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Abstract

A numerical study of acoustic waves propagating in a non homogeneous flow
was performed on a two dimensional domain. A subsonic jet flow was used as a
base flow to which an acoustic wave was superimposed. It was theoretically and
numerically verified that the jet flow model that was used satisfied the Euler
equations. In the numerical verification instabilities appeared in the pressure and
velocity fields. Since the instabilities were reflected at the outflow boundary and
hence would destroy the calculations including acoustic waves, attempts were
made to reduce the magnitude of the instabilities before they reached the outflow
boundary. Examination of how many grid points that had to be used in order to
propagate the acoustic wave in a non-homogenous medium was made.
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1 Introduction

Acoustics in terms of sound is a phenomenon that more or less surrounds every-
body in there everyday life and doesn’'t, most of the time, give rise to any dis-
comfort. Even if the apprehension of sound is very individual, there is no doubt
that loud noises such as engine noise can be very disturbing. In the aeronautics
industry for example, an important task is to reduce the noise emerging from jet
engines.

In a turbo fan engine the rotor blades generate acoustic waves which will give
rise to very high sound levels. The generation of sound is a highly non-linear
phenomenon, while the propagation is regarded as linear. In order to calculate
both the generation and propagation of sound with the same program a non-lin-
ear solver has to be utilized. With a second order accurate finite volume solver
one has assured the robustness needed in the non-linear parts of the solution.
However, the propagation will suffer from damping due to artificial dissipation
an dispersive errors unless a very fine mesh is used. In a previous study [1] the
propagation of sound waves in a homogenous media was studied. In this report
we evaluate a second order finite volume solver when computing the sound field
of acoustic waves propagating in air with non constant speed of sound. Also, dif-
ferent outflow boundary conditions are examined.

In this study we solve the Euler equations on a two dimensional domain. As a
base flow a subsonic jet flow is considered. An acoustic wave is superimposed
onto the jet flow at the inflow boundary. A cell centered finite volume method is
used to discretize the Euler equations in space. An implicit time marching with
explicit subiterations was used for the integration in time.

This thesis contain results from several tests with different boundary conditions,
grid sizes and parameters such as cuff-off ratio, disturbance amplitude and points
per wave length.
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2 The Euler Equations

2.1 Jet flow

In this report we calculate a flow field containing acoustic waves which propa-
gate in air with non constant speed of sound. As a profile of the non constant
base flow, atwo dimensional y-periodic jet flow was considered.

In this study we consider the Euler equations in two dimensions

+V.F=0 2-1)

Y|
—~'C

The vector U of conservative variablesis

o P

— — u
U=l =1° (2-2)

pv

E E

where p isthe density, u isthe velocity in the x-direction, v is the velocity in
they-direction and E isthe total energy.

The flux vector = can be written as

> pY
F=1pt®0+pi (2-3)
p\>/H

Hereis p the pressure and 1 representsthe 2 x 2 unit matrix. The total enthalpy

H isdefinedas H = E+ 5 . The tensor product ® gives the matrix v;v;, where

v; isacomponent of the velocity vector.

Here we consider calorically perfect gases, with the equation of state

p = (r-1(pE-Zp(u2+1?)) (2-4)

In thisreport all body forces are neglected.
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Fig. 2-1. Computational
domain.

10

We solved the Euler equations, Egn. (2-1), on a 2D-rectangle, with height
H = 0.2 andlength L = 0.2, seeFig. 2-1.

0.2

015~

> 0.1l inflow boupdary outflow boyndary

-0.05-

-0.1 I I I I I I
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Theinflow boundary isat x = 0 and the outflow boundary at x = 0.2. The prob-
lemis periodic in the y-direction.

As abase flow we consider a subsonic laminar jet flow. The jet is modelled asin
[2]. That isthe velocity in the x-direction and the temperature are specified as

U(Y) = 31U+ U.) + (U~ u_)tanh(a(y—y,))] (2-5)

T(y) = T +(T.-T.)(uW/u,—u_/u.)/(1-u,/u,) (2-6)
+0.5(y —=1)M?(1-u/u.)(u/u,—u_/u,)
SeeFig. 2-2.
The parameter a in (2-5) determines the sharpness of the velocity profile. u_

and T_ are free stream values, u.and T, are values at y = 0.5H, respectively.
M isthe Mach number at y = 0.5H .

The pressure is specified as

p(0, y) = constant 2-7)

Also, the velocity in the y-direction is set to zero, i.e.

v=0 (2-8)

The density of the jet can now be calculated by using the ideal gas law,
Pjet = (pjet)/(Rgas~Tjet).
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Fig. 2-2. Velocity in the x-
direction, u, of the jet.
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We also check that the flow field described by (2-5) through (2-8) is a steady
state solution of the Euler equations, Eqn (2-1). Consider the Euler equations on

the form
Py awm+—ww— (2-9)
i(pU)+ (pU)+—(pUV)+ap‘ (2-10)
v+ 9 (puv)+a (pv) + ap-o
d u? + v J u? +v2 d u? +v2
el N ol ) gyle(er ) e

2 9 -
* 3w+ L (pY) = 0

where e = ¢, T. ¢, is the specific heat capacity at constant volume defined as

_ (ode
o = (57),
The jet flow described by (2-5)-(2-8) is a 2-D time independent problem. Also
we havethat v = 0, g\; =0, %5 =0 and ap = 0 yielding that the Euler equa-

tions are simplified to

Ipw =0 (2-12)
9 pu*y =0

2 tpeTw) + L(PL) 1 3y = 0

11
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or equivalently

pu = fi(y) (213)
pu’ = f,(y)

3
u
pc,Tu+ p_2__ +pu = fi(y)

In our model of the jet flow we assume that u = g;(y), T = g,(y) and
p = g3(T(y)), and hence (2-5)-(2-8) isasolution to the Euler equations.

2.2  Wave input

At the inflow boundary we also give an acoustic wave as inflow data. We let

P = Pt P (2-14)
U= Ugt+U
V= VgtV
p given by isentropic flow
where
p'0,y) = posin(mt+2n%) (2-15)
. 1 p
uo,y) = ( — ),
©.) o/ (k,c) —M(y)/p(y)c
V(0,y) = !
( ay) - kxu

In (2-15) M(y) and p is the Mach number and the density in the jet. For down-
stream travelling waves the wave numbersin x- and y- direction, k, and k,, can
be defined in terms of the so called cut-off ratio & as

_M(y)§+ &2_1 (2-16)

J1-M(y)’

The ratio w/k,c can be calculated from the above ratio using the definition of
the cut-off ratio as

Ky
Ky

&‘Vl_m(y)z (2_17)

w/k.c = K7k,

The definition of the cut-off ratio is
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2n
NgAy

§= ——=— where k, = (2-18)

cky4/1—M(y)®

&> 1 means that the wave will propagate, while & <1 means that the wave will
evanesce.

13
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3 Numerical method

Fig. 3-1. 2D cell centered
structured finite volume
mesh.

All computations in this report were performed with the structured finite volume
Navier-Stokes solver Euranus [3]. In this section we briefly describe the features
used in thisreport.

3.1 Cell centered finite volume method

The discretization in space is a second order accurate cell centred finite volume
method. That is equation (2-1) is discretized as

ou =N
Qﬁ daQ + z (F,-R) AS=0 (3-1)

faces

where l?I -h are the inviscid flux. The sum of the flux terms refers to all the

external sides of a control volume Q. For cell 1(i, j) in figure (3-1), Q isthe
area ABCD, and the flux terms will be summed over the four sides AB, BC, CD,
DA. We aso have A which is the unit normal vector of the cell surface consid-
ered and AS which is the cell surface area. The solution is obtained in the cell
centres.

3 2 9
cl ij+l
4 1 8
i-1] p iy i+1
5 6 7
ij-1

Theinviscid numerical flux is expressed as

— * 1

(Fi-f) iin = é{(z'ﬁ)i"'(ﬁ'ﬁ)ﬁl}—diu/z (3-2)
The first term on the right-hand-side corresponds to a purely central evaluation
of theflux. Theterm d,, , , represents anumerical dissipation term, that may be

an numerical dissipation used in combination with central schemes, or the dissi-
pation associated with upwind schemes. In this report we only use a central
scheme.

15
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For the central scheme, we used a Jameson type dissipation with 2nd and 4th
order derivatives of the conservative variables

iv1/o = @1 1/50U, 41,0+ E@8°U, —e®;, 182U, (33
where the difference operators are defined as,

S = EV2_E-12 (3-9)
82 = (8)2 = E1-2E0+EL (3-5)

Here the displacement operator E is defined as
EIU; = Uiy (3-6)

The scalar coefficients € in (3-3) are given by

1 &
€@y, = EK(ZW“ max(Vi_1, Vi, Vi 4+ 1, Vi + 2) (3-7)

1 ,
ey max(O, EK(")?»* -, 1/2)

The coefficients k(@ , ¥ are user input, chosen as small as possible to stabilize
the numerical scheme while having the least impact on the solution.

The cell centred values of ¢, in equation (3-3) are obtained by arithmetic aver-
aging of the cell face values of equation (3-7). The variables v, are sensors to

activate the second-difference dissipation in regions of strong gradients, such as
shocks, and to de-activate it elsewhere. They measure variations of pressure and
are defined as

Pi+1—2P + Pi_1
Pi+1t2P+ Py

(3-9)

A* in (3-7) is ameasure of the characteristic speeds and is commonly chosen as
the spectral radius multiplied with the cell face area

—

A* = A* .10 = (V- AS+CAS)i+1/2 (3-9)

The surface area, AS, and the normal to the surface, AS = ASA , are defined from
the interface surface in question for the flux evaluation.

3.2  Time integration method

An implicit time marching with explicit subiterations was used in the calcula-
tions. The implicit solver can be written as



FOI-R--0243--SE

BL(GV)" 1+ Bo(GV)" + By (GV)" !
At

£ RE™Y + 1RE" +74REY = 0(3-10)

where gV denote the unknowns times the volume. The coefficients B,, Bo, B_;
and y,, vo, Y_; Ccan be chosen to yield desired accuracy an stability. We have used

B1
Y1

15; B, = -02; B_; = 05 (3-11)
1.0; v, = 0.0;y; = 0.0

in all calculations presented in this report.

Introduce the pseudo time t, denote the dependent variables ¢"** by §*(t) and
consider the problem

n+ d s« *oswy }
verisg +R'@) =0 (3-12)
where
% s yn+1 ) % su
R = P ey R ) + 0 (313)
and
Q = Bo(GV)"+ B_y(GV)" ! +voR@E™ + v R@E"™ Y (3-14)

is aconstant source term. As steady state in pseudo time is approached

d%a* IV AN U (3-15)

Within each real time step, the set of ordinary differential equations (3-12) is
solved using an explicit Runge-Kutta method.

With an explicit g-stage Runge-K utta scheme, the ODE

du _
@ = FW (3-16)
can be written
ul = u"+ o AtF(uM) (3-17)

uZ = u"+ o,AtF(ul)

ud = u"+ AtF(ua-1
un+1 = uq

17
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The coefficients o; determine the stability and the order of accuracy of the

Runge-Kutta scheme. In this report a second order accurate 5 stage Runge-Kutta
scheme is used. The following coefficients are used

0, = 0.814; o, = 0.191; oty = 0.342; oty = 0.574; 05 = 1 (3-18)

3.3  Boundary conditions

As we can not handle an infinitely large domain in space we must use boundary
conditionsin order to limit the problem.

In this section we describe the so called characteristic boundary conditions in
detail and briefly introduce the non-reflecting boundary conditions due to Giles

[5].

3.3.1 Characteristic boundary conditions

In order to investigate the mathematical properties of the system of Euler equa-
tions, we write the equations in quasi-linear form. The quasi-linear form of the
system of Euler equations (2-1) is

W AVu=o0 (3-19)
ot
or equivalently
oU , zoU , ~oU _
ALt BW =0 (3-20)

where A, B are the components of the Jacobian vector matrix A= (A B), see

[4],and U = (p, pu, pv, pE)" isthe conservative variables vector.

The eigenvalues of the matrix K = A- % = Ak, + Bk, , associated with an arbi-

trary direction of propagation ¥, define for alarge part the behaviour of the solu-
tionsto the Euler equations. It istherefore essential to have a clear understanding
of the so called characteristic properties, since they represent essential aspects of
inviscid flows, namely the propagation of disturbances.

Wave-like solutions will exist if the eigenvalues of the matrix K = A . %, for
arbitrary ¥, are real with linear independence of the corresponding left eigenvec-
tors. Let 3 denote an eigenvalue of the matrix K , obtained from

detI-K| =0 j=1234 (3-21)
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and the left eigenvectors 1 be solutions of

10K =10 j=1234 (3-22)

Hence with the vectors 1) asrowsin L and A = diag(A,, A, Ag A,) €quation
(3-22) can be written as

LK = AL (3-23)

A direct calculation of the two dimensional problem (3-21) givesthe eigenvalues
A1 Aoy Mg, Ay, herein matrix form,

A, 000

u 0 0 0

A=|9%00 10 u 0 o0 (3-24)
0 0230 0 0O u+c O
000X, 0 0 0 u-c

were c isthe speed of sound.

The so called compatibility equations, see [4], for the eigenvalues A one can
write in a compact form as

(L19, + L-1A- VYU = 0 (3-25)

These equations lead to the introduction of the characteristic variables. They are
defined asa 4 x 1 column vector by the relation valid for arbitrary variations 8

(either 9, or V):

SW = L-18V (3-26)

The compatibility equation can now be expressed as

‘i:’ + (LHALLAVY = 0 (3-27)

]
L5

At a boundary in a multi-dimensional flow the one-dimensional analysis gives
insight to the number and type of boundary conditions that should be used. This
issinceit is the eigenvalue spectrum associated with the normal to the boundary
that decides the number and type of boundary conditions.

The characteristic form of the one-dimensional Euler equations can be written as

W AW _ g (3-28)

. . . . > ~
sincein onedimension A = K.

19
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Fig. 3-1. Boundary
conditions for one-

dimensional inviscid flows.

20

Applying the definition (3-26) for a one-dimensional flow, the following defini-
tion of the characteristic variables W = (3w, dw,, 8w3)T, with 8W represent-
ing an arbitrary variation, either o, or d,, are obtained from W = L1V :

1
dw, = 8p—C—28p (3-29)
= su—~+
dw, = du pCSp
ow; =du+ iéSp

Using the characteristic variables, or equivalently the Riemann invariants, is a
staightforward way to express the propagation properties in a one-dimensional
flow. Equation (3-28) shows that the quantities w; propagate along the corre-

sponding characteristics with the speed 1 ;,. Hence dw; in (3-29) propagates
with velocity A; = u aong the characteristic C, defined by dx/dt = u. This
characteristic is the path line of the fluid. On the other hand, éw, propagates
with velocity A, = u+c aong the characteristic C, defined by dx/dt = u+c
and dw, propagates with velocity A; = u—c aong the characteristic C. defined
by dx/dt = u—-c.

The characteristics C, and C, have slopes u + ¢ and u, which are always positive
for aflow in the positive x direction. The third characteristic C. hasaslope u—c
whose sign depends on the Mach number. For subsonic flow, C_ will have a neg-
ative slope but a positive slope for a supersonic flow. See Fig. (3-1).

supersonic outlet

supersonic inlet
Cs

c C.
\ C, \
t

subsonic inlet Co X
subsonic outlet
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Tab. 3-1. Physical and
numerical boundary
conditions for one-
dimensional flows.

Fig. 3-2. Discretization near
the boundary.

The number of boundary conditions to be imposed will depend on the sign of the
slope of the characteristics at the boundaries. Only variables transported from the
boundaries towards the interior can be freely imposed at the boundaries as phys-
ical boundary conditions, see e.g. [6]. Numerical boundary conditions will have
to be added to the physical conditions in order to completely define the numeri-
cal problem. Table (3-1) shows the number and the nature of the boundary condi-
tions.

Subsonic Supersonic
Inlet Physical conditions: wy, w, Physical conditions: wy, w,, w3
Numerical conditions: w3 Numerical conditions: none
Outlet Physical conditions: w3 Physical conditions: none
Numerical conditions: w1, w2 Numerical conditions: wl, w2, w3

In this report we consider a subsonic inflow, why w; and w, are physical condi-
tionsand w, isanumerical condition.

At the inflow boundary we use these characteristic boundary conditions, while
we use a non-reflecting boundary condition, see Sec. 3.3.2, at the outflow bound-
ary.

Figure (3-2) shows the discretization near the boundary. The first cell to the left
represents the dummy cell variables. Cell 2 and 3 are the first and second cell
inside the computational domain, respectively. B is the specified solution on the
boundary of the domain.

1;32 3

We have characteristics C, and C, that are propagating into the domain and will
be given by

W, , + W, .
g = 172 i=12 (3-30)

while we have an outgoing characteristic C. which is received through a first-
order extrapolation as

21
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W1 = 2W ,—W; 3 1 =3 (3-31)

The tangential velocity is assumed to be constant across the boundary.

3.3.2 Non-reflecting boundary conditions

As we actually have an infinite domain which is truncated to a finite domain, it
rises the problem of choosing appropriate boundary conditions for the far-field
boundary. Ideally these should prevent any non-physical reflection of outgoing
waves

We have used Giles second order non-reflecting boundary conditions [5] at the
outflow boundary.

In [5], the non-reflecting boundary conditions are derived for a linearized prob-
lem. In this study we linearized around the jet flow described by Egn. (2-5) to (2-
8).

We used the so called second order two-dimensional unsteady outflow boundary
condition, which is

Cy
ac? | ¢ | _
S +t@Ouo V)W 2= 0 (3-32)
3
Csq
and linear extrapolation of the outgoing characteristicsc, i = 1,2, 3.
Here ¢, i = 1,2, 3,4 are the amplitudes of the four characteristic waves found
as
©G  |=® 0o o0 1[|dp
© -0 0 pco(du (3-33)
Cs 0 pc 0 1f[dv
Cs 0 —pc 0 1/[dp

where 8p, du, dv and Sp are the perturbations from the jet flow around which the
Euler equations are linearized.
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4 Numerical results

Fig. 4-1. Eigenvalue u—c

when u_, = 100.

Throughout the calculations the following parameter values were used: The free
stream values were p,, = 101000, T_ = 288, u_ = 100 and v, = 0. For the jet

input (2-5), (2-6) weuseda = 75, T_/T, = 1/2,u_/u, = 1/4, M_ = 0.8 and
Yy =14.

The free stream values yield a subsonic flow, since the eigenvalue u—c will be
negative trough out the flow, see Fig. 4-1. Here the speed of sound c isdefined as

C = JYRgasT Where Ry, = 287.

The computational domain is represented by a rectangle with height H = 0.2
and length L = 0.2, seefig. (2-1).

0.08

0.06 -

0.04 -

0.02-

0
-260 -240 -220 -200 -180 -160 -140 -120 -100 -80
eigenvalue ujet-cjet

4.1 Initial data

Asinitial datawe used the jet flow described by (2-5) through (2-8) in the whole
domain. Figure (4-2) shows the structure of the density in the initial data.

23
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Fig. 4-2. Structure of the
density.

Fig. 4-3. Pressure instability.

24

0.280

118
0.240

1125
D200 1.081

D.98E
016D

[oR: 7

0iz0 -

0020 0740

D.B73
0.040

DE11

0.00D

— T T T T T T T
0.000 0.040 0.080 D120 D.1ED 0.200 0.240 0.280 D.320 0.3E0 0400
5 May 01 14:00:54

We used atime step At = 4.573-10° and all calculation were performed in dou-
ble precision. Here the step in x-directionis Ax = 0.0025 and the step in y-direc-
tionis Ay = 0.0025.

Firstly we ran the program without acoustic input in order to numerically check
the solution, (2-5)-(2-7). After a few time steps instabilities were noted in the
pressure and the velocity fields (Fig. 4-3). One could also see a disturbance near
the inflow boundary, mainly were there where large gradients. The instabilities
were generated in the beginning of a calculation and then moved downstream
with the particle velocity. A possible source of these instabilities could be the ini-
tial data. Otherwise instabilities would probably have been generated continu-
ously during the calculation. The instabilities were only seen in the pressure and
velocity fields.

Time step 100

0280
max 101002.1 min 100999.0

0.101E+DE
0.240

DADIE+DE
0.200 0101E+06

0.101E+DE
0.160 -

0.101E+0E

0.101E+DE
0120 -

D.1D1E4DE
0080 0.101E+0E

0.101E+DE
0.040 -

D.1D1E4DE
0.000 - T T T

0.000 o.odo D.08D 0.120 D.1ED D.200 0240 UZEU U 0 D.3ED 0400

Since the instabilities were locally generated in time, a satisfying solution would
have been achieved as soon as the instabilities had passed through the outflow
boundary. However even with a non reflecting boundary condition the instabili-
ties were severely reflected, see Fig. (4-4). The same result was obtained with
boundary conditions where all variables were extrapolated. The reflections from
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the instabilities were then growing as they travelled up-stream after the reflection
at the outflow boundary.

Fig. 4-4. Reflection at the
outflow boundary.

Time step 200 Time step 300
0280 0280
101128, 101040.5
D240 D240
101112 101031.0
0.200 101035, 0.200 101021.6
T 101078, 1010122
D1BD - D1ED -
1010E3. 1010027
101046, 1008833
0120 - 0120
. 101050 1009839
0.080 101014, 0.050 1008744
i 100887 100965.0
0.040 - 004D -
i 1008581 100935.5
oooo o i ' i ' ' 0 ' 0 T T T T T T T T T b.ooo T T T T T T T T T
0.000 o.odo 0.080 0.120 0.160 0200 0.240 0.280 0.320 0.3E60 o400 0.000 o0 0.080 0.120 0160 0.200 0240 0.280 0.320 0.3E0 o400
27 Jun 01 14:03:02 27 Jun 01 13:58:46
The instabilities have just reached the outflow boundary. Reflection of the instabilities

It should be note that the acoustic waves will have an amplitude of about 100 Pa,
and hence a disturbance of the same order as the acoustic wave is not acceptable.

We aso tried a different indata file. It was constructed with data (u, v, w, p, p)
from a calculation described above for afixed x for which the instability already
had passed but to which reflections from the boundary had not yet reached. How-
ever it turned out that the instability problem remained also with thisinitial data.

We thereafter made experimentswith the grid, artificial viscosity coefficients and
outflow boundary conditions in order to reduce the amplitude of the instabilities
as they reached the outflow boundary.

First experiments with the grid were made. Firstly, we tried to damp the oscilla-
tions by adding extra layers of cellsin the x-direction. Two different grid sizes
were tested. The first grid was extended with 13 extra cellsin x-direction and the
other one was extended with 16 extra cells in x-direction. The first six cells had
the same size as the original grid, thereafter they increased by a factor 1.4, see
Fig. 4-5.

It could be seen that the amplitude of the pressure disturbance reduced in both
cases but the instability wasn't totally reduced for any of the grids. Since the
longer grid had much wider cells at the end than the shorter grid, we expected
the instability to have smaller amplitude with the longer grid when the instability
reached the outflow boundary. Instead the shorter grid showed to give a smaller
increase in pressure.

25
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Fig. 4-5. Structure of the

grid extension.

Fig. 4-6. Result of the
viscosity test.

k@ =10 x® =01

1010320

x=0.2

During this grid test, small oscillations due to dispersion could bee seen in the
solution. However, when increasing the viscosity parameters the boundary layer
at the outflow boundary increased, see Fig. 4-6 and 4-7. The most noticeable
effect of increasing the viscosity parameters was seen when the longer grid was
used.

This effect can be seen from the solution of the viscous one-dimensional model
problem

Uy, = €U, (4-1)
u(x) >0 as x— —o
u(l) = ug

(x=1)
with the solution u = use ¢ . Itisclearly seen that the boundary layer at the

outflow boundary is thicker with alarger value of ¢ .
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Fig. 4-7. Result of the
viscosity test.
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Fig. 4-8. Imposed pressure.

In this study we also compared different outflow boundary conditions; imposing
pressure, extrapolation of all variables and the non-reflecting boundary condi-
tions described in section 3.3.2.

With the extended grid al boundary conditions gave well-behaved solutions. See
Fig. 4-8 - 4-10. Before the extension of the grid was made the instabilities were
reflected when the non-reflection boundary condition was used (Fig. 4-4). Now,
on the enlarged grid, the frequencies became smaller which seemed to help the
non reflecting boundary condition to let the instabilities out (Fig. 4-10). In Fig.

4-8 to 4-10 the maximum and minimum values are given for 0< x< 0.319 when
k@ = 1.0, k¥ = 0.1 were used.

In Table 4-1 the maximum an minimum values, respectively, are shown for
0<x<0.2 for the three different boundary conditions tested.

o280 Time step 300 0280 Time step 500
max 101006.1 min 100998.4 S max 101004.2 min 100992.8 S
0.240 0.240
DADIE+DE 1010024
0.200 0101E+06 0.200 1010012
. 0.101E+DE ””'!” 1010000
0160 - 0160
j 0.101E+0E 100988 8
1 0.101E+DE 100987 B
0120 - * 0120
. D.1D1E4DE 100986 4
.os0 ’i 0.101E+0E 0.080 1009852
0.101E+DE 100984.0
0.040 - 0.04D
A D.1D1E4DE “l “1 100882 8
oo 4 I " k 0.000 “l
0.000 0.040 0.080 0.120 0.180 0.200 0.240 0.280 0.320 D.3E0 0.400 0.000 0.040 0.080 0.120 D.1ED 0.200 0.240 0.280 0.320 0.3E0 0.400
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Fig. 4-9. Extrapolation of

variables.
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Fig. 4-10. Non-reflecting
boundary condition.
Time step 300
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max 101014.7 min 100998.6 ioiaa
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Tab. 4-1. Maximum and

minimum values when

0<x<0.2.
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Time step 500
max 101002.8 min 100999.3
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100997 .4
0.080 10099E.1
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0.040
1009935
0.000
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0360

In table 4-1 maximum and minimum values when 0< x< 0.2 are shown.

Time Imposed Extrapolation of Non-reflecting
step pressure variables boundary cond.
max | 101002.2 101002.2 101002.2
300 o | 100998.8 100999.2 100999.2

max | 101002.0 101002.4 101002.6
500 o | 100992.8 100999.3 100999.4

The conclusion is that a grid with a short extension and small values of the vis-
cosity parameters gave the best reducing effect on the instabilities. The choice of
boundary condition had no noticeable effect on the solution.
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4.2 Acoustic calculations

Here we used a solution, as described in Sec. 4.1, generated with agrid extension
by 13 extra cells, the viscosity parameters ¥ = 1.0 «® = 0.1 and a non-
reflecting boundary condition asinitial data.

An acoustic wave as in Sec. 2.2 was superimposed to the data at the inflow
boundary. In this report only downstream travelling acoustic waves are consid-
ered.

In section 4.1 it was shown that small values of the viscosity parameters gave the
best initial data to the inviscid problem. The same viscosity test were also made
in the acoustic case. The smaller values did however give rise to oscillations, see
Fig. 4-11 and 4-12.

Fig. 4-11. Pressure for
y = 0.05. Time step 600.
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Fig. 4-12. Pressure for
y = 0.05. Time step 600.
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Tab. 4-2. Parameters for
different test cases.

30

The purpose of the following calculations was to investigate how many grid
points that had to be used in order to propagate the acoustic waves in a non-
homogenous medium.

Three grids with different number of grid points where constructed, namely
48 x 41, 94 x 81 and 186 x 161 . The different results of three acoustic parameters
were compared. The different parameters where: The amplitude of the distur-
bance p, , the cut off ratio & and the number of grid pointsiny-direction N,. A
standard set of input parameters, that was arbitrarily chosen (case 1 in table 4-2),
was used as areference. Only one of the standard input parameters were changed
for each comparison. The different parameters that were tested is shown in table
4-2. Each case was tested for N, = 40, 80 and 160 .

case 1* case 2 case 3 case 4 caseb case 6
& 11 0.7 0.9 15 1.1 11
Po 89 89 89 89 50 130

* Case 1 isthe reference set of input parameters

We used

At=L (4-2)

60
where
- 2n i

T=3 (4-3)

and
o, = Ec.k, 1-M.2 (4-4)

Thefree stream values of ¢, and M_, will give the greatest vaue of ® and hence they
will be used in the calculation of At.

Also,

2n

(4-5)
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For thisproblem At = 6_T6 was chosen why atime step, At = 4.573-107°, will be

satisfying for every test case.

In figure 4-13 through 1 the solution for case 1 to 6 are shown for
N, = 40,80 and 160 at time step 1000. The behaviour of the solution for

x>0.2 , i.e. athe extra layers of cells added for damping of reflections at the
outflow boundary, is neglected in the comparisons.

By comparing the structure of the solutions with different N, for each case one
can see that with N, = 80 and N, = 160 we get fairly similar results but not
enough to use N, = 80. The conclusion will therefore be that N, = 160 is

needed for an accurate solution. This particular problem is however difficult due
to the very large gradients of the jet flow.
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Fig. 4-13. Case 1,
N, = 40.
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Fig. 4-16. Case 2,
N, = 40.
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Fig. 4-19. Case 3,
N, = 40.

y
101240 0.280
o
b 101300
101200, 0240 101258
7 01217
101150, 0200
101175
101133
101120 0.160
pressure 101081
101048
101080 0.120
101007
101040 0.080 1ooses
100824
101000 0.040 1bo8e2.
100840
10D3ED. T T T T T T T T T T T T T 0.000 T T T T T T T T T
0.000 D040 DOBO 0120 0150 0200 0240 DZBD 0000 0040 0O0BD  D1Z0 D10 020D 0240 0280 030 D3E0D 0400
coordinates1 30 May 01 14:18.11
Fig. 4-20. Case3,
N, = 80.
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Fig. 4-21. Case 3,
N, = 160.
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Fig. 4-22. Case 4,

N. =

, = 40.
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Fig. 4-25. Case 5,

N, = 40.
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Fig. 4-28. Case 6,

N. =

, = 40.
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5

Summery

A numerical study was performed to investigate the performance of a second
order accurate finite volume solver when the solution contained acoustic waves
spreading in air with non-constant speed of sound. A two dimensiona model
was set up with a subsonic jet flow as base flow and an acoustic wave was super-
imposed.

It was theoretically and numerically verified that the jet flow model that was used
satisfied the Euler equations. In the numerical verification instabilities appeared
in the pressure and velocity fields. Since the instabilities were reflected at the
outflow boundary and hence would destroy the calculations including acoustic
waves, attempts were made to reduce the magnitude of the instabilities before
they reached the outflow boundary. Tests were made by changes in indata, grid
Size, viscosity parameters and boundary conditions.

In the acoustic calculations different viscosity parameters were tested. Examina-
tion of how many grid points that had to be used in order to propagate the acous-
tic waves in a non-homogenous medium was made. The examination was
performed by comparing six cases, al with different values of cut off ratio,
number of grid pointsin y-direction and amplitude of the disturbance.

After the inviscid calculations turbulent calculations were initiated. Satisfying
boundary data of the turbulent quantities were however hard to obtain. An
attempt to achieve a fair guess of the turbulent quantities was performed as fol-
lows. The pressure, velocities and density was fixed to the jet values. Also, the
problem was considered as periodic also in the x-direction. The intention was
that the turbulent quantities should after integrating in time reach a steady state
solution. However, with different guesses of the initial solution of the turbulent
guantities no sign of convergence were noted although over 100.000 time steps
were taken.
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