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Abstract

This report describes the compressible Navier-Stokes solver EDGE for unstruc-
tured grids. The solver is based on an edge-based formulation for arbitrary ele-
ments and uses a node-centered finite-volume technique to solve the governing
equations. Two spatial discretizations of the convection terms are described,
compact discretizations of the thin-layer and fully viscous terms have been pro-
posed and evaluated. The governing equations are integrated explicitly towards
steady state with Runge-Kutta time integration. The convergence is accelerated
with agglomeration multigrid and implicit residual smoothing.

A validation is carried out in two and three dimensions for external flows. The
validations focus on comparisons between EDGE and the cell centered solver
EURANUS on structured grids. Also the effect of different types of elements are
investigated.

The results with the unstructured and structured approach compare well for all
cases. The rate of convergence is comparable although higher CFL numbers can
be used with the structured solver. The robustness of the unstructured solver is at
least as good as with the structured solver.

Two main differences are found. The first is that the decay of the maximum total
pressure loss for subsonic Euler calculations is approximately second order accu-
rate as the grid is refined for the node-centered scheme but only first order using
the structured cell centered approach. The second difference concerns the flow
over an airfoil at a low Reynolds number and no artificial dissipation. Here the
rate of convergence is much slower with the unstructured approach. Small oscil-
lations in the pressure can also be observed in the nose region.
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1 Introduction

The need and demand for accurate and rapid tools for solving CFD problems in
industrial applications is high. The approach for more and more complex geome-
try in CFD problems has forced the grid-generation techniques towards nearly
automized algorithms producing unstructured grids, hence, methods for flow
computations on such grids are required.

To meet these requirements, FFA has in a first stage developed an Euler solver
for unstructured grids called EDGE [1]. This report concentrates on the extension
to viscous and turbulent flow. Although the Euler part has been described and
validated earlier [1], the convective part of the solver is described in this report
for completeness. Also, the modifications due to stretched grids has been intro-
duced. 

EDGE uses a node-centered finite-volume technique to solve the compressible
equations. It relies on explicit time integration with convergence acceleration by
agglomeration multigrid and implicit residual smoothing. The considered spatial
discretizations are all formally second order accurate in space. Two discretiza-
tions on the convections are described, one central scheme with artificial dissipa-
tion and one upwind scheme. Two compact discretizations of the viscous terms
are described and evaluated. One discretization uses a compact discretization of
the normal derivatives leading to a thin-layer approximation. The additional tan-
gential derivatives may be computed from node-based gradients and added for a
fully viscous contribution. The second discretization makes use of corrected gra-
dients computed with a Green-Gauss approach. The difference between the
methods is shown in the computations.

The EDGE code is denoted “grid-transparent” since it is equally applicable to
any type of element like hexahedral, triangular prisms and tetrahedral elements in
3D and quadrilateral and triangles in 2D. An edge-based formulation of the
solver and a preprocessor[2] that translates element-based information to edge-
based information allows the system to handle structured, unstructured and
hybrid grids seamlessly. Only node and edge data are used in the solver. 

The validation is carried out in two dimensions for external flows over airfoils
and for a wing in three dimensions. An Euler case, a laminar low Reynolds num-
ber case and a two turbulent cases have been used. More Euler validations have
earlier been carried out [1]. The validations focus on comparisons between
EDGE and the cell centered solver EURANUS [3] on structured grids, often on
the same grid in an unstructured format but also on a completely unstructured
grid. In some cases the structured grid in two dimensions has been triangulated to
see the effect of different cell types.
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2 The Compressible Navier-Stokes Equations

2.1 Laminar Navier-Stokes Equations
The Navier-Stokes equations which govern viscous compressible flow in three
dimensions can be written in integral form as

(2-1)

with 

(2-2)

where ,  is an arbitrary finite region with boundary ,  the con-

servative variables,  the convective flux. 

The viscous flux is

(2-3)

where 

. (2-4)

The stress tensor  can be written, using tensor notation, as 

(2-5)

where  is the dynamic viscosity and the heat flux  is written as

. (2-6)
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The thermal conductivity is found from the viscosity  and the constant Prandtl
number 

(2-7)

where  is the specific heat coefficient under constant pressure.

For a calorically perfect gas the following relation holds for the total energy :

(2-8)

Equations (2-1) - (2-8) form a closed set of 5 equations with 5 unknowns. The
variables actually stored in the computer code are the primitive variables

.

2.2 Reynolds Averaged Equations
Using a k-ω turbulence model the Reynolds averaged Navier-Stokes equations
can be written as

(2-9)
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 (2-10)
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. (2-11)

The model constants  and the source terms depend on the variant of the k-
ω turbulence model. In this case the standard model by Wilcox[4] has been used
where  and in which the source term is given as 

(2-12)

where , ,  and where the production  is given by

. (2-13)

  is the static pressure with added turbulence 

. (2-14)

The stress tensor  can be written as 

(2-15)

and the heat flux  is written as

. (2-16)
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(2-18)

respectively where  is the constant turbulent Prandtl number. For a calor-
ically ideal gas the following relation holds for the total energy :

(2-19)

In this report in particular results with the k-ω turbulence model are presented but
a few results with an explicit algebraic Reynolds stress model (EARSM) based
on the k-ω model are presented as well. For further details on the EARSM mode
see Wallin et al. [5].
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3 Geometrical Considerations

The finite-volume technique requires control volumes surrounding the unknowns
in the nodes. The control volumes are non-overlapping and are formed by the
dual grid obtained from the control surfaces at the edges. The dual grid is sup-
plied by the preprocessor [2] as an input to the flow solver. The grid with its dual
grid is depicted in two dimension in Figure 3-1.

Fig. 3-1  : The input grid 
(triangular grid) and its 
dual grid forming the 
control volumes.

The coordinates of the input grid are provided for each node and the connectivity
is supplied in an edge based manner where an edge connects two nodes. In addi-
tion to the node numbers a control surface  is supplied for each edge. The con-
trol surfaces of all edges emerging from a node enclose the control volume of a
node. The surface is given as a vector with direction  with its size  as magni-
tude. In 2D a length is supplied and the vector has only two components. If the
edge is denoted  then the surface associated with the edge forms a
sharp angle to the edge vector , also denoted .

If each control surface is considered to lie in a plane, the volume of the cone
formed by the control surface and one of the nodes is

(3-1)

where  is the space dimension. Quantities with two sub indices denote edge
quantities where the indices denote the two nodes connecting the edge. 

All edge volumes of a node sum up to the control volume, i.e.

. (3-2)
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 is the number of neighbor nodes to node  or, equivalently, the number of
edges connected to node . 

To close the control volumes at boundaries, control surfaces are supplied at the
boundary. In Figure 3-2 the control surfaces to node  are given at all edges
connected to , whereas the edges to the boundary node  do not close the con-
trol volume. To close it, a control surface is given separately for the boundary
node . 

Fig. 3-2  : Control volumes 
at an inner node and a 
boundary node.

At a corner point where two or more boundaries meet the boundary control sur-
face is split into control surfaces for each boundary condition separately. In that
case, the boundary node may occur in several boundary conditions. 

In addition to the control surface supplied for each boundary node, an inner point
is also supplied at all boundaries. The inner nodes is used in some of the bound-
ary conditions described in Section 6 on page 29 and the inner node is chosen as
the end node of the contiguous edge most orthogonal to the boundary surface. In
the example above, node  is the inner node to node .

n0 v0

v0

v3

v3 v1

v1

v3

v1 v2

v4

v5

v3 v1
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4 Spatial Discretization

The finite volume discretization is obtained by applying the integral formulation
of the governing equations in Equation (2-9) to the control volume surrounding
the unknown  at node :

(4-1)

where  is the number of neighbors to node . The surfaces  enclose the
control volume for node  and form the dual grid illustrated in Figure 3-1 in 2D

for a given triangulation. The flux vectors  and  are computed on the
edge consisting of nodes  and  where  is given, the source term  is
computed directly at the node.

4.1 Convective Terms
The schemes for the convective flux  considered here are based on a central
discretization with dissipation terms of either artificial dissipation type or upwind
flux difference splitting type.

4.1.1 Central scheme with artificial dissipation
The convective flux across the cell face between nodes  and  is computed as 

(4-2)

where  denotes the artificial dissipation. A blend of second and fourth differ-
ences are chosen as artificial dissipation, this corresponds to a blend of first and
third differences for the fluxes. The following form has been shown to be suit-
able[6],[7]:

(4-3)

 denotes the undivided Laplacian operator 
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 denotes the local spectral radius 

(4-5)

where  and  denote the cell face speed and
cell face sound of speed respectively.  denotes the normal direction of the
control surface to the edge between nodes ,  and  its size.

A careful reader may observe that the formulation of the third differences in
Equation (4-3) may lead to non-dissipative operator if there is a large variation in

. Alternative definitions may have to be considered in the future.

 is a factor introduced to account for the stretching in the grid. It is defined as

(4-6)

where  is 

. (4-7)

the ratio between the integrated spectral radius where 

(4-8)

and where  is given in Equation (4-5).  is a factor that was chosen to
have a close resemblance with the Martinelli eigenvalue scaling for structured
grids [8]. This gives a dissipation proportional to the local spectral radius  in
the direction of the stretching. In the other directions a value slightly larger than
the local spectral radius is obtained.

 is chosen to be active in the neighborhood of shocks and small in smooth
regions of the flow:

 (4-9)
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. (4-10)

The fourth difference dissipation is switched off in the vicinity of shocks:

 (4-11)

where  is another user defined constant and  is a scaling factor chosen in
accordance with :

(4-12)

On coarser grids a simplified form of the artificial dissipation operator based on
second differences only is used to save computational time but also to increase
the amount of dissipation. The coarse grid operator looks like

(4-13)

where 

(4-14)

and where  is the dimension and where  is another user defined con-
stant.

At a boundary the artificial dissipation should not contribute, i.e. the flux on the
boundary is set to zero. In addition, a boundary condition on the second deriva-
tives in the undivided Laplacian (4-4) is required. Following Mavriplis[7] the
conservative variables are extrapolated linearly which corresponds to a normal
second derivative,

 (4-15)

Requiring no normal derivative of the variables in the computation of the Lapla-
cian is equivalent to only account for the contributions along the boundary. With
the notation in Figure 3-2 the undivided Laplacian becomes

. (4-16)

The pressure sensor in Equation (4-9) is not modified at a boundary, nor are the
scaling factors  and . In Figure 3-2 there are four flux contributions to the
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residual in node , , ,  and , the number of legs to node  is
.

4.1.2 Upwind schemes
In addition to the central scheme, upwind schemes are available of second order
accuracy. The upwind scheme is of Roe flux difference splitting type[9] as
opposed to the more commonly used MUSCL type upwind schemes [10][11].
The main reason for this is to have a scheme as similar as possible to what is
available in EURANUS, the structured counterpart [3]. In addition, the Roe
scheme requires less memory than MUSCL type of scheme.

As for the central scheme, the convective term is computed as a central part with
additional dissipation. The central part is computed as an average of the fluxes
through:

, (4-17)

compare Equation (4-2). 

The upwind dissipation  is here computed as 

(4-18)

where  denote the conservative and the primitive variables respectively, the
primitive variables being the ones used in the computer code.

 denotes the characteristic variables. The ten-
sor  is the right eigenvector matrix to the flux Jacobian,

(4-19)

where the diagonal tensor  contains the eigenvalues. A similar expression can
be obtained for the tensor  belonging to the primitive variables. All matrices are
given in Appendix A.

The diagonal matrix  is obtained as 

(4-20)

where  is a diagonal matrix with limiters for second order accuracy. Note that
 for a first order scheme. 
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For a Roe flux difference splitting scheme the components of  must be
computed from the Roe averaged variables

. (4-21)

However, arithmetic averages usually provide good solutions and are computa-
tionally less expensive and may be used as an option.

The diagonal matrix  in Equation (4-20) contains the eigenvalues adjusted
with an entropy fix to prevent the eigenvalues to become zero and produce
unphysical solutions. The following entropy fix is used for each of the eigenval-
ues:

(4-22)

where  is a small fraction of the spectral radius, usually around 5%.

To achieve second order accuracy the limiter  in Equation (4-20) has to be
computed from divided differences of the solution. Here we chose differences of
the characteristics to avoid oscillations in the pressure [12], although it is compu-
tationally more expensive.

Gradients of all primitive variables are needed to compute the characteristics in
the nodes. The gradient in a node is computed by evaluating the surface integral
of the gradient theorem

(4-23)

where  denotes a component of the primitive variables. The node valued char-

acteristics  may be obtained as 

(4-24)

in addition to the face value  in Equation (4-18). 
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However, on a structured Cartesian grid these characteristics correspond to a
broad stencil,  using the expression in (4-18). To have
a scheme that provides identical results compared to a structured scheme on a
regular grid the following expression is used to compute the node valued charac-
teristics:

(4-25)

which, on a regular Cartesian structured grid corresponds to 

(4-26)

i.e.  correspond to the left and right compact differences the for the cell

face  flux.

The limiter considered is the so called monmod limiter. The minmod function
chooses the argument with the smallest amplitude provided all arguments have
the same sign. If the signs are different the limiter is zero and the scheme reduces
locally to a first order accurate one. A more compressive limiter may be consid-
ered in the future, the minmod limiter provides surprisingly good results though. 

Two different ways of limiting is available. In the first way the limiter is com-
puted as

(4-27)

where  denote a component of  respectively. This way of limiting is
similar to the new family of symmetric TVD schemes used in EURANUS [3]. 

The second way of limiting is more consistent with the flux difference splitting
technique. The limiter is then computed depending on the sign of the eigenvalues
to the flux Jacobian.

. (4-28)

This way of limiting is the choice for all upwind computations in this paper. 

At boundaries no particular modification to the scheme is made. The numerical
flux due to the upwind dissipation is zero.
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The upwind dissipation requires about twice the amount of computational effort
compared to the artificial dissipation for the central scheme. It is relatively cheap
on memory, only the gradients of the primitive variables need to be stored.

4.2 Viscous terms
The viscous flux  in Equation (4-1) is computed in accordance with the con-
vective flux. As seen from Equation (2-4) the viscous flux contains gradients that
need to be computed in a way that leads to a compact discretization. 

Below three different discretizations of the viscous terms are described. The first
alternative, using gradients computed in the nodes, does not lead to a compact
scheme and is therefore not evaluated in the computations. The two remaining
alternatives are tested and evaluated numerically.

4.2.1 Using node gradients
There is a variety of different methods to choose from when making a discrete
approximation of the viscous terms. Perhaps the most obvious method to approx-
imate the gradients in the stress tensor (2-5), (2-15) is to use the Green-Gauss for-
mulation to compute the gradients in the nodes:

(4-29)

where  denotes some variables for which the gradient is required.

This is a natural way to compute the gradients since, with the edge based data
structure, only node and edge data are available in the flow solver. The gradients
are required at the control surface on the edge and are then obtained from the
average of the two node values of the edge.

It is easy to realize that the average of nodal values of a gradient leads to a non-
compact second difference. In one dimension on a regular structured grid this
would imply a second derivative involving every second point:

(4-30)

This discretization does not damp the highest frequencies and can hence not pre-
vent odd-even decoupling. Most likely though, the artificial dissipation added to
the convective terms will stabilize the scheme but will add more diffusion as a
consequence. More compact discretizations are considered below.
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4.2.2 Correction to node gradients
Weiss et al. [13] propose a correction to obtain a more compact stencil involving
all neighboring points. With reference to Figure 3-1 on page 13 the averaged gra-
dient on the edge between node  and node  can be corrected as:

(4-31)

where  is the averaged, non-corrected gradient

(4-32)

and where ,  are computed with the Green-Gauss formulation as in
Equation (4-29).  is defined as

. (4-33)

This is a simple correction to do for the gradients, it is also easy to show that it
leads to compact second differences on a regular grid. Such a discretization in
one dimension will lead to:

(4-34)

Not only does this discretization damp the highest frequencies, in addition the
truncation error is less than with the average of nodal gradients leading to the dis-
cretization in Equation (4-30).

4.2.3 Thin-layer approximation
Another approach to obtain a compact viscous stencil is to divide the viscous
operator in a part with normal derivatives and remaining tangential derivatives. If
only the normal parts of the viscous operator is included in the discretization of
the Navier-Stokes equations, the governing equations are said to be a thin-layer
approximation.

The viscous flux for the momentum equations can be divided as

(4-35)

where  contains only normal derivatives and leads to a thin-layer discreti-
zation if only this term is considered. A fully viscous approximation is obtained
if also the remaining part of the viscous terms  is added.

 are the components of the normal. 
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The thin-layer part can then be formulated as [14]

 (4-36)

The normal derivatives in Equation (4-36) can be approximated on the edges as

(4-37)

with the notation from Figure 3-1 and where the normal is directed from node 
to node . With this formulation only two points are involved in computing the
normal gradients at the edges and hence automatically leads to a compact second
derivative. On a regular grid in one dimension a compact second difference is
obtained as in Equation (4-34).

By recalling the identity of the Laplace’s equation

(4-38)

the following approximation of the Laplace’s equation at node  is obtained:

(4-39)

It leads to a positive discretization of the Laplace’s equation since the maximum

principle associated with Laplace’s equation requires the coefficients  to

be positive which is satisfied. Haaselbacher [15] points out that there is a basic
incompatibility between accuracy and positivity of the coefficients on general
grids. Second order accuracy and positivity can only be achieved simultaneously
on regular grids [16].

The remaining parts of the viscous terms  contain gradients which may
be added using the Green-Gauss formulation in Equation (4-29) and thus a fully
viscous approach can be obtained.

4.3 Source terms
The source term  in Equation (4-1) is computed directly at node . The
source term contains gradients according to Equations (2-12) and (2-13) that are
approximated with the Green-Gauss formulation in Equation (4-29).
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5 Time Integration

The governing equations may either be integrated to steady state or in a time
accurate fashion. Steady state calculations use an explicit Runge-Kutta scheme to
integrate to steady state. The Runge-Kutta coefficients are defined by the user
input, usually a first order accurate scheme is chosen with good high-frequency
damping. Steady state calculations use a local time step to speed up the conver-
gence, implicit residual smoothing is also available. Only steady state calcula-
tions are described here.

5.1 Explicit Runge-Kutta
To integrate (4-1) to steady state a fully explicit Runge-Kutta time stepping
scheme is used. An explicit m-stage Runge-Kutta scheme for the equation 

(5-1)

can be written

(5-2)

For steady state calculations a 3-stage, first order accurate scheme which pro-
vides good smoothing for both central and upwind schemes is recommended,

. (5-3)

This scheme allows good smoothing properties at  with one computa-
tion of the artificial viscosity in the first stage. Its stability region in the complex
plane can bee seen in Figure 5-1.

td
d q R q( )– 0=

q1 qn α1∆tR qn( )–=

q2 qn α2∆tR q2( )–=
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Fig. 5-1  Stability region in 
the complex plane of a 
three-stage Runge-Kutta 
scheme with one 
evaluation of the viscous 
terms.

The Runge-Kutta coefficients are defined by the user input, so is also the choice
of in which stages to compute the dissipative terms.

5.2 Local time step
The local time step is computed for each node  according to 

(5-4)

where  is the volume and  is the integrated convective spectral radius
according to Equation (4-8).  is the corresponding viscous spectral radius

(5-5)

where  is the sum of the dynamic and turbulent viscosity in a turbulent calcu-

lation on the edge between nodes  and , i.e. .  and
 are user input and chosen according the stability region of the Runge-

Kutta scheme used.

5.3 Implicit residual smoothing
To increase the maximum time step, implicit residual smoothing is employed[6].
The smoothing is employed for each residual to all equations independently. The
smoothing for node  can for the residual of each unknown be written

(5-6)
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where  is a constant,  is the undivided Laplacian defined in Equation (4-4).

Here  indicates a new smoothed residual. This may be written

(5-7)

For a structured solver a tridiagonal system of equations is obtained. For the
unstructured solver a sparse, diagonally dominant matrix is obtained. The sparse
matrix is not inverted exactly, instead a few Jacobi iterations of Equation (5-7)
are done. This results in the following iterative scheme for the residual smooth-
ing:

(5-8)

Usually 2 iterations gives sufficient smoothing.

Theoretically for structured grids where implicit residual smoothing is combined
with the direct solution of tridiagonal systems, the time step can be increased
according to the value of , 

(5-9)

where  are the CFL numbers of the unsmoothed and smoothed
scheme. Typical values using a structured grid is  corresponding a dou-
bling of the CFL number and to . 

Here, where a few Jacobi iterations are carried out, usually 

. (5-10)

for good efficiency. This correspond to a value of approximately .

On stretched grids only smoothing in the direction of the stretching should be
used. The smoothing in the other directions must be reduced or removed. With
structured grids this is achieved by letting the coefficient  be a function of   geo-
metric quantities, see e.g. Radespiel et al. [17]. A similar procedure is used here.

There are several ways to modify the Equation (5-8) to account for the stretching
in the grid. Currently two ways are implemented. One way to account for the
stretching is defined as:

ε ∇2

R̂0

1 n0ε+( )R̂0 ε R̂k

k 1=

n0

� R0=–

R0
n 1+

R0
0 ε Rk

n

k 1=

0

�+

1 εn0+
-------------------------------      n 0≥;=

ε

α CFL*

CFL
--------------= 4ε 1+≤

CFL CFL*,
α 2=

ε 0.75=

α CFL*

CFL
--------------= 1.3≤

ε 0.2≤

ε



FOI-R--0298--SE

28 

(5-11)

where  contains the geometric information

(5-12)

This type of smoothing increases slightly the smoothing in the direction of the
stretching when it is removed in the other directions. On a regular grid it reduces
to Equation (5-8). This smoothing is also applied to the corrections in the multi-
grid procedure. 

The other way to smooth is based on a procedure from Mavripilis[18] where
Equation (5-8) is modified as:

 (5-13)

where 

(5-14)

and where  is a function to account for the local stretching in the grid and is
defined as

(5-15)

and where  is another stretching factor defined as

. (5-16)

where index  denotes all indices of nodes connected to node .
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6 Boundary Treatment

Implemented boundary conditions in the EDGE code are:

• Euler wall,
• Symmetry plane,
• Viscous wall, adiabatic or isothermal,
• Farfield boundary using characteristic boundary conditions.

The Euler wall, symmetry plane and the farfield boundary conditions use a weak
formulation, i.e. the boundary conditions are imposed through the flux and all
unknowns on these boundaries are updated like any interior unknown. 

On viscous walls, however, the velocity is imposed strongly through a no-slip
condition. In addition, the density is imposed strongly for an isothermal wall. A
strong formulation implies that values of a strongly imposed variable on the
boundary are explicitly fixed, i.e. they remain at their imposed values and are not
considered as unknowns.

The notations from Figure 3-2 are used in the following. Note that only the cen-
tral, inviscid terms and the viscous terms that contribute to the fluxes on the
boundaries, the dissipative fluxes are set to zero.

6.1 Euler wall and symmetry plane
At an Euler wall the normal component of the velocity is zero 

(6-1)

and hence the inviscid wall flux becomes

. (6-2)

The fluxes are added to the residuals for node . The same boundary condition
is used for a symmetry plane. Note that condition (6-1) is only implied through
the flux, the unknown velocity itself will not necessarily satisfy this condition
exactly. This is a consequence of using a weak boundary condition.
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6.2 Viscous wall
On a viscous wall the velocity is imposed strongly through a no-slip boundary
condition

(6-3)

Both a weak and a strong formulation have been tested and evaluated. The strong
formulation has shown better rates of convergence and has therefore been the
chosen one. With a strong formulation, the residual of the velocity on the bound-
ary does not need to be solved for since the velocity will be kept constant accord-
ing to Equation (6-3). This also implies that the fluxes for the velocity need not to
be computed. In addition to the velocity, for a turbulent calculation, also the tur-
bulent quantities are imposed strongly through

(6-4)

(6-5)

where the value  on the boundary is obtained as for structured grids recom-
mended by Hellsten [19],  is a constant  and  is the distance
from the wall node  to the closest internal node ( ) for which  forms
an angle to the boundary that is closest to orthogonal.

At an iso-thermal wall there is contribution from the viscous terms to the energy
equation in Equation (2-4). The remaining boundary flux becomes

(6-6)

where the gradient on the boundary node is computed as the difference of the
temperature in the interior node and the wall node

(6-7)

For turbulent calculations there is an additional contribution from the turbulence
in Equations (2-11), (2-16) and the corresponding boundary flux becomes

(6-8)

The wall density is imposed strongly at an isothermal wall through the relation

(6-9)
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where  is the specified wall temperature.

At an adiabatic wall there is no contribution from the viscous terms to the energy
equation at a wall since the temperature gradient is zero,

(6-10)

and hence the boundary flux is zero for both the density and energy equation.

6.3 Farfield boundary using characteristics
Characteristic boundary conditions are used at the farfield. These boundary con-
ditions can be used for both subsonic and supersonic in- and outflow where the
characteristics are either set from free stream quantities for ingoing characteris-
tics or extrapolated from the interior for outgoing characteristics.

Primitive variables are used and stored in the program since they lead to sparse
and computationally less expensive expressions.

Given a set of local primitive variables  at the boundary a

new set of primitive variables  have to be computed to be used in the flux

evaluation for node . The characteristic variables are denoted  and the rela-
tion between the primitive and characteristic variables is

(6-11)

where L is given in appendix A with its inverse.

By computing characteristics based on both local and free stream primitive vari-
ables,

(6-12)

either local or the free stream characteristics are used depending on the sign of
the eigenvalue. The local variables  are computed by local extrapolation,

. (6-13)

and the components of the transformation matrices  are computed using
free stream values and the local surface normal vector,

(6-14)
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Depending on the sign of the eigenvalue the components of characteristics 
can be obtained

(6-15)

where  denotes the ith eigenvalue belonging to the ith characteristic. The vari-

ables  can then be obtained from (6-11) from which the flux on the boundary
can be computed.
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7 Numerical application

In this section four applications using the flow solver EDGE for external flow are
presented. 

The first one is an Euler case with subsonic flow over a RAE2822 airfoil where it
is demonstrated that second order spatial accuracy can be obtained. The second
case concerns viscous flow at a low Reynolds number over a NACA0012 airfoil
with no addition of artificial dissipation. Different numerical discretizations of
the viscous terms are studied for this case. The third case is viscous, turbulent
flow over the RAE2822 airfoil. In addition, 3D flow over the ONERA M6 wing
has been computed. In all cases, comparisons are made with results with EURA-
NUS, a code for flow computations on structured grids, and to experimental data. 

7.1 Subsonic Euler flow
The Euler part has been validated earlier [1]. An additional subsonic Euler flow
has been computed to compare the solutions and especially the level of accuracy
between the cell centered and node vertex approach. The level of accuracy is
studied by comparing the maximum total pressure loss which occurs close to the
leading edge. For a subsonic case, the pressure loss should approach zero as the
grid is refined.

The RAE2822 airfoil was chosen since it is an airfoil often used in the validation
of flow solvers. The conditions chosen are

. (7-1)

A fine grid of  nodes was used from which a medium and a coarser grid
were created by removing every second point in the two directions. The grid
sizes can be seen in Tab. 7-1. These grids were also triangulated in order to see
the influence from a different cell type. The grids are of C-type and the coarse
grid with quadrilaterals and triangles can be seen in Figure 7-1. 

Only fourth order damping is used, the value of the fourth order damping param-

eter (denoted VIS4 in the input to the solver) is  which is a default
value. A corresponding value is used in the EURANUS computations.

Tab. 7-1. Grid size of the 
three quadrilateral grids of 
the RAE airfoil

M 0.5 α 2.8°=,=

545 97×

κ 4( ) 0.05=

Grid Size

Fine

Medium

545 97×

273 49×
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Fig. 7-1  The coarse grid 
for the inviscid 
computations over the 
RAE airfoil with  
nodes. Quadrilaterals (top) 
and triangles (bottom).

The rate of convergence can be observed in Figure 7-2. The CFL number is
CFL=1.5 and 5 multigrid levels were used. However, for the triangular grid it
was only possible to use 2 multigrid levels to avoid divergence which explains
the slower convergence. With the same grid and multigrid levels, the rate of con-
vergence is similar between the cell centered structured and cell vertex unstruc-
tured approaches.

The pressure distribution of the three quadrilateral grids can be seen in Figure 7-
3 and Figure 7-4. Very small differences can be observed.

Coarse

Grid Size

137 25×

137 25×
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Fig. 7-2  Convergence of 
density residual and lift 
force. EURANUS solid line, 
EDGE quadrilateral grid 
long dash and EDGE 
triangular grid short dash. 
Only 2 multigrid levels with 
the triangular grid.

Fig. 7-3  Pressure 
distribution with the three 
quadrilateral grids 
compared to structured 
grid results on the finest 
grid. Upper right: blow up 
at leading edge, lower 
right: blow up at trailing 
edge. Structured grid 
results solid line, 
unstructured coarse grid 
results long dashes, 
medium grid results short 
dashes fine grid results 
log/short dashes.
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Fig. 7-4  Pressure 
distribution with the three 
triangular grids compared 
to structured grid results on 
the finest grid. Upper right: 
blow up at leading edge, 
lower right: blow up at 
trailing edge. Structured 
grid results solid line, 
unstructured coarse grid 
results long dashes, 
medium grid results short 
dashes fine grid results 
long/short dashes

The total pressure loss can be seen in Figure 7-5 for the cell vertex approach
using the two cell types as well as for the cell centered approach. The loss is larg-
est close to the leading edge except with the triangular grid where the largest
losses occur at the trailing edge. 

Fig. 7-5  Total pressure 
loss on coarse, medium 
and fine grid. Left: 
quadrilateral cell vertex 
(unstructured grid), middle: 
triangular, right: 
quadrilateral cell centre 
(structured grid). Coarse 
grid solid line, medium grid 
long dashes, fine grid short 
dashes.

The cell vertex approach for the quadrilateral grid gives a higher pressure loss on
coarser grids compared to the cell centered approach. The reduction of the loss is
increased as the grid is refined. This is also obvious in Figure 7-6 where the max-
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imum total pressure loss is plotted as function of the grid size. The last 5% of the
airfoil has not been taken into account due to the unphysical pressure losses that
occur at the trailing edge. In this plot also results using the upwind scheme are
plotted. All of these schemes are formally second order accurate in space and
hence the maximum total pressure loss is expected to be reduced accordingly. In
the figure the slope of a first and second order decay is plotted, the two lines on
top. 

It can be noted that the decay of the total pressure loss is close to second order for
the node vertex (EDGE) central scheme with a quadrilateral grid and a somewhat
higher decay with the triangular grid. The upwind schemes with the node vertex
scheme decay with an order of accuracy slightly less than two. It is interesting to
note that the decay is only first order accurate for the cell centered structured
(EURANUS) approach.

Fig. 7-6  Decay of 
maximum total pressure 
loss for the RAE2822 
airfoils using as the grid is 
refined. The central and 
upwind schemes, cell 
centre (EURANUS) and 
cell vertex (EDGE) 
approaches and 
quadrilateral and triangular 
cell types are used.

7.2 Viscous flow over NACA0012
The flow over the NACA0012 airfoil at a Reynolds number of  is used
as the first case for the viscous extension of EDGE. This case has been used for
validation earlier in a workshop [19]. One of the flow conditions from that work-
shop was chosen here:

(7-2)

where the Reynolds number is based on the chord of the airfoil. A structured grid
with  points was used. The structured grid was transformed into the
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unstructured format required by EDGE. In addition, this grid has been triangu-
lated. The grid with the two cell types can be seen in Figure 7-7. 

The flow solution and the rate of convergence have been compared to results
using the solver EURANUS for structured grids. The structured results are also
obtained without use of artificial dissipation. In order to compare the rate of con-
vergence, the same CFL numbers have been used for the structured and unstruc-
tured computations,  with three multigrid levels. Residual smoothing
is applied for the computations with the unstructured approach, no implicit resid-
ual smoothing is applied in the structured approach due to the relatively low CFL
number.

The two compact viscous operators Section 4.2 on page 21 are evaluated and a
comparison between the fully viscous and thin layer approaches is carried out.
Two different wall boundary conditions are validated, isothermal and adiabatic
wall boundary conditions. 

Fig. 7-7  The NACA0012 
 grid with 

quadrilaterals and 
triangles.

7.2.1 Isothermal wall
The wall temperature is kept constant to

(7-3)

CFL 1.5=

257 65×

Twall 338.4=
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which is the stagnation temperature with a free stream temperature of . 

Initially results using the grid with quadrilaterals is shown. The rate of converge
for the density residual and the integrated lift force can be seen in Figure 7-8.
Results are displayed using EURANUS with a fully viscous operator, the thin-
layer approach described in “Thin-layer approximation” on page 22 (denoted
t.l.), the same approach with the addition of remaining tangential components of
the viscous operator to obtain a fully viscous operator (denoted f.n.) and finally
results using a fully viscous operator with a correction to the gradients described
in “Correction to node gradients” on page 22 (denoted GRC).

The convergence is considerably faster using a cell centered structured approach
with EURANUS whereas it is about the same for different unstructured
approaches. The reason behind this is unclear. The lowest lift is obtained using
cell centered structured approach with EURANUS. Note also that with a fully vis-
cous operator with corrected gradients (GRC) gives a slightly lower lift that with
the two other discretizations of the viscous operator.

The pressure distribution for the fully viscous approach and the thin layer
approach can be seen in Figure 7-9. In general, the differences are small. The
pressure distribution with the cell centered structured approach gives a slightly
lower stagnation pressure which agree better with the theoretical stagnation pres-
sure given in Table 7-2 on page 40 and also explains the lower predicted lift
force. All computations predict a too high stagnation pressure. 

Fig. 7-8  Convergence of 
density residual and lift 
force. EURANUS fully 
viscous operator solid line, 
EDGE thin layer long 
dashes, EDGE fully 
viscous operator short 
dashes, EDGE fully 
viscous operator with mod. 
gradients long-short 
dashes.
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Fig. 7-9  Cp distribution. 
Left fully viscous operator, 
right thin-layer approach. 
EURANUS solid line, 
EDGE long dashes, EDGE 
with mod. gradients short 
dashes.

Tab. 7-2. Stagnation Cp for 
the different computations.

Corresponding plots for skin friction and heat transfer can be seen in Figure 7-10
and Figure 7-11. Very small differences between all methods are observed for the
skin friction. For the heat transfer the results using the structured and unstruc-
tured approaches agree well. One can notice the difference between the fully vis-
cous approach and the thin-layer approach. 

The skin friction reveals that there is a large separated region on the upper part of
the airfoil. This can be seen in Figure 7-12 where iso Mach contours are plotted.

                                                                         

x

-Cp

   0.0     0.5     1.0
 -1.70  

 -0.80  

  0.10  

  1.00  
Euranus

Edge f.n.

Edge GRC

                                                                         

x

-Cp

   0.0     0.5     1.0
 -1.70  

 -0.80  

  0.10  

  1.00  
Euranus

Edge t.l.

Theoreti-
cal value at 
stagnation 

EURA-
NUS thin-
layer

Euranus 
fully vis-
cous

EDGE 
thin-layer

EDGE full 
viscous

EDGE full 
viscous, 
corrected

1.17 1.31 1.29 1.55 1.53 1.55



41 

FOI-R--0298--SE

Fig. 7-10  Skin friction 
distribution. Left fully 
viscous operator, right thin-
layer approach. EURANUS 
solid line, EDGE long 
dashes, EDGE with mod. 
gradients short dashes.

Fig. 7-11  Heat transfer 
distribution. Left fully 
viscous operator, right thin-
layer approach. EURANUS 
solid line, EDGE long 
dashes, EDGE with mod. 
gradients short dashes
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Fig. 7-12  Iso Mach 
contours for with the thin-
layer, unstructured 
approach.

The skin friction and heat transfer distribution using the two different viscous
discretization techniques terms in Section 4.2.2 on page 22 (solid line) and
Section 4.2.3 on page 22 (dashed line) of the fully viscous operator are displayed
in Figure 7-13. For the thin-layer approach in Section 4.2.3 on page 22, the
remaining tangential part is computed with gradients using the Green-Gauss
approach in Eq. 4-29, on page 21. There are very small differences between the
two approaches, the rate of convergence is also practically unaffected. 
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Fig. 7-13  Skin friction 
distribution (left) and heat 
transfer distribution (right) 
with fully viscous operator. 
Two different 
discretizations of the 
viscous terms.

The differences between the solution using the cell centered structured approach
and the cell vertex unstructured approach seem to be small from the comparison
above except for the rate of convergence and level of stagnation pressure. There
are some differences though, in particular in the nose region just outside of the
wall. This can be seen in the pressure distribution in Figure 7-14 at y=0 where
there are oscillations with the node vertex approach growing in amplitude as the
airfoil is approached. Using the cell centered approach there are practically no
oscillations. 

Fig. 7-14  Pressure 
distribution left of the nose 
region at y=0. Fully viscous 
discretization. 
Unstructured node vertex 
approach (solid line) and 
cell centre structured 
approach are compared 
(dashed line).
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Results with the unstructured node vertex approach using the same but triangu-
lated grid are displayed in Figure 7-15 and Figure 7-16. The impact on the rate of
convergence is small but there clear differences in the solutions, most obvious in
the heat transfer. The pressure distribution reveals oscillations with the triangular
grid. A possible explanation to the differences is how the dual grid is constructed.
The present approach of using the midpoints of the cells to construct the dual grid
leads to rather skewed dual grids (i.e. control volumes) as the triangles are
stretched close to the airfoil. 

Fig. 7-15  Convergence of 
density residual (left) and 
Cp distribution full Navier-
Stokes (right) with 
quadrilateral (solid line) 
and triangular (dashed 
line) grid. Node vertex and 
fully viscous approach.
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Fig. 7-16  Skin friction (left) 
and heat transfer 
distribution (right) with 
quadrilateral (solid line) 
and triangular (dashed 
line) grid. Node vertex and 
fully viscous approach.

7.2.2 Adiabatic wall
The rate of converge for the density residual and the integrated lift force can be
seen in Figure 7-17 using an adiabatic wall boundary condition. The correspond-
ing plots shown for the isothermal wall can be seen in Figure 7-18 to Figure 7-20.
The results are very similar to the ones with the isothermal conditions. In general
the results with the unstructured node vertex approach are close to the results
with the structured cell centered approach. Any differences found with the iso-
thermal conditions can be found here as well. The difference between the fully
viscous and thin-layer approach that could be seen in the heat transfer only can
here be seen in the temperature. No further results for this case using this bound-
ary condition will therefore be shown.
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Fig. 7-17  Convergence of 
density residual and lift 
force. EURANUS fully 
viscous operator solid line, 
EDGE thin layer long 
dashes, EDGE fully 
viscous operator short 
dashes. Adiabatic wall 
conditions.

Fig. 7-18  Cp distribution. 
Left fully viscous operator, 
right thin-layer approach. 
EURANUS solid line, 
EDGE long dashes. 
Adiabatic wall conditions.
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Fig. 7-19  Skin friction 
distribution. Left fully 
viscous operator, right thin-
layer approach. EURANUS 
solid line, EDGE long 
dashes, EDGE with mod. 
gradients short dashes. 
Adiabatic wall conditions.

Fig. 7-20  Temperature 
distribution. Left fully 
viscous operator, right thin-
layer approach. EURANUS 
solid line, EDGE long 
dashes, EDGE with mod. 
gradients short dashes. 
Adiabatic wall conditions.
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7.3 Turbulent flow over the RAE2822 airfoil
A demanding test case is the transonic flow over a RAE2822 airfoil. This case
has been subject for several earlier investigations in Euroval [21] and ECARP
[22], the particular case investigated here is denoted Case 9 and involves a shock
interacting with a small boundary layer separation. The results focus on a com-
parison between numerical results with the node vertex/unstructured and cell
centre/structured results and hence no experimental results are shown although
available. 

The flow conditions are

. (7-4)

The trailing edge of the airfoil is sharp and hence a C-type of grid was used with
a size of  nodes, 81 nodes from the wall to the outer boundary located
about 10 chords away. A close up of the grid can be seen Figure 7-21. The dis-

tance to the second layer of nodes from the wall varies from  at the lead-

ing edge to  at the trailing edge. The computations are made fully
turbulent although the location of the transition is known. The reason is that
specification of transition was not implemented when the calculations were car-
ried out.

Fig. 7-21  RAE viscous 
grid of 273*81 grid points.

The same CFL number was used, CFL=1.5 accelerated with 4 levels of multigrid
with V-cycles. The fully viscous terms were used. Similar values of the parame-
ters for the artificial dissipation in the two solvers were chosen although the
implementation is different. A second order upwind scheme for the turbulent
equations was used for both methods.

The rate of convergence can be seen in Figure 7-22 for the structured cell cen-
tered and unstructured cell vertex approaches. The rate of convergence is similar.

M 0.734 α 2.79°= Re, , 6.5 6×10= =

273 81×

0.3 5–×10

1 5–×10
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The rate is also effected by the value of the numerical dissipation. The rate can be
further improved by using full multigrid.

The pressure, temperature and skin friction distributions are compared in Figure
7-23 and Figure 7-24. In general there is a close resemblance between the results.
There is some deviation for the temperature, and a small deviation for the skin
friction. A small separation behind the shock is predicted in both cases.

Both approaches show some sensitivity in the results due to the setting of
some of the numerical parameters. The parameters that influence the results are
the level of numerical dissipation for the mean flow as well as the entropy fix for
the upwind discretization of the turbulent equations (which also influences the
level of artificial dissipation for the turbulence). The differences are rather small
though. 

Fig. 7-22  Convergence of 
density residual (left) and 
lift force (right) for the 
turbulent RAE airfoil 
computation. EURANUS 
solid line, EDGE dashed 
line.
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Fig. 7-23  Cp (left) and 
temperature distribution 
(right) for the turbulent 
RAE airfoil computation. 
EURANUS solid line, 
EDGE dashed line.

Fig. 7-24  Skin friction for 
the turbulent RAE airfoil 
computation. EURANUS 
solid line, EDGE dashed 
line.

7.4 Turbulent flow over the M6 wing
The last test case covers transonic flow over a finite 3D wing, namely the
ONERA M6 wing. The flow conditions are

. (7-5)
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where the Reynolds number is based on the aerodynamic mean chord. Detailed
experimental pressure distributions are available for this case [23] and there is
also a variety of numerical results available. With a sufficient grid resolution this
case is known to be rather insensitive to the turbulence model and also to produce
results which agree fairly well with experiments.

A structured and an unstructured grid have been used in the evaluation. Only the
unstructured grid has been used with EDGE. The unstructured grid has been
adapted one time which can be seen on the surface grid in Figure 7-25. The
adapted surface grid reveal that there are two shocks merged into one close to the
tip. About 1.2 millions points is used for the structured O-type grid, about 0.9
million points for the unstructured grid. Both grids contain about 12.000 nodes
on the surface, the distance from the surface to the first outer node is approxi-
mately the same and constant. The unstructured grid has prismatic elements in
the boundary layer and tetrahedra in the rest of the domain.

Fig. 7-25  Surface grid for 
the ONERA M6 wing. 
Structured grid to the left, 
unstructured grid to the 
right. Both grids contain 
about 12000 nodes on the 
surface. In total 1.2 millions 
points for the structured 
grid, 0.9 millions points for 
the unstructured grid.

The k-ω turbulence model was used. In addition EDGE used also an algebraic
Reynolds stress model [5] to investigate the influence from the turbulence model.
Five multigrid levels were used with the structured solver, four levels with the
unstructured solver. In both cases full multigrid was used. The CFL numbers
used were CFL=3.0 for the structured calculation and CFL=1.5 for the unstruc-
tured ones. The rate of convergence can be seen in Figure 7-26. The rate of con-
vergence is comparable between the two approaches. The residuals drop faster
with the unstructured approach, they drop about 4.5 orders of magnitude in only
500 multigrid cycles. The lift, however, converges very rapidly with the struc-
tured approach. 
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It should be mentioned that the coarser grids are generated differently. In the
structured approach every second point is removed in all direction giving a coars-
ening ratio of 1:8. With the unstructured approach a coarsening ratio of 1:2 is
applied in the prismatic region, i.e. cells are agglomerated only in the direction
normal to the wall. In the tetrahedral region a coarsening ratio of 1:8 is applied.
The resulting average coarsening ratio between the grids becomes about 1:3. It
should also be noted that the convergence rate, although not plotted, is similar
between the two different turbulence models.

The pressure distribution of the three numerical solutions compared to experi-
mental results can be seen in Figure 7-27. The pressure is displayed at six differ-
ent span wise locations, 20%, 44%, 65%, 80%, 90% 95% of the span. 

The agreement with experimental data is fairly good and is what can be expected.
The results with the unstructured solver are close to the results with the struc-
tured solver. EDGE produces slightly better results due to the increased grid res-
olution from the grid adaptation, especially in the tip region. Very small
differences can be observed between the two turbulence models.

Fig. 7-26  Convergence of 
the residual (left) and lift 
(right). Structured results 
(solid line) obtained with 5 
multigrid levels and full 
multigrid. 4 multigrid levels 
with the unstructured 
approach (dashed line).
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Fig. 7-27  Pressure 
distribution. Solid line - 
EDGE and k-ω, long 
dashes - EDGE and 
EARSM, small dashes - 
EURANUS and k-ω. 
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8 Summary and conclusions

The development and validation of a node-centered edge-based steady-state Rey-
nolds averaged Navier-Stokes solver EDGE for unstructured grids is described in
this report. The edge-based formulation in conjunction with a preprocessor that
translates element-based information to edge-based information makes the sys-
tem equally applicable to any type of element. It uses a node-centered finite vol-
ume scheme to solve the compressible equations in two or three space
dimensions. It relies on explicit time integration with convergence acceleration
by agglomeration multigrid and implicit residual smoothing. A second order
accurate central scheme with artificial dissipation or an upwind TVD scheme
with limiting of the characteristics may be used. Two compact discretizations of
the viscous terms have been proposed and evaluated.

The validation has been carried out for external flows over airfoils and an
ONERA M6 3D wing. An Euler case, a laminar low Reynolds number case and
two turbulent cases has been used. More Euler validations have earlier been car-
ried out [1]. The validations are focused on comparisons between the cell cen-
tered solver EURANUS on structured grids and the EDGE cell vertex solver on
the same grid but in an unstructured format. In some cases the grid was triangu-
lated to see the effect of different cell types.

There is a negligible difference between the two discretizations of the viscous
terms. The computed results compare well with the results of the cell centered
approach for structured grids. The rate of convergence has been found to be com-
parable for most cases. It is often possible though to take a somewhat higher CFL
number with a solver for structured grids leading to a somewhat better rate of
convergence. 

There are some differences though that should be pointed out.

• The decay of the maximum total pressure loss for the subsonic Euler case is, 
for EDGE, about second order accurate as expected when the grid is refined. The 
order of accuracy depends to some extent on the spatial discretization and on the 
cell type. Interesting, though, is that the decay is only first order accurate with the 
structured cell centred approach.
• The rate of convergence for EDGE is much slower compared to EURANUS 
for the laminar low Reynolds number case without artificial dissipation. The 
solutions are similar though with the exception of a region close to the nose 
where there are small pressure oscillations for EDGE. A possible explanation for 
the difference could be the implementation of the boundary conditions. This has 
to be further examined.
• The differences for the turbulent flow are found at the trailing edge in particu-
lar. Remaining small differences can be explained by the level and different 
implementation of the numerical dissipation for the mean flow as well as for the 
turbulent equations.
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Appendix A

A.1 3D inviscid Jacobians and 
Eigenvectors

The 3D Euler system is written as:

where  are the conservative variables. Introducing the
Jacobian of the conservative variables ;

Alternatively the primitive variables may be used, denoted :

where  are the Jacobians of the primitive variables, denoted non-conserva-
tive Jacobians. With the transformation matrix

between primitive and conservative variables the following relations between the
Jacobians hold:

Introducing the notation

the conservative Jacobians can be made diagonal as follows:

and the non-conservative Jacobians 

can be made diagonal as

t∂
∂ q

x∂
∂ F

y∂
∂ G

z∂
∂ H 0=+ + +

q ρ ρu ρv ρw E, , , ,( )T=
A B C, ,

t∂
∂ q A x∂

∂ q B y∂
∂ q C z∂

∂ q 0=+ + +

v ρ u1 u2 u3 p, , , ,( )T=

t∂
∂ v Ã x∂

∂ v B̃ y∂
∂ v C̃ z∂

∂ v 0=+ + +

Ã B̃ C̃, ,

M
v∂
∂ q=

Ã M 1– AM= B̃ M 1– BM= C̃ M 1– CM=, ,

An nx= A nyB nzC+ +

An RΛR 1–=

Ãn nx= Ã nyB̃ nzC̃+ +

Ãn LΛL 1–=
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The diagonal matrix  contains the eigenvalues to the Jacobians , the
matrices  contain the right eigenvectors as columns to the conservative and
non-conservative Jacobians, respectively. The eigenvectors given below are
scaled in such a way that the characteristic variables have the dimension of a
pressure. Note that the scaling of the eigenvectors is not unique, nor is the choice
of the eigenvectors.

The matrices are the following:

Λ An Ãn,

R L,

M

1 0 0 0 0
u1 ρ 0 0 0
u2 0 ρ 0 0
u3 0 0 ρ 0

u2

2
----- ρu1 ρu2 ρu3

1
γ 1–
-----------

= M 1–

1 0 0 0 0
u1

ρ
-----– 1

ρ
--- 0 0 0

u2

ρ
-----– 0 1

ρ
--- 0 0

u3

ρ
-----– 0 0 1

ρ
--- 0

γ 1–( )u
2

2
----- γ 1–( )– u1 γ 1–( )– u2 γ 1–( )– u3 γ 1–

=,

L

nx

c2
-----

ny

c2
-----

nz

c2
---- 1

c2
---- 1

c2
----

0
nz
ρc
------–

ny
ρc
------

nx
ρc
------ nx

ρc
------–

nz
ρc
------ 0

nx
ρc
------–

ny
ρc
------ ny

ρc
------–

ny
ρc
------–

nx
ρc
------ 0

nz
ρc
------ nz

ρc
------–

0 0 0 1 1

= L 1–

nxc2 0 nzρc nyρc– nx–

nyc2 nzρc– 0 nxρc ny–

nzc
2 nyρc nxρc– 0 nz–

0
nxρc

2
-----------

nyρc
2

-----------
nzρc

2
----------- 1

2
---

0
nxρc

2
-----------–

nyρc
2

-----------–
nzρc

2
-----------– 1

2
---

=,

Λ

u n⋅
u n⋅

u n⋅
u n⋅ c+

u n⋅ c–

=
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R ML

nx

c2
-----

ny

c2
-----

nz

c2
---- 1

c2
---- 1

c2
----

u1nx

c2
----------

u1ny cnz–

c2
------------------------

u1nz cny+

c2
-------------------------

u1 cnx+

c2
-------------------

u1 cnx–

c2
-------------------

u2nx cnz+

c2
-------------------------

u2ny

c2
----------

u2nz cnx–

c2
------------------------

u2 cny+

c2
-------------------

u2 cny–

c2
-------------------

u3nz cny–

c2
------------------------

u3ny cnx+

c2
-------------------------

u3nz

c2
----------

u3 cnz+

c2
-------------------

u3 cnz–

c2
-------------------

nx
u2

2c2
-------- u2nz u3ny–

c
---------------------------+ ny

u2

2c2
-------- u3nx unz–

c
-------------------------+ nz

u2

2c2
-------- u1ny vnx–

c
------------------------+ H c u n⋅( )+

c2
----------------------------- H c– u n⋅( )

c2
--------------------------

= =
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where  is the total enthalpy

and  the speed of sound and  the Mach number.

R 1–

nxc2 1 γ 1–
2

-----------M2–� �
� �

c u2nz u3ny–( )–

γ 1–( )u1nx γ 1–( )u2nx nzc+ γ 1–( )u3nx ny– c γ 1–( )nx–

nyc2 1 γ 1–
2

-----------M2–� �
� �

c u3nx u1nz–( )–
γ 1–( )u1ny nz– c γ 1–( )u2ny γ 1–( )u3ny nxc+ γ 1–( )ny–

nzc
2 1 γ 1–

2
-----------M2–� �

� �

c u1ny u2nx–( )–
γ 1–( )u1nz nyc+ γ 1–( )u2nz nx– c γ 1–( )u3nz γ 1–( )nz–

c2

2
---- γ 1–

2
-----------M2 u n⋅

c
----------–� �

� � cnx γ 1–( )u1–
2

------------------------------------
cny γ 1–( )u2–

2
------------------------------------

cnz γ 1–( )u3–
2

----------------------------------- γ 1–
2

-----------

c2

2
---- γ 1–

2
-----------M2 u n⋅

c
----------+

� �
� � cnx– γ 1–( )u1–

2
----------------------------------------

cny– γ 1–( )u2–
2

----------------------------------------
cnz– γ 1–( )u3–

2
---------------------------------------- γ 1–

2
-----------

=

H

H E p+
ρ

------------- c2

γ 1–
----------- 1

2
---u2+= =

c M u c⁄=



63 

FOI-R--0298--SE



FOI-R--0298--SE

64 



65 

FOI-R--0298--SE

Issuing organization

FOI-Swedish Defence Research Agency
Division of Aeronautics, FFA
SE-172 90 STOCKHOLM

Report number, ISRN

FOI-R--0298--SE
Report type

Scientific report
Month year

December 2001
Project number

A84 0297
Customer code

3. Aeronautical Research
Research area code

7. Vehicles
Sub area code

73. Aeronautical Research
Author(s)

Peter Eliasson
Project manager

Peter Eliasson

Approved by

Torsten Berglind
Head, Computational Aerodynamics Department

Scientifically and technically responsible

Jan Nordström
Research leader

Report title

EDGE, a Navier-Stokes Solver for Unstructured Grids

Abstract

This report describes the compressible Navier-Stokes solver EDGE for unstructured grids. The solver is based on an 
edge-based formulation for arbitrary elements and uses a node-centered finite-volume technique to solve the governing 
equations. Two spatial discretizations of the convection terms are described, compact discretizations of the thin-layer and 
fully viscous terms have been proposed and evaluated. The governing equations are integrated explicitly towards steady 
state with Runge-Kutta time integration. The convergence is accelerated with agglomeration multigrid and implicit resid-
ual smoothing.
A validation is carried out in two and three dimensions for external flows. The validations focus on comparisons between 
EDGE and the cell centered solver EURANUS on structured grids. Also the effect of different types of elements are 
investigated.
The results with the unstructured and structured approach compare well for all cases. The rate of convergence is compa-
rable although higher CFL numbers can be used with the structured solver. The robustness of the unstructured solver is at 
least as good as with the structured solver.
Two main differences are found. The first is that the decay of the maximum total pressure loss for subsonic Euler calcu-
lations is approximately second order accurate as the grid is refined for the node-centered scheme but only first order 
using the structured cell centered approach. The second difference concerns the flow over an airfoil at a low Reynolds 
number and no artificial dissipation. Here the rate of convergence is much slower with the unstructured approach. Small 
oscillations in the pressure can also be observed in the nose region.
Keywords

CFD, unstructured grids, finite-volume, multigrid, edge formulation

Further bibliographic information

ISSN

ISSN 1650-1942
Pages

67
Language

English
Distribution according to missiv Price

Price acc. to price list
Security classification

Unclassified



FOI-R--0298--SE

66 



67 

FOI-R--0298--SE

Utgivare

Totalförsvarets Forskningsinstitut - FOI
Avdelningen för Flygteknik, FFA
SE-172 90 STOCKHOLM

Rapportnummer, ISRN

FOI-R--0298--SE
Klassificering

Vetenskaplig rapport
Månad år

December 2001
Projektnummer

A84 0297
Verksamhetsgren

3. Flygteknisk forskning
Forskningsområde

7. Bemannade och obemannade farkoster
Delområde

73. Flygteknisk forskning
Författare

Peter Eliasson
Projektledare

Peter Eliasson

Godkänd av

Torsten Berglind
Chef, Institutionen för beräkningsaerodynamik

Tekniskt och/eller vetenskapligt ansvarig

Jan Nordström
Forskningsledare

Rapporttitel

EDGE, en strömningslösare för ostrukturerade nät

Sammanfattning

Den här rapporten beskriver strömningslösaren EDGE för ostrukturerade nät. Lösaren är baserad på en kantbaserad 
framställning för godtyckliga element och använder en nodcentrerad teknik att lösa de kompressibel Navier-Stokes ekva-
tioner. Två rumsdiskretiseringar av konvektionen beskrivs, två kompakta rumsdskretiseringa av de viskösa termerna har 
utvärderats. De underliggande ekvationerna integreras explicit i tiden med en Runge-Kutta metod till konvergens. Kon-
vergensen accelereras med multigrid och residualutjämning. 
Valideringen har utförts i två och tre dimensioner för extern strömning. Valideringarna fokuserar på jämförelser med den 
cell centrerade strömningslösaren EURANUS för strukturerade nät. Effekten av olika elementtyper har undersökts.
Resultaten med EDGE stämmer bra överens med resultaten med EURANUS. Konvergenshastigeheten är fullt jämförbar, 
dock kan man med EURANUS använda större CFL-tal. Robustheten är väl så bra EDGE med som med EURANUS. 
Två skillnader kan dock noteras. Den första är att den maximala totaltrycksförlusten vid subsoniska Eulerberäkningar på 
en vingprofil där nätet successivt förfinas avtar ungefär med andra ordningens noggrannhet med EDGE medan EURA-
NUS avtar med första ordningens noggrannhet. Den andra skillnaden är att vid viskös strömning för ett lågt Reynolds tal 
utan artificiell dissipation så är konvergenshatsighete lägre med EDGE än med EURANUS. Små svängningar i trycket 
kan också noters vid framkanten.

Nyckelord

CFD, ostrukturerade nät, finit volym, multigrid, kantbaserad formulering

Övriga bibliografiska uppgifter

ISSN

ISSN 1650-1942
Antal sidor

67
Språk

Engelska
Distribution enligt missiv

Distribution
Pris

Enligt prislista
Sekretess

Öppen




