification 
errors is called the Bayes classifier. If a classifier decides that x belongs to ω1 when it 
actually belongs to ω2, a loss has occurred. With Bayes classifier, the total average loss 
with respect to all decisions will be minimized. The decision function has the form 
 

)()()( iii Ppd ωωxx =    i = 1, 2        (4.4) 
 
where P(ωi) is the a priori probability of occurrence of class ωi and p(x/ωi) is the 
probability density function of the patterns from class ωi. It was assumed that a pixel is 
equally likely to belong to vegetation as to buildings, thus P(ωi)  = 0.5. Assuming that 
p(x/ωi) is a multivariate Gaussian probability density function, the following quadratic 
decision function can be derived 

( ) ( )[ ]ii
T

iiii Pd mxCmxCx −−−−= −15.0ln5.0)(ln)( ω     (4.5)

  
where mi is the mean vector and Ci the covariance matrix. With a maximum likelihood 
classifier, the samples from the training regions are used to estimate the parameters mi 
and Ci  
 

∑ ∈
=

i
i

i N ωx
xm 1   ∑ ∈

−=
i

T
ii

T

i
i N ωx

mmxxC 1        i=1,2   (4.6-7) 

 
where mi is the sample mean vector, Ci the sample covariance matrix, and Ni the number 
of sample vectors. A second-order surface is placed between the pattern classes. If the 
pattern classes are truly Gaussian, no other surface would yield a smaller average loss in 
classification [5].  
 
The mean vector and covariance matrix were calculated for the two pattern classes using 
the training regions of vegetation and buildings in Fig 4.5. Substituting mi and Ci into Eq 
(4.5), the decision functions d1(x) and d2(x) were evaluated for every pixel and the feature 
vector was assigned to the class yielding the largest value. The decision boundary, where 
d1(x) - d2(x) = 0, that separate ω1 and ω2 is shown in Fig 4.5b. A second-order curve is 
placed between the two pattern classes. 
 
Fig 4.6 shows the classification result. Since the second derivative and the slope were 
median filtered, the edges of the buildings are in general correctly classified. However, 
since the masks of the filters were large and edges of trees are not straight, edges of trees 
surrounded by ground are removed and hence misclassified as buildings. To remove 
misclassified pixels, the information acquired from double echoes was used to improve 
this initial segmentation using texture measures. 
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Fig 4.6. Initial classification results. 

4.2 Improved Classification of Vegetation Using Double Echoes 
 

To improve the above segmentation result, an additional segmentation of vegetation was 
performed using double echoes. As shown in Fig 4.7a, the recordings of double echoes, 
using the area of the upper right corner of Fig 4.2a, occur mainly in vegetation since trees 
have many vertical discontinuities. Double echoes also occur at the edges of buildings but 
not very often within the compact surfaces of roofs. By performing a dilation, double 
echoes will connect to others where they occur frequently, which are mainly in vegetation 
(see Fig 4.7b). At dense trees, no double echoes will occur at the center of the trees but 
only at the edge around the trees. As a result, after the dilation dense trees will often have 
an edge of double echoes surrounding the trees. The result after filling relatively small 
holes created by double echoes is shown in Fig 4.7c. 

(c) (a) 

(f) (e) 

(b) 

(d)  
 

Fig 4.7. Classification of vegetation. (a) Double echoes. (b) Dilation. (c) Fill holes. (d) Erosion. (e) 
Median filtering. (f) Dilation. 
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Since double echoes also occur at edges of buildings, an erosion was performed to reduce 
this noise (see Fig 4.7d). As Fig 4.7d shows, some noise from edges of buildings might 
still be left. To remove remaining noise, a 5x5 median filter was used (see Fig 4.7e). 
Finally, a dilation was performed on the remaining areas (see Fig 4.7f) (see Appendix A 
for morphological operations: dilation, erosion, closing, opening). This result was 
combined with the previous segmentation. All pixels classified as vegetation were set to 
vegetation in the previous segmentation and some of the misclassified pixels of 
vegetation were removed (see Fig 4.8). By looking at the second derivative and the 
double echoes of the smaller uncertain areas classified as buildings, the result was further 
improved. 

 
Fig 4.8. Improved classification results.  
 

4.3 Final Classification 
 

Since the texture measurements were median filtered, most large buildings are correctly 
classified. Instead some edges of trees have been misclassified. Thus, the problem is to 
determine if the smaller areas classified as buildings are small buildings or sheds or 
vegetation. Each of these areas was checked to see if the area was correctly classified as a 
smaller building or a part of a tree that had been misclassified. The texture measure of the 
second derivative without the median filter and the double echoes were used to 
distinguish buildings from vegetation of the smaller objects.  
 
Since buildings consist of planar segments, the second derivative will be close to zero 
within the borders of the roofs of buildings. Only at the edges large values will occur. 
Therefore, the mean value of the second derivative using only the values inside the 
borders will be small for buildings compared to vegetation where the elevation will vary 
[3]. In addition, since double echoes occur mainly at the edges of buildings, and in 
general not within the compact surfaces of the roofs, the mean value of the number of 
double echoes inside the boundaries of the objects was also used. For the small areas 
classified as buildings, all connected pixels above 2 meters were used to represent the 
object (see Appendix A for algorithm for extraction of connected components). However, 
if small buildings are connected to trees, one of the classes will be misclassified. 
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In Fig 4.9a, the pixels classified as buildings are shown. To remove noise a 5x5 median 
filter was used (see Fig 4.9b). Each set of pixels smaller than 250 pixels was checked. For 
each of these sets, the corresponding object (all connected pixels above 2 m) and its 
boundary were found (see Fig 4.9c).  
 

(a) (b)  
 

(c) (d)  
 

Fig 4.9. Final classification. (a) Pixels classified as buildings. (b) 5x5 median filter. (c) Objects. (d) 
Pixels in (a) remaining. The area is 130x200 m. 
 
The mean value of the second derivative and the number of double echoes was calculated 
for the values inside the boundaries. Usually these values are smaller for buildings 
compared to vegetation; however, since only small areas of pixel are examined, the 
characteristics of the height measurements that usually make vegetation and buildings 
distinguishable are not as obvious. Some trees do not have a large variation in height but 
instead the characteristics of buildings. In addition, no double echoes might have 
occurred within the trees if the trees are dense. 
 
The two mean values were thresholded, and if any of these values were above the 
threshold, the object was classified as vegetation. If both values were below the 
threshold, the object was taken as a correctly classified smaller building. In Fig 4.9d, the 
remaining pixels classified as buildings are shown after checking these two mean values 
of the smaller uncertain objects. 
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Finally, a closing followed by a dilation was performed to fuse narrow gaps of the pixels 
classified as buildings (see Fig 4.10a). Then, by letting the remaining pixels in the object 
mask be classified as vegetation and the pixels below 2 m as ground, the final 
segmentation result was obtained (see Fig 4.10b). 
 

 
 
Fig 4.10. Classification results. (a) Pixel classified as buildings. (b) Final results (white areas: 
buildings, gray areas: vegetation, black areas: ground). 
 
As shown in Fig 4.10b, the misclassified pixels have been reduced and small buildings 
are detected. The result of the segmentation of the height data over an area of 900x400 m 
is shown in Table 4.1. In Appendix B.1, the segmentation of the area is shown. 
 

 Vegetation Buildings Sum Error of 
omission 

Vegetation 294928 880 295809 0.30 % 
Buildings 500 183663 184162 0.27 % 
Sum 295428 184543   
Correctly 
classified pixels 99.8 % 99.5 %   

 
Table 4.1. Evaluation of the classification results. 
 
Out of the 295428 pixels classified as vegetation, approximately 500 pixels belonged to 
buildings. Thus, 99.8 % of the pixels of vegetation were correctly classified. About 880 
of the pixels classified as buildings belonged to vegetation. As a result, the error of 
omission of vegetation was 0.30 %. Out of the 184543 pixels classified as buildings,  
99.5 % were correctly classified. The number of misclassified pixels was estimated by 
visual interpretation. 
 
 
 
 
 

(b)(a) 



FOI-R--0236--SE 
 

20 

5 Locating and Analyzing Individual Trees 
 

After the data set was separated into vegetation and buildings, a segmentation of single 
trees was performed in the identified areas of vegetation where the position, height, and 
crown diameter of the detected trees were estimated. The laser beam has the 
characteristic of being able to penetrate the canopy of trees. The ability to obtain ground 
hits even in dense areas of vegetation makes it possible to estimate the ground surface. 
Using the ground surface, the height of trees can be determined by subtracting the ground 
level from the measured height data. However, the laser beam’s ability to penetrate the 
canopy of trees may result in large variations in height within single trees making it 
difficult to separate tree crowns from each other. Thus, one problem is to determine and 
remove the pulses that have penetrated the canopy and create a model of the outer part of 
the crowns. To remove the penetrations, the same active contour surface that was used to 
estimate the ground level was applied from above so that the surface followed the outer 
part of the crowns.  
 
The process to detect individual trees was based on smoothing the image and the location 
of the trees was estimated by identifying local height maxima. To remove the height 
variations caused by branches within individual tree crowns so each tree has a single 
height maximum, a certain scale of smoothing should be used depending on the size of 
the trees. Thus, another problem when automatically extracting individual trees is the 
large variation in sizes of trees. Trees positioned close to each other with intersecting tree 
crowns may have no clear valley between the trees. On the other hand, an individual tree 
crown can have more than one peak. Three different scales were used to smooth the 
image. A parabolic surface was fitted to the elevation data to select the appropriate scale 
in different parts of the image. Finally, the height and crown diameter of the detected 
trees were estimated. 
 
In previous studies, individual trees have been identified using airborne laser scanner 
data. Pyysalo detected individual trees and obtained a standard error of the tree height of 
1.5 m [8]. Hyyppä also identified single trees and obtained a standard error of 1.8 m for 
the mean tree height [9]. In [10], tree height measurements from a high-resolution 
airborne laser scanning system are validated. A standard error of 0.97 m was obtained for 
the laser derived tree height. 

5.1 Active Contour Modeling of the Canopy of Trees 
 

Fig 5.1 shows the elevation data from one row in the image. As shown in the figure, 
many pulses have penetrated the trees. When lowpass filtering the vegetation, one would 
like to use the canopy of the trees and not include pixels where pulses have penetrated the 
foliage and hit the ground or within the trees.  
 
To remove the pulses that had penetrated the vegetation, the active contour surface that 
was used to find the ground was applied from above (see Fig 5.1) [1]. The net sticks to 
the top of the trees and by adjusting the elasticity of the net an appropriate stiffness can 
be obtained so the net will not stretch down where the laser has penetrated the foliage. 
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Fig 5.1. Elevation data and active contour surface applied from above.  
 
To avoid that pixels that were close to a tree were assigned values of the net that were 
interpolated between the tree crown and the ground, the object mask was median filtered. 
The pixels remaining as ground after applying the median filter can be seen as the ground 
with no tree coverage and the net was set to zero at these pixels (see Fig 5.2a). 
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Fig 5.2. (a) Net set to zero at the ground. (b) Penetrations removed. 
 
The pixel values where the original laser height was more than 2 meters below the net 
were replaced by the value of the net (see Fig 5.2b). Thus, pulses that hit below the 
canopy were eliminated and resulted in fewer variations in height within single trees. 

5.2 Smoothing of the Canopy of Trees 
 

To remove the variations in height within individual tree crowns, the image was 
smoothed. Image smoothing is based on averaging the height values in some 
neighborhood. A 2D Gaussian filter was used 
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The only parameter of the Gaussian filter is the standard deviation, σ. Pixels farther away 
than σ  will have small influence and pixels with a distance of more than 3σ  away will 
have negligible influence [6]. Depending on the size of the trees, different scales of 
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smoothing should be used. Three different σ-settings were used: 4/π, 6/π, and 8/π. The 
finest and the coarsest scale are shown in Fig 5.3b-c below. 
 

  (a )  (b )   (c )  
 

Fig 5.3. Gaussian filtering. (a) Elevation data with penetrations removed. (b)σ  = 8/π. (c)σ  = 4/π. 
 
The location of the trees was estimated by searching for local height maxima in the 
smoothed images. Seeds were placed out in every pixel classified as vegetation and let to 
climb in the direction having the largest slope. When a seed reached a position where all 
neighboring pixels had lower values, a local maximum was found. Fig 5.4 shows the 
locations of the height maxima using the coarsest and the finest scale respectively. The 
crown coverage was estimated by grouping those pixels that climbed to the same 
maximum (see Fig 5.4). 

(a)  (b)  

Fig 5.4. Local height maxima and crown coverage. (a) Coarsest scale. (b) Finest scale. 
 
The smoothing of the coarsest scale was chosen so that in general no tree had more than 
one maximum. The finest scale was chosen so that small trees in compact groups were 
detected. Fig 5.5 shows the estimated positions of the trees marked on the original height 
values. 
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(a) (b) 
 

Fig 5.5. Estimated locations of trees. (a) Coarsest scale. (b) Finest scale.  
 
At the coarser scale, different tree crowns may have been merged, and on the contrary, at 
the finer scale, variations within a single tree may be detected as several trees. Thus, a 
combination of the scales is desired. 

5.3 Combination of Scales 
 

To determine which scale to choose for different parts of the image, a parabolic surface 
was fitted to the top 30% of the segments of the elevation data in Fig 5.3a. Three 
different cases could occur when comparing the segmented areas of trees from the 
coarser scale with the corresponding area at the finer scale (see Fig 5.6). 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig 5.6. Possibilities. (a) One tree. (b) Trees merged. (c) Variation within a tree.  
 
One possibility is that the finer scale could also have only one maximum within the 
crown coverage of the coarser scale (see Fig 5.6a). In this case, the top was taken as 
correctly determined. The two other possibilities are when the finer scale has detected 
more than one maximum. In case two, the coarser scale has merged tops of trees. The 
third case is when a variation within a tree has been detected. 
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For case two and three, the problem was to determine if the additional maxima at the 
finer scale should be judged as separate trees or belong to the treetop detected at the 
coarser scale. To determine which scale to use a second-order parabolic surface  
 
   cyybxxaz +−+−= 2

0
2

0 )()(          (5.2) 

 
was used and the center of the surface, x0 and y0, was placed at the maximum found at the 
coarser scale. The three unknown parameters a, b and c were chosen so the square error 
was minimized 
 

( )∑ −=
i

i zzmin 2δ            (5.3) 

 
Taking the derivative of Eq (5.3) with respect to a, b and c and setting the equations to 
zero resulted in three equations and three unknowns. The equations were solved for a, b 
and c. 
 
Each additional maximum at the finer scale was tested starting with the one closest to (x0, 
y0). First, the surface was fitted to the segment at the finer scale that belonged to the 
maximum (x0, y0) and the segment of the additional treetop being tested at the finer scale.  
Then, the surface was fitted with the center placed at the same position but now using 
only the segment from the finer scale that belonged to the maximum that was detected at 
the coarser scale. If the sum of residuals decreased by more than 8% at the pixels where 
the parabolic surfaces overlapped, the treetop only found at the finer scale was judged as 
a separate treetop. This procedure was first performed with the coarsest and the middle 
scale. The resulting segments were then compared with the finest scale.  
 
Fig 5.7 shows the result when a combination of the scales was used. Now, the merged 
trees in example 2 in Fig 5.5 have been replaced by the trees detected at the finest scale, 
and the coarsest scale has been chosen in example 3 so the variation within the tree is not 
detected. The result is similar to the visual interpretation. In Appendix B.3 and B.5, the 
estimated positions of trees over some regions are shown. 
 

 (a) (b)  
Fig 5.7. Combination of the scales. (a) Crown coverage. (b) Estimated positions of trees. 
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5.4 Results 
 

To evaluate the results, the algorithm was used over an area where ground measurements 
of forest parameters had been performed. In September 2000, the Swedish University of 
Agricultural Sciences (SLU) in Umeå performed field measurements at a test site located 
in southern Sweden (lat. 58° 30' N, long. 13° 40' E). The main tree species were Norway 
spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula spp.). 
The area was essentially flat with a variation in altitude ranging from 120–145 meters 
above the sea level. The laser data acquisition was performed using the TopEye system. 
The flight altitude was approximately 130 m above the ground, the speed 16 m/s, the scan 
frequency 16.67 Hz, the scan width ±10°, and the beam divergence 1 mrad. The point 
density was approximately 5 points/m2.  
 
Along the flight lines, twelve rectangular plots (50x20m) were selected for the field 
measurements. The main tree species were spruce for six of the plots and pine for six 
plots. The stem position and stem diameter were measured for all trees within the plots 
and for a random sample of trees (approximately 15 trees/plot), the height and crown 
diameter were measured. 

5.4.1 Number of Detected Trees 
To validate how single trees can be detected, each detected tree was linked to the 
corresponding field-measured tree. For each segment, three different cases could occur: i) 
no field tree was within the segment, ii) one field tree was within the segment, and iii) 
more than one field tree were within the segment. For case (i), the segment was judged as 
a segment that had no field tree. For case (ii), the field tree was linked to the laser-
detected tree. For case (iii), the field tree that was closest to the position of the laser-
detected tree was linked to the tree. When the laser trees and the field trees had been 
linked with the rules above, each field tree that had not been linked was examined. For 
each of these trees, a search was done at a maximum distance of 2 pixels in all directions. 
If a segment was found that had not been linked and it was within the plot, the field tree 
was linked to this segment.  
 
Fig 5.8 shows the elevation data for four of the plots and the automatically detected trees 
(black marks). The white marks show the positions of the measured field trees where a 
white dot indicates that the tree has been detected and linked, and a white x-mark that the 
tree has not been identified.  
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Fig 5.8. Estimated positions of trees and field measurements. (a) 42/55 trees detected. (b) 37/48 
trees detected. (c) 86/101 trees detected. (d) 59/62 trees detected.    = automatically estimated 
tree positions,     = field measured stem positions,  = non-detected trees, and     = black and 
white mark at the same pixel.  

 
All trees within the plots having a stem diameter ≥ 5.0 cm were measured. Thus, small 
and hidden trees that cannot be seen from above are included. Out of the 795 trees, 562 
(71%) were detected. Two false detections not corresponding to trees were found. Table 
5.1 shows the number of identified trees for each of the twelve plots.  
 

Plot 
Number of 
detected 

trees 

Total number 
of trees Percent 

1 27 28 96% 
2 31 63 49% 
3 27 31 87% 
4 45 73 62% 
5 43 64 67% 
6 58 143 41% 
7 42 55 76% 
8 37 48 77% 
9 52 61 85% 

10 86 101 85% 
11 55 66 83% 
12 59 62 95% 

Total 562 795 71% 
 
Table 5.1. Number of detected trees. 
 
The result showed that small trees standing close to large trees were in general not 
detected. Also, trees standing close to each other with intersecting tree crowns and no 
clear valley between the trees were not detected. For example, plot 6 consisted of young 
spruces where many trees had less than a meter in between the stems and were thus not 
visible from the height data. 
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When evaluating the number of identified trees for different tree sizes, the result showed 
that most of the large trees were detected. In Fig 5.9, the number of detected trees for 
different stem diameters is shown. A large portion of the undetected trees has a small 
stem diameter. 
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Fig 5.9. Number of detected trees for different stem diameters. 
 
In Table 5.2, the number of detected trees for different stem diameters is shown. For 
example, 90 % of the trees with a stem diameter >20 cm were detected.  
 

Detected trees with a stem diameter 
Plot 

≥ 5.0 cm >10.0 cm >15.0 cm >20.0 cm 

1 96% 96% 96% 96% 
2 49% 50% 61% 69% 
3 87% 96% 96% 96% 
4 62% 93% 93% 93% 
5 67% 89% 93% 93% 
6 41% 54% 70% 89% 
7 76% 78% 82% 89% 
8 77% 77% 78% 85% 
9 85% 85% 87% 86% 
10 85% 86% 89% 98% 
11 83% 83% 85% 87% 
12 95% 95% 95% 97% 

Total 562/795 
(71%) 

549/694 
(79%) 

531/621 
(86%) 

471/522 
(90%) 

 
Table 5.2. Number of detected trees for different stem diameters. 
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5.4.2 Estimating the Stem Positions 
The estimated positions of the identified trees were compared with the measured stem 
positions. The center of the pixel was defined as the position of the detected trees. Fig 
5.10 shows the positional errors relative to the field measurements for the detected trees. 
The average positional difference of the stem positions was 51.4 cm. 
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Fig 5.10. Positional errors of estimated stem positions relative to field measured stem positions.  

5.4.3 Estimating the Height of Trees 
In Fig 5.11, the field measured tree height is plotted against the laser estimated tree 
height. The height of the field trees was measured using an ultrasound distance 
measurement and an electronic angle decoder. For each segment in the laser data set, the 
maximum elevation value above the ground surface was used as the estimate of the tree 
height. The correlation coefficient showing the linear relationship of the heights was 0.99 
and the standard error of the laser estimated tree height was 0.63 m.  
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Fig 5.11. Estimated height of trees vs. ground measurements, 135 trees. 
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If a tree was not detected in the laser data, typically a small tree next to a large tree, this 
smaller field tree could sometimes be linked to the detected tree if positioned closer than 
the correct higher field tree. Therefore, measurements where the laser measured tree 
height was twice the height of the linked field measured tree (seven trees) were excluded 
from the data set.  
 
The standard error for Suunto hypsometers varies from 0.4 to 0.8 m [11]. If assuming that 
the electronic hypsometer in this study had the same standard error, a significant portion 
of the mean error for the laser estimated tree height could have been caused by error in 
the field data. 

5.4.4 Estimating the Crown Diameter of Trees 
The estimated crown diameter of the trees was compared with the field-measured crown 
diameter (see Fig 5.12). For the field measurements, the projected crown diameter on the 
ground was measured using a plumb to determine where on the ground the outermost part 
of the crown was projected. The procedure was performed on both sides of the crown and 
the distance between the two points was measured. For the laser data, the area of the 
segments was used to calculate the diameter of the trees as if the tree crowns had the 
shape of a circle.  
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Fig 5.12. Estimated crown diameter of trees vs. ground measurements, 135 trees. 
 
Since the segmented trees do not overlap, trees with intersecting tree crowns will get too 
small values. On the other hand, the area of non-detected trees will be added to 
surrounding trees resulting in a too large diameter for these trees. In addition, since trees 
are not exactly circular, the diameter of the field-measured trees will vary depending on 
where the measurement is made. A correlation coefficient of 0.76 was obtained and the 
standard error of the estimated crown diameter was 0.61 m. 



FOI-R--0236--SE 
 

30 

6 Further Work 
 

Laser radar data are usually combined with additional information such as aerial 
photographs in commercial systems. Although aerial images contain shadows, the images 
often have higher resolution; thus, aerial photographs can be integrated with the laser 
radar data to improve the result. A continuation of the segmentation will be to identify the 
trees as deciduous or coniferous trees. In [7], methods to classify tree species of 
individual trees in aerial images are presented. In addition, the reflectance data may be 
used to extract structures on the ground, such as roads, from surrounding grass using the 
ground pixels. 
 

7 Conclusion 
 

An automatic extraction of individual trees was performed using laser scanner data. First, 
the data set was segmented to separate man-made and natural objects using texture 
measurements and the recordings of double echoes. The segmentation result showed that 
99 % of the pixels of vegetation and buildings were correctly classified. 
 
In the identified areas of vegetation, a further analysis of single trees was performed 
where the position, height and crown diameter of the trees were estimated. By applying 
an active contour surface from above, the canopy of the trees was modeled and the pulses 
that had penetrated the vegetation could be removed. The process to detect individual 
trees was based on Gaussian smoothing and the location of the trees was estimated by 
identifying local height maxima. A combination of three different scales was used for the 
smoothing and a parabolic surface was fitted to the elevation data to determine which 
scale to choose for different parts of the image. The automatic recognition of trees was 
compared with manual ground measurements. The result showed that 71 % of the trees 
were correctly identified. Most of the large trees were detected and a large portion of the 
undetected trees had a small stem diameter. The average positional error of the detected 
trees was 0.51 m. The height of the segmented trees had a correlation of 0.99 with the 
reference data while the crown diameters of the trees had a correlation coefficient of 0.76.  
The standard error of the estimated tree height and crown diameter was 0.63 m and 0.61 
m, respectively. 
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9 Appendix A  
 
Binary morphological operations 
Mathematical morphology is based on set theory. The sets are members of the 2D integer 
space Z2 in binary images [5]. 
 
Dilation 
Let A and B be sets in Z2. The dilation of A by B is defined as 
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         (A.1) 
 

where Ø is the empty set,
∧
B the reflection of B, and (B)x the translation of B by x. The 

dilation of A by B consists of obtaining the reflection of B about its origin and then 
shifting

∧
B  by x. All displacements of x, where

∧
B and A overlap by at least one nonzero 

element, constitute to the dilation (see Fig A.1). 
                                
  ^                              
 B=B                              
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                          A ⊕ B  
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Fig A.1. Dilation. (a) Structuring element B and its reflection. (b) Set A. (c) Dilation of A by B. 
 
Set B is referred to as the structuring element and can be viewed as a convolution mask 
where B is reflected about its origin and successively displaced so it slides over A. 
Dilation results in an expansion of the image. 
 
Erosion 
With A and B in Z2, the erosion of A by B is defined as 
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          (A.2) 

 

As shown in Fig A.2, the erosion of A by B is the set of all points where B, displaced by 
x, is contained in A. Erosion shrinks the image. 
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Fig A.2. Erosion. (a) Structuring element B. (b) Set A. (c) Erosion of A by B. 
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Opening 
The opening of set A by B is denoted AοB and is defined as 
 

( ) BBABA ⊕Ο=ο            (A.3) 
 
Thus, the opening of set A by B is the erosion of A by B followed by a dilation of the 
result by B. Opening tends to remove thin protrusions and small islands and smooth the 
contour of an image. 
 
Closing 
The closing of set A by B is denoted A • B and is defined as 
 

( ) BBABA Ο⊕=•            (A.4) 
 
The closing of set A by B is the dilation of A by B. An erosion of the result by B is then 
performed. Closing generally eliminates small holes, fuses narrow breaks and fills gaps in 
the contour. 
 
Extraction of connected components 
If Y represents a component contained in a set A and a point p of Y is known, the 
following iterative expression extracts all the elements of Y 
 

( ) ABXX kk ∩⊕= −1   k = 1, 2, 3, …      (A.5) 
 
where X0 = p and B is a structuring element. When Xk = Xk-1, the algorithm has 
converged and Y = Xk (see Fig A.3) [5]. 
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  origin                             
    (a)                            
                                 
        X0=p (b)         (c)        
                              
                                
                                
                                
                                
                                
                                
                                
           (d)           (e)        
                                
Fig A.3. (a) Structuring element B. (b) Connected component Y and initial point p contained in set 
A. (c) Result of first iterative step. (d) Result of second iterative step. (e) Final result. From [5]. 



FOI-R--0236--SE 

35 

10 Appendix B  
 
 
 

 
 
 
Fig B.1. (a) Elevation data over an area of 900x400 m. (b) Segmentation and classification of  
vegetation and buildings.  
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Fig B.2. (a) Elevation data over an area of 200x200 m. (b) Segmentation and classification of 
vegetation and buildings. 

(b) 

(a) 
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Fig B.3. Estimated positions of trees marked on the elevation data over an area of 200x200 m. 
 

 
 
Fig B.4. Estimated crown coverage. 
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Fig B.5. Estimated positions of trees marked on the elevation data over an area of 300x200 m. 
 
 




