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Abstract
Jet-noise has eventually been reduced to a minimum, but still there are problems in keep-
ing the overall noise levels low during take-off and approach. The reason for this is
basically that fan-noise, i.e. pressure fluctuations generated in the compressor or turbine,
becomes dominating. This phenomenon can be recognized as non-linear and complex
aerodynamics rather than acoustic problem in nature, and thus it becomes difficult to ob-
tain models that are general and accurate. However, with the aid of CFD, the problem can
now be studied in detail, but unfortunately this requires a very large number of points per
wavelength to distinguish the wave solution from numerical errors.

Applying the well-established linear methods for aeroacoustics in a parallel wall-duct
to the fan stage, one can obtain analytical expressions for the dispersion-relation. A si-
nusoidal acoustic wave with the known dispersion-relation is then propagated thru a 2D
numerical fan stage using a time-dependent finite-volume scheme. The numerical solu-
tion is then compared with the original wave to identify deviations that could originate
from dispersion, dissipation and reflections induced by the numerical boundaries.

An optimal number of points per wavelength were not established exactly, but in order
to have good results within reasonable computational time a rough estimate of around 20 -
40 points per circumferential wavelength has shown to be sufficient to preserve the wave.
In addition, certain physical and numerical phenomena applied to aeroacoustics has been
more clarified, that includes; viscous interaction, numerical dispersion and dissipation of
the sound waves, dependence of number of time steps per period, influence of different
grid skew angles, and the errors induced by improper boundary conditions.
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1 1 INTRODUCTION

1 Introduction

The silence of the birds was for real broken in 1902 when the Wright brothers entered
the free airspace with their propeller driven aircraft. The exceptional advantages of the
ground-independent vehicles gave a quick increase in number, later substituting slow
boats and cars with the fast and comfortable aircraft. The development was rapid, starting
with small aircrafts mainly used in military operations and later continued on to larger
and faster aircraft, both for military and civil use. In 1919 air transport of passenger
started, using propeller driven single and multi-engine aircraft. Increasing air traffic and
the need for larger and faster aircraft, in a combination of wartime, initiated development
of turbine-powered propulsion (Turbojet engine). In 1944 the first operational turbine-
powered aircraft for military use was introduced, the German Messerschmitt Me 262,
which was used as a “Blitzbomber” during the Second World War. Followed up by the
first turbine-powered aircraft for civil passenger transport 8 years later; the De Havilland
Comet in May 1952. The Comet marked a milestone for the new era of jet-powered
transport aircrafts.

The large advantages of jet-powered aircraft sat pace for research and development on
jet-engines with better performance. Associated with the better performance and larger
engines, there was also a steep increase in noise emitted – especially during take-off and
approaches. This, in combination with airports situated very close to the cities, noise
regulations during near-city flights were introduced. Therefore, methods to develop jet-
engines quiet enough to fulfill new airport regulations were needed.

Figure 1. Normalized noise levels of
transport aircraft by year of entry into
service. The noise levels for config-
urations are at time of initial service,
EPNdB.
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In 1951, Sir James Lighthill proposed a coupling between the well-established fluid
mechanical equations and the acoustics equations, Lighthill’s equation (e.g. [7]). This
gave rise to the so-called U 8-law, W = � �0D

2
U
8

c
5
0

, which indicates that the acoustic effect
from a jet is proportional to both velocity U of the power of eight and nozzle diameter D
of the power of two at the jet-outlet. The consensus of this dictates that to retain the same
performance, but to reduce noise, one has to lower the exit velocity and higher the nozzle
diameter. This gave birth to the so-called Turbofan engine, which have over the last four
decades reduced noise levels with about 30 dB (second-generation Turbofan), Figure 1.
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Figure 2. The major powerplant
noise sources, where noise levels
from the different sources is given.
Picture taken from [13].

Even though jet-noise eventually has been reduced to a minimum, there are still prob-
lems in keeping the noise levels low during take-off and approach. From experiments
(see e.g. [19]), it has been shown that fan noise intensity (i.e. noise generated by the
blades/vanes in the compressor or turbine – often associated with turbulent wakes devel-
oped by rotor/stator) dominates over the jet noise intensity. This is a problem especially
on approach, when the fan noise generated in the compressor radiates out of the ground-
pointing engine inlet, see Figure 3 and 2. During take-off, on the other hand, jet noise is
still the dominating part, but the duration of a take-off is often less than the duration of an
approach, and therefore the total emitted sound is less, see Figure 2. This has directed the
research to concentrate on how to reduce fan noise instead of further reducing jet noise.

Figure 3. Phases in emission of fan
noise. Picture taken from [13].

Fan noise is a complex process that involves strong directivity. Basically, fan noise
is generated at the rotating blades (rotor) and stationary vanes (stator). This is a result of
fluctuating blade surface pressure, which essentially arises due to unsteady inflow from
turbulent free stream into a stage, and to airfoil wakes from upstream stages, see Figure
4. In addition, supersonic blade tip speeds will produce additional noise from the blade
shock patterns that are generated. Summing up, it can easily be recognized as non-linear
and complex aerodynamics rather than acoustic problem in nature. Furthermore, knowing
that the sound origins from fluctuating forces, it can be identified as a dipole source (e.g.
[7]), which radiates sound in two highly distinct directions.

In order to make estimates of the radiated sound power to the far-field (far away from
the source, e.g. an observer on the ground relative an aircraft flying above, see Figure 5)
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Figure 4. Broadband noise genera-
tion due to random blade load varia-
tion. Picture taken from [13].

the acoustic power generated by the non-linear process inside the engine to the near-field
has to be calculated.

The difficulty in developing general analytical methods for the near-field, has made
it necessary to use numerical methods. Using numerical computations (CFD) in aeroa-
coustics is at the present time very new. Since preserving sound waves convected by fluid
motion in a numerical domain, without loss of information, requires a very high resolu-
tion to distinguish the wave solution from numerical errors. This has until the last few
years, not been possible because of the need for extremely powerful computers.

Figure 5. Phases in emission of fan
noise. Picture taken from [13].

The main objective of this thesis is to numerically investigate how acoustic waves
develops in a two-dimensional fan stage using the viscous Navier-Stokes equations. This
is an initial study of a large EU-project called TurboNoiseCFD led by Rolls Royce, where
the overall goal is to reduce fan-noise by optimizing the blade design.

By applying the well-established linear methods for aeroacoustics in a parallel wall-
duct to the fan stage, one can obtain analytical expressions for the dispersion-relation
– which is an important factor containing all the wave information to be preserved in
space and time for ensuring good quality (see [23]). A sinusoidal acoustic wave with
a known dispersion-relation is propagated thru a 2D numerical fan stage using a time-
dependent finite-volume scheme in Euranus (see [15]). Solution is obtained by using
a central scheme with artificial dissipation in space and a second-order implicit time-
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Figure 6. Numerical wave propa-
gation in a 2D domain, which basi-
cally is the spacing between a rotor-
rotor or a stator-stator, but very sim-
plified. The numbers is x- and y-
direction represent the node num-
bers. The acoustic input signal is
simply a sinusoidal pressure varia-
tion in y-direction.
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integration, in order to have A-stability. This numerical solution is then compared with
the original wave to obtain deviations that could originate from dispersion, dissipation
and boundary-condition (reflections) errors induced by the numerical boundaries. For
this analysis, a method called wavesplitting is applied on the discrete points from the
numerical solution, decomposing the flow field into upstream and downstream traveling
waves (see [24]) explicitly decoding the analytical encoded dispersion-relation. From
this, one can make a resolution requirement that diminishes the errors, and thus clarifies
the real strength and weakness of CFD applied on aeroacoustics.
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2 Governing equations
In this report, we consider a two-dimensional unsteady viscous compressible flow for
which the Navier-Stokes equations are the governing equations. On conservation form,
these are given by the continuity of mass transport

@�

@t
+r � (�V) = 0; (1)

the momentum equation

@

@t
(�V) +r � (�V 
V) = �rp+r � ���v; (2)

the energy equation

@

@t
(�E) +r � (�EV) = �r � (pV) �r � q+r � (���vV) ; (3)

and the equation of state

p = �RT: (4)

Where 
 denotes the tensor product, V = [u v]T is the velocity components, � the
density, p the pressure, R the specific gas constant, q = ��rT the heat conduction flux
often referred to as Fourier’s law, and E = e + 1

2V
2 is the total energy (internal plus

kinematic). The viscosity is given by the two-dimensional Newtonian stress tensor matrix

���v =

�
�vxx �vxy
�vyx �vyy

�
=

24 2�@u
@x �

2
3� (r �V) �

�
@u
@y +

@v
@x

�
�
�
@u
@y

+ @v
@x

�
2�@v

@y
� 2

3� (r �V)

35
where � is the fluid viscosity. In this report all body forces are neglected.
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3 Aeroacoustic relations
Consider acoustic waves traveling in a two-dimensional duct with a constant cross sec-
tion and carried by an external mean flow. This is applicable to e.g. turbine cascades,
i.e. rotor-rotor or stator-stator spacing. The flow is considered adiabatic, as well as vis-
cous contributions are neglected, which reduces the Navier-Stokes to the Euler equations.
Written out in full, the continuity equation

@�

@t
+

@

@x
(�u) +

@

@y
(�v) = 0; (5)

the momentum equation parallel to the duct (x-momentum)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �

1

�

@p

@x
; (6)

and momentum equation for the cross-flow plane (y-momentum)

@v

@t
+ u

@v

@x
+ v

@v

@y
= �

1

�

@p

@y
: (7)

For an acoustic disturbance in a calorical perfect gas, isentropic state conditions are
valid

c2 =

p

�
(8)

where c is the speed of sound, and 
 = 1:4.

3.1 Linearized problem formulation
We assume that each flow quantity consist of a parallel and uniform mean flow, i.e.
U0 = const, and a perturbated flow by the following

u = U0 + u0(x; y; t) p = p0 + p0(x; y; t)
v = 0 + v0(x; y; t) � = �0 + �0(x; y; t)

(9)

whereO(U0)� O(u0) etc., that is the perturbated components are small compared to the
mean flow components. Inserting (9) into the Euler equations, Eq. (5)-(7), and linearizing
by neglecting quadratic and higher order terms we obtain

@�0

@t
+ U0

@�0

@x
= ��0r � u0

@u0

@t + U0
@u0

@x = � 1
�0
rp0:

where u0 = [u0 v0]T .
Expressing the density variation as pressure variation using

p

p0
=

�
�

�0

�

and c2 =


p

�

yields the linearized Euler equations for an acoustic disturbance

1
c
@p�

@t
+M @p�

@x
= �
r � u�

1
c
@u�

@t
+M @u�

@x
= � 1



rp�

: (10)

Here M is the mean flow Mach number, and the non-dimensional perturbation values
denoted with � is normalized by its mean flow components and the speed of sound, i.e.
p� = p0

p0
and u� = u

0

c
.
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3.2 Duct transmission properties
The acoustic dispersion-relation is attained by Fourier transformation in time and y-
direction, respectively, of the linearized equations, see [20]. Using (8) in (10) and re-
formulating to a matrix-system, one obtains

1

c

@f

@t
+

@g

@x
+

@h

@y
= 0 (11)

where

f =

24 p

u

v

35 ; g =

24 Mp+ 
u

Mu+ 1

 p

Mv

35 ; h =

24 
v

0
1


p

35
and the � has been removed for simplicity.

By Fourier analysis the function f(x; y; t) can be represented by its harmonic elements

f(x; y; t) =

ZZ 1

�1
f̂(x; ky ; !)e

�i(kyy�!t) dky d! (12)

where f̂(x; ky ; !) is the complex axial amplitude. After Fourier transforming Eq. (11),
we have the following system of differential equations

A
@ f̂

@x
+Bf̂ = 0

or equivalently

@ f̂

@x
+A�1Bf̂ = 0 (13)

where

A =

24 M 
 0
1



M 0

0 0 M

35 ; B =

24 i~! 0 �i
ky
0 i~! 0

�i 1
 ky 0 i~!

35
and ~! = !

c . Let L be a matrix with the eigenvectors of the matrix A�1B as coloumns.

Define q = L�1bf . After multiplying Eq. (13) with L�1 we obtain the decoupled system
of ordinary differential equations on the form

@q

@x
+�q = 0 (14)

where q is the decoupled flow variables and

� =

24 �ds 0 0

0 �us 0

0 0 �v

35 :
The eigenvalues of A�1B are found by solving

det
��A�1B��

�� = 0

yielding

�ds = i
M ~! +

q
~!2 � k2y (1�M2)

1�M2
(15)

�us = i
M ~! �

q
~!2 � k2y (1�M2)

1�M2
(16)

�v = i
~!

M
: (17)
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The notion of the eigenvalues describes two physically different waves; acoustic and
vorticity waves. The vorticity waves, denoted with subscript v, consist of velocity fluctu-
ations only (zero pressure variation). The acoustics waves, denoted by subscript ds and
us to represent downstream and upstream traveling waves respectively, involves on the
other hand fluctuations in all physical variables. See [20] for a more detailed physical
description of the different acoustic waves.

3.2.1 Cut-off ratio

The so-called cut-off ratio is defined as

� =
~!

ky
p
1�M2

; (18)

The cut-off ratio describes the damping of the wave in the axial direction. In this report
we consider subsonic conditions, implying that

p
1�M2 < 1, and a hard-wall duct

providing a real wavenumber ky. Hence � is a real and positive value. By introducing the
cut-off ratio into the acoustic eigenvalues (or axial wavenumbers) (15) and (16) we have
that

�ds;us = ikds;usx = i
M� �

p
�2 � 1

p
1�M2

ky; (19)

where kx is the axial wavenumber. For the vorticity waves

�v = ikvx = i
ky�
p
1�M2

M
: (20)

From (19) and (14) it is obvious that axial damping of the waves take place when � < 1

since the real part of � will be non-zero. Subsequently, this means that the modes having
cut-off ratio less than one will decay downstream the engine duct and therefore not con-
tribute in the far-field (this also holds for upstream traveling waves having a cut-off ratio
less than one). Note that �v is always pure imaginary and hence the vorticity waves will
be cut-on for all waves of �.

3.2.2 Wave splitting

To obtain the decoupled flow variables q from (14) as function of the variables p, u and
v, we have to find the eigenvectors corresponding to the eigenvalues Eq. (15) - (17).
Straightforward calculations yield that

lds =

2664
1

�
Mk2y+~!

p
~!2�k2y(1�M2)


(k2yM
2+~!2)

ky ~!�M
p

~!2�k2y(1�M2)


(k2yM
2+~!2)

3775

lus =

2664
1

�
Mk2y�~!

p
~!2�k2y(1�M2)


(k2yM
2+~!2)

ky ~!+M
p

~!2�k2y(1�M2)


(k2yM
2+~!2)

3775
lv =

24 0

�kyM

~!
1

35 :
The eigenvector matrix now becomes L = [lds lus lv], where the inverse is

L�1 =

2664
�1



�
p
1�M2

�2(1�M2)+M2

��M
p
1�M2

�2(1�M2)+M2

�2(1�M2)
�2(1�M2)+M2

1
2 
 �

2
p
�2�1


 M

2
p
(�2�1)(1�M2)

1
2 
 ��

2
p
�2�1


 �M
2
p
(�2�1)(1�M2)

3775 :
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The decoupled variables can now be found by q = L�1 f̂ , or explicitly

qds;us =
1

2
p̂� 


�

2
p
�2 � 1

û� 

M

2
p
(�2 � 1)(1�M2)

v̂ (21)

and similarly

qv =
��
p
1�M2

�2(1�M2) +M2

�
1



p̂+Mû� �

p
1�M2v̂

�
: (22)

This method is called wavesplitting and is a method that is extensively used in this project.
By applying this method, it is possible to obtain information on each of the decoupled
variables separately.
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4 Reynolds-averaged equation with eddy-viscosity
In this project, we solve the viscous Navier-Stokes equations with turbulence models, i.e.
Reynolds-averaged equations numerically. In this section we give a brief introduction to
this transformation and the turbulence model used.

Considering a turbulent flow field that can be decomposed into a mean and fluctuating
part, i.e.

� = �+ �0

where � is any mean flow scalar that is obtained by turbulent time-averaging over a time
T , the total flow field

�(x; t) =
1

T

Z T=2

�T=2
�(x; t + �) d�: (23)

Also �0 is the fluctuating part, which by definition is zero when time-averaged, i.e. � 0 =
0. Considering compressible flow, it is also necessary to define the density-weighted
averaged through

e� =
��

�
(24)

with

� = e�+ �00 (25)

where ��00 = 0 by definition.
Returning to the governing equations Eq. (1) - (3) in Section 2, and substituting these

averages into the flow variables of the Navier-Stokes equations, one obtains the Reynolds
averaged equations of the mean flow, see [12]. The continuity of mass transport then
becomes

@�

@t
+r � (� eV) = 0; (26)

the momentum equation

@

@t

�
� eV�+r � �� eV 
 eV� = �rp+r � �e���v � �V00 
V00

�
(27)

and the energy equation

@

@t
(� eE) +r � �� eE eV� = �r � (p eV)�r � q+r �

h�e���v � �V00 
V00
�
V
i
: (28)

Here the term ��V00 
V00 is the so-called Reynolds stresses e��� r, and is essentially the
term containing the turbulent-contributing flow changes. It is highly non-linear and needs
to be modeled. This term also represent the main difference between the Reynolds-
averaged mean flow equation and the Navier-Stokes equation.

Furthermore, assuming that the Reynolds stresses can be expressed through an eddy
viscosity model, following the Boussineq hypothesis:

e��� r =
2
4 2�T

@eu

@x
� 2

3
�T

�
r � eV�� 2

3
�K �T

�
@eu

@y
+ @ev

@x

�
�T

�
@eu

@y
+ @ev

@x

�
2�T

@ev

@y
� 2

3
�T

�
r � eV�� 2

3
�K

3
5 (29)

where �T is the turbulent viscosity (a property of the flow, not the fluid), and

K =
1

2�

�
�u00u00 + �v00v00

�
(30)
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is the kinetic energy of the turbulent vortices (eddies).
Substituting the eddy-viscosity assumption Eq. (29) into Eq. (26) - (28) we obtain a

matrix system splitted into an inviscid and a viscous flux part in conservation form (see
[10])

@U

@t
+r � ~FI �r � ~FV = Q (31)

where Q = 0 since all body forces are neglected. ~FI = [fI; gI] and ~FV = [fV; gV] are
the inviscid and viscous fluxes respectively

U =

2664
�

�eu
�ev
� eE

3775 ; fI =
2664

�eu
�eueu+ P

�euev
(� eE + P )eu

3775 ; gI =
2664

�ev
�eveu

�evev + P

(� eE + P )ev
3775 ;

fV =

26664
0e�xxe�xy

(�+ �T )
@T
@x + e�xxeu+ e�xyev + ��+ �T

�k

�
K

37775 ;

gV =

26664
0e�yxe�yy

(�+ �T )
@T
@y

+ e�yxeu+ e�yyev + ��+ �T
�k

�
K

37775 :
Here the turbulent stresses are added to the viscous stresses to give e� = e�v + e� r, the
pressure containing the kinetic energy from turbulence are defined as P = p + 2

3�K,
�k the Schmidt number (a constant found by turbulence model calibration), the thermal
and turbulent conductivity constants are defined as � =

�cp
Pr and �T =

�T cp
PrT

respectively
where cp is the specific heat at constant pressure and Pr is the Prandtl number.

4.1 The Wilcox standard K � ! turbulence model
As mentioned in the previous section, the Reynolds stress tensor represents a highly non-
linear term and will therefore involve extremely huge computational efforts to calculate
exactly. To reduce the amount of needed computer power, this term was substituted with
an eddy-viscosity model. This behaves in the same way as fluid viscosity, except that the
turbulent viscosity factor �T is not a constant, and needs to be resolved for each position
in the flow field. To retain closure, two simple equations are introduced; one for the
kinetic energy K and one for the angular velocity ! of the eddies. This is referred to as
the Wilcox standard K � ! turbulence model, which will be briefly presented here, for
full description see e.g. [12].

Since �T is not a constant, it has to be calculated for each position in the flow field.
The following eddy-viscosity relation holds

�T = �
K

!
(32)

and

! =
�

�K
(33)

where � is the dissipation of energy by the small eddies, and � is a calibration constant.
To obtain a value for �T in (32) it is obvious that one has to calculate K and ! first.

Introducing the K-equation, which basically is the equation of the fluctuating velocity
in (25) transformed into kinetic energy by (30)

@

@t
(�K) +r �

�
�K eV� = r � ���+

�T

�k

�
rK

�
+

�e� r � r� � eV � ��: (34)
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The first term on the right-hand side is the diffusion term, while the second term is the
production of turbulent energy, often denoted by P , done by the work of the mean flow

against the Reynolds stress e� r. The last term is the dissipation given by � in (33).
To have closure, the !-equation is introduced as the auxiliary quantity, which is the

modeled equation and therefore also the major weakness of this and other two-equation
turbulence models

@

@t
(�!) +r �

�
�! eV� = r � ���+

�T

��k

�
r!
�
+ 
�

!

K

�e� r � r� � eV � ���!2:

This equation contains factors that are experimentally obtained. These may change from
different flow cases and calibration methods, but here the following “standard” values are
used


� = 0:556; � = 0:075; �� = 0:09; �k = 2; ��k = 2:

Representing the K- and the !-equation in a matrix system compatible with (31)

@U(T)

@t
+r � ~F(T)

I
�r � ~F(T)

V
= Q(T) (35)

where the inviscid and viscous fluxes together with the source term are given by

U(T)
=

�
�K

�!

�
; fI =

�
�Keu
�!eu

�
; g

(T)
I

=

�
�Kev
�!ev

�
;

f
(T)
V

=

24 ��+ �T
�k

�
@K
@x�

�+ �T
��
k

�
@!
@x

35 ; g(T)
V

=

24 ��+
�T
�k

�
@K
@y�

�+
�T
��
k

�
@!
@y

35
Q(T) =

24 �e� r � r� � eV � ��


� !
K

�e� r � r� � eV� ���!2

35 :
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5 Spatial discretization

5.1 Mean flow equations
The mean flow equations (31) and (35) are discretized using a cell-centered Finite Volume
method. In order to do the discretization it is necessary formulate the equations on integral
form Z




@U

@t
d
 +

Z



r � ~FI d
�
Z



r � ~FV d
 =

Z



Q d


where 
 is the volume of integration. Furthermore, by using Gauss’ theorem at a vector
~F Z




r � ~F d
 =

I
S

~F � dS

Here S = Se is the surface of the integration volume 
-faces with the projection e. With
this, one can transform the volume integral of the inviscid and viscous fluxes into surface
integrals

@

@t

Z



U d
 +

I
S

~FI � dS�
I
S

~FV � dS =

Z



Q d
: (36)

In this report, we use the so-called method of lines, that is the time and space dis-
cretization has been separated. The time integration is described in Section 6

Equation (36) is replaced by the spatial discrete form for a finite volume in two di-
mensions

@Uij

@t

ij +

X
sides

(~FI ��S)ij �
X
sides

(~FV ��S)ij = Qij 
ij ; (37)

The computations are performed on a structured orthogonal grid (as in Figure 7 and 12),
which then simply gives that 
ij = �x�y. Written out in full, both the summation terms

Figure 7. Two dimensional cell cen-
tered finite volume, with the compu-
tational box is defined within the box
a-b-c-d.

∆
2

∆
2

ij

i-1/2, j-3/2

Ω

∆ x

d

x

i-1/2, j-1/2

i-1/2, j+1/2

i+1/2, j-1/2i-3/2,j-1/2

y

a b

c

y

x

y∆

in (37) takes the general form in two dimensions (see Figure 7) asX
sides

(~F ��S) =fab(yb � ya) + fbc(yc � yb) + fcd(yd � yc) + fda(ya � yd)+

+ gab(xb � xa) + gbc(xc � xb) + gcd(xd � xc) + gda(xa � xd):



16 5 SPATIAL DISCRETIZATION

where the fluxes are given on the cell faces in 
IJ . Since the calculations are carried out
on a structured grid, and the major part of the calculations are performed with orthogonal
mesh rectangles (see Section 8 for exceptions), the previous formula reduces toX

sides

(~F ��S) = fi+1=2;j�y � fi�1=2;j�y + gi;j+1=2�x� gi;j�1=2�x; (38)

writing fda = fi�1=2;j = f(Ui�1=2;j) and similarly for the other components. By using
(38) in (37) one further reduces to a cell-centered finite difference formulation

@Ui;j

@t
=�

�
fi+1=2;j � fi�1=2;j

�x
+
gi;j+1=2 � gi;j�1=2

�y

�
I

+�
fi+1=2;j � fi�1=2;j

�x
+
gi;j+1=2 � gi;j�1=2

�y

�
V

+Qij ; (39)

which is second-order accurate in the half-cells.

5.1.1 Viscous fluxes

The viscous fluxes contain gradients of the velocity field that has to be evaluated on the
cell-faces. To illustrate how the gradients are evaluated, e.g. by taking the third compo-
nent, e�xy, of the viscous flux fV in (31)

e�xy = �T

�
@eu
@y

+
@ev
@x

�
and discretize this using an central difference around the half-cell face, point i � 1=2; j,
one obtains

�T

�
@ev
@x

�
i�1=2;j

' �T

�evi�1;j � evi;j
�x

�
�T

�
@eu
@y

�
i�1=2;j

' �T
1

2

�eui�1;j+1 � eui�1;j�1
2�y

+
eui;j+1 � eui;j�1

2�y

�
;

which is second-order in the half-cell faces.
In general, there are ways of making the gradient more exactly calculated. By for

instance instead using weighted averaging or averages of gradients calculated in each
neighbor cell point. In this project these are of little interest, as the extra expenses will
not improve the results much on a structured orthogonal mesh.

5.1.2 Inviscid fluxes

The inviscid fluxes, on the other hand, suffer from stability problems when discretized as
a second-order method like the central differences. To avoid these problems, a so-called
artificial viscosity term is subtracted from the fluxes in (39)

f
(AV )
i�1=2;j = fi�1=2;j � di�1=2;j ; (40)

which will introduce dissipation into the solution and damp the oscillations that occur
when strong gradient are present from the odd-even decoupling (see both Figure 8 and
appendix A for a description). The physical flux f i�1=2;j is calculated by averaging the
flux to the right and left of the half-cell

fi�1=2;j =
1

2
(fi�1;j + fi;j):

The artificial viscosity term di�1=2;j is on the form

di�1=2;j = �
(2)

i�1=2;j
(Ui;j �Ui�1;j)� �

(4)

i�1=2;j
(Ui+1;j � 3Ui;j + 3Ui�1;j �Ui�1;j)
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Figure 8. Illustration of the devel-
opment of the dispersion error near
discontinuities. Using Lax-Wendroff
method to the inviscid Burgers equa-
tion. �t=�x = 0:25 after 200 time
steps.
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and is called the Jamesson artificial dissipation, see [11]. The terms � (2)
i�1=2;j

and �(4)
i�1=2;j

are evaluated as

�
(2)
i�1=2;j =

1

2
�(2)��i�1=2;jmax(�i�2;j ; �i�1;j ; �i;j ; �i+1;j) (41)

and

�
(4)
i�1=2;j = max

�
0;
1

2
�(4)��i�1=2;j � �

(2)
i�1=2;j

�
(42)

respectively. The �i;j is a measure of the change in gradients, e.g. discontinuities. Here
the pressure is used as a sensor for the amount of second-order dissipation to be activated
when strong gradient appear

�i;j =

����pi+1;j � 2pi;j + pi�1;j
pi+1;j + 2pi;j + pi�1;j

���� : (43)

Hence, the spectral radii �� is a measure of the inviscid fluxes that is calculated using

��i�1=2;j =
�
~u�~S + c�S

�
i�1=2;j

and similar for j-direction. For the i-direction, cell face normal � ~S is obtained by av-
eraging the normals on the 4 cell faces in the i-direction, belonging to the 2 cells which
share the j � 1=2 cell face.

The goal of the artificial viscosity parameters is to retain second-order accuracy, ex-
cept in regions of strong pressure gradients, where it reduces to first-order – and where
�(2) then becomes the dominating part. Moreover, in smooth regions small oscillations
can also occur. These oscillations are controlled and damped with the � (4), which is pro-
portional to a third-order difference and is, in the same way as � (2), only introduced when
large gradient are apparent.

To scale the amount of added artificial viscosity, the constants � (2) and �(4) can be
manually adjusted. In principle, since the artificial viscosity introduces non-physical dis-
sipation into the solution one wants to minimize this amount. By fine-tuning these con-
stant one can obtain an oscillation-free solution with as little artificial viscosity as possi-
ble.
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5.2 Turbulence equations
Equivalent to the discretization of the mean flow equations, the turbulence equations are
also discretized using central differences for both the inviscid and viscous fluxes. Obtain-
ing, similar to (39)

@U
(T)
i;j

@t
=�

�
fi+1=2;j � fi�1=2;j

�x
+
gi;j+1=2 � gi;j�1=2

�y

�(T)
I

+�
fi+1=2;j � fi�1=2;j

�x
+
gi;j+1=2 � gi;j�1=2

�y

�(T)
V

+Q
(T)
ij : (44)

The turbulent viscous fluxes are evaluated in the same manner as the mean flow vis-
cous fluxes. However, the artificial viscosity of the turbulent inviscid fluxes are slightly
different evaluated than the artificial viscosity of the mean flow inviscid fluxes. The dif-
ference lies in how the sensor for steep gradients is calculated. Instead of using pressure
(43), one uses the turbulent kinetic energy

�
(T)
i;j =

����Ki+1;j � 2Ki;j +Ki�1;j
Ki+1;j + 2Ki;j +Ki�1;j

���� :
Similar as for the mean flow adjustable parameters � (2) and �(4), one now has �(2)

and �(4) to adjust.
To do separate computations on the mean flow and turbulence equations is not an

obvious choice, but it has been proved to be necessary since instabilities could occur in
for instance regions of turbulent flow while the mean flow is stable. This makes the model
accurate.
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6 Time integration
The time integration is divided into local and global time stepping. By having an implicit
global time marching with local explicit subiterations, one can assure convergence in the
time domain calculations.

When implicit time integration is used, a local time step within each global time step
is used. Considering Eq. (39)

@Ui;j

@t
+

�
fi+1=2;j � fi�1=2;j

�x
�
gi;j+1=2 � gi;j�1=2

�y

�
I

��
fi+1=2;j � fi�1=2;j

�x
+
gi;j+1=2 � gi;j�1=2

�y

�
V

�Qij = 0; (45)

which is discretized in time using U = Ui;j , and imposes a residual in each local time
step

R�
(Un+1

) =
�1 (
U)

n+1
+ �0 (
U)

n
+ ��1 (
U)

n�1

�t
+R

�
Un+1

�
(46)

where R is the spatial discretization in (45), R� is the residual after time-discretization,

ij is the finite volume, and �t is the global time step. The constants �1, �0 and ��1
are chosen as 1.5, -2 and 0.5 respectively, yielding a second-order accurate backward
difference scheme that is A-stable. Introducing a pseudo time � with the time dependent
variablesU(�) = Un+1 to give the equation


ij
d

d�
U(�) +R� (U(�)) = 0: (47)

A steady state of the above equation is reached when the pseudo time-derivative ap-
proaches zero

d

d�
U(�) ! 0) Un+1 = Un: (48)

Hence, the equations reache a steady state in each global time step to give time-accuracy.
For each of the local time step an explicit Runge-Kutta method is used, see section 6.1.

6.1 Explicit Runge-Kutta
Basically, the Runge-Kutta method is to evaluate the spatial discretization at several values
of U in the interval between n�t and (n + 1)�t to combine them in order to obtain a
high-order approximation of Un+1. The explicit five-stage Runge-Kutta method for the
equation (47) written on the form

d

d�
U = ~F (U) (49)

now becomes

U(1)
= Un

+ �1�� ~F(U
n
) (50)

U(2)
= Un

+ �2�� ~F(U
(1)
) (51)

:::: (52)

U(5) = Un + �5�� ~F(U
(4)) (53)

where

U(5) = Un+1: (54)
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The coefficients �1 to �5 determine the stability area and the order of accuracy of the
Runge-Kutta scheme, respectively. They are here chosen to be .0814, .191, .342, .574 and
1, respectively.

To obtain a local time step for the Runge-Kutta method, the so-called CFL number
is used. The CFL number (from Courant, Friedrichs, and Lewy’s report issued in 1928)
defines a ratio between the time step and the spatial step. From a stability analysis point
of view, the CFL number gives important information on when the scheme is stable.
Therefore, instead of pre-defining a time step, one obtains this by knowing the grid size
and CFL number. In each cell a local inviscid and viscous local time step is calculated
from

��
I
=


(CFL)I���~u~Si���+ ���~u~Sj���+ c
����~Si���+ ���~Sj���� (55)

and

��
V
=


2�(CFL)V

8�

����~Si���2 + ���~Sj���2 + 2

���~Si~Sj���� (56)

respectively. The actual local time step is then the minimum of both these time steps

�� = min (��
I
;��

V
) : (57)
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7 Boundary conditions
In order to correctly impose boundary conditions on the numerical domain it is important
to know how information propagates. It is possible to explicitly obtain this information
by calculating the eigenvalues of the entire system represented by the so-called character-
istics.

In this section only a brief analysis will be done. Simplifying using only the mean
flow of Reynolds-average equations in conservative form Eq. (31) with ~F = ~FI � ~FV

@U

@t
+r � ~F = Q;

which is rewritten into non-conservative form
@U

@t
+ (~A � r)U = Q (58)

where ~A = @ ~F
@U is the Jacobian of the system and ~A = [B C]

T . Written out to

@U

@t
+B

@U

@x
+C

@U

@y
= Q:

Furthermore, since it is obvious that the Jacobi matrix involves directivity one can
express this as a scalarK = ~A �~ln = B � n̂x +C � n̂y, where ~ln is the unit vector normal
to the surface and (n̂x; n̂y) is the components.

Figure 9. Boundaries of the domain.
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Finding the eigenvalues of K as

det

���~A �~ln � �I
��� = 0 (59)

provides information of characteristic propagation of the system of equation. If all eigen-
values are real, the equations is classified as hyperbolic, and when the eigenvalues con-
tains imaginary values the equations are classified as elliptic. This describes two physi-
cally different states of information propagation (for a detailed description see [1]), which
is an important condition when considering the choice of numerical scheme and boundary
condition.

For subsonic flow, the four eigenvalues of Eq. (59) are all real, where three of them
are positive and one negative. This implies that the system is hyperbolic.

Figure 10. Illustration of how the
eigenvalues �1 to �4 defines the in-
formation propagation. �1 to �3 are
positive, but �4 is negative.
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Hence, only variables or information transported from the boundaries towards the
interior can be imposed at the boundaries as physical boundary conditions (referring to
Figure 10). The remaining variables will depend on the computed flow situation and are
therefore a part of the solution. See [14] for a detailed analysis.

7.1 Inflow boundary condition
A total number of six inflow boundary conditions must be applied, where five of them are
physical and one is numerical. The physical boundary conditions are given by the velocity
vector V0, the absolute total pressure p0, the absolute total temperature T0, the turbulent
kinetic energy K0, and the turbulent dissipation �0. The following default values are used

V0 =

�
u0
v0

�
=

�
136

0

�
m=s

p0 = 1:01 � 105 Pa
T0 = 288 K

K0 = 1:00 J

�0 = 1:00 � 105 J=s:

The numerical boundary condition is extrapolated from the interior domain using ei-
ther Riemann or Giles, see Section 7.3 and 7.4 respectively. Since the computations is two
dimensional the velocity vector is given by two components [u 0 v0] for x- and y-direction
respectively.

7.2 Outflow boundary condition
Using Figure 10 again to get a physical understanding of how the outflow boundary condi-
tions are set up. The interior domain is no longer at the right hand side, but instead on the
left hand side. Hence, apart from one of the characteristics, all information propagation
are pointing out of the domain, which indicates that the solution is not dependent on the
boundary values but instead the boundary values are a part of the solution. To cope with
this problem one has to apply numerical boundary conditions to the scheme. To minimize
the reflections back into the domain caused by poor numerical boundary conditions, we
have used both Riemann and Giles boundary conditions.

Since one are dealing with subsonic conditions, the physical outflow boundary condi-
tion is set to the back pressure, which in this project is equal to the inlet pressure

pN = p0 = 1:01 � 105 Pa: (60)

7.3 Riemann extrapolation
Further simplifying the problem to one dimension, this then makes the physical under-
standing easier to acknowledge. Using Eq. (58) with Q = 0 in one dimension

@U

@t
+B

@U

@x
= 0 (61)

transformed into primitive variables �; u; p (see [10]), leading to the system

@ bV
@t

+ bB@ bV
@x

= 0 (62)

where

bV =

24 �

u

p

35 ; bB =

24 u � 0

0 u 1
�

0 �c2 u

35 :
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Diagonalizing Eq. (62) by multiplying with L�1 from the left gives

L�1
@ bV
@t

+�L�1
@ bV
@x

= 0 (63)

where

L�1 =

24 1 0 � 1
c2

0 1 1
�c

0 1 � 1
�c

35 ; L =

24 1
�
2c � �

2c
0 1

2
1
2

0
�c
2 ��c

2

35
and the diagonal eigenvalue matrix

� = L�1 bBL =

24 u 0 0

0 u+ c 0

0 0 u� c

35 :
Eq. (63) can now be written as

@W

@t
+�

@W

@x
= 0 (64)

where the characteristic variables are obtained from

@W

@t
= L�1

@ bV
@t

;
@W

@x
= L�1

@ bV
@x

(65)

This show that the components of W propagate along the corresponding characteristics
with the speed given by the respective component of �. It is important to notice that
(65) only holds when L�1 is constant, which is not the case since it depends on x for a
two-dimensional flow. But in one-dimensional flow W can be defined as a non-constant
as long as no more than two differentials appear in the linear combination (65), see [10].
Thus, by investigating (64) one can see that the components can be written as

dw

dt
=

@w

@t
+

dx

dt

@w

@x
= 0

which indicates that the variables w, also called Riemann variables and Riemann invari-
ants, remain constant along a given set of characterstics. This gives the definition of the
three characteristics

dx

dt
= u

dx

dt
= u+ c

dx

dt
= u� c:

Figure 11. The characteristic lines for
a one-dimensional flow.
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The first characteristic equation expresses the constant transport of entropy along the
path line dx=dt = u as (see [10])

@s

@t
+ u

@s

@x
= 0: (66)

Eq. (66) indicates that the entropy propagates along the path line and is conserved along
this characteristic, as long as discontinuities do not appear. If assuming isentropic flow,
the two other Riemann variables can be integrated to obtain the following

w2 = u+
2


 � 1
c (67)

w3 = u�
2


 � 1
c; (68)

which represent the propagation of pressure waves along the respective characteristic vari-
ables.

The Riemann invariants (67) and (68) is constant along this given path. Extrapolating
these variables, it is possible to obtain the boundary variables numerically. A first order
extrapolation is given by

qi =
3

2
qi�1 �

1

2
qi�2 (69)

where q is a general flow variable, which in this case is the Riemann invariant w.

7.4 Giles extrapolation
Another approach of making non-reflecting boundary conditions in aeroacoustics appli-
cations is to instead investigate the wave nature of the solution. Doing a Fourier analysis
in the same way as for the Riemann invariants, but here instead in two-dimensions lin-
earized around a constant state in time; the Reynolds-averaged equations given by (58)
with Q = 0

@U

@t
+B

@U

@x
+C

@U

@y
= 0: (70)

Considering the wave solution

U(x; y; t) = uei(kxx+kyy�!t)r (71)

we obtain the dispersion relation from

det j�!I+ kxB+ kyCj = 0

where ! is the eigenvalue.
With ! as eigenvalue we obtain one right r and one left l eigenvector by

(�!I+ kxB+ kyC) r = 0 (72)

and

l (�!I+ kxB+ kyC) = 0: (73)

Normally one is concerned with wave problems propagating in an infinite domain, so it
is usual to consider a group of waves with the same kx and ky with different values of
!, where the above right and left eigenvector would be imposed. However, when dealing
with boundary conditions the importance is how the waves develop in the spatial domain.
A general solution U at the boundaries x = 0 and x = L can be decomposed into a
sum of Fourier modes with different values of ! and ky, where each of these modes is



25 7 BOUNDARY CONDITIONS

a collection of waves with the same ! and ky with different values of kx. Therefore it
is necessary to obtain a set of eigenvectors that has �kx as eigenvalues. This is done by
multiplying Eq. (72) with B�1

B�1 (�!I+ kxB+ kyC) r =
�
�!B�1 + kxI+ kyB

�1C
�
r = 0:

Which implies that r still is the right eigenvector with the eigenvalue �kx. On the other
hand, the left eigenvector will not be equivalent to Eq. (73) when�k x is the eigenvalue

bl B�1 (�!I+ kxB+ kyC) = 0;

where it is easy to see the relation between the new eigenvector bl and the previous eigen-
vector l is

bl = l B; (74)

which is an important relation in finding the boundary conditions.
The mathematical difference of the two sets of eigenvectors is the orthogonality. The

right eigenvector r is orthogonal to the left eigenvector l of the same matrix, except for
the one with the same eigenvalue !. Thus, if !n and !m are two different roots of
the dispersion relation for the same values of kx and ky, the orhtogonality gives that
l(!n; kx; ky) r(!m; kx; ky) = 0. Equivalently when kx;n and kx;m are two different
eigenvalues with constant values of ! and ky we obtain

bl(!; kx;n; ky) r(!; kx;m; ky) = 0:

Let kn be the nth root of the dispersion relation for a given value of ! and k y, and ln
be the corresponding null-vector of (kx;nB+ kyC). Thenbln can be defined as

bln =

�
kx;n

!

�
ky=0

lnB; (75)

which implies that when ky = 0 we obtain the important relation

bln = ln: (76)

By dividing the dispersion relation by ! one can see that bln becomes a function of ky
! .

By Taylor expansion of bln around � = ky=! = 0 we obtain

bln(�) = hblni
�=0

+ �

"
dbln
d�

#
�=0

+
1

2
�2

"
d2bln
d�2

#
�=0

+ :::

Keeping the terms up to second-order, this together with (75) and (76) will now es-
sentially become an approximation giving

�ln(�) = [ln]�=0 +
ky

!

�
kx;n

!

dln

d�
B

�
�=0

: (77)

where�ln �bln.
Before continuing this analysis, it is necessary to find an expression to obtain a closed

boundary condition. Since U can be decomposed into a sum of Fourier modes, the most
general case when just considering constant ! and ky becomes

U(x; y; t) =

"
NX
n=1

anrne
ikx;nx

#
ei(kyy�!t) (78)
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Ideally a non-reflecting boundary condition would be to specify that a n = 0 for each
n that corresponds to an incoming wave on the boundaries. Since the eigenvectors are
orthogonal, we can obtain

blnU =bln " NX
m=1

amrme
ikx;mx

#
ei(kyy�!t)

and so the specification of a non-reflecting boundary condition would beblnU = 0; (79)

for all n corresponding to incoming waves.
Returning to (77), and using (79) one obtains the following boundary condition�

[ln]�=0 +
ky

!

�
kx;n

!

dln

d�
B

�
�=0

�
U ' 0; (80)

which, by using Eq. (71), is equivalent to

[ln]�=0
@U

@t
�
�
kx;n

!

dln

d�
B

�
�=0

@U

@y
' 0: (81)

Before applying the boundary condition (81), the Euler equations in two dimensions
Eq. (70) has to be transformed into primitive variables to obtain the eigenvectors

@ bV
@t

+ bB@ bV
@x

+ bC@ bV
@y

= 0 (82)

where bV = [� u v p]T . By following the analysis given above, the eigenvalues are
found to be bl1 = [ �1 0 0 1 ]bl2 = [ 0 �u� 1� v� �� ]bl3 = [ 0 1� v� u� 1� v� ]bl4 = [ 0 �1(1� v�) �u� 1� v� ]

(83)

In the same way as the analysis given for the Riemann boundary conditions, the Euler
equations have four characteristics which indicates how the information propagates in
time and space. In subsonic conditions there will be three characteristics pointing in the
flow direction, and one which points into the flow direction. Inserting the eigenvectors
Eq. (83) into the boundary condition Eq. (81) one obtain four equations, where three
represent the inflow boundary condition24 �1 0 0 1

0 0 1 0

0 1 0 1

35 @ bV
@t

+

24 0 0 0 0

0 u v 1

0 v �u v

35 @ bV
@y

= 0 (84)

and one the outflow boundary condition�
0 �1 0 1

� @ bV
@t

+
�
0 �v u v

� @ bV
@y

= 0: (85)

These equations is implemented in the program, where the outgoing characteristics
equation (85) is extrapolated from the interior points, and the incoming characteristics
equation (84) is calculated by integrating these equations in time, with the described
method for time integration in Section 6.

7.5 Periodic boundary condition
At the duct “walls” periodic boundary conditions is imposed, which means that the nu-
merical domain is infinity in the y-direction and should not impose any reflections back
into the domain. For an arbritary numerical flow variable q this it is written as

qi;j=1=2 = qi;j=N+1=2
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8 Computations
A parametric study of how the aeroacoustic signal propagate with different flow variables,
numerical parameters and boundary conditions is done in order to evaluate the second-
order accurate finite volume scheme used in Euranus, [15]. The parameters considered in
this study and their default values are shown in Table 1.

Table 1. Default values of
the variables in the parametric
study. yNavier-Stokes equations.
zInflow acoustic b.c. = Riemann (R)
and Outflow acoustic b.c. = Giles (G)
for a downstream imposed wave,
opposite for an upstream imposed
wave.

Non-Dimensionals Symbol Default
Flow Points Per Circumferential Wavelength N� 20

Dependent Cut-off ratio � 1.1
Mean Flow Axial Mach Number M 0.4

Points Per Period in Time Nt 40
2nd-order AV Mean Flow Smoothing � (2) 1.0
4th-order AV Mean Flow Smoothing � (4) 0.1

Code 2nd-order AV Turbulence Smoothing �(2) 1.0
Dependent 4th-order AV Turbulence Smoothing �(4) 0.1

Turbulent Reynolds Number Retu 5 � 105

Equations used in the computations eq. N-Sy

Boundary Conditions (Inflow/Outflow) b.c. R/Gz

Cell Aspect ratio �x
�y

1.0

Grid Axial Stretching Ratio �xj+1

�xj
1.0

Dependent Skew Angle (degrees) � 0.0
Circumferential Distribution CircDist Uniform

Since some parameters that have not been considered in previous sections have been
introduced in Table 1, it is necessary to give a brief explanation to these.

First, the flow dependent variables, which is the major part of this parametric study,
the test is performed by prescribing a sinusoidal wave input on either one of the axial
boundaries (representing downstream or upstream traveling waves) of varying frequencies
or varying wavelength in the y-direction. These waves are described in terms of !�t and
ky�y respectively. It is convenient to represent these terms as non-dimensional quantities
of points per wavelength and cut-off frequency (as in (18)) respectively

N� =
2�

ky�y
(86)

and

� =
!

cky
p
1�M2

:

The number of points per wavelength, N�, is essentially the most important variable.
Since this in fact describes the wave length of the aeroacoustic signal – which in reality
will for instance vary during different flight conditions, but more related to this project;
it defines the grid size and number of time steps per period at the given wave length, see
(18). Therefore it is important to evaluate how the numerical error will vary with different
values of N�.

Next, within the code-dependent parameters; the global time step N t is halved and
doubled to see the effect of reducing and increasing points per period in time. The Tur-
bulent Reynolds Number, Retu, is defined through Retu = u00l00

�
, where u00 and l00 is a

measure of the fluctuating velocity and length scale respectively for the eddies. Reformu-
lated to kinetic and dissipation energy, see [12], we obtain

Retu =
�K2

��
:

The artificial viscosity coefficients , �(2) and �(4), are explained in Section 5.1.2. Sim-
ilarly the artificial viscosity in the turbulence equations are described in Section 5.2.
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Within the code dependent runs, we also study the effect of the equations used in the
computations. The Navier-Stokes equations (Reynolds-averaged with eddy viscosity), are
used as default and comparisons are made with results from solving the Euler equations.

Finally, the grid dependent parameters; the Cell Aspect Ratio, Axial Stretching Ratio,
Skew Angle �, and Circumferential Distribution, describes the computational grid which
can be seen in Figure 7 and 12, respectively

Figure 12. The different grids used in
this project. (a) is the default grid that
is far the most used.
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(a) The default grid size of the computational domain.
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(c) Non-uniform distribution in y.
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8.1 CFD input parameters
The sinusoidal input pressure is added to the mean flow as follows

p = real

�
p̂ei(!t�kyy)

�
; (87)
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where the pressure amplitude p̂ is selected such that non-linear wave-propagation effects
can be neglected. In this project, with p0 = 101 kPa, a sound pressure level of 130 dB
corresponds to a peek-to-mean pressure variation of

p̂ = 89 Pa

The input velocities are calculated directly from inserting the ansatz (87) into Eq. (10).
This yields

u =

 
1

!
kxc

�M

!
p

�c
; (88)

and

v =
kx

ky
(89)

where kx is taken from (19). In addition, if not explicitly stated, the following free stream
conditions is defined as constants, unless something else is explicitly stated, throughout
this study

Default circumferential grid spacing �y = 2:5 � 10�3 m
Default axial grid spacing �x = 2:5 � 10�3 m
Free stream axial velocity U0 = 136 m=s

Free stream circumferential velocity V0 = 0 m=s

Free stream temperature T0 = 288 K

Free stream pressure p0 = 1:01 � 105 Pa
Thermal and calorical perfect gas 
 = 1:4

Speci�c gas constant R = 287 J=(kg �K)
Laminar Reynolds Number Re = 9:22 � 105:

The circumferential grid spacing �y is chosen such that it is compatible with the order of
magnitude of a typical spacing between a rotor-rotor or stator-stator, i.e. 40��y = 0:1m.

In order to obtain a periodic steady state condition, one must assure that the acoustic
signal and the fluid has traveled through the whole domain. Data is then collected for
a whole period at the given frequency ~!. Using (18) together with k y = 2�

N��y
and

~! = !
c = 2�

ct2�
we obtain

t2� =
N��y

�c
p
1�M2

:

In this project we have chosen to use the number of point per period in time, i.e.
Nt =

t2�
�t

, constant Nt = 40. From earlier investigations, [5] and [16], this number has
proved to give small time integration errors. Hence, with 40 time steps after the solution
has converged we have a time dependent solution that covers a whole period in time.

8.2 Post-processing
In this section a thorough step-by-step list of the post-processing is presented. This pro-
cess can be described as follows:

1. Extracting flow variables from CFD solution. The absolute velocity components
U = U(x; y; t) and V = V(x; y; t), together with the pressure P = P(x; y; t) are
picked out at discrete points in space and time forming three separate matrices, one
for each of these flow variables.
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2. Nondimensionalizing. The discrete flow matrices are then non-dimensionalized,
see also Eq. (10), as follows

u =
U� U0

c

v =
V � 0

c
(90)

p =
P� P0

P0

where the subscript 0 defines the free stream condition. The new matrices u, v and
p are now the perturbations around the mean flow.

3. Fourier transforming. The Fast Fourier Transform used for discrete points is de-
fined as

F (k) =

NX
j=1

f(j)!
(j�1)(k�1)
N (91)

where !N = e(�2�)=N is an N th root of unity. We use (91) on the data in the
matrices defined in Eq. (90) twice, first in time and then in y-direction. A complex
expression of the axial wave amplitude f̂ is then obtained

f̂ (x)ky ;! = ke�ikxx

where k is a constant. After the Fourier transform we now have three set of vectors
û(x)ky ;!, v̂(x)ky ;! and p̂(x)ky ;! that all contain complex numbers.

4. Wavesplitting. We then apply the wavesplitting technique, see Section 3.2.2, to
obtain separate information on each of the waves that exist in the solution. The
wavesplitted acoustic waves, as in (21), are

p(x)
ds;us

ky;!
=

1

2
p̂(x)ky;! � 


�

2
p
�2 � 1

û(x)ky;! � 

M

2
p
(�2 � 1)(1�M2)

v̂(x)ky ;!

where qds;us has been substituted with p(x)ds;usky ;!
for simplicity. The plus and minus

sign represent a downstream and upstream acoustic wave, which also depends on
whether the cut-off ratio � is larger or smaller than one. The vorticity wave is given
by Eq. (22)

q(x)
v

ky;!
=

��
p
1�M2

�2(1�M2) +M2

�
1



p̂(x)ky;! +M û(x)ky;! � �

p
1 �M2v̂(x)ky;!

�
For a more detailed description of the physical difference of the acoustic and vorti-
cal waves, we refer to Section 3.

5. Converting to sound pressure level (SPL). The final step of the post processing
is to convert the acoustic pressure- and vorticity waves into sound pressure levels
(SPL). Since the acoustic waves now represents an amplitude of the signal at each
x-position in the flow, i.e. a function of x, it will among other things give indica-
tions on whether the damping from fluid- or numerical viscosity has reduced the
original SPL. The conversion is done be re-dimensionalizing and taking the loga-
rithm of the acoustic wave amplitudes

p
us;ds
SPL = 20log10

0@P0

���p(x)ds;usky ;!

���
p
2:2 � 10�5

1A (92)

and for the vortical acoustic wave

qvSPL = 20log10

0@�0c
2
���q(x)vky ;!���

p
2:2 � 10�5

1A ; (93)

where �0 is the free-stream density and c is speed of sound.
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The obtained dimensional sound pressure level pus;ds
SPL and qvSPL can now be investi-

gated for errors by comparing with the analytical sound pressure level.

8.3 Interpretation of the result
The analytical wave solution of Eq. (10) for a single frequency is

p = Re

�
p̂
kx;ky;!

ei(!t�kyy�kxx)
�
: (94)

From (86) we have that ky is

ky =
2�

N��y
:

Applying this to (18) gives the frequency

! = �cky
p
1�M2:

The acoustic axial wave number is given by (19)

kds;usx =
M� �

p
�2 � 1

p
1�M2

ky;

which includes both up- and downstream acoustic wave. The vortical axial wave number
is given by (20)

kvx =
ky�
p
1�M2

M
:

8.3.1 Investigating raw CFD data

By solving (94) on discrete points, equivalent spaced to the CFD-evaluated grids, one has
a totally comparable result. See Figure 13 and 14 for a rough comparison.

Figure 13. An illustration of how the
acoustic signal propagates in the nu-
merical quasi-duct for the theoreti-
cally constructed wave with known
dispersion relations. Flow is from the
left to right.

Figure 14. An illustration of how the
acoustic signal propagates in the nu-
merical quasi-duct for wave obtained
by CFD. Flow is from the left to right.
Note how the wave amplitude decays
at the end of the duct.
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However, a comparison of these two figures do not say much except that the waves
look similar, and that the wave from CFD-solution has some small defects at the outflow
of the domain. To see some more qualitatively results, the post-processing described in
Section 8.2 can be performed.

8.3.2 Investigating individual post-processed CFD data

After the post-processing, three vectors for the downstream, upstream and vortical wave
is present, these vectors can be plotted, as in Figure 15. The y-axis contain the SPL, see

Figure 15. An example of the SPL for
the CFD-results and the analytical-
result obtained downstream propa-
gating acoustic field (see Figure 14)
plotted in the same graph for com-
parison. Note the amplitude (or SPL)
decay of the CFD-solution going from
left to right.
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Eq. (92) and (93), which in fact is the logarithmic amplitude of the sound wave. The
x-axis is the x node number; that is the axial grid number. Hence, this is a plot of how the
sound pressure level (or wave amplitude) varies with x. Both the CFD and the analytical
solution involves three components; downstream and upstream acoustic wave together
with the vortical wave.

From Figure 15 one may already have noticed that the acoustic waves from the CFD-
result deviates from the analytical result. This is caused by dissipation of the numerical
errors, and is therefore non-physical related phenomena. The upstream wave has imposed
some non-physical wiggles, which is caused by the reflections of the boundary condition
at the acoustic output. Reflections are non-physical and should be as small as possible for
non-reflecting conditions. These phenomena are discussed further in Section 8.4.

Reflections from boundary conditions will also impose a phase shift of the wave (94),
and it is therefore appropriate to investigate how the phase of the acoustic and vortical
waves changes axially. By differentiating Eq. (94) with respect to x we obtain the follow-
ing expression for the axial phase

kx = i
1

p

@p

@x
: (95)

Using this result on the discrete points, one can plot the phase with respect to x for both
the CFD-result and the analytical-result, as in Figure 16. It is important to notice that
the phase of the two acoustic and the vortical wave should coincide together with the
analytical wave, since it only exist one phase for all the waves. This is not the case, and
the reason for this will be discussed further in Section 8.4.

In order to present the data in an efficient way as well as retaining all important infor-
mation, a combination-plot of the raw CFD-results in Figure 14 with the post-processed
result in Figure 15 and 16 are used, see Figure 17.
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Figure 16. An example of the
phase for the CFD-results and the
analytical-result obtained acoustic
field (see Figure 14) plotted in the
same graph for comparison.
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Figure 17. An example of the com-
bined plot of Figure 14 (raw-CFD re-
sult), 15 (SPL) and 16 (phase). SPL
to the left and phase to the right.

With this plot one is now able to do both qualitatively and quantitatively comparisons
of all runs. The background-picture of each figure represents the raw CFD-result, and
is dimensioned to be quantitatively fully comparable with all the other plots; using a
fixed size of 80 points in x-direction, and 40 points in y-direction (height = 0.1 m and
length = 0.2 m). Note that the x-axis of raw CFD results and the x-axis of the SPL- and
phase-plots are not equal; the parenthesis at the x-axis is the node numbers for the raw
result (background-picture). Also, the limits of the y-axis of both the SPL and phase may
vary from each run to run.

8.3.3 Comparing multiple CFD runs

From the post-processed result in the previous section, the amplitude and phase for each
individual run are plotted against axial node number. However, more important is the
amplitude error �� (related to dissipation) and phase error �� (related to dispersion),
which is defined by the difference between the inclination of the theoretical and CFD-
results for the amplitude and phase at a certain axial point respectively.

When computing flow between a rotor-rotor or stator-stator at a fixed radius (2D-
computations) of internal turbomachinery it is obvious that the amplitude and phase error
as a function of axial distance is of primary interest, but this does not represent the whole
truth. Since the acoustic waves will have a two dimensional wave propagation, the dis-
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persivity and dissipation will not only depend on the circumferential wave resolution N �,
but also on the axial wave resolution Nx. Therefore an appropriate way of reducing the

Figure 18. Relation between cir-
cumferential (N�), axial (Nx) and
true wavelength (N�) perpendicular
to the wave front.

2D-data to a 1D plot would be to use the true theoretical wavelength perpendicular to the
wave front N� instead of N� only.

From Figure 18 one see that the theoretical true wavelength N� can be constructed
from N� and Nx by the following

1

N2
�

=
1

N2
�

+
1

N2
x

: (96)

Hence, instead of plotting against Nx we will here plot against N�. This reduces the data
to a 1D plot, and will provide a form of averaged weighting towards the least well-defined
direction, see Figure 19.

Figure 19. Amplitude decay error
(left) and phase error (right) devel-
opment as a function of the average
points per theoretical wavelength on
a cut-on downstream wave.
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Any changes of axial amplitude decay �� for the cut-on waves can be assumed to be
due to dissipation from numerical errors – the physical viscosity contributions is likely
small. Hence, for the cut-on waves the errors are calculated as: �� = j�� 0j. For cut-off
waves, which has a natural decay rate in the axial direction, the errors are calculated as the
difference between the theoretical decay rate (imaginary part of the axial wave number
kx, see (19)) and the numerical obtained decay rate, i.e. �� = j�� � 0j where �0 is the
theoretical obtained amplitude decay. Likewise the phase error �� is calculated as the
difference in phase between the theoretical and numerical results.
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8.4 Main error sources

From Figure 15 and 16 it can easily be seen that there are errors in the numerical solution.
To give an exact explanation to this is difficult, but there are some error sources that can
be seen upon as the far most contributing error terms.

As mentioned in Section 5.1.2 the numerical viscosity plays a major role in damping
the amplitude of the waves axially. How much the amplitude is damped depends on the
resolution of the wave, i.e. N� see Figure 20. A poor resoluted wave contains disconti-

Figure 20. Example of sharp gradi-
ents on a poor resoluted wave (a).
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(a) N� = 5, poor resoluted wave.
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(b) N� = 40, good resoluted wave.

nuities, which induces artificial viscosity into the solution, see Appendix A. In addition
to the numerical viscosity, there is also damping induced by the fluid viscosity, since we
are using Navier-Stokes equations in the numerical computations, but this is likely to be
small. However, with a large Retu and a very fine mesh, damping from the physical
viscous terms could be notable.

For cut-off waves, the amplitude of the wave will quickly decrease to a level of the
order of accuracy of the computer.

The solver is of second-order accuracy in space, which is at the lower limit of what
to accept for aeroacoustic computations. The amplitudes are small compared to the free
stream conditions, and are hard to distinguish from the numerical errors. In addition, when
using a grid with non-orthogonal cells, see Figure 7 and 13(d), the order of accuracy will
fall below second-order, which makes it even more difficult to distinguish the acoustic
wave from numerical errors.

Another important factor that is highly relevant in this project is the error caused by
reflections that originates from the boundaries, see Section 7. When waves are reflected
back, superposition occur, which gives dispersion errors that imposes a phase shift in
(94). In this project it can easily be detected by the wiggles at the upstream wave and by a
phase plot. Note that the reflections from the boundaries will increase in time. Hence, the
amount of reflections will depend on how long the calculation has run before collecting
the data during one period.

In addition, a time integration error is also present. Having too few points per period
in time, the dissipation and dispersion error will enhance.

It is important to notice that the axial wavenumber kx in (19) is much less for upstream
waves than for downstream waves. This gives a less resolution N�, which then induce
more numerical damping. This is basically the reason why the quality of the upstream
waves is poorer in comparison with the downstream waves.

The aim of this parametric study is to investigate how these error sources will interfere
with each other when the given parameters are changed. The total number of standard
cases is 67, with an upstream and a downstream wave input for each, giving a total number
of 134 runs.
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8.5 Influence from flow dependent parameter variations
The flow dependent variables involves the parameters N�, � and M (see Table 1). These
parameters are combined giving a finite number of combinations that represents this part
of the parametric study, all combinations of N� and � is tested. In Table 2 the range of
study is given. The total number of runs will be 80, since there are two runs for each of
the combinations; downstream and upstream traveling waves.

Table 2. Range of study for the flow
dependent parameters. Note that
number of runs is the double of the
number variations. For each combi-
nation, there are two runs; upstream-
and downstream-imposed waves re-
spectively.

Symbol Default Range of Study Variations

N� 20 5, 10, 20, 40, 80, 160 All combinations of N� and

� 1.1 0.7, 0.9, 1.1, 1.5, 3.0, 5.0 �, giving 36 var. and 72 runs

M 0.4 0.2, 0.4, 0.6, 0.8, 0.9 5 variations and 10 runs

A complete coverage of the runs from this part of the parametric study will not be
included. Instead, some of the runs that represent the most important result will be pre-
scribed. Flow is from left to right, with a downstream traveling acoustic wave imposed at
the left boundary. Upstream traveling acoustic waves are imposed at the right boundary.

8.5.1 Variation of N� with constant �

In this section only the result from variation of N�, for � = 1:1, is presented. All other
parameters are kept constant by the default values, see Table 1.

Figure 21. N� = 5. Constant
flow parameters: � = 1:1 and
M = 0:4. Downstream.

From these plots one can see the amplitude decay and phase errors develops by chang-
ing the resolution N� is used. Basically, the results improve with larger N� up to about 80
points per wavelength, where it does not improve any more. The reason for this could be
either the interaction of the viscous terms in the Navier-Stokes equations, time integration
errors, or that the solution is not fully converged. This is summarized in Section 8.5.4.
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The corresponding figures for the upstream traveling wave (flow is still going from left
to right, but the acoustic wave is imposed at the right boundary and traveling upstream
the flow) can be found in Appendix B.1. Note that the axial wavenumber is much

Figure 22. N� = 10. Constant
flow parameters: � = 1:1 and
M = 0:4. Downstream.

Figure 23. N� = 20. Constant
flow parameters: � = 1:1 and
M = 0:4. Downstream.

Figure 24. N� = 40. Constant
flow parameters: � = 1:1 and
M = 0:4. Downstream.
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less than for downstream waves, giving less resolution which then induces numerical
damping – this is basically the reason why the quality of the upstream waves are so poor
in comparison with the downstream waves.

Figure 25. N� = 80. Constant
flow parameters: � = 1:1 and
M = 0:4. Downstream.

Figure 26. N� = 160. Constant
flow parameters: � = 1:1 and
M = 0:4. Downstream.

8.5.2 Variation of � with constant N�

In this section the result from variation of �, for N� = 20 only, is presented . The other
parameters are kept constant with the default values, see Table 1.

Here it is important to notice how the cut-off waves (� < 1) decays, and that the
acoustic cut-on waves (� > 1) is damped. As the cut-off ratio becomes much larger than
one, the wavelength is reduces, which then leads to poorer resoluted waves and therefore
introduces more numerical viscosity into the scheme. Especially when � > 1:5 and
� < 1 the acoustic signal is damped to a level which makes it indistinguishable to the
accuracy of the computer (noise floor), i.e. 1 � 10�16. This trigger the computations to
get spurious (see for instance at x-position of about 30 for � = 5:0), and the result will
therefore becomes useless after this trigger-point.
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Figure 27. � = 0:7. Constant
flow parameters: N� = 20 and
M = 0:4. Downstream.

Figure 28. � = 0:9. Constant
flow parameters: N� = 20 and
M = 0:4. Downstream.

Figure 29. � = 1:1. Constant
flow parameters: N� = 20 and
M = 0:4. Downstream.

The corresponding figures for the upstream traveling wave (flow is still going from left
to right, but the acoustic wave is imposed at the right boundary and traveling upstream
the flow) can be found in Appendix B.2.



40 8 COMPUTATIONS

Figure 30. � = 1:5. Constant
flow parameters: N� = 20 and
M = 0:4. Downstream.

Figure 31. � = 3:0. Constant
flow parameters: N� = 20 and
M = 0:4. Downstream.

Figure 32. � = 5:0. Constant
flow parameters: N� = 20 and
M = 0:4. Downstream.
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8.5.3 Variation of Mach number M

In this section the result from variation of the Mach number M is presented . The other
parameters are kept constant with the default values, see Table 1.

Figure 33. M = 0:2. Constant
flow parameters: N� = 20 and
� = 1:1. Downstream.

Figure 34. M = 0:6. Constant
flow parameters: N� = 20 and
� = 1:1. Downstream.

Figure 35. M = 0:8. Constant
flow parameters: N� = 20 and
� = 1:1. Downstream.
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Going from low to high Mach number one should notice the enhanced influence of
numerical dissipation. This is a direct result of a decrease in axial wavelength, see (19). A
decrease in axial wavelength means that the resolution, points per wavelength, in x is less,
and Figure 20 holds. At low mach number, the reflections from the boundary conditions
are very clearly seen as the wiggly nature of the acoustic waves. These reflections are
present because one has to perform many iterations – compared to high-Mach number
runs – to ensure that the flow has moved throughout the domain.

Figure 36. M = 0:9. Constant
flow parameters: N� = 20 and
� = 1:1. Downstream.

The corresponding figures for the upstream traveling wave can be found in Appendix
B.3.

8.5.4 Summary and comparison of the result

The result of the flow dependent computations is summarized in Table 3.

Table 3. Result of axial damping error
�� and axial phase error �� for the
flow dependent computations. The
values are found by first-order curve-
fitting above the ’noise floor’ of the in-
dividual results.

Parameters Downstream Upstream
N� � M ��ds [dB] ��ds [rad] ��us [dB] ��us [rad]

5 1.1 0.4 1.3639 0.4006 5.0287 0.8415
10 1.1 0.4 0.1429 0.0902 0.9793 0.0114

N� 20 1.1 0.4 0.0066 0.0155 0.0461 0.0044
40 1.1 0.4 0.0006 0.0010 0.0119 0.0005
80 1.1 0.4 0.0004 0.0004 0.0089 0.0006

160 1.1 0.4 0.0003 0.0003 0.0060 0.0003

20 0.7 0.4 0.1127 0.0156 0.0382 0.0472
20 0.9 0.4 0.2011 0.0370 0.0089 0.0233

� 20 1.1 0.4 0.0066 0.0155 0.0461 0.0044
20 1.5 0.4 0.0176 0.0132 0.3318 0.0269
20 3.0 0.4 0.3781 0.0220 4.1503 0.8224
20 5.0 0.4 2.3045 0.3144 7.2253 1.9403

20 1.1 0.2 0.0102 0.0096 0.0265 0.0111
20 1.1 0.4 0.0066 0.0155 0.0461 0.0044

M 20 1.1 0.6 0.0183 0.0173 1.0608 0.0557
20 1.1 0.8 0.0446 0.0278 1.6541 0.2718
20 1.1 0.9 0.1644 0.0321 2.3408 0.6075

The results of the cut-on waves (see Figure 37 and 38) for the combinations of points
per wavelength N� and cut-off ratio � show many interesting features.

Firstly, the amplitude errors are strongly dependent of points per wavelength N �, but
is not much affected by the cut-off ratio (the points are generally grouped around the
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fitted curve – with the exception of the downstream � = 1:1 new, see Figure 37(a)).
The line � = 1:1 new represents a CFD-result from a refined version of the solver, and

Figure 37. Downstream, cut-on
(� > 0 only). Amplitude error (left)
and phase error (right) development
as a function of the average points
per theoretical wavelength.
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as one can see it indicates a better result. Some possible explanations to this might be
that the viscosity terms of the Navier-Stokes equation begins to dominate, or reflections
from outflow boundary condition, or time integration error, or it might also be that the
sensitivity of the post-processing was not good enough. It is also likely that several of
these results have been calculated before the flow had converged to fully periodic in the
whole domain. However, we expect that the errors will decrease in the same way as for

Figure 38. Upstream, cut-on (� > 0

only). Amplitude error (left) and
phase error (right) development as
a function of the average points per
theoretical wavelength.
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� = 1:1new when fully converged solutions are considered. Note that the results from
upstream waves are in general worse than downstream waves, which is mainly because
the axial wavelength Nx is less.

Secondly, the phase errors (see Figure 37(b) and 38(b)) is more spurious than the
amplitude decay errors, but a rough curve fitting is done in order to grip some indications
of the phase error development. It is difficult to draw any conclusions, but the trend is
more or less the same as for the amplitude decay. The error seems to be indefinable from
about N� = 30 up to higher resolutions – the reason for this is unknown.

Cut-off waves could be thought of as not being of significant interest since they decay
naturally and will generally not contribute to the far-field. However, in a compressor or
turbine, the blades are closely spaced, and because of this there could be interaction where
energy can be exchanged between cut-off and cut-on waves, as well as cut-off waves can
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Figure 39. Development of amplitude
error (left) and phase errors (right) as
a function of the Mach number.
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become cut-on also with varying Mach number. In Appendix B.3 the Figure 78 and 79
show the cut-off waves in similar plots to the cut-on waves. The amplitude and phase
errors are far from as good as for cut-on waves, and are not in consistence. For instance,
the phase error of the upstream wave, Figure 79(b), shows a positive inclination that
indicates an increase in error with increased resolution. The reason for this is unknown,
but errors could have occurred when the wavesplitting is applied in the post-processing.

Mach number variations show differences in dissipation and dispersion errors as well,
see Figure 39. Both amplitude decay and phase errors are increasing with increasing
Mach number. For downstream waves this occurs mainly because a higher Mach number
reduces the axial wavelength, and therefore also the axial wave resolution N x (and N�),
see Eq. (19). This is also true for the upstream waves as well, for which Nx is generally
smaller than for downstream waves, and the amplitude decay errors are therefore larger
here too.

8.6 Influence of code dependent parameter variations

Table 4. Range of study for the code
dependent parameters. Note that
number of runs is the double of the
number variations. For each combi-
nation, there are two runs; upstream-
and downstream-imposed waves re-
spectively. Calculations of the default
value (see Table 1) are coved by the
runs in Section 8.5. yUsed on acous-
tic outflow only.

Symbol Default Range of Study Variations
Nt 40 20, 80 2 variations and 4 runs

�(2) 1.0 0, 0.50, 2.0 3 variations and 6 runs

�(4) 0.1 0, 0.05, 0.2 3 variations and 6 runs

�(2) 1.0 0, 0.50, 2.0 3 variations and 6 runs

�(4) 0.1 0, 0.05, 0.2 3 variations and 6 runs

Retu 5 � 105 1 � 105 1 variation and 2 runs

b.c. Gilesy Riemann 1 variation and 2 runs

The code dependent variables involves the parameters N t, �(2), �(4), �(2), �(4) and
Retu (see Table 1). In Table 4 the range of study is given. The total number of runs will
be 30, since there are two runs for each of the combinations; downstream and upstream
traveling waves.

Few figures have been included in this section, most of the phenomena that occur here
are of little effect and is not visible on a figure. All the results have been summarized at
the end of this section, only a handful figures that have a clearly comparable and visible
phenomena is included. We refer to Table 5 for the results instead.
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8.6.1 Variation of time steps Nt per period in time

In this section the result of the effect from variation of the number of point per period in
time is presented. The default flow parameters are used, see Table 1.

From the figures in this section on can notice the increased damping as the number of
time steps per period is decreased.

Figure 40. Nt = 20. Downstream.
Flow parameters: N� = 20,
� = 1:1 and M = 0:4.

Figure 41. Nt = 80. Downstream.
Flow parameters: N� = 20,
� = 1:1 and M = 0:4.

The corresponding figures for the upstream traveling wave (flow is still going from left
to right, but the acoustic wave is imposed at the right boundary and traveling upstream
the flow) can be found in Appendix C.1.

8.6.2 Variation of mean flow artificial viscosity �(2) and �(4)

In this section the result of the effect from variation of artificial is presented. The default
flow parameters are used, see Table 1.
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Figure 42. �(4) = 0. Downstream.
Flow parameters: N� = 20,
� = 1:1 and M = 0:4.

Figure 43. �(4) = 0:2. Down-
stream. Flow parameters:
N� = 20, � = 1:1 and
M = 0:4.

There were seen minimal effect of changing the amount of second-order artificial
viscosity �(2), and no figures are included from this variation here. For downstream
waves variation of �(2) had no effect at all, but for upstream waves the amplitude decay
error and phase error imposed only minor changes.

Fourth-order artificial viscosity � (4), on the other hand, had relatively larger effect
than �(2). From the figures in this section one can see that the small oscillations that is on
the order of the grid points occurs, and damps the wave.

8.6.3 Variation of turbulent artificial viscosity �(2) and �(4)

No effects of changing the turbulent artificial viscosity parameter were seen on neither the
downstream waves nor the upstream waves. The reason for this is probably because the
viscous terms are small, and therefore also the kinetic energy of the turbulent vorticities is
small. See Table 5 for comparison. Since no hard walls are present in the computational
domain, it was expected that the viscosity should be neglected. Moreover, when walls are
present, viscous effect will be dominating in boundary layers.

8.6.4 Euler calculation

To ensure that viscosity effect was small, an Euler-calculation was also performed. This
showed exactly the same properties as the Navier-Stokes-calculation, for N � = 20 see
Section C.2 for an upstream computation.
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Figure 44. Euler calculation.
Downstream. Flow parameters:
N� = 20, � = 1:1 and M = 0:4.

8.6.5 Variation of turbulent Reynolds number

No effect could be seen when changing the turbulent Reynolds number to 1 � 10 5 from
the default value of 9:22 � 105. Of the same reason as for variation of �(2) and �(4), the
production of turbulence is small due to the absence of large viscous terms.

8.6.6 Summary and comparison of the result

The result of the code dependent computations is summarized in Table 5. The only
variables that imposes a noticable change is the time step Nt and forth-order artificial
viscosity-term �(4).

Table 5. Result of axial damping error
�� and axial phase error �� for the
code dependent computations. The
values are found by 1st-order curve-
fitting above the ’noise floor’ of the in-
dividual results.

Parameter Downstream Upstream
��ds [dB] ��ds [rad] ��us [dB] ��us [rad]

Default run 0.0066 0.0155 0.0461 0.0044

Nt 20 0.0525 0.0349 0.1194 0.0230
80 0.0024 0.0073 0.0358 0.0026

0 0.0066 0.0155 0.0461 0.0044
�(2) 0.5 0.0066 0.0155 0.0463 0.0043

2.0 0.0066 0.0155 0.0464 0.0041

0 0.0020 0.0178 0.0129 0.0054
�(4) 0.05 0.0038 0.0143 0.0221 0.0045

0.20 0.0190 0.0123 0.1996 0.0046

0 0.0066 0.0155 0.0461 0.0044
�(2) 0.5 0.0066 0.0155 0.0461 0.0044

2.0 0.0066 0.0155 0.0461 0.0044

0 0.0066 0.0155 0.0461 0.0044
�(4) 0.05 0.0066 0.0155 0.0461 0.0044

0.20 0.0066 0.0155 0.0461 0.0044

N-S Euler 0.0064 0.0119 0.0466 0.0054

Retu 1 � 105 0.0089 0.0120 0.0506 0.0128
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Figure 45. Development of amplitude
error (left) and phase errors (right) as
a function of the points per period in
time Nt.
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Figure 46. Development of amplitude
error (left) and phase errors (right) as
a function of the artificial parameter
�. The x-axis represent zero, half,
default and double values.
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8.7 Influence from grid dependent parameter variations

The grid dependent variables involves the parameters �x
�y

, �xj+1

�xj
, � and Circumferential

Distribution (see Table 1). In Table 6 the range of study is given. The total number of
runs will be 22, since there are two runs for each of the combinations; downstream and
upstream traveling waves.

Table 6. Range of study for the grid
dependent parameters. Note that
number of runs is the double of the
number variations. For each combi-
nation there are two runs; upstream-
and downstream-imposed waves re-
spectively. Calculations of the default
value (see Table 1) are coved by the
runs in Section 8.5.

Symbol Default Range of Study Variations
�x
�y

1.0 0.50, 2.0 2 variations and 4 runs

�xj+1

�xj
1.1 1

1:4 , 1
1:1 , 1.1, 1.4 4 variations and 8 runs

� 0.0 -70Æ, -35Æ, 35Æ, 70Æ 4 variations and 8 runs

CircDist Uniform End biased 1 variations and 2 runs

8.7.1 Variation of Cell Aspect Ratio �x

�y

In this section the result from variation of the Cell Aspect Ratio is presented. The other
parameters are kept constant with the default values, see Table 1.

The corresponding figures for the upstream traveling wave can be found in Appendix
D.1.
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Figure 47. Downstream. Cell Aspect
Ratio, �x

�y
= 0:5. N� = 20,

� = 1:1 and M = 0:4. See
Figure 12(b).

Figure 48. Downstream. Cell As-
pect Ratio, �x

�y
= 2. N� = 20,

� = 1:1 and M = 0:4. See Figure
12(b).

8.7.2 Variation of Axial Grid Stretching Ratio �xj+1

�xj

In this section the result from variation of the Axial Grid Stretching Ratio is presented.
The other parameters are kept constant with the default values, see Table 1. Only two

Figure 49. Schematic of the Axial
Grid Stretching case
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different runs are shown, 1
1:4 and 1:4.

Table 7. Parameters for the Axial
Grid Stretching Ratio test case. Stretching Parameters �xj+1

�xj
N1 N2 N3 �xstart

�y
�xend
�y

1
1:4 35 10 35 1.0 1

28:925
1
1:1 25 30 25 1.0 1

17:449

1.1 25 30 25 1
17:449 1.0

1.4 35 10 35 1
28:925 1.0

Figure 50. Downstream. Grid

Stretching Ratio,
�xj+1

�xj
= 1

1:4
.

N� = 20, � = 1:1 and M = 0:4.
See Figure 49.

Figure 51. Downstream. Grid

Stretching Ratio,
�xj+1
�xj

= 1:4.

N� = 20, � = 1:1 and M = 0:4.
See Figure 49.

8.7.3 Variation of Skew Angle

In this section the result from variation of the Skew Angle is presented. The other pa-
rameters are kept constant with the default values, see Table 1. Only the Skew Angles of
� = 35Æ and �35Æ is shown.

The corresponding figures for the upstream traveling wave (flow is still going from left
to right, but the acoustic wave is imposed at the right boundary and traveling upstream
the flow) can be found in Appendix D.2. Here the axial wavenumber is much less than
for downstream waves, giving less resolution which then induces numerical damping.
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Figure 52. Schematic of the Skew
Angle case
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Figure 53. Downstream. � = 35
Æ.

N� = 20, � = 1:1 and M = 0:4.
See Figure 52.

Figure 54. Downstream. � = �35
Æ.

N� = 20, � = 1:1 and M = 0:4.
See Figure 52.

An important feature of the skew angle, is that the axial wavelength across the skew
is larger for downstream waves than for upstream waves (see Appendix D.2). This causes
the numerical dissipation for upstream waves at positive skew angles to become large.
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8.7.4 Variation of Circumferential Distribution

In this section the result from variation of the Circumferential Distribution is presented.
The other parameters are kept constant with the default values, see Table 1.

Figure 55. Schematic of the Skew
Angle case
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This test case is set to model the passage within a blade row where points may be
closely spaced near the blades (taking account to the boundary layer), and coarser in the
middle. The circumferential spacing is proportional to

�yj = e
�

12

n2
(j�n+1

2 )
2

where n = 40 is the number of cells in the y-direction.

Figure 56. Downstream. Non-
Uniform Grid in y-direction.
N� = 20, � = 1:1 and
M = 0:4. See Figure 55.

The corresponding figure for the upstream traveling wave (flow is still going from left
to right, but the acoustic wave is imposed at the right boundary and traveling upstream
the flow) can be found in Appendix D.3.

8.7.5 Summary and comparison of the result

The result of the grid dependent computations is summarized in Table 8.
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Table 8. Result of axial damping error
�� and axial phase error �� for the
grid dependent computations. The
values are found by first-order curve-
fitting above the ’noise floor’ of the in-
dividual results.

Parameter Downstream Upstream
��ds [dB] ��ds [rad] ��us [dB] ��us [rad]

Default run 0.0066 0.0155 0.0461 0.0044
�x

�y
0.5 0.0013 0.0060 0.0042 0.0039
2.0 0.0057 0.0225 0.5350 0.0959
1

1:4
0.0333 0.0146 0.3395 0.3008

�xj+1

�xj

1

1:1
0.0185 0.0155 0.4412 0.2935

1.1 0.0189 0.0107 0.1284 0.0642
1.4 0.0376 0.0139 0.2230 0.1954

-70Æ 2.0219 0.6355 0.2823 0.8065
� -35Æ 0.0090 0.2277 0.0131 0.2087

35Æ 0.0074 0.2044 0.1278 0.1903
70Æ 0.9421 0.7049 4.3278 0.2429

CircDist 0.0518 0.0276 0.1618 0.0377

The result of the cell aspect ratio study can be seen in Figure 57. The overall trend
is as expected; for increasing aspect ratio (fewer grid point) the error is increasing. In
the downstream direction, at a cut-off ratio of 1.1, the axial wavelength is large, and the
number of grid points per axial wavelength is therefore large. The effect of increasing
dissipation from numerical errors with increasing aspect ratio should then be negliable,
which can be seen in the figure. Upstream wave, on the other hand, suffer from increased
numerical dissipation at high aspect ratios, since the axial wavelength is small and the
effect of dissipation from poor resolutet axial wave can not neglected.

Figure 57. Development of amplitude
error (left) and phase errors (right) as
a function of the Cell Aspect Ratio.
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The result from the grid stretching study is shown in Figure 58. It is difficult to draw
any conclusion from this, but it is clear that the grid stretching damps the acoustic wave.

Figure 59 shows the result of the skew angle study. At first sight, one observes that the
upstream wave is asymmetrical around zero skew angle, and that the downstream wave
is almost symmetrical. The reason for this is that the waves traveling with positive skew
angle is considerably more attenuated that those traveling across the skew (negative skew
angle). Since the result of that the points per wavelength across the skew is being greater
that the points per wavelength with the skew, and is not accounted for in the calculation
of N�. The downstream wave on the other hand show large numerical dissipation at
high skew angles, but is instead symmetric. It is symmetric because the direction of the
wavefront in these cases being close to the axial wavelength of these waves. Another
important observation is that the minimum amplitude error is not at zero skew angle, but
instead at 35Æ for downstream acoustic and at �35Æ for upstream acoustic – it clearly
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depends on which direction the wave is traveling.

Figure 58. Development of amplitude
and phase errors as a function of the
Axial Grid Stretching study.
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Figure 59. Development of amplitude
and phase errors as a function of the
Skew Angle �.
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8.8 Evaluation of acoustic output boundary condition
In this section the result of the use of Riemann boundary condition at the acoustic output
instead of Giles non-reflecting boundary condition. The default values, N � = 20, � = 1:1
and M = 0:4 is used, see Table 1. The axes of the following figure are equal to make
comparisons easier.

Wave reflections from the boundary are clearly visible when using Riemann condi-
tions (Giles boundary condition also impose reflections, but in a much less extent). The
downstream wave bounces at the right side of the domain, and back into the domain mak-
ing the wave pattern wiggly. Assuming that linear theory is valid, the reflected wave will
have the same wavenumber, kx in (19), as the incoming wave except that it is in opposite
direction, i.e. opposite sign:

kx;refl = �kx (97)

When the reflected wave bounces back it will interfere with the original wave, and
impose a phase shift as well as it will make the amplitude decay error wavy – positive
and negative interference. Note that the downstream wave will not be affected before the
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Figure 60. Downstream. Default
parameters with Giles non-reflecting
boundary condition at the acoustic
output (right side of domain).

Figure 61. Downstream. Default
parameters with Riemann boundary
condition at the acoustic output (right
side of domain).

reflections have reached the inflow boundary. A very rough estimate from the numerical
results states that the amplitude decay error increases three to four times the amplitude
decay error when using Giles boundary conditions.

The corresponding figures for the upstream traveling wave (flow is still going from left
to right, but the acoustic wave is imposed at the right boundary and traveling upstream
the flow) can be found in Appendix E.

8.9 Evaluation of iterations required for convergence
Followed by the discussion in the previous section, the important requirement of making
an accurate estimate of how many iterations that is optimal to reduce errors must clarified.
If too few iterations is performed, the flow have not reached the outflow boundary, and on
the other hand if too many iterations is performed, the errors from reflected waves would
be apparent.

This problem was not taken into account when choosing the optimal number of itera-
tions. It is therefore expected that runs with large axial wavelength, which does not have a
large axial damping, does not represent the correct result. When a large axial wave length
is used, like for � = 1:1, it is much more important to adjust the number of iterations to
reach an optimal value with as little boundary reflections as well as the solution is to be
converged – which have proved to be difficult. This is shown in Figure 62.
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(a) 100 iterations. (b) 150 iterations.

(c) 200 iterations. (d) 300 iterations.

(e) 400 iterations. (f) 500 iterations.
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Figure 62. Development of amplitude and phase errors with increasing number of iterations for the run: N� = 40, � = 1:1, M = 0:4.
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9 Conclusion
From the results presented above, there are certain conclusions that can be drawn. First,
as expected, increasing number of points per theoretical wavelength N � gives increasing
accuracy of the result, but it also requires more computational time. An optimal number
can not be established exactly, but in order to have good results within reasonable com-
putational time a rough estimate of around 20-40 points per circumferential wavelength
Ny should be sufficient to preserve the wave. Second, there are physical and numerical
phenomena that has been more clarified during this work, that includes; viscous inter-
action, numerical dispersion and dissipation of sound waves, dependence of number of
time steps per period, influence of different grid skew angles, and the errors induced by
improper boundary conditions.

Generally, to preserve a sound wave using a numerical solver, one should keep the
following in mind: 1) Decreasing number of points per theoretical wavelength N � will
damp the wave by numerical dissipation, 2) increasing number of points per theoretical
wavelength will introduce physical viscosity and larger truncation errors, 3) decreasing
mach number will impose longer axial wavelength and thus less dissipation, 4) increasing
mach number will then introduce more dissipation and also more iterations are required
for convergence, 5) time steps per period should be kept not much less than 40 to ensure
good quality, 6) second-order artificial viscosity for the mean flow equations is unimpor-
tant for the sound wave itself, 7) forth-order artificial viscosity parameter plays a small
role on the result and should be kept in mind, 8) unless very high-resolution grid is used
the turbulence is small and hence the turbulent Reynolds number and turbulent artificial
viscosity parameters is unimportant, 9) with increasing grid cell aspect ratio the error is
increasing especially when the axial wavelength Nx is small, 10) a grid skew angle other
than in between -35Æ to 35Æ should be avoided and this has also shown strong dependence
of which direction the wave is traveling, and 11) proper imposed boundary conditions is
important to avoid reflections.

Last, it is important to ensure that the numerical solution is fully converged. This
was a problem during the computations done in this project; amazingly an ambiguity in
the definition of time steps required for convergence was found. This have caused that
some of the results, especially the grid dependent, not have been obtained properly, thus
it should be comparable when investigating trends only.
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Appendix A

Dispersion error
To illustrate the roll that artificial viscosity plays on the stability of the scheme when

large gradient or discontinuities occurs, a one-dimensional simplified version of the finite
volume discretization (39) is used

@ui

@t
= �

�
fi+1=2 � fi�1=2

�x

�
I

; (98)

where the viscous part as well as the source term is removed. To give a brief overview
a spectral analysis is done to see how the instabilities develop. Reformulating (98) to
analytical form with mesh size of �x

@u(x; t)

@t
= �

f(x+ 1=2�x; t)� f(x� 1=2�x; t)

�x

and Taylor expanding in the spatial domain

@u

@t
= �

@f

@x
�

1

24
�x

2
@
3
f

@x3
� :::

where the last term on the right hand side represents the truncation error, and makes it now
apparent that this equation is of second-orderO(�x

2). Since this scheme is semi-discrete
(also called method of lines) and the time derivative is then solved separately implicit, it
is not included in the Taylor expansion. Introducing @f

@x
= @f

@u

@u

@x
= a

@u

@x
, where a would

represent the Jacobian for a matrix formulation. One now obtain

ut + aux ' �
1

24
�x

2
auxxx = �uxxx; (99)

which is a dispersive equation where � is a constant.
The key observation is that if one look at a Fourier series solution to this equation,

takingU(x; t) of the form

u(x; t) =

Z
1

�1

bu(�; t)ei�xd�;
then the Fourier components with different wave number � propagate at different speeds,
i.e. they disperse as time evolves. It is sufficient to consider each wave number isolated,
because of linearity. Considering one wave of the form

u(x; t) = bu(�; t)ei(�x�c(�)t)
where the speed of the wave is given as c(�). This is then inserted into (99)

c(�) = a� + ��
3
; (100)

from which this dispersion relation is obtained. An important velocity from this dispersion
relation is the group velocity that is given by

cg(�) =
dc

d�
= a+ 3��2:

Comparing the group velocity with the wave velocity a, one can see that individual groups
travels faster or slower, depending on the sign of �, than the wave velocity. This difference
causes oscillatory behavior near discontinuities, which further may cause the solution to
“blow up”. The most oscillatory components are found farthest x = c g(�)t from the
correct location x = at.
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Appendix B

Variation of flow dependent parameters

B.1 N� with constant �, upstream acoustic.

Figure 63. N� = 5. Upstream.

Figure 64. N� = 10. Upstream.
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Figure 65. N� = 20. Upstream.

Figure 66. N� = 40. Upstream.

Figure 67. N� = 80. Upstream.



63 B VARIATION OF FLOW DEPENDENT PARAMETERS

Figure 68. N� = 160. Upstream.

B.2 � with constant N�, upstream acoustic

Figure 69. � = 0:7. Upstream.

Figure 70. � = 0:9. Upstream.
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Figure 71. � = 1:1. Upstream.

Figure 72. � = 1:5. Upstream.

Figure 73. � = 3:0. Upstream.
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Figure 74. � = 5:0. Upstream.

B.3 Mach number M , upstream acoustic

Figure 75. M = 0:2. Upstream.

Figure 76. M = 0:6. Upstream.
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Figure 77. M = 0:9. Upstream.

B.4 Comparisons of cut-off waves

Figure 78. Downstream, cut-off (� <

0 only). Amplitude error (left) and
phase error (right) development as
a function of the average points per
theoretical wavelength.
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Figure 79. Upstream, cut-off (� <

0 only). Amplitude error (left) and
phase error (right) development as
a function of the average points per
theoretical wavelength.
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Appendix C

Variation of code dependent parameters

C.1 Time steps Nt per period in time, upstream

Figure 80. Nt = 20. Upstream.

Figure 81. Default Nt = 40. Up-
stream.
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Figure 82. Nt = 80. Upstream.

C.2 Euler calculation, upstream acoustic

Figure 83. Euler calculation. Up-
stream.
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Appendix D

Grid dependent parameters

D.1 Variation of Cell Aspect Ratio �x

�y
, upstream

Figure 84. Upstream. �x
�y

= 0:5.

Figure 85. Upstream. �x
�y

= 2.
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D.2 Skew Angle �, upstream acoustic

Figure 86. Upstream. � = 35
Æ.

Figure 87. Upstream. � = �35
Æ.

D.3 Circumferential Distribution, upstream acoustic

Figure 88. Upstream. Non-Uniform.
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Appendix E

Evaluation of upstream acoustic output boundary condition

Figure 89. Upstream. Default pa-
rameters with Giles non-reflecting
boundary condition at the acoustic
output (left side of domain).

Figure 90. Upstream. Default param-
eters with Riemann boundary condi-
tion at the acoustic output (left side of
domain).
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Krav på upplösning vid beräkning av fläktbuller från flygmotorer med CFD-verktyg
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low during take-off and approach. The reason for this is basically that fan-noise, i.e. pressure fluctuations generated
in the compressor or turbine, becomes dominating. This phenomenon can be recognized as non-linear and complex
aerodynamics rather than acoustic problem in nature, and thus it becomes difficult to obtain models that are general
and accurate. However, with the aid of CFD, the problem can now be studied in detail, but unfortunately this requires
a very large number of points per wavelength to distinguish the wave solution from numerical errors.
Applying the well-established linear methods for aeroacoustics in a parallel wall-duct to the fan stage, one can obtain
analytical expressions for the dispersion-relation. A sinusoidal acoustic wave with the known dispersion-relation is
then propagated thru a 2D numerical fan stage using a time-dependent finite-volume scheme. The numerical solution
is then compared with the original wave to identify deviations that could originate from dispersion, dissipation and
reflections induced by the numerical boundaries.
An optimal number of points per wavelength were not established exactly, but in order to have good results within
reasonable computational time a rough estimate of around 20 - 40 points per circumferential wavelength has shown
to be sufficient to preserve the wave. In addition, certain physical and numerical phenomena applied to aeroacoustics
has been more clarified, that includes; viscous interaction, numerical dispersion and dissipation of the sound waves,
dependence of number of time steps per period, influence of different grid skew angles, and the errors induced by
improper boundary conditions.
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