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Notation

Primed variables have a corresponding non-dimensional variable, where the latter is the only one
used in the text.

Roman
a= % Non-dimensional induced velocity
a,, a,, a,,a, X-, Y-, Z- respective ¢-component of a
Ay =7R? Turbine or propeller area
b Number of blades
c Point in the Trefftz plane (z=0)
Cr Thrust coefficient
Co Torque coefficient
d= —g— Non-dimensional pitch (of tip vortex spiral)
R
droot’ . . . .
d 1001 ;"” Non-dimensional pitch of root vortex spiral
T
ds Element on a vortex spiral
f Function, integrand in Biot-Savart’s law
f(bdR) Function, defined in Section 5.6
L= ?L_ Non-dimensional length
T
L Lift force
m Mass
m Mass flow
P Pressure
0 Torque
r= RL Non-dimensional cylinder coordinate
T
Fg : Vector from a vortex element to an arbitrary point in the Trefftz plane (z=0)
R . . .
rR="XL Non-dimensional wake radius
RT
R e’ . . .
Reore IC;" Non-dimensional core radius
T
R0t Non-dimensional radius of root vortex spiral
R, Turbine or propeller radius
Ry, Wake radius
S Point on the vortex spiral
T Thrust
v Induced velocity
4 Free stream wind velocity
x= RL Non-dimensional Cartesian coordinate
T
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Non-dimensional Cartesian coordinate

Non-dimensional Cartesian coordinate; parallel to the free stream wind.

Starting angle of a trailing vortex
Non-dimensional circulation
Circulation

Independent spiral coordinate
Air density

Cylinder coordinate
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1 Introduction

Blade element momentum theory and vortex sheet theory are theories that are widely used when
analysing wind turbines and propellers. However, there are many situations where they are not valid
but still used. This may be the case, for example, in rapid changes of wind direction or wind velocity,
in wind turbine shutoffs, for calculating initial takeoff thrust of an airplane propeller or for modelling
flows that are time variable or oblique to the disk. Therefore, there is a need for a new method, which
is reliable in such situations as well. The concentrated vortex theory is assumed to be such a theory,
if applied as a time variant problem.

This work deals with a part problem in the concentrated vortex theory, that is to find radius and pitch
of the concentrated tip vortex spiral, from given values of thrust and torque coefficients and a given
strength of the maximum circulation around the blade(s). The theory is valid for wind turbines and
propellers alike and the word airscrew will be used for both of these.

Many complicating situations may arise during operation of a wind turbine. This thesis is limited to
the symmetrical case, thus excluding any guidance for dealing with e.g. yaw or wind shear. Within
this work, airscrews with one to three blades are studied.
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2 Background
To understand the new method and the need of such, some background information might be needed.
This section describes different theories used for load calculations on wind turbines and propellers.

2.1 Actuator disk theory

The simplest model for understanding the aerodynamics of a propeller or turbine is the actuator disk
theory, where a disk with the same radius substitutes the rotor. The actuator disk is quite an inexact
approximation, since all effects are averaged over the disk area. No consideration is made of the
rotor geometry, which may play an important role for the performance. However, the basic
momentum equations that this theory builds on are the same as in the vortex methods and deserve a
review.

Figure 2.1
Actuator disk

Assumptions are made that the slipstream of the rotor is clearly defined and the air moving outside
the slipstream is practically undisturbed. Consider a cylindrical control volume, which encloses the
rotor and the slipstream as shown in Figure 2.1. Upstream of the rotor, the wind velocity is
undisturbed and is denoted by V. As the air approaches the rotor, the wind velocity decreases
(turbine) or increases (propeller) and far downstream it has decreased or increased to V' + v, where v
is negative for a turbine and positive for a propeller. The airflow is continuous and hence there is no
sudden change of the velocity at the rotor. However, there is a discontinuous change in the pressure
at the disk, which corresponds to the rotor thrust. That is,

T =TR}Ap . 2.1

The total force in the axial direction on the control surface consists of both the rotor thrust and the
pressure forces acting on the ends of the control volume. By the momentum theorem, the total force
equals the rate of change of momentum. With the notations defined Figure 2.1, this means

T+nRY (p.. — py )=pmRy (V +v)v . (2.2)
From this equation, the thrust can be solved as

T =pnRy (V +vv+1Rg (py — p..)- (2.3)
Bernoulli’s equation gives that

p+%pV2 = constant . 2.4)

If Bernoulli’s equation is applied at points upstream of the rotor, we get
1 1
P +EPV2 =Pr +59(V+VT)2 (2.5)

and for points downstream we get

11
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1 1
pPr +AP+ED(V+VT)2 =pw +EP(V+V)2- (2.6)

Solving for Ap gives

Ap = py = P +p(V+%V)V- 2.7)
Since the airflow is continuous, we have

p(V +v )RE =p(V +v)R}, (2.3)

and by this, (2.3) can be rewritten

T V+v
—;?=Ap=p@Wﬂwﬁ+ (P —pe). (2.9)
Equating (2.7) and (2.9) gives
v-vr)
por ~4v)=(py - p. T (2.10)

If the value of the wake pressure is evaluated far from the rotor, it is reasonable to assume that the
wake pressure equals the ambient pressure, i.€. pw = p.. Then (2.10) gives

vy =L, (2.11)

i.e. the induced velocity at the rotor is half the induced velocity in the far wake and hence, from (2.9)
the torque can be calculated as

T =20mRZ(V +vy oy . (2.12)

Similarly, the torque can be calculated as the rate of change of moment of momentum. Under the
same assumptions as above, the torque becomes

O =20mRE(V +vy vy . (2.13)

As can be seen in the formulas, this method requires that either the thrust (or torque) or the induced
velocity is known.

2.2 Blade element momentum theory

One step up in complexity and accuracy is the blade element momentum theory. The blade is
subdivided into a number of blade elements, whose forces are determined using known airfoil
characteristics. A summation of thrust contributions from all blades, from all elements on the same
radius, is then matched with the momentum loss or gain of the wake flow. From (2.2) the induced
velocity and hence the flow velocity decrease or increase can be calculated.

This method is reliable in many situations and has low requirements on computer speed. However, as
mentioned in the introduction, there are several situations where it is not valid.

2.3 Vorticity

For a wing to experience a lift force, the average pressure must be higher on the lower side than on
the upper. Equation (2.4), Bernoulli’s theorem, illustrates how pressure increases when velocity
decreases. Hence the air velocity must be higher over the upper surface of the wing than the lower.
To achieve this a circulation around the wing can be superposed to the free stream wind, as
illustrated in Figure 2.2.

12
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Figure 2.2
Air flow around a wing.

According to the Kutta-Joukowski theorem, the lift force per unit span can be calculated as

L=pIT, (2.14)
where V is the undisturbed wind velocity and I is the circulation.
Helmholtz’s theorem gives that vorticity cannot terminate in the interior of a fluid. The circulation

around a blade element continues as free vortex lines trailing from the edges of the blade element, as
is shown in Fig. 2.3.

Bound vortex q\]&ﬂd

Trailing
vortex

Circulation

Figure 2.3
Vorticity trailing from a blade element.

If the vorticity varies along the blade, the difference in circulation is trailed off, forming a vortex
sheet behind the wing. This is illustrated in Figure 2.4 where AI' is the descretized sheet

representation.

I
i) F+AF/_\

)

Figure 2.4
Trailing vorticity, forming a vortex sheet.

13
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2.4 Vortex sheet theory

Vortex theory depends on the fact that it is possible to separate the wake from the airscrew and still
be able to calculate thrust and torque. That means, with no prior knowledge of the characteristics of
the airscrew that generated the vortex spiral, both thrust and torque can be calculated from the wake
characteristics alone.

The so-called free wake model contains the idea that the trailing vorticity described in Section 2.3
can be modelled to leave the wing representation (which frequently is only a straight line) like a
silkworm fibre. The blade is subdivided into a number of blade elements and one such vortex trails
from its corresponding blade element. The trailing vorticity is modelled in the computer as piecewise
straight lines with circulation, each such segment being used to induce velocities on all other
segments. The induction can be calculated using potential flow theory, notably the Biot-Savart law,
which will be described in Section 3:2. After summation over all segments, a total induced velocity
is obtained for each segment. Multiplication by the chosen time step in the simulation gives the
translation of the whole vortex system. The new vortex system is also used for calculation of the
induced velocities on the blade itself. One induced velocity will be evaluated at each blade element
whereby the local flow is known at the blade element.

After completion of one such cycle, the aerodynamic load on the element is calculated. The
calculated load is then converted to a new value of bound vorticity and a new piece of vortex is
trailed from the wing representation, etc. Thus, the vorticity is allowed to develop in response to
whatever happens on the blades.

Plots of vorticity trailed from a wind turbine or propeller blade in a simulation, according to the
description above, shows how an apparent screw surface is slightly deformed as it travels
downstream. However, smoke injection in the stream tube in real turbine flows shows that the
vorticity does not travel as a screw surface but rather as a concentrated vortex trailing off the tip of
each blade and as a more diffuse root vorticity. The fact that the vorticity is concentrated is also, in
humid air, clearly visible for example behind an airplane, where the vorticity is concentrated into a
single vortex trailing off each wing.

This behavior is caused by viscosity, which is not modeled within the vortex sheet theory based on
potential flow. This leads to the idea of the concentrated vortex theory.

2.5 Concentrated vortex theory

It is desirable to model the real flow, as it is observed to behave, for mainly two reasons. There is
partly the hope that a more nature-like model will give results that are more exact. In addition, the
concentrated tip vortex represents an enormous reduction of calculational effort. With a concentrated
tip vortex model in place of the “classical” free wake model, even aeroelastic code, containing such
an acrodynamic model, will be within manageable bounds to allow parametric studies.

Before the concentrated vortex theory is usable, one question needs an answer. That is, to what
radius should the concentrating trailing vorticity travel? Since the potential flow method gives partly
misleading guidance in this respect, some other method of finding radius and pitch of the trailing tip
vortex spiral must be found. The matching of thrust and torque with the trailing tip vorticity
geometry is the idea, which is developed for this purpose in this report. When the appropriate tip
vortex radius and pitch are found, in each time step of the simulation, the instantaneous thrust and
torque are available since they are known from blade element calculation. Consolidations of this
method can later be accomplished, as results from measurements become available.

The root vortex, trailing from an airscrew, can be modelled either as a straight line vortex along the
wake centre axis, with circulation in the opposite direction to that of the tip vortices and whose

14
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strength is equal to the added strength of all the tip vortices, or in the same way as the tip vortices. In
the latter case, the radius depends on the shape of the blade and the pitch is calculated, to a good
approximation, from the characteristics of the tip vortex. This work deals mainly with the case of the
root vortex modeled as a straight line. However, some comments and examples on different root
vortex models are made in Sect. 7.

15
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3 Mathematical formulation of the problem

3.1 Non-dimensioning

The solution of the problem should encompass all sizes of airscrews. The technique includes
elimination of physical dimensions. In order to get a dimensionless problem the thrust and the torque
are normalized; resulting in the dimensionless variables called Cr and Cp. Wake radius, pitch,
circulation and induced velocity are also normalized and turned dimensionless. To get the
normalization consistent, all variables are normalized against the corresponding rotor parameters and
the free stream wind velocity. Then the same equations hold for the normalized and the non-
normalized variables. For the definitions of the non-dimensional variables, see Table of Notations on
page 7. Angles are not normalized.

The thrust and torque coefficients are given as

Cr=T—— (3.1)
EszAT
and
Co=—E—. (32)
Z VIR, Ay

3.2 Biot-Savart’s law
To calculate the velocity induced by a vortex line an analogy in the theory of electromagnetism,
called the Biot-Savart law, can be used. Applied to our problem the Biot-Savart law becomes

= M, (3.3)

3
4n rg

where 7, is the vector from the point of evaluation to a point on the vortex and 45 is along the vortex
line. Inside the wake, a turns out positive for a propeller and negative for a turbine.

For a straight vortex line of length L, the induced velocity becomes

Y L - Y -
———— - €4,
27"‘_]_ ’L2+rf @ 2W_L M

where r) is the shortest distance between the vortex line and the evaluation point and e,

a= when L>>r, (3.4)
is a unit
vector.

3.3 The core

The integrand in the Biot-Savart law is singular in points at the vortex line. This would correspond to
infinite velocities, but of course, this cannot be the real case. Therefore, a core is introduced, such
that the induced velocity is decreasing inside the core and is zero in points at the vortex line. The
technique used in the approximation of the induced velocity is to replace » accordingly

1 r
7:r2+R2 5 (3.5)

core

where 7 is the distance between the vortex line and the point of evaluation and R... is the core
radius. This is illustrated in Figure 3.1.

According to Bhagwat and Leishman (2001), the physical size of the core radius is about 1% of the
rotor radius. This is the core radius size used in the calculations. Bhagwat and Leishman have also

17
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drawn the conclusion that the induced velocities do not depend strongly on the core velocity

distribution.
20
a -

15

10F 3

—J

)

o [l 1 1 1 1 1 1 1
0 0.01 002 003 004 005 006 007 008 0.09 01
r

Figure 3.1
The smooth full curve represents induced velocity of an infinitely long
straight vortex line placed in r = 0. In this example is R.ore = 0.01 and y= 1.
The dotted lines correspond to the induced velocity without a core, i.e.

a=-L—, outside the core and the straight line a=

272? 27[RCO?’€

r inside the core.

3.4 Coordinate systems

Since there is a cylindrical symmetry, it is natural to use cylindrical coordinates for purposes of
explanation. The positive z-axis is chosen in the free stream wind direction, with z = 0 in Trefftz
plane, i.e. the xy-plane where the flows are evaluated. The vortex lines form spirals, whose

coordinates are uniquely determined from the pitch (d), radius of spiral (R) and azimuth angle (p= «
— 0) where @is the independent spiral coordinate and ¢ris the starting point for the actual vortex line.

A
X, r /f
Trefftz plane \(P / /
AT S
N
7y >

y

Figure 3.2
Definition of the coordinate system.

It is also useful to have available the Cartesian coordinates. A point S on the vortex has Cartesian
coordinates

18
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§(0)=(Rcos(a—0), Rsin(@—06), %9] (3.6)

and a point C in the Trefftz plane has coordinates
C(r,@)=(rcos(p), rsin(p), 0). 3.7

The vector 7y from C to S becomes, in Cartesian coordinates,

Fs(r,(p,é’):§—E=(Rcos(a—9)—rcos((o), Rsin(a—)-rsin(p), f;aj (3.8)

and an element dS along the vortex spiral has the equation

d§(9):(Rsin(a—0), - Rcos(a—0), zi]de. (3.9)
/4

3.5 Application of Biot-Savart’s law in the different directions

Inserting the above relations in (3.3), Biot-Savart’s law, gives the following expressions for the

velocities induced by b vortices, corresponding to b blades. The last terms in the expressions for a;

and a, correspond to the root vorticity, which is modelled as a straight line.

X

b . _ . _
_ de ZJ‘ Rsin(o; -9) rsm((p)+Rcos(0ci 0 d9+b-Y—cos((p), (3.10)

2
R* +r* -2rRcos(a,; -9—(p)+(-2d—9) ]
7

0w

(2“) i=1 {

b o .
vd ~ Rcos(o; —8)+7cos(e)+ Rsin(a; —6)9 Y o
a, = do—b——sin(g), 3.11
y (27[)2 ;! , % 2 ((P) ( )
[R2+r2 -2rRcos(a; —9—(p)+(—i6) J
2n
b ° 2

Y ~R? +rRcos(ar; —0-0)

a, _%Zj o . (3.12)

0w

0 d 2
R*+r? —2rRcos(a, —9—(p)+[—2—9)
T

Due to the symmetry in € = 0, integration is only made from zero to infinity. The total induced
velocity is obtained by multiplication by 2.

Since both the summation (finite) and the integral (~1/6 or 1/6° for large ) are convergent, an
interchange of the integral and the summation is allowed.

The induced velocity in the ¢-direction is given by

a, =-a, sin(p)+a, cos(p). (3.13)
Also, the following relations are true and will be used

a, =-a, sin(0) (3.14)

a, =a, cos(p) (3.15)

19
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3.6 Calculation of Crand Cy

The momentum theory is described in Section 2.1. With the assumption that the pressure in the final
wake equals the ambient pressure, i.e. py = p., (2.3) gives that the contribution to thrust can be
calculated as

dT = v, din=—v,p(V +v,)dA. (3.16)

The minus sign is there in order to make 7 positive for wind turbines and negative for propellers,
which is the definition used in this work. The expression is evaluated in the so-called Trefftz plane
(see Figure 3.2), which is a plane perpendicular to the wake and placed infinitely far behind the
airscrew.

Similarly, the torque contribution can be calculated from the corresponding moment of momentum
theory as

dQ = v rdi==v,p(V +v_ )rdd. (3.17)
This gives, in normalized variables,
dc; =—-2—az(1+ a, Jrdrdo (3.18)
Y
and
dc, =——2—a¢,(1+az Jr2drde . (3.19)
oz
Summation gives
) oo 27T ) o0 27T
Cp === [a.dgrar -~ [ atdgrar =Cr, +Cr, (3.20)
00 00
and
2 o 277 2 o 27T
Co =———IJ.aq,d(orzdr——"‘J'azaq,d(orzdr=C0 +Co, - (3.21)
54 T v/ <1 2
00 00

Each integral in (3.20) and (3.21) will be treated separately in the calculations. The right hand sides
of the expressions define notations that will be used further down the text.

It is notable that the induced velocities in the formulas above denote the fofal induced velocity, that
is the velocity induced by both the tip vortices and the root vorticity.

The integrands in Cr; and Cp; are proportional to 1/r for large radii and hence, these integrals seem

not to converge. However, due to counteraction between the tip vortices and the root vorticity and
due to the spiral form of the vortex lines, these integrals cancel outside the wake. This will be
investigated in more detail in Section 5.3.

20



FOI-R--0277--SE

4 Method

The main task was to solve the problem numerically, by making a large database for Cr and Cyp as
functions of the spiral parameters R, d and ¥ and of the number of blades on the airscrew. An
interpolation routine, which also was constructed, makes it possible to solve the inverse problem,
which is the more interesting problem. It means that R and d will be functions of the given
parameters Cr, Cp and ¥,

During the work, some useful explicit relations emerged after inspection of some numerical results.
In order to limit the calculation time and to get a more exact result, these relations were analysed and
used in the calculations. Some of these relations are proved. For them, both the numerical and the
analytical solutions are presented in this report. Other relations are only motivated by the exact
agreement with the numerical results. The latter type can be thought of as “curve fits”.

All dependences are not completely solved with the method mentioned and hence a numerical
solution is still needed. However, thanks to the explicit relations found only a small part of the

problem needs be solved numerically.

All numerical calculations are made using Fortran programming. Matlab was used to make graphs.
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S Explicit results

5.1 Dependence of ¥
From (3.3), the Biot-Savart law, it follows directly that the induced velocity is proportional to 7.
Hence

Cr, ~¥» (5.1)

Co ~7> (5.2)

Cp, ~7° (5.3)
and

Co, ~¥*. (5.4)

5.2 Relation found for C1/Cq

From numerical calculations it can be deduced that if the root vortex is modelled as a straight line,

Cr 2@
2 5.5
o (5.5)

It is noteworthy that the quotient depends on neither R nor y. This relation is true independently of
the number of blades of the airscrew.

This relation is also true for the components of Ct and Cq term by term, i.e.

Cn _Crp _2m (5.6)

As will be shown in Section 5.3, it is exact for C;, /Cy, . For C7,/Cy, , it is very close to the numerical

results. That the term-by-term relation (5.6) is consistent with (5.5) is proven by

Co Cg +Cy, Co +Co, Co +Cg, d

The same relation is also true if the integration in the r-direction is omitted. That is, the ratio of the
mean values of a; and a, or atz2 and a,a, on a fixed radius equals 27z 7/d.

Summarising these statements in a mathematical form gives

o0 27T o 27T 2 2z

Ijazdwrdr jja?dq)rdr Ia3d¢ Iazdw
Cr _ %% __00 __ 0 __0 _2m (5.8)
CO_“WZn T w27 T on T o - d’ :
- Ifa¢d¢r2dr Ijazawd(orzdr J.aza¢d¢)r Ia¢d¢r
00 00 0 0

which are true for all R, d, yand b. These relations were all found out by numerical calculations.
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5.3 The integrals of a, and a,

5.3.1 Calculating the lift on an airfoil

The integrals of a, and a, are quite similar to those of a well-known, analytically solvable problem.
Consider the wake of an aeroplane wing, where the two tip vortices are parallel and the induced
velocity is directed downwards inside the wake (Figure 5.1).

Figure 5.1
Airfoil wake

To calculate the lift force, the momentum flux is integrated in a similar way as in our problem. If R is
the distance between the vortices,

+ —~-Y

X y

2 2 dy. (5.9)
£+y +x2 E—y +x2

2 2

Integration in the vertical (x-) direction results in a step function (see for example Schlichting and
Truckenbrodt (1960)), which equals pVT inside the wake and zero outside. This step function is
easily integrated in the horizontal (y-) direction, giving

szV%_]?j

L=pVIR. (5.10)

5.3.2 Numerical solution of the integrals of a; and a,
Having the result of the airfoil case in mind, we have an idea how to transfer the knowledge to our
problem. The x-direction in the airfoil case corresponds to the ¢-direction in the airscrew case.

2 2
Numerical integration of Iazd(a and J.aq,d(p , with a fine division in the ¢@-direction, gives, as
0 0
expected, functions that are very close to zero outside the wake (Figure 5.2 and Figure 5.3). Hence,
the conclusion is drawn that they, in fact, are exactly zero there and that the deviation arises from
numerical errors.

Numerical calculations also show that the integrals of a.d¢ and a,d@ are directly proportional to the
number of blades.

Thus, from several numerical calculations it can be deduced that

2 y
Jazd¢= “‘27217;, O<r<R (511)
0 0, R<r

and
2n 'Y
[agdp={707> O<r<k. (5.12)
0 O, R<r
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Relation (5.11) and (5.12) have also been proven analytically, which will be shown in Section 5.3.3.
The analytical solutions were found rather late in the work, which is why the numerical solutions are

also included in the report.

04 r

0.6 [

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 5.2
The result of a numerical integration of a,d¢ (solid line), compared to
the function (5.11) (dotted). (b =1, R=1.1,d=35, y= 0.5, Reore = 0.01.)

25 ! 1 1 1 | | | ! |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 5.3
The result of a numerical integration of a,de (solid line), compared to
the function (5.12) (dotted). (b =1, R=1.1,d =235, y= 0.5, Reore=0.01.)

The integration in the r-direction is easily done, giving

o0 27T

2 Y
cr, =—;.[ J'azdgordr =2 LR?
00

and

oo 27T

2 /4
Cg = —;}{ ‘([aq,dqorzdr =T R
Inserting the results in (3.20) and (3.21) gives
Cp = Zb%Rz +Cpy
and

Y 52
CQ—b;R +Co, -

(5.13)

(5.14)

(5.15)

(5.16)
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5.3.3 Analytical solution of the integral of a,
Comparing with (3.12), which shows the definition a,, we see that the integral of a, is given by

270

ja do=-L 2” ~R+rRooslo, ~0-0) #dp.  (5.17)

=l 00 d 2
R*+r*-2rRcos(a, —9—(p)+(—2~—9)
T

o w

Hence, the integral that needs to be solved is

27e0

—R? +rRcos(a, —9~(p)

M 2
-t -t 23]

cos(a, —0-@) can here be substituted by cos(e), since for every 0 the integrand is 2nt-periodical in @.
Then

dode . (5.18)

| w

L 2n _ 2
(s.18)=[ a0 R? + rRcos() o= (5.19)
0 FEECAT
R*+r%-2rR cos((p)+(— (-)J
21
27 =
.—_J‘d ~R% +rRcos( I @ 3 (5.20)
0 0 [ 5 5 d. Y
R +r —2chos((p)+(—9)
21
Let
6=—2;1EJR2+r2—2chos((p)-v. (5.21)
Then
o= %"\/R2 2 —2rReos(@)- dv (5.22)
and
d 2
(50] = (R2 +r2 -2chos(¢))-v2. (5.23)
Inserting this substitution in (5.20) gives
2n oo
21 1 av
(5.20)= [ dol- R? +rReos(9)) 2= = (5.24)
-(.). d (R2+r2—2chos((p))0 1+V23
i ( |2m 1
= | dol- R* +rR — 1= 5.25
.(’). (p r. COS((p) d (R2 +r2 _er Cos((p)) ( )
2 I *+rReos(e) o _ (5.26)
d ¢ R*+r*-2rR cos(o)
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2n

=2 g2 2t op-(R242) || = (5.27)

2 2 2

2
___21’5 V—TE—TE Rz—rz _ _(ZTC) lf r<R (5 29)
a| R d '
0 if R<r

Since the integral in (5.18) does not depend on the starting angle o, the summation in (5.18) may be
substituted by multiplication with . Inserting the result (5.29) in (5.18) gives

2 4
—2@;, 0<r<R’ (530)

'(’)-aZd(o: 0, R<r

which is exactly (5.11).

5.3.4 Analytical solution of the integral of a,
For solving the integral of a,, a formula from the theory of electromagnetism is useful; namely

Ampére’s circuital law. (See for example Cheng (1989).) Translated to our variables it becomes
$a-dl =, (5.31)

where the integral is taken along any closed path and ¥ is the total non-dimensional circulation
enclosed by the curve. The integration curve is chosen as a circle with radius #, that is

dl =rdoe,. (5.32)

For r > R, the total enclosed circulation is ¥, + %00 = by - by =0 and hence

P

§a-di=r[apdp=0. r>R. (5.33)

(=}

This is illustrated in Figure 5.4.

Figure 5.4
Integration curve in Ampére’s circuital law.

When r < R, the integration curve encloses only the root vorticity, whose strength equals -by.
Applying (5.31) gives
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§E-di=r!a@d¢=—by, r<R. (5.34)
0
Combining (5.33) and (5.34) gives
2 V4
ja¢d¢= '—b—r-, O<F<R, (535)
0 0 R<r

which is exactly (5.12).

5.4 The integrals of a,” and aa,
For the integrals of az2 and a.a,, no explicit solutions were found. As was shown in Section 5.1, both
Cr, and C, are proportional to v*. For the dependence on d and R, no explicit relations were found.

The dependence on the number of blades is not as simple as one could hope. At » = 0, where the
integrand does not depend on @, we have, from equation (5.11), a,(r =0)=~-by/d and hence

2 b 2
[a2(0.0)d0 = 2/{77) . (5.36)
0

This means that the integrals of a; and a.apare proportional to b for small values of r, which also is
verified numerically. However, for » close to the wake radius R and for r outside the wake, the
integrals are found to be proportional to b.

5.5 Limit values when the pitch tends to infinity

Figure 5.5
Parallel tip and root vortex, corresponding to a spiral with infinite pitch.

When d — «, which corresponds for example to a non-rotating turbine, a, — 0since there is no
induced velocity parallel to a vortex line. Hence all integrals containing a factor of a,tend to zero

and so C; —0 and C, —bL R* when d — .
= VA

5.6 Introduction of the function f

In the chapters above, the aerodynamic coefficients dependence on circulation is solved and some
useful relations for radius and pitch are found. However, the dependence on pitch is not completely
solved, nor the dependence on wake radius or number of blades. If a function f(b, d, R) is introduced,
defined as

dz o 27T 2d o0 277
f(b.4d, R)z—-z-f Iafd(ordr =-7J- Ia2a¢d¢r2dr , (5.37)
Yo% Y %%

28



FOI-R--0277--SE

Crand Cp are given by
c; =2%[sz —% £(6.d, R)J (5.38)
and
Ylpr2_ Y
Cp = ﬂ(bR y s, d,R)) (5.39)

respectively. (Compare to (3.20), (3.21), (5.13) and (5.14).) The only unknown variable in these
equations is f{(b, d, R), which is to be calculated numerically. It is notable that with this definition of
f.f does not depend on Y.
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6 Inversion

So far the problem of calculating the thrust and torque coefficients from given spiral parameters has
been treated, but the wanted result is a method to calculate the radius and pitch of the concentrated
vortex spiral, from given values of Crand Cp and a given strength of the circulation.

Equation (5.5) gives an explicit and useful solution for the pitch, namely

Co
d —ZEET. 6.1)

Calculating the wake radius is more complicated, since no explicit solution has been found.
However, the aerodynamic coefficients’ dependence on the circulation is solved and some useful
relations are found. As is shown in the previous chapters, the formulas

Cr = 2%(13122 ——g- £, d,R)J (5.38)
and

¢ :%(sz Sy R)) (5.39)

hold true, where the only unknown is f(b, d, R).

The function f(b, d, R) was calculated numerically for several values on radius and pitch. Since the
dependence on the number of blades is not explicitly determined, new data base calculations are also
needed for each value of the number of blades. Calculations were made for wind turbines and
propellers with one to three blades. (For details, see Section 8.) This was accompliched by storing
f(b, d R) in a database, but f(b, d R) is also shown in figures in Section 0.

The algorithm for calculating d and R from given values of Cr, Cp, yand b is as follows:

e Calculate d from (6.1).

e Use the calculated value of d to interpolate in the table of f(b, d, R), in order to make a table
of fas a function of only R.

e Use (5.38) and the table of f(R) to make a table of Cr as a function of R only.

e Interpolate in this table to get R.
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7 Root vortex model relations

In the main part of this work, the root vortex is modelled as a straight line along the wake centre axis.
Another possibility is to model the root vortex as a small vortex spiral. The latter model does
probably correspond better to the real case, but results in calculations that are more complex.

In this section, the size of the radius and pitch of the root vortex is discussed and some numerical
examples are given.

7.1 Pitch and radius
The radius of the root vortex spiral depends on the shape of the blade. A typical value might be about
10% of the rotor radius.

The size of the pitch depends both on the velocities induced by the tip vortex and on self-induction.
If ¢ denotes the time for one revolution, the non-normalized tip vortex pitch is given by

d-R; =V(l+%z—)t (7.1)

i.e. the mean value of the free stream velocity and the velocity inside the wake. If, for a first
approximation, the self-induction is neglected, the non-normalized root vortex pitch is given by

dry Ry =V(i+a,)t. (7.2)
This gives
Ay = d (7.3)
1+2%

Inserting the approximation a, = —b% (compare with (5.11)) gives

1-b
1-b

d. =d

root

(7.4)

X
d
-
2d
If the self-induction is taken into consideration, the non-normalized root vortex pitch 1is
approximately given by

a
dvout Ry = V(1+az + Z;’m Jr , (7.5)
where a; .o has opposite sign compared to a,. This gives
1+a +azroot l_bl_,_b_—Y
gy = d- = d (7.6)
1+= 1-b-5;

If d4;,,, calculated by (7.4), is inserted in the right hand side of (7.6), a rough approximation of dyo.
is obtained. Below follows a table of d,,., calculated for different tip vortex parameters. As can be
seen, the difference between the tip and root vortex pitch is small, especially for large values of

pitch.
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y d d:oot draor
Propeller
-0.5 0.7 0.88 0.74
-0.5 1 1.20 1.03
-0.5 5 5.24 5.01
-0.5 10 10.2 10.0
Turbine

0.5 0.7 0.31 1.19
0.5 1 0.67 1.17
0.5 5 4.74 5.01
0.5 10 9.74 10.0

Table 7.1

Approximations of dy.o, calculated for different values of tip vortex

pitch. d

7.2 Explicit relations

denotes the first approximation of dye, obtained by (7.4).

Many of the relations found for the straight-line root vortex model can be applied to the spiral model,
with only some small adjustments.

Modelling the root vortex as a spiral gives the relations

and

—27Zb ’1—“ 1 > 0<r<Rroot
d dYOO[
2r
Iazdw = —27zb~2—, R, <F <R 7.7
0
0, R<r
0, 0<r<R,,n
2
Ia¢d¢ =1 X, R, <r<r (7.8)
0 r
0, R<r

which corresponds to (5.11) and (5.12) respectively and is shown in Figure 7.1 and 7.2 below. These
formulas hold true for all values of the root vortex pitch. If d.or = d, (7.7) equals zero in the first
interval. This corresponds to a wind velocity inside the root that equals the free stream wind velocity.

0.6 0.8 1

Figure 7.1

The result of a numerical integration of a,d¢ (solid line), compared to (7.7)
(dotted). (b =1, Root = 0.1, drooy=7, R=11,d=35, y= 0.5, Reore = 0.01.)
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4 - iy
-0
=* 1 1 1 ) 1 L L 1 Il

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 7.2
The result of a numerical integration of a,de (solid line), compared to (7.8)
(dotted). (b =1, Ryoot = 0.1, drost=7, R=1.1,d =35, y= 0.5, Reore = 0.01.)

Integrating in the r-direction gives

=2z 2 2

2 R* R
Cp =—— do rdr = 2by| —— ——12L 7.9
n =] Jasdord y{d d] (7.9)

and
2w2n ¥

— 2 _ 2 2

Co, _—;Maq,dgor dr—b;(R ~R2,). (7.10)

As in the case of the straight-line root vortex model, no explicit formula for calculating Cy,

and C,,, is obtained, but from the Biot-Savart law it follows directly that both are proportional to Y.

If the functions f7 and fp are introduced (compare (5.37) through (5.39)), Crand Cg can be expressed
as

RZ R;loat 2
Cp =2by| == |y £ (b, d, dps s Ry R (7.11)
d droot
and
_ YV (p2_p2 2
CQ =b (R —Rroot)+y 'fQ(b’ d, droouR’ Rroot) (712)

P
respectively, where the functions fr and fp can be calculated numerically.

If the root vortex pitch is of about the same size as the tip vortex pitch, i.e. if dyor = d, (5.5) is
approximately true even if the root vortex is modelled as a spiral. That is,

Cr 2

= 7.13
o (7.13)
No database is made for this type of root vortex model, but some examples may show the differences
between the methods.

7.3 Examples
Below follows a table of Crand Cy, calculated for the same values on the tip vortex parameters, but
for different root vortex models. Both radius and pitch of the root vortex are varied.
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As can be seen, the aecrodynamic coefficients decrease for increasing root vortex spiral radius, but
they do not change much when the root vortex pitch is varied. For small root vortex radii, the
difference between the models is only a few percent.

Rroot droot Cr Co

0 - 0.1581 0.1258
0.1 3 0.1527 0.1232
0.1 5 0.1554 0.1236
0.1 7 0.1564 0.1239
0.2 3 0.1384 0.1165
0.2 5 0.1478 0.1176
0.2 7 0.1516 0.1183

Table 7.2

Crand Cg calculated for different root vortex models.
b=1LR=11d=35 y=05.
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8 Computer programming technicalities

8.1 Integration methods
The vortex spiral integral, giving the induced velocities in the Trefftz’ plane, is divided into two
parts. The first part, which is closest to the Trefftz’ plane, is solved by numerical integration. The
second part, which is far away from the Trefftz’ plane, to be called the tail, is approximated by an
analytically integrable function. That is

s " 2 %a >

[ ri6)io = r(o)ao+ [ r(o)a0 =~ Y, 76,80+ [ fupmued - (8.1)

i=l m

0 0 m

Integration of the flows in the Trefftz plane is performed by the Trapezoidal rule.

8.1.1 Numerical integration of the vortex spiral integral
The numerical integration of the vortex spiral integral is performed by approximating the integration
curve by piecewise linear segments. To get the total induced velocity, at any chosen evaluation point
in 3D space, the contributions of all line segments are added.

Figure 8.1
Vortex line A-B.

The velocity induced by a linear vortex line is perpendicular to the plane spanned by the vortex line
and the evaluation point (that is, the plane 4-B-C in Figure 8.1). According to Biot-Savart’s law,

(3.3), it is calculated as
2

Fo xdS — _
g=LIX® ¥ 1 e ds=t " _in’o,dS (8.2)
4 53 4m 42 4z (r2+r2 )2
if dS is small compared to r or as
-7 <L r
a—m(cos(01+cos(02)~4ﬂ Y (cos @, +cos@,) (8.3)

core

otherwise. The right hand side formulas, applying the core approximation described in Section 3.3,
are those used in the calculations. dS denotes the length of the vortex line element and r is the
shortest distance between the evaluation point C and the (extended) vortex line. The vector dS
defines the positive sense of v, using the right hand screw rule. The angles ¢y, ¢; and @; are defined
in Figure 8.1.

8.1.2 Tail approximation for the vortex spiral integral

Since numerical integration to infinity is impossible, an approximation of the integrand is made for
large 6. The approximation is chosen such that it is analytically integrable and it is taken as the mean
value of two functions, f,,, and f£,,, , bounding the integrand /- This gives
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T foindd < T fdo < T frad0
m m m

and

[ a0 =%[]° Fin d9+Tfmaxd0]-

84

(8.5)

The boundary functions used are, with some corrections, those presented by Chiu and Peters (1987).

Integrand approximation in the x-direction
fo= zb:‘ Rsin(a,- —0)—r sin(¢)+ Rcos(ai —9)0

i=1 d 2
[Rz +r% =2rR cos(a; —9~¢)+(—0J }
27

fon = 3 Roinla)-rsinfp)+ Reosan

i=1 FERY
R? +r% =2rRcos(a; —p)+| —6
[ oo o} )J

| w

| w

y R sin(ai + %]— r sm( +R cos(a, + %}9
fx max = 2

3
i=1 J >
R*+r —2chos(0{ +Z- qo ——BJ

277

Integrand approximation in the y-direction

5, = 2”: - Rcos(e; —0)+rcos((0)+Rsin(a,- -6)p

i=1 FERY
{RZ +r? —2chos(ai —9—(0)+(——0) ]
2r

0w

s —Rcos[a,- +%}+rcos((p)+Rsm a; +£]6‘

fymin=2

i=1 d 2
R*+r%—2rRcod o + =g |+| =0
2b 2r

b —Rcos(a, +z—7[:)+rcos((o)+Rsm a; +3—7[}9

fymax :2

= 3 d Y\
R* +r*-2rRcos 0!,-+—”—¢) —0
2b 2
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Integrand approximation in the z-direction

2
7 =2 - R*+rRcos(e; -6 -9) (8.12)

2
R*+r? -2rRcos(; —9—¢))+(—d—6] J
2

0w

T
—
/N

b 2
—R* +rRcos\;
fomin = 2, @) : (8.13)
i=1 4 P2
[R2+r2—2chos(a,-)+(——9J ]
27
b ~R*+rR cos(ati +Zz—j
b

fzmax =2

i=1 FERY:
R% +r%*-2rRcos 0(,-+—ﬂ—:— +| —0
b 2

8.1.3 Integration in the Trefftz plane
Integration in the Trefftz plane is, in both the radial and the angular direction, performed by the
Trapezoidal rule. The Trapezoidal rule for integrating in the ¢-direction is given by

(8.14)

W

[ 10Xt =20(7(0)+ 1(60)+ 1280) ..+ 1((-180), .15)

where A is the step size and »n=27z/A¢ is the number of intervals.
The Trapezoidal rule for integration in the r-direction becomes

b
J.f(r)dr = Ar(@+ fla+Ar)+ fla+2ar)+..+ fla+ (n —1)Ar)+—fg)—)) , (8.16)
where Ar is the step size and the number of intervals is n=(b—a)/Ar. The step size Ar is not constant
for all r. It is chosen smaller when 7 is close to a vortex line, since the curvature of the integrand is
larger there.

8.1.4 Integration limits and step sizes
The step sizes and integration limits are a compromise between good accuracy and an acceptable
calculation time. The step size in the vortex line integration is chosen as
rg=22 (8.17)
360

This results, according to Bhagwat and Leishman (2001), in a relative error of about 107,

The break point m, where the numerical integration in the @ -direction is substituted by the tail
approximation is chosen as m = 10m. According to Chiu and Peters (1987), this results in a relative
error of size 10°. Observe that the integration is not interrupted at & = m, there is only a change in
integration method.

The integration of the flows in Trefftz’ plane is made with the step sizes
Ap =" (8.18)

and
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ijw,IR—4<2®bwodRmm—4<2m@w
Ar={ O0.R, r>3R (8.19)
0.01R, otherwise

In the radial direction, it is difficult to know when to interrupt the calculations. Since small
deviations at large radii are multiplied by large areas, errors increase rapidly and the result depends
to a great deal on when the calculation is interrupted. The break point where the integration is
interrupted is chosen as » = 10R.

8.2 Calculation intervals
Crand Cp are given by (5.38) to (5.39), which are repeated below. The only unknown is the function
f(b, d R), which is calculated numerically and stored in a database.

AV 2 Y
Cr = 2—d (bR 5 £, d,R)] (5.38)
and
_Y 2 ¥
Co == (bR ’ s, d,R)} (5.39)

The wake radius (R) is varied between 0.7 and 1.5, with the step size 0.1. Values less than 1.0
correspond to a propeller and values greater than 1.0 to a turbine. Values outside this interval
correspond to an extreme increase or decrease in the wind speed and are quite unusual.

The relative pitch (d) can take all values between moderately negative and infinity, where negative
values would correspond to the situation for a vertically descending helicopter. Calculations are
limited to values between 0.1 and 25, with increasing step sizes as the pitch increases. The values for
which calculations are made are

d=[0.1,02,04,0.6,0.8,1.0,15,2,25,3,3.5,4,5,6,7,8,9,10,12,15,18, 21, 25].
Calculations are only made for airscrews with one to three blades.

8.3 Interpolation

The input variables are Cr, Cp and y. The wake radius and pitch is calculated using the inversion
algorithm described in Section 6.

A linear interpolation method is chosen for values inside the table. If an input value is outside the
table, extrapolation is made by fitting a second-degree polynomial to the three endpoints in the table.
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9 Program interface

Two different programs were made. One for calculating the function f(b, d R) and making the
database, called MakeDatabase, and one for interpolating in the database and calculating radius and
pitch, called FindRD.

The program MakeDatabase is only needed if the database is to be extended, for example if one
wants to study airscrews with more than three blades. In the main program, descriptions of how to
change the parameter values are found.

The program FindRD is used for calculations of radius and pitch of the tip vortex spiral. When the
program is run it asks, in the command window, for the values of b, Cr, Cp and ¥ and returns the
calculated values of R and d. A corresponding subroutine is also constructed, which can be included
in a larger program.
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10 The Function f(b,d,R)

In this section the calculated values of the function fis shown in figures. The increasing value on f
for small pitch might look strange at a first glance, but corresponds to the situation when the induced
velocity inside the wake is so large that the wind direction inside the wake is opposite to that of the
free stream wind. This occures when the non-dimensional induced velocity is larger than one.
Pl SRR S G S .
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Figure 10.1
Wind turbine or propeller with one blade.
fas a function of pitch (d), plotted for different radii (R).

43



FOI-R--0277--SE

o
[e]
o
-
Jry
18]
N
I\
(8]
wl

Figure 10.2
Wind turbine or propeller with two blades.
fas a function of pitch (d), plotted for different radii (R).
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Figure 10.3
Wind turbine or propeller with three blades.
fas a function of pitch (d), plotted for different radii (R).
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