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Abstract

A numerical study of acoustic waves propagating in a non homogeneous flow
was performed on a two dimensional domain. A subsonic jet flow was used as a
base flow to which an acoustic wave was superimposed. It was theoretically and
numerically verified that the jet flow model that was used satisfied the Euler
equations. In the numerical verification instabilities appeared in the pressure and
velocity fields. Since the instabilities were reflected at the outflow boundary and
hence would destroy the calculations including acoustic waves, attempts were
made to reduce the magnitude of the instabilities before they reached the outflow
boundary. Examination of how many grid points that had to be used in order to
propagate the acoustic wave in a non-homogenous medium was made.
3
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1 Introduction

Acoustics in terms of sound is a phenomenon that more or less surrounds every-
body in there everyday life and doesn’t, most of the time, give rise to any dis-
comfort. Even if the apprehension of sound is very individual, there is no doubt
that loud noises such as engine noise can be very disturbing. In the aeronautics
industry for example, an important task is to reduce the noise emerging from jet
engines.

In a turbo fan engine the rotor blades generate acoustic waves which will give
rise to very high sound levels. The generation of sound is a highly non-linear
phenomenon, while the propagation is regarded as linear. In order to calculate
both the generation and propagation of sound with the same program a non-lin-
ear solver has to be utilized. With a second order accurate finite volume solver
one has assured the robustness needed in the non-linear parts of the solution.
However, the propagation will suffer from damping due to artificial dissipation
an dispersive errors unless a very fine mesh is used. In a previous study [1] the
propagation of sound waves in a homogenous media was studied. In this report
we evaluate a second order finite volume solver when computing the sound field
of acoustic waves propagating in air with non constant speed of sound. Also, dif-
ferent outflow boundary conditions are examined.

In this study we solve the Euler equations on a two dimensional domain. As a
base flow a subsonic jet flow is considered. An acoustic wave is superimposed
onto the jet flow at the inflow boundary. A cell centered finite volume method is
used to discretize the Euler equations in space. An implicit time marching with
explicit subiterations was used for the integration in time.

This thesis contain results from several tests with different boundary conditions,
grid sizes and parameters such as cuff-off ratio, disturbance amplitude and points
per wave length.
7
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2 The Euler Equations

2.1 Jet flow
In this report we calculate a flow field containing acoustic waves which propa-
gate in air with non constant speed of sound. As a profile of the non constant
base flow, a two dimensional y-periodic jet flow was considered.

In this study we consider the Euler equations in two dimensions

(2-1)

The vector  of conservative variables is

(2-2)

where is the density, is the velocity in the x-direction, is the velocity in

the y-direction and  is the total energy.

The flux vector  can be written as

(2-3)

Here is the pressure and represents the unit matrix. The total enthalpy

is defined as . The tensor product gives the matrix , where

 is a component of the velocity vector.

Here we consider calorically perfect gases, with the equation of state

(2-4)

In this report all body forces are neglected.
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We solved the Euler equations, Eqn. (2-1), on a 2D-rectangle, with height
 and length , see Fig. 2-1.

Fig. 2-1. Computational
domain.

The inflow boundary is at and the outflow boundary at . The prob-
lem is periodic in the y-direction.

As a base flow we consider a subsonic laminar jet flow. The jet is modelled as in
[2]. That is the velocity in the x-direction and the temperature are specified as

(2-5)

(2-6)

See Fig. 2-2.

The parameter in (2-5) determines the sharpness of the velocity profile.

and are free stream values, and are values at , respectively.

 is the Mach number at .

The pressure is specified as

(2-7)

Also, the velocity in the y-direction is set to zero, i.e.

(2-8)

The density of the jet can now be calculated by using the ideal gas law,
.
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Fig. 2-2. Velocity in the x-

direction, , of the jet.

We also check that the flow field described by (2-5) through (2-8) is a steady
state solution of the Euler equations, Eqn (2-1). Consider the Euler equations on
the form

(2-9)

(2-10)

(2-11)

where . is the specific heat capacity at constant volume defined as

.

The jet flow described by (2-5)-(2-8) is a 2-D time independent problem. Also

we have that , , and yielding that the Euler equa-

tions are simplified to

(2-12)
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or equivalently

(2-13)

In our model of the jet flow we assume that , and

, and hence (2-5)-(2-8) is a solution to the Euler equations.

2.2 Wave input
At the inflow boundary we also give an acoustic wave as inflow data. We let

(2-14)

where

(2-15)

In (2-15) is the Mach number and the density in the jet. For down-

stream travelling waves the wave numbers in , and , can

be defined in terms of the so called cut-off ratio  as

(2-16)

The ratio can be calculated from the above ratio using the definition of

the cut-off ratio as

(2-17)
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(2-18)

means that the wave will propagate, while means that the wave will
evanesce.
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------------------------------------- where ky
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3 Numerical method

All computations in this report were performed with the structured finite volume
Navier-Stokes solver Euranus [3]. In this section we briefly describe the features
used in this report.

3.1 Cell centered finite volume method
The discretization in space is a second order accurate cell centred finite volume
method. That is equation (2-1) is discretized as

(3-1)

where are the inviscid flux. The sum of the flux terms refers to all the

external sides of a control volume . For cell 1 in figure (3-1), is the
area ABCD, and the flux terms will be summed over the four sides AB, BC, CD,

DA. We also have which is the unit normal vector of the cell surface consid-

ered and which is the cell surface area. The solution is obtained in the cell
centres.

Fig. 3-1. 2D cell centered
structured finite volume
mesh.

The inviscid numerical flux is expressed as

(3-2)

The first term on the right-hand-side corresponds to a purely central evaluation
of the flux. The term represents a numerical dissipation term, that may be

an numerical dissipation used in combination with central schemes, or the dissi-
pation associated with upwind schemes. In this report we only use a central
scheme.
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For the central scheme, we used a Jameson type dissipation with 2nd and 4th
order derivatives of the conservative variables

(3-3)

where the difference operators are defined as,

(3-4)

(3-5)

Here the displacement operator  is defined as

(3-6)

The scalar coefficients  in (3-3) are given by

(3-7)

The coefficients , are user input, chosen as small as possible to stabilize
the numerical scheme while having the least impact on the solution.

The cell centred values of in equation (3-3) are obtained by arithmetic aver-

aging of the cell face values of equation (3-7). The variables are sensors to

activate the second-difference dissipation in regions of strong gradients, such as
shocks, and to de-activate it elsewhere. They measure variations of pressure and
are defined as

(3-8)

in (3-7) is a measure of the characteristic speeds and is commonly chosen as
the spectral radius multiplied with the cell face area

(3-9)

The surface area, , and the normal to the surface, , are defined from
the interface surface in question for the flux evaluation.

3.2 Time integration method
An implicit time marching with explicit subiterations was used in the calcula-
tions. The implicit solver can be written as
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(3-10)

where denote the unknowns times the volume. The coefficients

and can be chosen to yield desired accuracy an stability. We have used

(3-11)

in all calculations presented in this report.

Introduce the pseudo time , denote the dependent variables by and
consider the problem

(3-12)

where

(3-13)

and

(3-14)

is a constant source term. As steady state in pseudo time is approached

(3-15)

Within each real time step, the set of ordinary differential equations (3-12) is
solved using an explicit Runge-Kutta method.

With an explicit q-stage Runge-Kutta scheme, the ODE

(3-16)

can be written

(3-17)
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The coefficients determine the stability and the order of accuracy of the

Runge-Kutta scheme. In this report a second order accurate 5 stage Runge-Kutta
scheme is used. The following coefficients are used

(3-18)

3.3 Boundary conditions
As we can not handle an infinitely large domain in space we must use boundary
conditions in order to limit the problem.

In this section we describe the so called characteristic boundary conditions in
detail and briefly introduce the non-reflecting boundary conditions due to Giles
[5].

3.3.1 Characteristic boundary conditions
In order to investigate the mathematical properties of the system of Euler equa-
tions, we write the equations in quasi-linear form. The quasi-linear form of the
system of Euler equations (2-1) is

(3-19)

or equivalently

(3-20)

where , are the components of the Jacobian vector matrix , see

[4], and  is the conservative variables vector.

The eigenvalues of the matrix , associated with an arbi-

trary direction of propagation , define for a large part the behaviour of the solu-
tions to the Euler equations. It is therefore essential to have a clear understanding
of the so called characteristic properties, since they represent essential aspects of
inviscid flows, namely the propagation of disturbances.

Wave-like solutions will exist if the eigenvalues of the matrix , for

arbitrary , are real with linear independence of the corresponding left eigenvec-

tors. Let  denote an eigenvalue of the matrix , obtained from

(3-21)

αi
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κ
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κ
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and the left eigenvectors  be solutions of

(3-22)

Hence with the vectors as rows in and equation

(3-22) can be written as

(3-23)

A direct calculation of the two dimensional problem (3-21) gives the eigenvalues
, here in matrix form,

(3-24)

were  is the speed of sound.

The so called compatibility equations, see [4], for the eigenvalues one can
write in a compact form as

(3-25)

These equations lead to the introduction of the characteristic variables. They are
defined as a column vector by the relation valid for arbitrary variations

(either  or ):

(3-26)

The compatibility equation can now be expressed as

(3-27)

At a boundary in a multi-dimensional flow the one-dimensional analysis gives
insight to the number and type of boundary conditions that should be used. This
is since it is the eigenvalue spectrum associated with the normal to the boundary
that decides the number and type of boundary conditions.

The characteristic form of the one-dimensional Euler equations can be written as

(3-28)

since in one dimension .
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-------- Λ W∂
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--------+ 0=
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Applying the definition (3-26) for a one-dimensional flow, the following defini-

tion of the characteristic variables , with represent-

ing an arbitrary variation, either  or , are obtained from :

(3-29)

Using the characteristic variables, or equivalently the Riemann invariants, is a
staightforward way to express the propagation properties in a one-dimensional
flow. Equation (3-28) shows that the quantities propagate along the corre-

sponding characteristics with the speed . Hence in (3-29) propagates

with velocity along the characteristic defined by . This

characteristic is the path line of the fluid. On the other hand, propagates

with velocity along the characteristic defined by

and propagates with velocity along the characteristic defined

by .

The characteristics have slopes , which are always positive

for a flow in the positive x direction. The third characteristic has a slope

whose sign depends on the Mach number. For subsonic flow, will have a neg-

ative slope but a positive slope for a supersonic flow. See Fig. (3-1).

Fig. 3-1. Boundary
conditions for one-
dimensional inviscid flows.
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The number of boundary conditions to be imposed will depend on the sign of the
slope of the characteristics at the boundaries. Only variables transported from the
boundaries towards the interior can be freely imposed at the boundaries as phys-
ical boundary conditions, see e.g. [6]. Numerical boundary conditions will have
to be added to the physical conditions in order to completely define the numeri-
cal problem. Table (3-1) shows the number and the nature of the boundary condi-
tions.

Tab. 3-1. Physical and
numerical boundary
conditions for one-
dimensional flows.

In this report we consider a subsonic inflow, why are physical condi-

tions and  is a numerical condition.

At the inflow boundary we use these characteristic boundary conditions, while
we use a non-reflecting boundary condition, see Sec. 3.3.2, at the outflow bound-
ary.

Figure (3-2) shows the discretization near the boundary. The first cell to the left
represents the dummy cell variables. Cell 2 and 3 are the first and second cell
inside the computational domain, respectively. B is the specified solution on the
boundary of the domain.

Fig. 3-2. Discretization near
the boundary.

We have characteristics that are propagating into the domain and will

be given by

(3-30)

while we have an outgoing characteristic which is received through a first-

order extrapolation as

Subsonic                                                  Supersonic

Inlet Physical conditions: w1, w2               Physical conditions: w1, w2, w3

Outlet

Numerical conditions: w3 Numerical conditions: none

Physical conditions: w3                          Physical conditions: none
Numerical conditions: w1, w2                 Numerical conditions: w1, w2, w3

w1 and w2

w3

1 2 3B

C0 and C+

wi B,
wi 1, wi 2,+

2
------------------------- i 1 2,= =

C-
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(3-31)

The tangential velocity is assumed to be constant across the boundary.

3.3.2 Non-reflecting boundary conditions
As we actually have an infinite domain which is truncated to a finite domain, it
rises the problem of choosing appropriate boundary conditions for the far-field
boundary. Ideally these should prevent any non-physical reflection of outgoing
waves

We have used Giles second order non-reflecting boundary conditions [5] at the
outflow boundary.

In [5], the non-reflecting boundary conditions are derived for a linearized prob-
lem. In this study we linearized around the jet flow described by Eqn. (2-5) to (2-
8).

We used the so called second order two-dimensional unsteady outflow boundary
condition, which is

(3-32)

and linear extrapolation of the outgoing characteristics .

Here are the amplitudes of the four characteristic waves found

as

(3-33)

where and are the perturbations from the jet flow around which the
Euler equations are linearized.

wi 1, 2wi 2, wi 3, i– 3= =

t∂
∂c4

+ 0 u 0 v( )
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∂
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c4 
 
 
 
 
 
 

0=

ci i 1 2 3, ,=

ci i 1 2 3 4, , ,=
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c2

c3

c4

c2– 0 0 1

0 0 ρc 0

0 ρc 0 1

0 ρc– 0 1

δρ
δu

δv

δp

=

δρ δu δv,, δp
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4 Numerical results

Throughout the calculations the following parameter values were used: The free
stream values were , , and . For the jet

input (2-5), (2-6) we used , , , and

.

The free stream values yield a subsonic flow, since the eigenvalue will be

negative trough out the flow, see Fig. 4-1. Here the speed of sound is defined as

 where .

The computational domain is represented by a rectangle with height

and length , see fig. (2-1).

Fig. 4-1. Eigenvalue

when .

4.1 Initial data
As initial data we used the jet flow described by (2-5) through (2-8) in the whole
domain. Figure (4-2) shows the structure of the density in the initial data.
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Fig. 4-2.  Structure of the
density.

We used a time step and all calculation were performed in dou-

ble precision. Here the step in x-direction is and the step in y-direc-

tion is .

Firstly we ran the program without acoustic input in order to numerically check
the solution, (2-5)-(2-7). After a few time steps instabilities were noted in the
pressure and the velocity fields (Fig. 4-3). One could also see a disturbance near
the inflow boundary, mainly were there where large gradients. The instabilities
were generated in the beginning of a calculation and then moved downstream
with the particle velocity. A possible source of these instabilities could be the ini-
tial data. Otherwise instabilities would probably have been generated continu-
ously during the calculation. The instabilities were only seen in the pressure and
velocity fields.

Fig. 4-3. Pressure instability.

Since the instabilities were locally generated in time, a satisfying solution would
have been achieved as soon as the instabilities had passed through the outflow
boundary. However even with a non reflecting boundary condition the instabili-
ties were severely reflected, see Fig. (4-4). The same result was obtained with
boundary conditions where all variables were extrapolated. The reflections from

   

∆t 4.573 10 6–⋅=

∆x 0.0025=

∆y 0.0025=

max 101002.1    min 100999.0

Time step 100
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the instabilities were then growing as they travelled up-stream after the reflection
at the outflow boundary.

Fig. 4-4. Reflection at the
outflow boundary.

It should be note that the acoustic waves will have an amplitude of about Pa,
and hence a disturbance of the same order as the acoustic wave is not acceptable.

We also tried a different indata file. It was constructed with data
from a calculation described above for a fixed x for which the instability already
had passed but to which reflections from the boundary had not yet reached. How-
ever it turned out that the instability problem remained also with this initial data.

We thereafter made experiments with the grid, artificial viscosity coefficients and
outflow boundary conditions in order to reduce the amplitude of the instabilities
as they reached the outflow boundary.

First experiments with the grid were made. Firstly, we tried to damp the oscilla-
tions by adding extra layers of cells in the x-direction. Two different grid sizes
were tested. The first grid was extended with 13 extra cells in x-direction and the
other one was extended with 16 extra cells in x-direction. The first six cells had
the same size as the original grid, thereafter they increased by a factor 1.4, see
Fig. 4-5.

It could be seen that the amplitude of the pressure disturbance reduced in both
cases but the instability wasn’t totally reduced for any of the grids. Since the
longer grid had much wider cells at the end than the shorter grid, we expected
the instability to have smaller amplitude with the longer grid when the instability
reached the outflow boundary. Instead the shorter grid showed to give a smaller
increase in pressure.

.

   
   

  

Reflection of the instabilities

Time step 300

   The instabilities have just reached the outflow boundary.

Time step 200

100

u v w ρ p, , , ,( )
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Fig. 4-5. Structure of the
grid extension.

During this grid test, small oscillations due to dispersion could bee seen in the
solution. However, when increasing the viscosity parameters the boundary layer
at the outflow boundary increased, see Fig. 4-6 and 4-7. The most noticeable
effect of increasing the viscosity parameters was seen when the longer grid was
used.

This effect can be seen from the solution of the viscous one-dimensional model
problem

(4-1)

with the solution . It is clearly seen that the boundary layer at the

outflow boundary is thicker with a larger value of .

Fig. 4-6. Result of the
viscosity test.

 x=0.2

ux εuxx
u x( ) 0 as x ∞
u 1( )

–→→
u0

=

=

u u0e
x 1–( )
ε

----------------
=

ε

κ 2( ) 1.0 κ 4( ) 0.1= =
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Fig. 4-7. Result of the
viscosity test.

In this study we also compared different outflow boundary conditions; imposing
pressure, extrapolation of all variables and the non-reflecting boundary condi-
tions described in section 3.3.2.

With the extended grid all boundary conditions gave well-behaved solutions. See
Fig. 4-8 - 4-10. Before the extension of the grid was made the instabilities were
reflected when the non-reflection boundary condition was used (Fig. 4-4). Now,
on the enlarged grid, the frequencies became smaller which seemed to help the
non reflecting boundary condition to let the instabilities out (Fig. 4-10). In Fig.
4-8 to 4-10 the maximum and minimum values are given for when

,  were used.

In Table 4-1 the maximum an minimum values, respectively, are shown for
 for the three different boundary conditions tested.

Fig. 4-8. Imposed pressure.

κ 2( ) 0.05 κ 4( ) 0.005= =

    

0 x 0.319< <

κ 2( ) 1.0= κ 4( ) 0.1=

0 x 0.2< <

max 101006.1     min 100998.4 max 101004.2     min 100992.8

Time step 300 Time step 500
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Fig. 4-9. Extrapolation of
variables.

Fig. 4-10. Non-reflecting
boundary condition.

In table 4-1 maximum and minimum values when  are shown.

Tab. 4-1. Maximum and
minimum values when

.

The conclusion is that a grid with a short extension and small values of the vis-
cosity parameters gave the best reducing effect on the instabilities. The choice of
boundary condition had no noticeable effect on the solution.

max 101009.8     min 100999.2 max 101002.8     min 100999.3
Time step 300 Time step 500

max 101014.7     min 100998.6 max 101006.0     min 100993.5

Time step 300 Time step 500

0 x 0.2≤ ≤

0 x 0.2≤ ≤      Imposed
     pressure                    variables

                                                Non-reflecting
                                                boundary cond.

    Extrapolation ofTime
step

300

500

max
min

max
min

101002.2                   101002.2                        101002.2
100998.8                   100999.2                        100999.2

101002.0                   101002.4                        101002.6
100992.8                   100999.3                        100999.4
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4.2 Acoustic calculations
Here we used a solution, as described in Sec. 4.1, generated with a grid extension

by 13 extra cells, the viscosity parameters and a non-
reflecting boundary condition as initial data.

An acoustic wave as in Sec. 2.2 was superimposed to the data at the inflow
boundary. In this report only downstream travelling acoustic waves are consid-
ered.

In section 4.1 it was shown that small values of the viscosity parameters gave the
best initial data to the inviscid problem. The same viscosity test were also made
in the acoustic case. The smaller values did however give rise to oscillations, see
Fig. 4-11 and 4-12.

Fig. 4-11. Pressure for

. Time step 600.

Fig. 4-12. Pressure for

. Time step 600.

κ 2( ) 1.0 κ 4( ) 0.1= =

y 0.05=

κ 2( ) 1.0 κ 4( ) 0.1= = κ 2( ) 0.05 κ 4( ) 0.005= =

y 0.05=

κ 2( ) 1.0 κ 4( ) 0.1= = κ 2( ) 0.05 κ 4( ) 0.005= =
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The purpose of the following calculations was to investigate how many grid
points that had to be used in order to propagate the acoustic waves in a non-
homogenous medium.

Three grids with different number of grid points where constructed, namely
. The different results of three acoustic parameters

were compared. The different parameters where: The amplitude of the distur-
bance , the cut off ratio and the number of grid points in y-direction . A

standard set of input parameters, that was arbitrarily chosen (case 1 in table 4-2),
was used as a reference. Only one of the standard input parameters were changed
for each comparison. The different parameters that were tested is shown in table
4-2. Each case was tested for .

Tab. 4-2. Parameters for
different test cases.

           * Case 1 is the reference set of input parameters

We used

(4-2)

where

(4-3)

and

(4-4)

The free stream values of and will give the greatest value of and hence they

will be used in the calculation of .

Also,

(4-5)

48 41 94 81 and 186 161××,×

p0 ξ N y

N y 40 80 and 160,=

case 1* case 2 case 3 case 4 case 5 case 6

1.1 0.7 0.9 1.5 1.1 1.1

89 89 89 89 50 130

ξ

p0

∆t
t

60
------=

T
2π
ω∞
-------=

ω∞ ξc∞ky 1 M∞
2

–=

c∞ M∞ ω

∆t

ky
2π

N y∆y
-------------=
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For this problem was chosen why a time step, , will be

satisfying for every test case.

In figure 4-13 through 1 the solution for case 1 to 6 are shown for
at time step 1000. The behaviour of the solution for

, i.e. a the extra layers of cells added for damping of reflections at the
outflow boundary, is neglected in the comparisons.

By comparing the structure of the solutions with different for each case one

can see that with and we get fairly similar results but not

enough to use . The conclusion will therefore be that is

needed for an accurate solution. This particular problem is however difficult due
to the very large gradients of the jet flow.

∆t
T
60
------= ∆t 4.573 10 6–⋅=

N y 40 80 and 160,=

x 0.2>

N y

N y 80= N y 160=

N y 80= N y 160=
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Fig. 4-13. Case 1,

.

Fig. 4-14. Case1,

.

Fig. 4-15. Case1,

.

N y 40=

N y 80=

N y 160=
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Fig. 4-16. Case 2,

.

Fig. 4-17. Case 2,

.

Fig. 4-18. Case2,

.

N y 40=

N y 80=

N y 160=
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Fig. 4-19. Case 3,

.

Fig. 4-20. Case3,

.

Fig. 4-21. Case 3,

.

N y 40=

  

N y 80=

  

N y 160=
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Fig. 4-22. Case 4,

.

Fig. 4-23. Case4,

.

Fig. 4-24. Case4,

.

N y 40=

N y 80=

Nθ 160=
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Fig. 4-25. Case 5,

.

Fig. 4-26. Case5,

.

Fig. 4-27. Case5,

.

N y 40=

  

N y 80=

   
 

   
 

N y 160=

      
36



FOI-R--0243--SE
Fig. 4-28. Case 6,

.

Fig. 4-29. Case6,

.

Fig. 4-30. Case6,

.

N y 40=

    

N y 80=

N y 160=
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5  Summery

A numerical study was performed to investigate the performance of a second
order accurate finite volume solver when the solution contained acoustic waves
spreading in air with non-constant speed of sound. A two dimensional model
was set up with a subsonic jet flow as base flow and an acoustic wave was super-
imposed.

It was theoretically and numerically verified that the jet flow model that was used
satisfied the Euler equations. In the numerical verification instabilities appeared
in the pressure and velocity fields. Since the instabilities were reflected at the
outflow boundary and hence would destroy the calculations including acoustic
waves, attempts were made to reduce the magnitude of the instabilities before
they reached the outflow boundary. Tests were made by changes in indata, grid
size, viscosity parameters and boundary conditions.

In the acoustic calculations different viscosity parameters were tested. Examina-
tion of how many grid points that had to be used in order to propagate the acous-
tic waves in a non-homogenous medium was made. The examination was
performed by comparing six cases, all with different values of cut off ratio,
number of grid points in y-direction and amplitude of the disturbance.

After the inviscid calculations turbulent calculations were initiated. Satisfying
boundary data of the turbulent quantities were however hard to obtain. An
attempt to achieve a fair guess of the turbulent quantities was performed as fol-
lows. The pressure, velocities and density was fixed to the jet values. Also, the
problem was considered as periodic also in the x-direction. The intention was
that the turbulent quantities should after integrating in time reach a steady state
solution. However, with different guesses of the initial solution of the turbulent
quantities no sign of convergence were noted although over 100.000 time steps
were taken.
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