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1. INTRODUCTION 

 
The commonly used constitutive model for metals by Johnson and Cook [1] includes 

strain hardening, strain rate dependence, and thermal softening. When we performed simula-
tions of tensile tests with AUTODYN-2D version 4.1 [2-4] using that model, we sometimes 
encountered oscillations in the stress response and also too little increase of yield stress due to 
strain rate effects. S. A. Silling [5] reports problems with numerical instability when imple-
menting the same model in an Euler code called CTH [6]. Silling performs stability analysis 
for a few methods, both stable and unstable. He chooses an implicit scheme (Euler back-
wards), which is stable, and describes how that was implemented in CTH. L. Nilsson [7] de-
scribed problems with oscillating solutions and erroneous relaxation times when using the old 
versions of strain rate dependent constitutive models in DYNA [8]. The problem was solved 
by using a fully viscoplastic [9] formulation of the model. O. Wall [10] describes his imple-
mentation in a finite element code of the strain rate dependent constitutive model by Zerilli 
and Armstrong [11]. He uses an implicit scheme (Euler backwards) and shows how the im-
plicitness reduces to solving a single (scalar) equation.   

The problems were reported to Century Dynamics, the developer of AUTODYN, who 
solved them in the latest version (version 4.2, released in October 2001) of the code by an op-
tional “strain rate correction” for Johnson-Cook’s constitutive model.  

Constitutive models used in hydrocodes have developed over the years and now take 
more and more phenomena into account. When implementing these models, a frequently oc-
curring problem is that, at some point in the algorithm a value of a variable is needed that has 
not yet been calculated. A common practice in these cases seems to be to simply use the most 
recent known value of that variable, although it would have made more sense to solve an 
equation for that variable. The reason for this practice is that since the basic time integration 
in hydrocodes is explicit, it is preferred to have an explicit implementation also of the consti-
tutive model. Using the most recent known value of the strain rate in the implementation of 
Johnson-Cook’s constitutive model is, as will be shown, the cause of the observed oscilla-
tions.  

In this report an implementation of Johnson-Cook’s model as a user subroutine in 
AUTODYN-2D is presented. The user subroutine calculates the yield stress by an implicit 
method every time step. The rest of the stress update algorithm is performed by AUTODYN 
itself. The difference from the old standard implementation in AUTODYN is that the time 
centring of the strain rate in the expression for the yield stress is more natural in our imple-
mentation. Some programming details are postponed to Appendix A. The old standard 
method in AUTODYN, our improved method (the user subroutine), and the new method im-
plemented in the latest version of the code are compared.  

Section 2 includes a description of the basic algorithm for elastic-plastic materials [2,12] 
used in hydrocodes together with a description of the old standard method for treating strain 
rate dependence. Our improved method is described in Section 3. A series of test runs are pre-
sented in Section 4, and results of these are discussed in Section 5.  

In Appendix B a simple one-dimensional problem is presented, and several numerical so-
lution methods of it are analysed. This model problem is related to the deviatoric part of the 
constitutive model, and we hope that it can throw some light on the numerical treatment of 
strain rate dependent constitutive models. 

 



 6

 
2. THE STANDARD METHOD 

 
2.1. Basic algorithm for elastic-plastic materials 

The stress tensor is divided into a hydrostatic pressure and a deviatoric stress tensor. The 
pressure is given as a function of specific volume and specific internal energy, while the de-
viator is calculated incrementally. In this description we disregard finite rotations, which 
AUTODYN takes care of by using Jaumann time derivative of the stress deviator. The new 
stress deviator for time tn+1 is determined by first calculating a trial stress deviator 

   ij
n
ijij dGss ′+= 2*  (2.1) 

from the old deviator n
ijs  at time tn, by using the shear modulus G and the deviatoric part  

 ijkkijij ddd δ
3
1−=′  (2.2) 

of the strain rate tensor 
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where vj is the particle velocity. The velocity and the strain rate component are centred at time 
(tn+tn+1)/2 called tn+1/2. If the von Mises effective stress of the trial stress tensor  

 ***

2
3

ijijeff ss=σ  (2.4) 

is less than the yield stress Yn+1 at time tn+1, the material is elastic, and the trial stress deviator 
is accepted as the new one, namely, 

 *1
ij

n
ij ss =+ ,     if     1+≤ neff Yσ  (2.5) 

In the opposite case when  

 1
1

*

>=
+n

eff

Y
k

σ
, (2.6) 

the material is plastic and the new stress deviator is 

 *1 1
ij

n
ij s

k
s =+  (2.7) 

i.e. a uniformly scaled down version of the trial stress deviator. This may lead to a non-
associated flow rule. (A flow rule is called associated, if the plastic flow is always perpen-
dicular to the yield surface.) 
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2.2. Plastic strain 
The plastic strain occurring during the time step from tn to tn+1 is [2] 

 
G

Yneffp

3
1

*
+−

=∆
σ

ε , (2.8) 

where G  is the shear modulus, 1+nY  is the yield stress at time 1+nt , and *
effσ  is given by Eq. 

(2.4). If the cumulated plastic strain at time tn is called p
nε , we can also write 

 p
n

p
n

p εεε −=∆ +1 , (2.9) 

where the subscripts denote time index. The average plastic strain rate in that interval is 

 
t

p
p

∆
∆= εε& , (2.10) 

where 

 nn ttt −=∆ +1 . (2.11) 

 
2.3. Expression for the yield stress 

By choosing different formulas or algorithms for the yield stress Y, different constitutive 
models are obtained. In both Johnson-Cook’s [1] and Zerilli-Armstrong’s [11] models the 
yield stress  

 ),,( TYY pp εε &= , (2.12) 

is written as a function of plastic strain pε , plastic strain rate pε& , and temperature T.  A diffi-
culty, occurring when implementing such models, is that the yield stress for time tn+1 is 
needed in order to calculate the plastic strain increment in the time interval from tn to tn+1 ac-
cording to Eq. (2.8), and that this yield stress depends on the plastic flow during that time in-
terval, see Eq. (2.12). In the old standard method, when calculating the yield stress, one uses 
“the most recent known” value of plastic strain and plastic strain rate, and the formula used is 

 ),,( 1
1 n

p
n

p
np

nn T
t

YY
∆
−= −

+
εεε . (2.13) 

 

3. THE IMPROVED METHOD 
 

The difference between the improved method, which is introduced here, and the standard 
method is that different time centring is used in the expression for the yield stress. Instead of 
Eq. (2.13) the equation 

 ),,( 1
11 n

p
n

p
np

nn T
t

YY
∆
−

= +
++

εεε . (3.1) 
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is used. It looks better to use the value of plastic strain at the same time as the time at which 
we are going to calculate the yield stress. The plastic strain rate in Eq. (3.1) is centred at tn+1/2, 
which seems better than at tn-1/2 as it was in the standard method, Eq. (2.13). Of course, it 
would have been preferred to have the temperature centred as 1+nT  in Eq. (3.1) (in the same 
way as the plastic strain), but this is more difficult to implement and has therefore been 
avoided.  

The improved treatment of plastic flow is implicit, since p
n 1+ε  in the right member of Eq. 

(3.1) is not known when 1+nY  is needed. Eq. (3.1) together with Eqs. (2.8) and (2.9) must be 
regarded as a system of equations. It can be simplified to one equation. From Eqs. (2.8) and 
(2.9) we, namely, obtain 

 
G

Yneffp
n

p
n 3

1
*

1
+

+

−
=−

σ
εε , (3.2) 

and this equation together with Eq. (3.1) form a system of equations for the unknowns p
n 1+ε  

and 1+nY . If 1+nY  is eliminated, we get the single equation 

g ),,()(3 1
11

*
n

p
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p
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p
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++
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εεεσ  (3.3) 

with p
n 1+ε  as unknown. With Eq. (2.9), we can write Eq. (3.3) as 

g ),,(3*
n

p
pp

n
p

eff T
t

YG
∆

∆∆+=∆− εεεεσ , (3.4) 

where pε∆  is the unknown.  
The method is implicit but only one (scalar) equation has to be solved. This method has 

been implemented in AUTODYN as a user subroutine, where Eq. (3.4) is solved by iterations 
using Newton-Raphson’s method. See Appendix A for more details.  
 
 

4. TEST RUNS AND THEIR RESULTS 
 

Three implementations of the Johnson-Cook’s model are tested and compared. The first is 
the method used in version 4.1 and earlier versions of AUTODYN. We are going to call that 
the old method. The second method is our improved method, described in Section 3 and im-
plemented as a user-subroutine. The third method is the one that has become the default op-
tion for Johnson-Cook’s model in the latest version 4.2 of AUTODYN (both 2D and 3D). In 
that method, which we call the new method, the plastic flow algorithm has been modified in 
order to reduce the high frequency oscillations. The old and improved methods are run on ver-
sion 4.1.13 and the new method on version 4.2.02 of AUTODYN-2D.   

 
4.1. Simulations of tensile tests 

Simulations of tensile tests of a cylindrical steel bar were carried out. The length and ra-
dius of the cylinder was 4 mm and 1 mm, respectively. It was divided into 20 cells axially and 
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5 radially. The nodes at one end of the bar were fixed, while the nodes at the other end were 
pulled with constant velocity in the axial direction. In most cases this velocity was 4 m/s, 
which lead to a strain rate of 1000 s-1. Nodes at both ends were fixed in the radial direction.  

 
 

Table 1.  Material parameters for two types of steel 
 

JC-parameters in Eq. (4.1) 
 

 
Material 

 
Density 

ρ 
(Mg/m3) 

Bulk 
modulus 

K 
(GPa) 

Spec. 
heat 
cv 

(J/kgK)
 

Melting 
temp. 

Tm 
(K) 

Shear 
modulus 

G 
(GPa) 

A 
(GPa) 

B 
(GPa) 

n 
 

C 
0ε&  

(s-1) 

m 

            
4340 Steel 7.83 159 477 1793 81.8 0.792 0.510 0.26 0.014 1.0 1.03 

 
HNS Steel 

 
7.83 

 
159 

 
477 

 
1793 

 
81.8 

 
0.699 

 
1.148 

 
0.595 

 
0.030 

 
1.0 

 
0.65 

 
 

The constitutive model was Johnson-Cook’s model, where the yield stress was given by 

 ( )( )( )mpnppp TCBATYY H0 1)ln(1)(),,( −++== εεεεε &&& , (4.1) 

where A, B, n, C, 0ε& , and m are parameters, and HT  is the homologous temperature (normal-
ised so that it is zero for room temperature and unity for melting temperature). The remaining 
variables are the same as in Eq. (2.12). The strain rate dependence is defined by the strain rate 
coefficient C and the threshold value 0ε&  for strain rate effects (in most cases equal to 1 s-1). 
The parameters were taken from the material library in AUTODYN for 4340 steel in the base 
line case, see Table 1. 
 
 
        Table 2.  Simulated tensile tests 
 

Some JC-parameters Run ID     (Figure) Strain Rate 
ε&  

(s-1) 

Time Step 
∆t 

(µs) Strain hard. B 
(GPa) 

Strain rate C 
 

Thermal soft. m 

 
The old method:  
 TT13ST      (1)  1000 0.016   0.510 0.014 1.03 
 TT03ST      (4a) 1000 0.016 0.000 0.014 0 
 TT10ST      (4b) 1000 0.016 0.510 0 0 
 TT12ST      (5) 1000 0.016 0.510 0.001 1.03 
 TT14ST      (6a) 1000 0.016 0.510 0.002 1.03 
 TT22ST      (6b) 500 0.016 0.510 0.001 1.03 
 TT92ST      (6c) 1000 0.008 0.510 0.001 1.03 
 
The improved method (implicit strain rate and strain hardening):  
 TT13IM     (2) 1000 0.016 0.510 0.014 1.03 
 
Simplified version (only implicit strain rate):  
TT43IM      (7) 1000 0.016 0.510 0.014 1.03 
TT40IM      (8) 1000 0.016 0.510 0 0 
      
The new method (default in version 4.2): 
TT13VS      (3) 1000 0.016 0.510 0.014 1.03 
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The results consist of time plots of the effective stress (von Mises) and the yield stress in 
a target point (target#4) in a cell at the middle of the bar (axially) and adjacent to the outer-
most cell (radially). The plots are shown in Figures 1-8. All of these diagrams include a mag-
nification showing details of the curves at or just after onset of plastic deformation. The simu-
lated cases are summarized in Table 2. 

The important results are presented in Figures 1-3, which show results from the tensile 
tests with strain rate 1000 s-1, run with the old method, the improved method, and the new 
method. The intention behind Figures 4-6 was mainly to investigate the nature of the problem 
with the oscillations.  

We also implemented a slightly simplified version of the improved method, where only 
the strain rate sensitivity was treated implicitly but the strain hardening was treated explicitly. 
For this method the Eq. (3.1) was changed to  

 ),,( 1
1 n

p
n

p
np

nn T
t

YY
∆
−

= +
+

εεε , (4.2) 

i.e. the first argument in the yield stress function is evaluated at time tn instead of tn+1. Corre-
sponding changes have to be done in Eqs. (3.3) and (3.4). Results from simulations with this 
simplified method are shown in Figures 7-8.  
 
4.2. Simulations of projectile penetration 

Simulations of a rigid projectile (modelled as elastic with a high yield strength) penetrat-
ing a steel plate has been performed by Hansson and Skoglund [13]. The old method and the 
improved method for Johnson-Cook’s model were tested. Parameters were taken from the 
material library in AUTODYN for “4340 steel”, see Table 1. They also ran a simulation with 
the old method and the strain rate coefficient set to zero (implying no strain rate effects). The 
results are summarised in Table 3.  

 
 

Table 3.  Results from simulations of projectile penetration into 4340 steel, Ref. [13]  
 

Method Strain rate 
coeff.   C 

Impact 
velocity 

(m/s) 

Residual 
velocity 

(m/s) 
The old method 0.014 800 442 
The old method 0.000 (no strain rate effect) 800 429 
The improved method 0.014 800 375 

 
 
Table 4.  Simulations of projectile penetration in HNS-steel, Ref. [13]  
 

Method Strain rate 
coeff.   C 

In Figure 9 curve number 
from left to right 

The old method C = 0 1 
The old method C = 0.030 2 
The improved method C = 0.030 3 
The new method C = 0.030 4 

 
 

Simulations using the same geometry as in the preceding penetration simulations but with 
a different steel quality (HNS) for the target plate were carried out in Ref. [13]. Four different 
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combinations of numerical method and strain rate coefficient were simulated, see Table 4. In 
order to obtain the ballistic limit, the residual velocity was plotted against impact velocity in 
Figure 9.  

 
 

5. DISCUSSION 
 
5.1. Comparison of the three methods 

Figures 1-3 show results from simulations of a tensile test of 4340 steel with strain rate 
equal to 1000 s-1. In Figure 1 the effective stress (MIS.STRESS) and yield stress 
(YLD.STRESS) are plotted versus time from a simulation using the old implementation of 
the Johnson-Cook’s model. The second diagram is a magnification of the first one, showing 
details of the curves near and after onset of plastic deformation. High frequency oscillations 
are seen in the first diagram. In the second, the time scale of these oscillations is resolved, and 
it can be seen that the yield stress oscillates every time step (compare with the time step, 
which is about 16 ns = 16·10-6 ms). The effective stress oscillates with the same frequency, 
but with lower amplitude. It is always less than or equal to the yield stress (as it should), and 
every second time step these two stresses have minima and coincide. These curves are, how-
ever, expected to coincide all the time after plastic deformation has begun, because the speci-
men is never unloaded in this simulation. Elastic waves in the bar could lead to local unload-
ing, but not of the kind that is observed in Figure 1. Further analysis shows that the yield 
stress oscillates roughly around the correct mean value. The effective stress, on the other 
hand, oscillates closely to the common minima, which correspond to the yield stress for zero 
strain rate. This causes the increase of the effective stress due to strain rate effects to be too 
small.  

In Figure 2 the same problem as in Figure 1 is simulated using our own improved method. 
There are no oscillations and the effective stress remains equal to the yield stress after onset 
of plastic deformation.  

The new method, which is default in version 4.2 of AUTODYN, was also tested. As ex-
pected the effective stress and yield stress coincided as they did for the improved method. 
Therefore we plotted only the effective stress from that simulation. Figure 3 shows the effec-
tive stress from that simulation and also from the case in the previous figure (the improved 
method). The two curves overlap, even if a small difference can be seen in the magnification. 

The results from the simulation in Table 3 of a projectile penetrating a plate show a sig-
nificant difference in residual velocity (15%) between the simulations with the old method 
and our improved method (442 and 375 m/s, respectively). The target material appears weaker 
with the old method, because this method underestimates the increase of the yield stress due 
to strain rate. This explanation is supported by the case with no strain rate effect (C = 0), 
which gave a residual velocity close to that of the simulation with the old method (3% differ-
ence).  

The results shown in Figure 9 point in the same direction. The curves number two, three, 
and four from the left show results from simulations with the same material parameters, but 
different implementations of the constitutive models, namely, the old method, the improved 
method, and the new method, respectively, see Table 4. The ballistic limit obtained from the 
old method is significantly lower than those obtained from the improved and new methods. 
The two latter methods give results that are fairly close to each other. When evaluating the 
difference between the last two curves, one must consider that they come from different ver-
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sions of  AUTODYN, and that the difference, anyway, is much smaller than the difference be-
tween these two curves and the curve from the old method. The two leftmost curves, corre-
sponding to simulations with the old method, are close together despite the fact that one of 
them corresponds to a case with the strain rate coefficient equal to zero and the other to the 
case with the normal value for that coefficient.  
 
5.2. Further tests of the old method 

The constitutive model we use takes strain hardening, strain rate sensitivity, and thermal 
softening into account. In Figure 4 the constitutive parameters have been changed so that only 
one of these effects is present in each case. In Figure 4(a) the constitutive model has only 
strain rate sensitivity, and in Figure 4(b) there is only strain hardening. The fact that oscilla-
tions occur in Figure 4(a) but not in 4(b) suggests that the oscillations have to do with the 
strain rate dependence in the material model and not with strain hardening.  

The case presented in Figure 5 is the same as that in Figure 1 with the exception that the 
strain rate coefficient is lowered to C = 0.001 (from 0.014). In Figure 5 the small oscillations 
that occur just after onset of plastic deformations are damped out very soon, and after that the 
simulation appears to be stable. Figure 6 contains three variations of the stable case in the pre-
ceding figure. In all three there are un-damped oscillations. Since we know that oscillations 
will occur if C becomes as large as 0.014 we increase C  from 0.001 to 0.002 in order to see if 
this is sufficient to cause oscillations. It turns out to be sufficient. It is, however, surprising 
that the remaining two variations also lead to oscillations. In Figure 6(b) the strain rate has 
been lowered from 1000 to 500 s-1 and in Figure 6(c) the time step has been decreased from 
16 to 8 ns (by changing the time step safety factor from the default 0.6666 to the new value 
0.3333.).  
 
5.3. Explanation of the oscillations  

As we have seen, the material deforms plastically only every second time step when oscil-
lations occur in the old method. This means that the plastic strain rate during these cycles 
must be twice the average strain rate, which is 1000 s-1 in our baseline case. Therefore the 
strain rate causes the yield stress to increase by the factor 11.1)2000ln(1 =+ C , if 014.0=C ; 
cf. Eq. (4.1). By looking at Figure 1, one may see that the maxima and minima of the oscillat-
ing yield stress differ by that factor.  

What happens is the following: The trial stress tensor breaks through the yield surface and 
is then projected back to it. This back projection means plastic deformation, and the strain rate 
will cause the yield surface to move outwards, so that the stress tensor will lie inside of the 
yield surface.  In the next time step the trial stress tensor will move outwards again. The key 
question is, does it move far enough to cross the yield surface. In the situation, where oscilla-
tions of the type shown in Figur 1 occur, the answer is no. The trial stress tensor will be inside 
of the yield surface, and the material considered elastic, leading to zero plastic deformation 
and zero strain rate. This zero strain rate is used in the next time step for calculating the yield 
stress, which will therefore fall back to its static position (disregarding for the moment strain 
hardening and thermal softening). In the next time step the trial stress tensor will be outside of 
the yield surface and process will repeat itself.  

Returning to the key question in the preceding paragraph, one sees that the difficulties oc-
cur if the influence of strain rate on the yield stress is large and the difference between the ef-
fective stress of the trial stress tensor and that of the old stress tensor is small. That difference 
is proportional to the strain increment during a time step. Therefore small strain rates and 
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small time steps contributes to the difficulties. It is not so surprising that large strain rate sen-
sitivity (large C) may cause problems, but it is surprising (at least to me) that also small strain 
rates and small time steps may do so, cf. the three cases in Figure 6. A method that does not 
work for small time steps can, of course, not converge when the time step tends to zero.   

The velocities and strain rates occurring in ballistic problems have not change so much 
over the years (at least not orders of magnitude), but the time steps have, due to finer grids, 
possible because of the development of the computers. Since the old implementation of strain 
rate dependence may work well in some cases (Figure 5) and works better for larger time 
steps, it may very well be the case that the oscillations were not seen when strain rate depend-
ent models were introduced.  
 
5.4. Strain hardening and temperature dependence 

The simplified version of the improved method, where the strain rate sensitivity is treated 
implicitly but strain hardening is not, is still implicit. The gain in computational efficiency is 
therefore marginal. The reason for studying the simplified method is to investigate the neces-
sity of treating all history variables implicitly. Figure 7 shows results from simulations with 
the original parameters for 4340 steel, whereas in Figure 8 both the strain rate and tempera-
ture dependence are ignored by setting C = 0 and m = 0 (indicating no temperature depend-
ence). These figures should be compared to Figure 2 and Figure 4(b), respectively, where the 
same cases are simulated with the improved method itself. The similarity is very good, indi-
cating negligible influence of the simplification on the results. Since an explicit treatment of 
the strain hardening is sufficient one may hope that the same could be true for other history 
variables like the temperature.  
 
5.5. Motivation for the improved version 

The improved method has shown to behave stable even in situations were the old method 
gave rise to erroneous oscillations. A common sense motivation for the improved method is 
that the time centring of the strain rate in the formula for the yield stress looks better than in 
the old method, where the strain rate is at least one time step too old. A way of finding a theo-
retical motivation would be to carry out a stability analysis for the method as in Ref. [5]. In-
stead of doing that we have studied numerical algorithms for solving a very simple problem 
with a Maxwell type material in Appendix B. Our improved method, applied to that problem, 
turns out to be equivalent to an established numerical method, namely, the Euler backwards 
scheme. This could perhaps give some support for the soundness of the method.  
 
 

6. CONCLUSIONS 
 

Our implicit method for treating the Johnson-Cook’s constitutive model in the hydrocode 
AUTODYN-2D leads to smooth curves for the material response. The yield stress is correctly 
increased due to the influence from strain rate. The new “strain rate corrected” option in the 
latest version of AUTODYN (v. 4.2) was also tested and found to give almost identical result 
as our implicit method.    

The erroneous oscillations that were present in the old standard implementation of the 
model are due to the treatment of strain rate, because this implementation works well if the 
strain rate influence is removed from the constitutive model and only strain hardening and 
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thermal softening are kept. The good behaviour of the simplified version of the improved 
method suggests that it might not be necessary to treat all history variables implicitly.  
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Figure 1. Yield stress and von Mises effective stress vs. time. The old method. Parameters for 
4340 steel.  
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Figure 2. Yield stress and von Mises effective stress vs. time. The improved method, implemented 
as a user-subroutine in AUTODYN. Parameters for 4340 steel. 
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Figure 3.  Yield stress and von Mises effective stress vs. time for 4340 steel. Two methods are 
compared, namely, the improved method (solid curve), implemented as a user-subroutine in 
AUTODYN, and the new method in AUTODYN version 4.2 (dashed curve).  
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Figure 4. Yield stress and von Mises effective stress vs. time. The old method. Parameters for 
4340 steel, except 
(a) that strain hardening and thermal softening are turned off (i.e. only strain rate sensitivity is on) 
(b) that strain rate sensitivity and thermal softening are turned off (i.e. only strain hardening is on).  

 
 
 

    
Figure 5. Yield stress and von Mises effective stress vs. time. The old method. Parameters for 
4340 steel, except for the strain rate coefficient, which is set to a very low value C = 0.001, so that 
un-damped oscillations do not occur.  

(a) 

(b) 
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Figure 6. Yield stress and von Mises effective stress vs. time. The old method. Parameters as in 
figure 5, except for  
(a) strain rate coefficient, which is doubled to C = 0.002,  
(b) applied strain rate, which is decreased from 1000 to 500 s-1,  
(c) time step, which is decreased from 16 to 8 ns 
 

(a) 

(b) 

(c) 
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Figure 7. Yield stress and von Mises effective stress vs. time. The simplified version of the im-
proved method. Parameters for 4340 steel. 

 
 

    
 

Figure 8. Yield stress and von Mises effective stress vs. time. The simplified version of the im-
proved method. Parameters for 4340 steel, except that strain rate effects and thermal softening are 
turned off, i.e. only strain hardening remains.  
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Figure 9. Residual velocity (or exit velocity) vs. 
impact velocity for a rigid projectile penetrating a 
plate of HNS steel. The left curve represents simula-
tions with the old method and no strain rate depend-
ence (C = 0), whereas the remaining three curves 
correspond to the data for HNS steel (according to 
Table 1) but to different methods, namely, the old 
method, the improved method, and the new method, 
respectively, from left to right. See also Table 4. The 
diagram is taken from Ref. [13]. 
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APPENDIX A. THE USER MODEL 
 
A1. Overview 

A file with user-subroutine skeletons are supplied with Autodyn. Our implementation of 
Johnson-Cook’s constitutive model in Autodyn is done by completing the user subroutine 
EXYLD, in which the yield limit is calculated. The Fortran 90 technique of having internal 
subroutines is used, and EXYLD contains several subroutines. The most important are 
STRENGTH, JC, and SOLVE. The purpose of the subroutine STRENGTH is to evaluate a 
function, namely, the yield stress as a function of plastic strain, plastic strain rate, and tem-
perature, and also to calculate the partial derivative of this function with respect to the first 
two variables. STRENGTH is an administrative routine, which calls JC if Johnson-Cook 
(model = 1) is selected and some other routine (not yet implemented) if another constitutive 
model is used. For the time being ZA is only a dummy routine. In SOLVE the Newton-
Raphson iterations are carried out.  
 
Table A1. Input parameters to the user implementation of Johnson-Cook’s model 
 

Strength constant 
array 

Fortran 
variable 

Physical 
variable 

Description 

SC(1) g G Shear modulus 
SC(2) aa A Static yield stress 
SC(5) bb B Strain hardening coefficient 
SC(6) nn n Strain hardening exponent 
SC(7) cc C Strain rate coefficient 
SC(8) mm m Thermal softening exponent 
SC(9) tempref T0 Reference temperature 
SC(10) tempsm Tm Melting temperature 
SC(11) epsdot0 0ε&  Strain rate threshold 
SC(12) TOL  Tolerance for the relative error in strain rate 
SC(20) method  = 1 Only strain rate is treated implicitly 

 = 2 Also strain hardening is  treated implicitly 
SC(21) model  = 1 Johnson-Cook 
  = 2 (Not implemented) 
 

The material parameters for Johnson-Cook’s model, which are input data to the user sub-
routine, are supplied via the SC(.) array. The details are found in Table A1. The four last 
parameters in Table A1 might be confusing to the user. Therefore in some versions of the user 
routine, the user’s input values are overridden or changed to a proper default value if the user 
has left them as zero. In the current version, the user inputs for SC(20) and SC(21) are 
ignored and they are set internally to 2 and 1, respectively. If the tolerance SC(12) is left as 
zero by the user, the program will set it equal to a variable called EPSPP5, which is supplied 
by Autodyn in the module KINDEF and has the value 10-5 in single precision and 10-10  in 
double.   

 
A2. Miscellaneous details.  

The declarative part of EXYLD including descriptions of input and output parameters is 
found in Table A2. 

In order to simplify the notation here, we write the function, expressing the yield stress as 
Y =  Y(u,v), where u is the plastic strain and v is the plastic strain rate. Its partial derivatives 



 22

are uY ∂∂ / and vY ∂∂ / . The temperature argument in the function Y is not written explicitly 
since it is always Tn, the temperature at the time tn. The function Y is defined as (for Johnson-
Cook’s model)  

 ( )( ) pm
H

n vTBuAvuY 0,1),( ε&≤−+=  (A2.1) 

( ) ( )( ) ( ) pm
H

pn vTvCBuAvuY 00 .1ln1),( εε && ≥−++=  (A2.1)  

 
Table A2. Formal parameters and declarations in subroutine EXYLD
 

SUBROUTINE EXYLD (PRES,TT1,TT2,TT3,XMU1,EPS1,EPSD,TEMP1,YIELD1,IFAIL)
USE KINDEF
USE CYCVAR
USE ...

! INPUT PARAMETER

! PRES PRESSURE
! Tnn PRINCIPAL STRESSES
! XMU COMPRESSION
! EPS1 EFFECTIVE PLASTIC STRAIN
! EPSD EFFECTIVE PLASTIC STRAIN RATE
! TEMP1 TEMPERATURE
! IFAIL STRESS STATE INDICATOR
! = 0 HYDRO
! = 1 ELASTIC
! = 2 PLASTIC
! = 3 BULK FAILURE (WITH HEAL)
! > 3 BULK FAILURE (NO HEAL)

! OUTPUT PARAMETERS

! YIELD1 YIELD STRESS FOR CURRENT MATERIAL
! IFAIL STRESS STATE INDICATOR (SEE ABOVE)

…
…
…

END SUBROUTINE EXYLD 
 

In order to calculate the yield stress for time tn+1, we have to solve Eq. (3.4) (in Sec. 3 of 
the main text) for the plastic strain increment. The yield stress is then found to be equal to the 
right member of that equation. We reformulate the equation in terms of plastic strain rate, 
which we call x in this context and obtain 

 ),()3(* xtxYxtG p
n

p
eff ∆+=∆− εσ . (A2.3) 

Here nn ttt −=∆ +1  is the time step called DLTH in the Fortran code of Autodyn and is supplied 
in the module CYCVAR. The shear module G and the material parameters in the expression for 
Y are taken from the array SC(.) in module MATDEF, see Table A1. The effective stress for 
the trial stress tensor *

effσ  is calculated from the principal stresses in the usual way 

 [ ]2
13

2
32

2
21

* )()()(
2
1 σσσσσσσ −+−+−=eff , (A2.4) 

which is easy, since the principle stresses for the trial stress tensor are in the parameter list 
of EXYLD. They are called TT1, TT2, and TT3. 
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We write Eq. (A2.3) as 

 0),()3()( * =∆+−∆−≡ xtxYxtGxF p
neff εσ  (A2.6) 

and solve it by Newton-Raphson’s iterative method 

 
)(
)(

1
k

k
kk xF

xFxx
′

−=+  (A2.7) 

where  

 ),(),(3)( xtx
v
Yxtx

u
YttGxF p

n
p
n ∆+

∂
∂−∆+

∂
∂∆−∆−=′ εε  (A2.8) 

and F(x) is given by Eq. (A2.6). 
There are some difficulties that are addressed below. We first list them.  

 

(i) F(x) is not differentiable for px 0ε&= , since Y(u,v) is not differentiable with respect 
to v for pv 0ε&= , which is a consequence of the fact that Y(u,v) is defined by differ-
ent expressions depending on whether v is below or above the threshold value for 
strain rate effects, p

0ε& , see Eqs (A2.1-2).  
 

 (ii) )0(F ′  may be non-existent, since uY ∂∂  does not exist for 0=u  in the common  
situation when the strain hardening exponent n is less than 1. This problem occurs 
only if the cumulated plastic strain 0=p

nε , see Eq. (A2.8). It is interesting to note 
that a slight problem exists also for n = 1, despite that the derivative certainly ex-
ists in that case. If one tries to evaluate the derivative of nx , namely, 1−nnx , for 

0=x  in the special case when 1=n , a run time error will result.  
 

(iii) F(x) is defined only for 0≥x , so x-values during the iteration must stay in that in-
terval, or rather because of (ii) be positive. A related problem is that Newton-
Raphsons’s method need not generally converge if the initial guess is too bad. 

 

(iv) In the spirit of AUTODYN programming, we would like the user subroutine to fit 
into both the single and double precision versions of the code without any 
changes.  

The left member of Eq. (A2.3) is a decreasing linear function of x, and the right member 
is an increasing function of x. Therefore F(x) is a decreasing function of x, and the routine 
EXYLD distinguishes between the following three cases: 
 

Case 1: 0)0,()0( * ≤−≡ p
neff YF εσ  (A2.9) 

 

Case 2: 0),()0( * >−≡ xYF p
neff εσ , and   

 0),()3()( 000
*

0 ≤∆+−∆−≡ ppp
n

p
eff

p tYtGF εεεεσε &&&&  (A2.10) 
 

Case 3:  0),()3()( 000
*

0 >∆+−∆−≡ ppp
n

p
eff

p tYtGF εεεεσε &&&&  (A2.11) 

In case 1 the trial stress tensor is on or inside the yield surface that corresponds to zero 
strain rate. This means that no plastic strain will occur during the time step and therefore x = 0 
is considered as the solution. In case 2 the solution satisfies 

 px 00 ε&≤< , (A2.12) 
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i.e. the strain rate x is below the threshold for strain rate effects. In case 3 the solution x is 
above the threshold, 

 px 0ε&> . (A2.13) 

Difficulty (i) is solved by the possibility to distinguish between these cases before the it-
eration starts. The trick is to use only one of the expressions for Y(u,v) during the iteration. In 
case 2, when the solution is known to be below the threshold, we use the expression (A2.1), 
for Y(u,v) when calculating )( kxF  and )( kxF ′  even if kx  occasionally should be above the 
threshold. Analogously expression (A2.2) is used in case 3.  

Difficulty (ii) and (iii). By analysing the graph of F(x) or alternatively the curves repre-
sented by the two members of Eq. (A2.3), it is easily seen (at least for reasonable values of the 
constitutive parameters) that F apart from being a decreasing function has a positive second 
derivative. From this it follows that the iteration converges monotonically from all values less 
than the true solution, and that all values greater than the true solution will in the next step of 
the iteration lead to a value less than the true solution. 

Iterations are performed only in case 2 and 3, and in these cases the solution is known to 
be positive, i. e. .0>x  Zero can not be used as an initial value because of (ii). Instead we use 
the threshold value px 0ε&=  as initial value for the iterations, when the cell becomes plastic for 
the first time. In the later iterations the preceding value of the plastic strain rate is used as ini-
tial value. If the x-value becomes negative during the iteration it is natural to throw it back on 
the positive side, but how far? The following procedure is adopted: Assume 0>kx and 

01 ≤+kx . Then we set 1+kx  equal to kx01.0 , which is positive. Should the negative values per-
sist this procedure eventually leads to a value less than the true solution, and from that the 
convergence will be monotone. 

Difficulty (iv). In Autodyn floating point variables have declarations of the type 
 

REAL(REAL8):: ZZ

where REAL8 is set to an appropriate value in a module called  KINDEF, which is different in 
the single and double precision versions of the code. Therefore the declarations can be the 
same in both versions. Floating point constants have to be avoided in subroutine calls, since 
they are written differently in single and double precision, for instance 1.0 and 1.0D0, respec-
tively. Use of wrong type will pass a totally wrong value to the subroutine. However,   
 

USE KINDEF
REAL(REAL8):: ZZ
...
ZZ = 1.D0
CALL SUB(ZZ)

 
does work for both precisions, since a proper type conversion is done in the assignment 
statement in single precision.  
 
A3. The subroutine STRENGTH 

This subroutine is purely administrative and is listed in its entirety in Table A3. The ar-
guments are passed along directly to the next routine. This routine is needed when more than 
one constitutive model is included in the user routine. 
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Table A3. Subroutine strength 
 

subroutine Strength(isw,ideriv1,ideriv2,ideriv3, &
u,v, sig,dsigdu,dsigdv)

integer(int4):: isw !INPUT: isw = 0 below threshold
! isw = 1 above threshold

integer(int4):: ideriv1,ideriv2,ideriv3
! INPUT: ideriv1 = 1, Calculate the derivative dsig/du
! ideriv1 = 0, Do not calculate the derivative
! ideriv2 = 1, Calculate the derivative dsig/dv
! ideriv2 = 0, Do not calculate the derivative
! ideriv3 = dummy

real(real8):: u, v !INPUT: plastic strain, plastic stain rate

real(real8):: sig, dsigdu, dsigdv
!OUTPUT: Yield limit,
! derivative of yield limit with respect to plastic strain
! derivative of yield limit with respect to plastic strain rate

if (imodel .eq. 1) then
call JC(isw,ideriv1,ideriv2,ideriv3,u,v, sig,dsigdu,dsigdv)

else if (imodel .eq.2) then
call ZA(isw,ideriv1,ideriv2,ideriv3,u,v, sig,dsigdu,dsigdv)

endif
end subroutine Strength

 
The first parameter ISW is used as a switch to choose between the two expressions (A2.1) 

and (A2.2) for the yield stress. The next parameters IDERIV1 and IDERIV2 are used to 
indicate whether or not the partial derivatives shall be calculated. IDERIV3 is a dummy pa-
rameter. The parameters U and V are plastic strain and plastic strain rate, respectively. The 
three last arguments are output parameters: SIG is the yield stress, and DSIGDU, DSIGDV are 
the partial derivatives.  

 
A4. The subroutine JC 

The subroutine JC, see Table A4, is the routine that is specific to the Johnson and Cook’s 
model. It is called from STRENGTH, which passes along all the parameters with the same 
meaning and declarations. They are therefore explained only in connection with that routine 
in the preceding section.  

 
Table A4. Formal parameters and declarations in subroutine JC
 

subroutine JC(isw,ideriv1,ideriv2,ideriv3,u,v, sig,dsigdu,dsigdv)
! The parameters have the same meaning as in the calling
! subroutine STRENGTH
…
…
…
end subroutine JC 
 
 
A5.  The subroutine SOLVE 

In the subroutine SOLVE, see Table A5, the iteration is carried out. The first four parame-
ters are passed unchanged to the call of STRENGTH, but with slightly changed meaning for 
three of them. The first, ISWITCH selects whether the solution is going to be searched below 
or above the threshold. IDERIV1 selects if the strain hardening is going to be treated in the 
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more accurate implicit way or the explicit way. IDERIV2 does the same thing for the strain 
rate. IDERIV3 is a dummy parameter (intended for the temperature). The intention with 
IDERIV1=IDERIV2=0, is that SOLVE should calculate the same yield stress as the standard 
model in Autodyn would do. However, IDERIV2=0 is not implemented. In order to obtain 
the improved method, SOLVE should be called with IDERIV1=IDERIV2=1. It is easy to 
implement IDERIV1=0 (explicit treatment of strain hardening), by simply cancelling the 
term tx∆  in the first argument of Y in Eq. (A2.3) and follow up the consequences of that in 
subsequent equations.  

If XSTART is less than or equal to zero it is reset to the threshold value. During the itera-
tion (when 2x  is calculated from 1x ) 1x  is guarantied to be positive by a procedure described 
in the end of Sec. A2 of this appendix.  

A maximum of 25 (for the time being) iterations is carried out. The iteration is stopped 
when the relative difference between two consecutive values of the strain rate is less than a 
tolerance TOL, i. e.    

 212 )( xxx TOL<−  (A5.1) 

Here TOL = SC(12) is an input value, see Table 1. The yield stress is then calculated by  

 ),( xtxYY p
n ∆+= ε . (A5.2) 

 
Table A5. Formal parameters and declarations in subroutine SOLVE
 

subroutine solve(iswitch,ideriv1,ideriv2,ideriv3, &
eps_old,SigTrial,xstart, x,sig)

real(real8):: eps_old, SigTrial,xstart
!INPUT: old strain,
! effective stress for trial stress tensor
! strat value for x (strain rate)

integer(int4):: iswitch,ideriv1,ideriv2,ideriv3
!INPUT: iswitch = 0 below strain rate threshold
! iswitch = 1 above strain rate threshold
! Switches for impliciteness.
! ideriv1 = 0 strain hardening explicit
! ideriv1 = 1 strain hardening implicit
! ideriv2 = strain rate explicit (not allowed)
! ideriv2 = strain rate implicit
! ideriv3 = dummy

real(real8):: x,sig
!OUTPUT: strain rate,
! yield limit

…
…
end subroutine solve
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APPENDIX B.  A SIMPLE ONE-DIMENSIONAL PROBLEM 
  
B1.  Formulation of the problem for constant friction 

A box standing on a table can be pushed and pulled with a spring which is attached to the 
box at one end, see Fig. B1. The friction force between the box and the table is first assumed 
to be constant. Later on we will consider non-constant friction. We assume an x-axis along 
which the box moves. Let the position of the end of the spring, where the pulling force is ap-
plied (point A), be x = f(t) + L and the position of a reference point on the box be x = u(t). By 
choosing the constant L appropriately the tensional force in the spring can be written as 

 ))()(()( tutfktp −= , (B1.1) 

where k is a positive constant. For time t = 0 we assume f(0) = u(0). As a first example, we 
assume a constant friction force Y between the box and the table. 
 
 
 
 
 
 
 
 

Figure B1. 
 

The problem that we are going to study can be formulated as follows: Determine the force 
p(t) in the spring when the position of point A, namely f(t), is given for t ≥ 0. Because of the 
relation (B1.1) between p(t) and u(t), the problem could equivalently be formulated as: deter-
mine the position u(t) of the box when f(t) is given. 
 
B2.  Solution of the discrete problem for constant friction 

We are going to study a time discrete version of this problem, and we therefore assume 
that f is given at times 0 = t0 < t1 < t2 < t3 < … as fn = f(tn), and we seek pn = p(tn) and un = 
u(tn). For simplicity of notation the time step is assumed constant and equal to ∆t. This restric-
tion could easily be removed in the algorithms presented here. The discrete counterpart of Eq. 
(B1.1) is 

 )( nnn ufkp −= . (B2.1) 

At time zero we have p0 = 0 and u0 = 0. When pn is known, pn+1 is calculated in the following 
way: First, we carry out the movement of point A and constrain the box to stand still, so that 
the force in the spring becomes p p k f fn n n* ( )= + −+1 . If this trial force p* is less than the 
friction force Y in absolute value, i.e. |p*| ≤  Y, then the trial force is accepted as the new force 
and the box does not change its position during the time step: *1 ppn =+  and nn uu =+1 . In the 
opposite case when |p*| > Y the box is moved slightly, so that the absolute value of the force 
in the spring is decreased to Y, and we get *)sgn(1 pYpn =+ .  From Eq. (B1.1) it is seen that in 
order to accomplish this, the box has to be moved the distance (|p*| - Y)/k, in positive direc-
tion if p* is positive and in negative direction if p* is negative. This can be written as 

*)sgn()*)(/1(1 pYpkuu nn −+=+ .  

A

x 
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Here we have had to use the sign function defined as sgn(x) = 1 if x > 0, sgn(0) = 0, and 
sgn(x) = -1 if x < 0. If the attention had been restricted to the special case, where the box is 
pulled only in one direction all the time, the complication of having to use the sign function 
and absolute signs in several places in the formulas, would have disappeared.   

 
B3.  Formulation of the problem for non-constant friction 

Let us first introduce some notations. The velocity of the box is  

 )()( tu
dt
dutv ′== , (B3.1) 

and the absolute values of  this velocity and the force are  

 V t v t( ) ( )=  (B3.2) 

 )()( tptP = , (B3.3) 

respectively. The total distance U travelled by the box since time zero is 

 ττττ dvdutU
tt

∫∫ =′=
00

)()()( . (B3.4) 

It is worthwhile noting that  

 V
dt

dU =  (B3.5) 

which is seen by differentiating Eq. (B3.4) and use Eq. (B3.2). Observe that in the special 
case where the box is constantly pulled to the right, we have U = u, V = v, and P = p.  

We will now generalise the problem and assume the friction force to be dependent of U 
and V according to 

 )()(),( VUaVUYY ϕψ ++== , (B3.6) 

where a is a positive constant. The functions ϕ and ψ have to be defined only for non-
negative arguments, since U and V are always non-negative. We assume that both ϕ and ψ are 
monotonically increasing functions and that ϕ(0) = 0 and ψ(0) = 0. However, occasionally we 
will relax the restriction that ψ has to be increasing. Most of the detailed analysis will be per-
formed for the linear friction force  

 cVbUaY ++= , (B3.7) 

where the constants satisfy 0>a , 0≥c , and kb < .   
 
B4.  Solution of the problem for non-constant friction 

Here we are going to describe a method for solving the case with non-constant friction 
force Y given by Eq. (B3.6). We use the notation Yn for the value of that force at time tn. The 
method outlined in Sec. B2 ”A first solution of the discrete problem” can be applied almost 
literary. The only change is that Yn+1 has to be substituted for Y. We write the formulas with 
that modification: 
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 p p k f fn n n* ( )= + −+1  (B4.1) 

 ** pP =  (B4.2) 

If 
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1 (B4.3) 

then 
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1
γ

*  (B4.4) 
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+
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else 

 p pn+ =1 *  (B4.6) 

 nn uu =+1 . (B4.7) 

One equation is still missing, namely, an expression for Yn+1, which is a discrete counterpart 
of Eq. (B3.6). We will give two alternative formulas for that in the following sections.   

Let us note that in order to calculate pn+1 we do not have to reference un and un+1, because  
Eq. (B4.5) and (B4.7) could be left out if we were not interested in calculating u(t).  

For future references we derive a formula for the increment ∆U = Un+1 - Un, which is 
equal to the distance that the box moves during the corresponding time step, i.e. |un+1 - un|. In 
the case γ > 1, this is the absolute value of the last term in Eq. (B4.5). In the other case, γ < 1, 
we have ∆U  =  0 according to Eq. (B4.7). Both cases can be written with one formula, 
namely,  

 11 *1
++ −=−=∆ nnn YP

k
UUU , (B4.8) 

where we have used the symbol , defined as xx = if x ≥ 0, 0=x if x < 0. Note also 
that the absolute value of the velocity of the box, V, during the time interval from tn to tn+1 is 
approximated by the difference quotient V = ∆U/∆t. 
 
B5.  Method I, the traditional method 

We use the algorithm described in the previous section together with the following dis-
crete version of Eq. (B3.6): 

g ( )Y a U
U U
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n n

+
−= + +

−



1

1ψ ϕ
∆

. (B5.1) 

We recall that Yn+1 is used when integrating over the time step from tn to tn+1, so the values of 
U seem to be a bit old. The reason for using them is that when Yn+1 is needed in the algorithm, 
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Eq. (B4.3), Un is the most recent known U-value. The value Un+1 is calculated towards the end 
of the cycle by Eq. (B4.8), where in fact Yn+1 is used.  

Method I will be further analysed in Sec. B11, but a few problems with the expression 
(B5.1) can be pointed out already at this stage. The time derivative in the last term is centred 
at the midpoint of the interval from tn-1 to tn, which is outside of the time interval over which 
we integrate, namely, the interval from tn  to tn+1. Let us look at the special case where there is 
no rate effect, i.e., ϕ ≡ 0. If the box has not been standing still during the time step, the new 
values Pn+1 and Yn+1 will be equal, so we have ( )nnn UaYP ψ+== ++ 11 . The exact solution in 
this case satisfies ( ))()( tUatP ψ+= , and a good discrete solution would therefore satisfy 

( )11 ++ += nn UaP ψ . This small mismatch of the time centring of U and V in Eq. (B5.1) is not 
harmless in presence of rate effects, since it causes instabilities, as will be seen in Sec. B11.  
 
B6.  Method II, the improved method 

In the improved method we also use the algorithm in Sec. B4, but instead of using Eq. 
(B5.1) we use 
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which have an improved centring of the U-values. The difference quotient in the last term is 
centred at the midpoint of the time interval over which we integrate. If we use ∆U = Un+1 - Un, 
Eq. (B6.1) can be written 
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With this choice of Yn+1 the algorithm in Sec. B4 will be implicit. Equations (B6.2) and (B4.8) 
constitute a non-linear system of equations with two unknowns Yn+1 and ∆U. However, Yn+1 
can be eliminated. By substituting the expression (B6.2) for Yn+1 into Eq. (B4.8), we obtain 

 







∆
∆∆+−=∆

t
UUUYP

k
U n ,*1  (B6.3) 

or 
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This equation is solved, for instance by iteration, for ∆U. Then Un+1 = Un + ∆U and Yn+1 is 
given by Eq. (B6.2). 
 
B7.  Differential equation 

Method I and II were formulated without having formulated a differential equation. They 
were derived directly from the mechanical problem. In this section we are going to write 
down the governing differential equation and then, in a following section, solve this equation 
with an established numerical method. In this section we assume that the function ϕ is strictly 
monotonically increasing, so that its inverse exists.  
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Although we are more interested in p(t) than in u(t), it is probably easier to construct the 
differential equation in terms of u(t) than p(t), and then use Eq. (1.1) to get p(t). If the force in 
the spring is not strong enough to overcome the friction force, the box is standing still and we 
have du/dt = 0. On the other hand, if the force is strong enough to move the box, the absolute 
value of the force, P, will be equal to the friction force Y. From Eq. (B3.6) we get the relation 

 P a U V= + +ψ ϕ( ) ( )  (B7.1) 

between P, U, and V=dU/dt. We might regard this as a relation between the velocity V and an 
“excess” force P a U− −ψ ( ) . We recall that we have assumed φ(V) to be a monotonically 
increasing function, defined for V ≥ 0, with φ(0) = 0. Therefore, we can solve for V, and ex-
press V as a function of the excess force. A positive excess force gives rise to a positive V. If 
the excess force is zero or negative, the box stands still and V = 0. All this can be expressed in 
the formula 

 ( ))(UaPV ψ−−Φ= , (B7.2) 

where we again have used the symbol , and also introduced the inverse function to ϕ, 
namely Φ. Here V = |du/dt| and P = |p|, so we need a sign rule in order to obtain du/dt. The 
box, of course, moves in the same direction as it is pulled, so the sign rule is that du/dt and p 
should have the same sign. Therefore we obtain  

 ( ) )sgn()( pUap
dt
du ψ−−Φ= . (B7.3) 

By substituting the expression (B1.1) for p into Eq. (B7.3), we finally obtain the differential 
equation for u 

g ( ) ))()(sgn()()()( tutfUatutfk
dt
du −−−−Φ= ψ , (B7.4)  

where U is given by Eq. (B3.4) as 

g U t u d
t

( ) ( )= ′∫ τ τ
0

 (B7.5) 

 
 
B8.  Method III, Euler backwards  

Euler backwards is an implicit method for solving a differential equation of the type 

 ),( ytG
dt
dy =  (B8.1) 

by the difference scheme  

 ),( 11
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∆
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Here y may be a vector.  
If we define the function g as the right member of Eq. (B7.4), namely, as 
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 ( ) ))(sgn()()(),,( utfUautfkUutg −−−−Φ= ψ , (B8.3) 

the differential equation (B7.4) can be written as 

 ))(),(,( tUtutg
dt
du = , (B8.4) 

which is not quite of the type (B8.1) because of the appearance of U in the right member. If 
we disregard this complication, for the time being, the Euler backwards scheme for the differ-
ential equation (B8.4) would be  
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g nnnn uuUU −=− ++ 11 , (B8.6) 

where the last equation is a difference approximation of (B7.5). Alternatively (B8.5) may be 
written 

 )( 111
1

+++
+ −−−=








∆
−

nnn
nn Uaufk

t
uu ψϕ , (B8.7) 

in which case a sign rule has to be given, namely that un+1 - un  must have the same sign as fn+1  
- un+1).  

In order to be more convinced that (B8.5-6) is a sound numerical scheme that deserves to 
be called Euler backwards, we first observe that Eq. (B7.5) after differentiating can be written 
as 

 ),,( Uutg
dt
du

dt
dU == , (B8.8) 

where Eq. (B8.4) has been used for the last equal sign. Introducing a vector y=(u,U)T, the sys-
tem of differential equations, consisting of Eqns (B8.4) and (B8.8), is represented by Eq. 
(B8.1) if  
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With these notations it is easily seen that the Euler backwards scheme (B8.2) is the same as 
the system (B8.5-6). 
 
B9.  Method IV Euler forwards 

Euler forward is an explicit method which you get by substituting n for n+1 in the right 
member of Eq. (B8.2). This changes Eqs (B8.5-6) to 
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g nnnn uuUU −=− ++ 11 , (B9.2) 
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Alternatively (B9.1) can be written 
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where a sign rule is needed, namely that un+1 - un  should have the same sign as fn - un.  
 
B10.  The equivalence between methods II and III 

The implicit method II is derived by physical reasoning without formulating the differen-
tial equation. We will show that method III, which is an established numerical method, is in 
fact equivalent to method II. Method II consists of two steps. First point A is moved, and then, 
if the trial force P* exceeds the friction force, the box is moved the distance ∆U so that the 
force is relaxed to Pn+1. Therefore 

 UkPPn ∆−=+ *1 , (B10.1) 

which is obvious, if you think of the “physical interpretation” of method II. It also follows 
from Eq. (B4.8) and the observation that Pn+1 = Yn+1 in the case where the box is moving. In 
the other case where the box stands still we have Pn+1 = P*, so Eq. (B10.1) still holds.  
 

Another interesting derivation of this might be as follows. From Eqs (B4.1-2), where P* is defined, we 
obtain 
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The sign rule says that fn+1 - un+1 and  un+1 - un  must have the same sign; the box moves in the same direc-
tion as it is being pulled. Therefore we get      

 UkkPuukpkuukufkP nnnnnnnn ∆+=−+=−+−= ++++++ 111111*  

The difference equation (B8.5), or rather the form (B8.7), of method III can be written as 
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By substituting the expression for Pn+1 from Eq. (B10.1) into Eq. (B10.2) we obtain  
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This Eq. (B10.3), derived from method III, should be compared to Eq. (B6.4) of method 
II, and it is immediate that they are equivalent if we disregard the -brackets. The expres-
sion within the brackets in the right member of both equations (B6.4) and (B10.3) are decreas-
ing functions of ∆U , which for ∆U = 0 has the value )(* nUaP ψ−− . It is easily seen that if 
that quantity is positive, both equations have solutions ∆U > 0, and the brackets does not af-
fect the equations in this case. Therefore the solutions are the same. In the opposite case when 

0)(* ≤−− nUaP ψ  the quantities within the brackets is less than or equal to zero for all posi-
tive ∆U and the solutions to both equations are ∆U = 0. Therefore the equations (B6.4) and 
(B10.3) have the same solution ∆U, and therefore the updated Un+1 will be the same for both 
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methods II and III. Since the sign rule is the same in both methods, also un+1 will be the same, 
and it follows that pn+1 will be the same because of the relation  (B1.1). Therefore, methods II 
and III are equivalent (assuming that the function ϕ is strictly monotonically increasing, so 
that its inverse exists, cf. Sec. B7).  

Of the four methods we are considering, we have shown that the implicit methods II and 
III are equivalent. A natural question is if the two explicit methods, I and IV, are equivalent. 
The answer is no, because method I involves three time-levels, see Eq. (B5.1), while method 
IV involves only two.  
  
B11.  Stability analysis for method I 

In order to simplify the analysis we assume that both hardening and rate effects are linear, 
i.e. bUU =)(ψ  and cVV =)(ϕ . For the four constants k, a, b, c, we assume that 0>k , 

0>a , |b| < k, and 0≥c . With these assumptions Eq. (B5.1) becomes 
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To simplify matters even more we assume that the box is pulled to the right (in positive x-
direction) and that the box actually moves. Then Un = un for all n, and the force in the spring 
will be equal to the friction force, i.e. pn+1 = Pn+1 = Yn+1, so from Eq. (B11.1) it follows that 
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Using the expression for pn+1 given by Eq. (B1.1), we obtain 
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which can be written 
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Here we assume fn+1 to be increasing with n and so large that the right member is positive, 
because that is, namely, the condition for the box to be moving.  

Equation (B11.4) is a linear difference equation for un with fn+1 as the “driving force” in 
the right member. The solution is a sum of a particular solution and the general solution to the 
homogenous equation, which is 
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By substituting the expression n
nu λ=  into Eq. (B11.5) we obtain the characteristic equation    
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for the unknown λ. The two roots are 
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The difference equation (B11.4) is stable if both roots satisfy 1≤λ . Since k > 0 and both 
roots are real, this means that the following two inequalities must both hold: 
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After multiplication by 2k∆t these inequalities can be written 

 ( ) ctbktkcctb +∆+≤∆++∆ )2(42  (B11.10) 

 ( ) ctbktkcctb −∆−≤∆++∆ )2(42 , (B11.11) 

respectively. Squaring and collecting terms leads to  

 4 02k k b t( )+ ≥∆  (B11.12) 

 4 8 02k k b t kc t( )− − ≥∆ ∆ , (B11.13) 

respectively. Under our assumption |b| < k, the first inequality is true for all positive ∆t (only 
these are of interest) while the second holds if and only if   

 ∆t
c

k b
≥

−
2

, “Stable time step”, method I (B11.14) 

(again under the assumption that only positive ∆t values are considered). In order to verify 
that the last sentence is true, not only for (B11.12-13), but also for (B11.10-11) and (B11.8-9), 
one must verify that the right member of (B11.10) is non-negative for all positive ∆t and that 
the right member of (B11.11) are non-negative for ∆t satisfying (B11.14). That is easily veri-
fied.  

The stability criterion (B11.14) is somewhat strange, since it requires the time step to be 
larger than a certain value. A numerical method with such a stability criterion can never con-
verge, because it will be unstable when the time step tends to zero. The analysis has been per-
formed assuming that the box is moving to the right during all time steps. It is, however, suf-
ficient to study a special case, when showing that the numerical method does not work prop-
erly.  

The simulations in the main text, cf. Fig. 1, suggests that method I will lead to bounded 
oscillations for small time steps. This is not contradicted by the fact that for small time steps 
Eq. (B11.4) contains an exponentially growing and oscillating component of type λn with λ < 
-1, because this component will eventually destroy the conditions under which Eq. (B11.4) 
represents the algorithm (namely that the box is moving to the right). In order to better under-
stand the oscillations, let us investigate a steady state solution in the special case of no harden-
ing, b = 0. Assume that the box is pulled via the spring with the constant velocity dtdf . The 
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correct physical solution (after steady state is attained) is, of course, that the box also moves 
with the same velocity, i.e. dtdfdtdu = , and that the friction force is dtdfcaY += . This 
steady state solution is permitted by the algorithm, but a completely different oscillating solu-
tion is also possible, namely, a solution where the box stands still every second time step and 
moves every second time step with the velocity 2df/dt. The friction force oscillates between 

aY =  and dtdfcaY 2+= . The smaller friction force is used during the time steps when the 
box is moving, and, the larger during the other time steps. (This is consistent with the algo-
rithm, since the friction force used in one time step is based on the velocity of the box during 
the preceding time step.) During the time steps when the box is standing still the computed 
trial force p* must be less then or equal to the friction force. It is fairly easy to see that this is 
possible if the time step satisfies the inequality  

 
k
ct 2≤∆ . (B11.15) 

From Eq. (B4.1) it is, namely, seen that the trial force is tdtdfkap ∆+= )(* , since in the 
preceding time step the smaller of the two friction forces was used, namely aY = , and there-
fore also apn = . The condition that this trial force should be less than or equal to the larger 
of the two friction forces is in fact the inequality (B11.15).  
  
B12.  Relaxation times in method I and the differential equation 

We assume here, as we did in the preceding section, that the friction force  
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dUcbUaY ++=  (B12.1) 

depends linearly on the distance U travelled by the box and velocity dU/dt and we also as-
sume that the box is pulled constantly to the right. Then u = U,  p = Y and by using (B1.1) we 
get  
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We write this differential equation as  

 atkfatukb
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(it could also have been found from (B7.4)). The homogenous equation has a solution equal to 
an exponential function with a relaxation time equal to c/(b+k). This solution is, however, 
difficult to interpret physically, since the assumption that the box is being pulled to the right is 
not consistent with a vanishing right member. After differentiation the differential equation is 
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dt
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and here a vanishing right member corresponds to zero pulling rate. A particular solution to 
Eq. (B12.4) is  
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The homogenous solution is  

 τ//)()( tctbk eetv −+− == , (B12.6) 

where the relaxation time is 
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(which is the same as that for (B12.3)).  
Now, we are going to investigate the corresponding properties of the numerical scheme 

method I. For the same reason as we differentiated the differential equation, we carry out the 
corresponding procedure with Eq. (B11.4) and get 
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where 1−−=∆ nnn uuu  and 1−−=∆ nnn fff .  For constant pulling rate, i.e. constant nf∆ , we 
seek a solution nu∆  that is constant. Eq. (B12.8) gives 
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and we get the relation 
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which is consistent with that for the differential equation (B12.5). It means that under steady 
state conditions (constant pulling rate) and if the stability criterion (B11.14) is fulfilled, 
method I gives a correct answer. 

 Equation (B12.8) has the same characteristic equation for λ as (B11.5), so the homoge-
nous solution to Eq. (B12.8) is nn

n CCu 2211 λλ +=∆ , where 1λ and 2λ are already calculated in 
Sec. B11 and given by (B11.8-9). The difference equation in method I has higher order than 
the differential equation, which is the reason why it has two independent homogenous solu-
tions while the differential equation has only one. As we have seen in Sec. B11, 2λ  becomes 
negative and larger than one in absolute value for small time steps. That will of course destroy 
any good behaviour in the other solution that might be present. But still, because of curiosity, 
let us investigate whether or not n

n Cu 11λ=∆  tends to a decaying exponential function with the 
correct relaxation time, i.e. the relaxation time (B12.7) for the differential equation. 

From Eq. (B11.8) we get  
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Using the relation tnt ∆= , we get from the last expression 
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i.e. the relaxation time is  
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which differs significantly from that given by Eq. (B12.7).  
 

B13.  Stability analysis of a simplified version of method II 
Method II is equivalent to method III, which is a backward Euler scheme, and therefore is 

known to be unconditionally stable (stable for all time steps). However, we are also interested 
in a simplification of method II, where the friction force is given by 
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1 ϕψ  Simplified method II (B13.1) 

instead of by Eq. (B6.1). The difference is that in the hardening term the old cumulated mo-
tion of the box (plastic strain) nU  is used instead of the new value 1+nU  . The simplification 
achieved by treating the hardening in an explicit way while retaining the implicit treatment of 
the rate effect is very minor, since the method will still be implicit. There is, however, another 
reason for studying it. If the error caused by treating hardening in an explicit way is negligi-
ble, that fact will indicate that the same could be true also for other history variables.  

We assume, as usual, that the box is constantly drawn to the right so that it never stops. 
Then the pulling force is equal to the friction force, given by Eq. (B13.1) for the simplified 
version, i.e.  
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which can be written 
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The characteristic equation is 
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and the solution is 
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which is always less than unity in absolute value under our assumptions 0>k , 0>c , and 
kb < . We conclude that the simplified method is also unconditionally stable. This analysis 

does not hold when c = 0, which is discussed below in Sec. B15. 
For the true method II the hardening term in the difference equation (B13.2) is 1+nbu . By 

carrying out the modifications of Eqs (B13.3-4) the solution  
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is found to the characteristic equation for method II and III. Both solutions (B13.5) and 
(B13.6) have the same asymptotic expression for small time steps, namely, 

 t
c

bk ∆+−≈ 1λ , (B13.7) 

which gives the correct relaxation time, given by Eq. (B12.7). 
 
B14.  Stability analysis of method IV 

We start by making the same assumption as was done for the stability analysis in Sec. 
B11, namely, that bUU =)(ψ  and cVV =)(ϕ , 0>k , 0>a , |b| < k, 0≥c , and that the box 
is pulled in positive x-direction. With these assumptions the difference equation (B9.1) for 
method IV becomes 
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This may be written 
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By substituting the expression n
nu λ=  into the homogenous equation one obtains the charac-

teristic equation  
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which has the solution  
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The requirement 1≤λ  leads to the stability condition  
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B15.  Discussion of the case with no rate effects 
Here we are going to discuss the special case where no rate effects are present, i.e. the 

function ϕ(V) vanishes identically and the constant c = 0, in formulas where we have assumed 
ϕ(V) = cV. This case should be easier to treat, but since the methods and analysis above does 
not always hold in this case, it deserves a discussion. The case with no deformation harden-
ing, b = 0, does not present the same change of character of the problem as does the case with 
no rate effects.   

Methods I and II, which are based on the algorithm in Sec. B4 hold also in the case with 
no rate effects. However, the differential equation formulation in Sec. B7 and methods III and 
IV, which are based on that formulation, does not hold. In fact, it is the derivative that drops 
out of the differential equation, which thereby is transformed into an ordinary equation. It is 
interesting to note that although methods II and III are equivalent in the case with rate effects, 
only method II works when rate effects vanish completely. 

In the case with no rate effects the simplified version of method II is equivalent to method 
I, for which the stability analysis in Sec. B11 is simplified. The order of the difference equa-
tion (B11.4) is reduced by one to first order (which is still one unit too much since the corre-
sponding “differential equation” is of zero order). The root to the characteristic equation will 
be 

 
k
b−=λ , (B15.1) 

which is seen from Eq. (B11.6) by setting c = 0. The solution to the homogenous equation is 
therefore 
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which is decaying because of our assumption |b| < k. The solution (B15.2) represents an error, 
a false relaxation mode, present because, in a way, we are solving an ordinary equation by a 
first order difference equation. The good part is that it decays very fast, because normally the 
deformation hardening modulus is much smaller than the elastic modulus, compare Table B.1. 
It also decays with a certain factor every time step (not every time unit), so the relaxation time 
will tend to zero with the time step.  
 
B16.  Summary and Conclusions of this appendix 

We have formulated a simple one-dimensional problem, see Fig. B1, which may serve as 
a model problem for constitutive models of elastic-plastic materials with strain hardening and 
strain rate sensitivity. The correspondence of concepts in the model problem with those in the 
constitutive model is outlined in Table B1. The aim of this appendix was to investigate differ-
ent numerical treatments of constitutive models, by applying them to the model problem.  

Four methods were introduced. Method I corresponds to the “old method” described in 
the main text of this report, Sec. 2, especially Eq. (2.13). Method II corresponds to the “im-
proved method”, Sec. 3, Eq. (3.1). Both these numerical methods are derived directly from the 
physical problem. The difference lies in the time centring of the velocity of the box (strain 
rate). Method I, which is explicit, uses a value from the previous time step for that quantity, 
while method II uses a value from the current time step, which is better, but causes method II 
to be implicit. Methods III and IV are derived from a differential equation that describes the 
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physical problem. Method III is the Euler backwards scheme, which is implicit, and method 
IV is the Euler forwards scheme, which is explicit.  

 
 Table B1.  Correspondence between parameters in the model problem and in the constitutive model 
 

 

 * Poor correspondence, since C is coefficient of a logarithmic term. 

 
The stability of the numerical methods were analysed assuming a linear expression for the 

friction force cVbUaY ++= , corresponding to linear dependence of yield stress on plastic 
strain and plastic strain rate. We assume 0>a , 0>c , kb < , where k is the stiffness of the 
spring, Eq. (B1.1). Method I is, strangely enough, stable only if the time step is larger than a 
critical value, Eq. (B11.14), which of course prevents it from converging when the time step 
tends to zero. A method that is unable to solve the model problem in this appendix cannot be 
expected to work well in the more complicated situation with a multidimensional constitutive 
model. 

Method II was shown to be equivalent to method III, when rate effects are present. Since 
method III is known to be an established numerical method, we conclude that also method II 
is a reliable method. The latter method has the advantage of working also in the special case 
of no rate effects. Method III does not work in this special case, because it is based on the 
differential equation, and there is no differential equation in this case; it is, namely, the term 
containing the derivative that drops out when rate effects vanish. The fact that the equivalent 
methods II and III are found to be stable, supports the soundness of the improved method, 
which we have implemented as a user subroutine in Autodyn. 

Euler backwards schemes are known to be unconditionally stable (stable for all values of 
the time step), so that will also be true for methods II and III. Method IV is stable only for 
small time steps, Eq. (B14.5), and the restriction on the time step gets stronger when strain 
rate sensitivity gets smaller. This fact makes method IV less attractive, although it is explicit. 

The simplified version of method II, see Eq. (B13.1), where the strain hardening was 
treated explicitly, was found to be unconditionally stable, see Sec. B13. Both this simplified 
method and method II itself are first order difference equations approximating a first order 

Model problem Constitutive model by Johnson and Holmquist 
Parameter Notation Notation Parameter 

Position of point A f  ijε  Strain tensor 
Tensional force in the spring p  ijσ  Stress tensor 
Position of the box u  p

ijε  Plastic strain tensor 
Velocity of the box v  p

ijε&  Plastic strain rate tensor 
Friction force Y  Y  Yield stress 
Absolute value of the force p  P  effσ  Effective stress 
Distance travelled by the box U  pε  Effective plastic strain 
Absolute value of the velocity v  V  pε&  Effective plastic strain rate 
Constant term in friction force a  A  Static Yield limit 
“Hardening” term in friction force bUU =)(ψ    
Hardening coeff. b  B  Strain hardening coeff. 
Rate sensitivity term in friction force  cVV =)(ϕ    
Rate sensitivity coeff. c  C  Strain rate coeff.* 
Spring constant K  E , G2 , G3  Elastic moduli 
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differential equation. For both methods the relaxation times for the exponential modes are the 
same (asymptotically for small time steps), as for the differential equation, see Sec. B13. In 
the special case of no rate effects, the derivative drops out of the differential equation, which 
thereby turns into an ordinary equation. This is correctly reflected in the “difference equation” 
of the true method II, which in this special case involves only one time level. The difference 
equation of the simplified version will, however, still involve two time levels and therefore 
have a false relaxation mode. It decays very fast according to Eq. (B15.2) and is probably 
harmless. The good behaviour of the simplified method II suggests that it might not be neces-
sary to treat history variables implicitly; cf. the explicit treatment of the temperature in our 
user-routine implementation of Johnson-Cook’s model, see Sec. 3 in the main text.  
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