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1 Introduction

A proper knowledge regarding the characteristics of the Baltic seiches is

of great practical importance, not least in view of possible flooding of St

Petersburg, located at the inner end of the Gulf of Finland.

Ever since Forel in the 1870s described the standing oscillations of Lake

Geneva, considerable research efforts have been directed towards the pre-

diction and analysis of seiches. Early last century Chrystal (1905) devel-

oped a technique for solving the standing-wave eigenvalue problem for

realistic bathymetries, in which variations of the width and depth of the

"channel" could be dealt with analytically. It was particularly well adapted

to elongated basins, such as the lochs of his native Scotland. Witting (1911)

applied this methodology when investigating the tides of the Baltic, and

made particular note of the fact that the K1 and O1 diurnal tidal modes

were amplified in the Gulf of Finland.

Neumann (1941) focused on the global seiche modes of the entire Baltic,

using sea-level data from a number of events when particularly pronounced

standing oscillations had been observed. His theoretical analysis was based

on computational methods due to Defant (1918) and Hidaka (1936). The

rapid post-war development of the digital computer, as well as the catas-

trophic North-Sea floods in 1953, provided a great impetus for this branch

of research, and in the late 1950s two important studies of the Baltic were

conducted. Svansson (1959) presented the first barotropic numerical nu-

merical model of this almost land-locked sea, and Lisitzin (1959) under-

took a detailed study of 17 instances when regular sea-level oscillations
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(encompassing at least four distinctly recorded periods) had been observed

at Haamina in the Gulf of Finland. She determined the associated periods,

finding that they tended to be fairly constant, around 26.4 hours, and fur-

thermore undertook a systematic discussion of the possible effects of the

Coriolis force on the oscillations of the Gulf of Finland.

The first study properly incorporating the effects of the earth’s rota-

tion was conducted by Wübber and Krauss (1979). They used a two-

dimensional shallow-water model with a 10-km grid size. The model was

forced by continuously applied harmonic oscillations of varying periods

to calculate the various standing-wave modes of the basin.

All of these investigations have had a common denominator: the as-

sumption that global seiches are a predominant feature of the oscillations

of the Baltic. The aim has primarely been to calculate the period of these

seiches, rather than to determine whether they are in fact a predominant

feature. This assumption is, however, not well supported by observations.

This is particularly true of the lowest mode, involving oscillations of

the system Gulf of Bothnia-Baltic proper. Thus, analysing observations

from a timespan of four years, Neumann (1941) found only very few in-

stances of such an oscillation, and even the one he showed in the paper is

not very clear, encompassing hardly more than two oscillation periods. Its

period was about 40 hours. This agreed with his theoretically calculated

value of 39 hours, but this calculation neglected the Coriolis force, and ac-

cording to the numerical calculations by Wübber and Krauss, the Coriolis

force reduces the period from 40 to 31 hours. Metzner et al. (2000) could

not find any evidence for this kind of oscillation in a recent study using
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combined tide-gauge data and satellite-altimetric data.

Neumann found seven instances of a different mode, with its axis from

the Gulf of Finland to the Belt Sea, bypassing the Gulf of Bothnia. Its

period was about 27 hours, in agreement with his one-dimensional non-

rotating calculations. However, even these events were never observed

to encompass more than four oscillation periods. Judging from the mode

structure, this kind of oscillation mode might correspond to any of the sec-

ond, third and perhaps fourth eigenmodes found by Wübber and Krauss,

which had the approximate periods 26, 22 and 20 hours, respectively.

In general, spectral analysis of tide-gauge observations show no clear

peaks at any of the theoretically calculated eigenfrequencies.

Why are the global seiches rarely seen in the Baltic? A possible rea-

son is the complex coastline and bottom topography, which divide it into

several bays and sub-basins, separated by straits and sills. This probably

means that the global seiches are strongly damped by nonlinear effects

and excitation of internal waves, and therefore lose coherence too quickly

to be seen in reality.

We propose a different physical picture of the sea-level oscillations of

the Baltic: a collection of weakly coupled local oscillators. Each oscillator

corresponds to a "fjord mode" or "harbour mode" in a particular bay or

sub-basin. These are not proper eigenmodes, since their energy gradually

leaks out to the rest of the Baltic Sea, resulting in radiation damping. Nev-

ertheless, their resonance may in fact be sharper than that of the proper

global eigenmodes. We find three examples of such local oscillators: the

Gulf of Finland, the Belt Sea, and the Gulf of Riga.
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Our approach in examining this hypothesis is based on a numerial

shallow-water model. The model is run forward in time without forc-

ing, using a large scale initial condition that proves capable of exciting all

conceivable oscillations in the main basin of the Baltic. However, we com-

mence the investigation by analysing a set of tide-gauge records from the

Gulf of Finland as well as the Baltic proper.

2 Analysis of sea-level data

We first examine the sea-level oscillations in the Gulf of Finland by con-

ducting a spectral analysis of a water-level data set recorded by the Finnish

Institute of Marine Research (FIMR) during 1997. Three stations (cf. the

map in Figure 1) were used in the analysis: Hamina ( 60Æ33.75’ N ; 27Æ10.93’E),

Helsinki (60Æ09.20’N ; 24Æ57.58’E), and Hanko (59Æ 49.36’N ; 22Æ58.79’E).

These sites were selected on the basis of their locations: Hamina is in the

interior of the gulf, Helsinki in the middle, whereas the Hanko record can

be seen as reflecting the open boundary conditions of the elongated basin,

since the Osmussaar-Hanko section is frequently taken to delimit the Gulf

of Finland from the Baltic proper.

When examining the resulting spectra shown in Figure 2, we first note

that there are no signs of the global seiche modes, with the approximate

periods 31, 26, 22 and 20 hours (Wübber and Krauss 1979). The most pro-

nounced features in these spectra are instead peaks coinciding with the

diurnal K1 and O1 tidal periods. This state of affairs may appear some-

what surprising since the semi-diurnal M2 and S2 tides are subjected to
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stronger astronomical forcing than the diurnal component, but, as already

recognised by Witting (1911), the K1 and O1 tides are in approximate res-

onance with the gravest-mode “fjord seiche” in the Gulf of Finland. On

the basis of the crude predictions provided by Merian’s formula, cf. De-

fant (1960), the fundamental mode of the oscillation should have a period

T = 4L(gH)�1=2, where L is the length of a rectangular fjord of depth H.

The Gulf of Finland has a length on the order of 400 km from St. Pe-

tersburg to Hanko and its average depth is around 40 metres, which thus

yields a gravest-mode period of approximately 23 hours. This "fjord-mode

interpretation" of the sea-level records in Figure 2 is further reinforced

by noting that the spectral amplitude of the pertinent peaks is highest at

Hamina and decreases towards the entrance of the gulf.

A number of analogous water-level records taken in the Baltic proper

(albeit primarily from the Swedish mainland) have also been subjected to

spectral analysis, cf. Figure 3. No signs of “global 30-hour seiching” are

visible here, and it is noteworthy that the diurnal tides in the main body of

the Baltic are much less pronounced than in the Gulf of Finland. A striking

feature of these records is, furthermore, that a semi-diurnal tidal compo-

nent is so pronounced at Klagshamn in the southern part of Öresund. This

is undoubtedly due to the close proximity of this tide-gauge station to the

Kattegatt, where the M2 tide is known to dominate (Defant and Schubert,

1934).
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3 Numerical simulations of the seiches

Although water-level recordings at discrete points are valuable when ex-

amining the processes described above, they obviously do not suffice for a

full dynamical analysis. Tide-gauge data furthermore have the disadvan-

tage that they incorporate purely local as well as meteorologically forced

phenomena, and in many cases it may be difficult to discriminate between

these “spurious” effects and the signals resulting from the large-scale se-

iching motion which are the object of the present study. On the other hand,

simplified analytical models of the type introduced by Chrystal (1905)

tend to represent topographic features in a too crude manner, based as

they are on "slow" longitudinal variations of the cross-channel area.

To deal with these problems, a linear shallow-water numerical model

of the Baltic Sea incorporating the real bathymetry was employed. Using

this, it is possible to examine the outcome of “laboratory runs” where ini-

tial conditions and forcing have been manipulated in a controlled fashion.

In this way, it is possible to study the system without a priori assuming

that a global seiche is the primary explanation for the resonant oscillations

of the Baltic. The model is a further development of the one originally

formulated by Döös (1999). A leapfrog scheme on a C-grid with a grid-

size of 2 nautical miles was used, with a sponge zone to handle the open

boundary between the Skagerrak and the North Sea proper (cf. the model

domain in Figure 4).

The numerical runs were initialised by tilting the sea surface linearly

in the west-east direction with respect to its equilibrium position, from -1
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m at the western extreme of the Skagerrak to +1 m at St. Petersburg. (As

will be seen, this somewhat artificial initial configuration of the free sur-

face not only induces predominantly longitudinal oscillations in the basin

but also, to some extent, gives rise to transversal motion.) The initiali-

sation procedure was found to excite oscillatory motion encompassing a

wide range of wave-numbers. The model was hereafter run without any

forcing for 480 hours using one-hour timesteps. During this time the am-

plitude of the motion decreased considerably since the model included

dissipative processes, parameterized as Rayleigh friction, and the viscos-

ity AH = 10�3ms�1.

3.1 Large-scale oscillations

From the model runs briefly described above, frequency spectra have been

calculated at each gridpoint of the domain using FFT. The maps in Fig. 5

show the resulting distribution of the spectral amplitude for the periods

from 15 to 37 hours in two-hour intervals. The most striking results from

this suite of graphs are the what at first sight appear to be global oscilla-

tions with periods of around 23 and 27 hours. Both of these have a large

amplitude in the Gulf of Finland, indicating resonance with the local fjord-

seiche. At the other extreme of the Baltic basin, viz. the Danish Belt Sea,

the 23-hour oscillation only shows weak resonance effects, in contrast to

the 27-hour oscillation, which in this region has a large amplitude.

To show that this behaviour is not an artifact arising from the particu-

lar initialisation, runs were also made with a different initialial condition:
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the surface sloping linearly from +1 m at Tornio (located at the northern

extreme of the Gulf of Bothnia) to -1 m at Wladyslavovo on the southern

shore of the Baltic. The same phenomena as noted above also proved to

characterize this latter set of results, with the exception that the local se-

iche in the Gulf of Riga, with the period 17 hours, was not excited. This

is probably because the main entrance to the gulf, the Irbe Strait, stretches

in the East-West direction. The seiche in the Gulf of Riga will be further

discussed in subsection 3.3.

To study the large-scale “asymmetric response” in greater detail, the

results from a transect following the "Thalweg" from St. Petersburg to the

northern Kattegatt, cf. Figure 4, were also examined. A contour plot of

the spectral amplitude as a function of distance along the transect and the

oscillation period is shown in Figure 6. We see the same overall pattern

as previously described. The most prominent features are the strong 27-

hour oscillation in the Gulf of Finland and the Belt Sea, and the 23-hour

oscillation with only weak resonance in the Belt Sea. It is also noteworthy

that the spectral peaks in the Gulf of Finland are considerably sharper than

the one found in the Belt Sea, which is broad and has a lower amplitude.

3.2 Runs with modified bathymetry

To determine whether the oscillations seen in the previous runs are caused

by local resonance effects or by global seiches, model versions with an

artificially modified bathymetry were set up. In the first one the Gulf of

Finland was closed off from the Baltic proper by a solid wall. In Figure

12



7 one can see that, as expected, a normal seiche oscillation develops in

the closed gulf of Finland. The period of 10 hours is consistent with an

analytic estimate.

In the Baltic proper, on the other hand, the global seiche patterns dis-

appear. The only remaining oscillation of any significance is a local phe-

nomenon in the Danish Belt Sea, with a period of about 25 hours.

To study the fjord seiche in the Gulf of Finland, a model version with a

very distorted batyhmetry was used. Only the shoreline of Finland and the

Baltic states down to Poland was used, while Sweden and Denmark, etc,

were replaced by a rectangular basin having a uniform depth of 90 meters;

see Fig. 8. The result in Fig. 9 shows that the oscillations in the Gulf of

Finland are only weakly affected by this drastic change of the bathymetry.

These experiments show that the Belt Sea and the Gulf of Finland are

both capable of supporting local modes. A probable explanation of the

apparent global seiche pattern in Fig. 6, with a realistic bathymetry, is that

it is a superposition of these local modes. The two oscillators are only

weakly coupled, as shown by the fact that each of them is only slightly

affected when the other one is completely removed.

The most important result of the coupling between the two local modes

seems to be that the resonance frequency is split into two close but distinct

resonance frequencies, corresponding to the periods 23 and 27 hours. This

is seen particularly clearly in the Gulf of Finland, cf. Fig. 6. When only

one of the two oscillators is present, there is only one resonance frequency,

cf. Figs 7 and 9.

Such frequency splitting occurs very generally when two oscillators
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with close frequencies are coupled. Describing the oscillators by the sim-

ple equations
d2�1
dt2

+ !2

1�1 = ��2;

d2�2
dt2

+ !2

2�2 = ��1;

we obtain the eigenfrequencies

!2 =
!2
1 + !2

2

2
�

2
4
 
!2
1 � !2

2

2

!2
+ �2

3
5
1=2

:

For !2
1 = !2

2 this reduces to !2 = !2
1��, illustrating the frequency splitting.

3.3 Harbour seiche in the gulf of Riga

One peculiar detail is the indication of an oscillation with a period of 17

hours in the Gulf of Riga, as can be seen in Fig. 5. The fact that the period

is fairly long although this gulf is small is a consequence of the narrow

straits that connect it to the rest of the Baltic.

Such a low-frequency mode is often referred to as a Helmhotz mode,

and is well known in harbour seiching (Miles, 1974). The Helmholtz mode

in the Gulf of Riga has recently been studied in detail by Otsmann et al.

(2001). They constructed a simple theoretical model which was calibrated

using current observations in the Suur Strait, at the northern extreme on

the Gulf, and concluded that the main resonance period of the system is 24

hours. Oscillations with this period are also the most prominant feature of

the current observed in the Irbe Strait, the main strait connecting the Gulf
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of Riga with the Baltic proper.

The difference between this value and our result of 17 hours is proba-

bly explained by numerical errors. To describe the Helmholtz mode accu-

rately it is essential to have a good resolution in the straits connecting the

sub-basin to the rest of the sea, which is not the case in our model. Even

the coupling to the tiny Väinameri basin just north of the Gulf of Riga was

found to increase the resonant period by one hour (Otsmann et al. 2001).

4 Oscillations in a long channel

To explain and interpret oscillations in a closed basin, it is customary to

compute the global eigenmodes. However, in a basin with complex coast-

line and bottom topography, like the Baltic Sea, an interpretation in terms

of local "quasi-modes" may be more useful. These are localised modes

that couple weakly to the rest of the basin, gradually losing their energy

by wave radiation. The resulting damping is described by an imaginary

part of the eigenfrequency. Harbour seiches (Miles 1974) are an example

of such quasi-modes.

In the present section we illustrate the relation between the two points

of view by examining the modes of oscillation in a long and narrow basin,

which will be treated as a one-dimensional channel. This example is not

chosen to be a realistic model of the Baltic Sea. It is rather an easily solvable

toy model, meant to illustrate the basic ideas.

The channel consists of two sub-basins, a short one with the length L1

and the depth H1, and a long one with the length L2 and the depth H2.
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Conceptually, we can think of the shallow sub-basin as analogous to the

Gulf of Finland, while the long sub-basin is analogous to the Baltic proper.

Neglecting the Coriolis force, the equation for barotropic waves is

@

@x

 
gH

@h

@x

!
+ !2h = 0; (1)

where H(x) is the equilibrium depth, h the depth perturbation, and we

have assumed that the time variation is proportional to exp(�i!t). The

boundary condition at the "coastal points" x = �L1 and x = L2 is the

usual one of no normal flow, implying @h=@x = 0. At the step in bottom

topography at x = 0 we must require continuity of the surface elevation h,

and of the mass flow H@h=@x.

We first consider a quasi-mode in the shallow sub-basin, taking the

long sub-basin to be infinitely long (analogously to the open ocean). Thus,

instead of using the boundary condition at x = L2, we require the wave

in x > 0 to be purely rightward-propagating, which gives the following

ansatz:

h(x) =

8>><
>>:

a+e
i!x=c1 + a

�
e�i!x=c1 ; x < 0

b+e
i!x=c2 ; x > 0

(2)

The phase velocity in the two regions is given by c1 = (gH1)
1=2 and c2 =

(gH2)
1=2, respectively, and we assume that ! is positive, so that the terms

proportional to a+ and b+ represent rightward propagating wave compo-

nents, while the term proportional to a
�

represents a leftward propagating

component. The continuity conditions at x = 0 give the reflexion coeffi-
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cient at the bottom step:
a
�

a+
=

c1 � c2
c1 + c2

: (3)

Note that if H1=H2 ! 0, so that c1=c2 ! 0, then ja
�
=a+j = 1, i.e. a wave

travelling toward an inifinitely deep ocean from the shallow sub-basin is

totally reflected. We then get a standing wave in the shallow sub-basin, a

"fjord mode".

The boundary condition at x = �L1 gives another relation between a+

and a
�

. Combining it with eq. (3) we obtain the dispersion relation for the

quasi-mode:

e�2i!L1=c1 =
c1 � c2
c1 + c2

: (4)

If we assume that H1 � H2 the right-hand side of this equation is close to

�1, and we obtain approximately

! =
c1
L1

�
�

2
+ n� � i

c1
c2

�
n = 0; 1; 2:::: (5)

These eigenfrequencies represent damped oscillations. The real part is the

same as the eigenfrequency of the fjord modes, and the imaginary part

describes the damping due to wave radiation.

To see how this quasi-mode relates to the global eigenmodes, we will

then solve the problem with a finite value of L2. The ansatz (2) is then

replaced by

h(x) =

8>><
>>:

a+e
i!x=c1 + a

�
e�i!x=c1 ; x < 0

b+e
i!x=c2 + b

�
e�i!x=c2 ; x > 0

(6)
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and we must also use the boundary condition at x = L2. After some stan-

dard calculations, the following dispersion relation can be obtained:

tan
!L1

c1
= �

c2
c1

tan
!L2

c2
: (7)

It has two sets of roots. If c2=c1 is large, the first set is approximately given

by cos(!L1=c1) = 0, i.e. the frequencies of the fjord mode in the shallow

sub-basin. The second set is approximately given by sin(!L2=c2) = 0, cor-

responding to the eigenmodes of the deep sub-basin.

To understand how these global eigenmodes relate to the quasi-mode,

it is useful to calculate the ratio between the energy density in the shallow

and deep sub-basins. The energy density of a harmonic oscillation is in

general given by E = (!2 +Hk2)jhj2=2 = !2jhj2. Using the fact that ja+j =

ja
�
j and jb+j = jb

�
j, the ratio between the energy density in the two sub-

basins can then be calculated as E1=E2 = cos2(!L2=c2)= cos
2(!L1=c1). With

the help of eq. (4) this can be written as

E1

E2

=
1

cos2(!L1=c1) + (H1=H2) sin
2(!L1=c1)

: (8)

This function is plotted in Fig. 10, setting H2=H1 = 25. For H2 > H1 its

maximum value is E1=E2 = H2=H1, and the maximum points are at ! =

(c1=L1)(�=2+n�); n = 0; 1; 2; ::: . If H2=H1 is large, the maxima are narrow

resonance peaks, with the half-width �! � (2H1=H2)(c1=L1). At these

peaks, the global eigenmodes are in resonance with the fjord mode in the

shallow sub-basin.
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In Fig. 10 we also show the energy ratio for the eigenfrequencies ob-

tained from eq. (7) for two different values of L2. The points all lie on the

curve defined by eq. (8). Thus, the only effect of increasing the value of

L2 is that the eigenmodes sample this curve more densely, while the curve

itself is independent of L2. Its shape entirely reflects the properties of the

quasi-mode in the shallow sub-basin: the location of the resonance peaks

is equal to the real part of the eigenfrequency of the quasi-mode, and their

width is determined by the imaginary part, i.e. by the reflexion coefficient

at the bottom step.

With the parameters used in Fig. 10, the frequency of the fjord mode co-

incides with one of the eigenfrequencies of one of the deep sub-basin. This

causes frequency splitting, as discussed in the previous section, which

gives two symmetrically situated global eigenfrequencies at the resonance

peak.

We have also solved the time-dependent shallow-water equations cor-

responding to eq. (1) numerically, using a uniformly sloping surface h as

initial condition. The result is shown in Fig. 11. It has the appearance of

a global oscillation superimposed with a local damped oscillation in the

shallow sub-basin, with the period T=4 given by eq. (5) with n = 0.

How should we understand this local oscillation? One answer is that

it is a superposition of those global eigenmodes that coincide with in the

resonance peak of Fig. 10, and therfore have a large amplitude in this sub-

basin. There are two (or perhaps four) such modes for the parameters used

in the simulation. The damping of the oscillation is then a result of these

modes gradually coming out of phase.
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Another answer, which is mathematically equivalent but physically

more natural, is that this is a local quasi-mode. This point of view also

gives a natural explanation of the waves that can be seen to radiate away

from the shallow sub-basin in Fig. 11. They qualitatively resemble the

Kelvin waves that were seen to radiate away from the Gulf of Finland in

our simulations.

5 Conclusion

In our shallow-water simulations of the Baltic Sea, we could identify three

different local oscillatory modes: one in the Gulf of Finland, with the two

distinct periods 23 and 27 hours, one in the Belt Sea, with a less distinct

period in the range 23-27 hours, and one in the Gulf of Riga, with the

period 17 hours.

The strongest mode is the one in the Gulf of Finland. This agrees with

the frequency analysis of sea level observations, showing that the ampli-

tude there is highest for periods in the range 23-30 hours, and also that the

tidal components K1 and O1 are much stronger in the Gulf of Finland than

elsewhere, cf. Fig. 2.

The local Helmholtz mode in the Gulf of Riga also exists in reality;

however, as shown recently in the detailed study by Otsmann et al. (2001),

its real period is 24 houors rather than 17 hours. The discrepancy is most

likely caused by numerical errors. In order to describe this mode accu-

rately, one must have a better resolution than in our model of the straits

connecting the Gulf of Riga to the Baltic proper.
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We are also not certain about the accuracy with which the local mode

in the Belt Sea is described on our simulations. The Belt Sea, too, is charac-

terised by a complex bathymetry with narrow straits, moreover, it is likely

to be affected by the open boundary, which is a potential problem in any

model.

It has sometimes been asked whether the sea level oscillations observed

in the Gulf of Finland are caused by a local fjord mode or by global eigen-

modes (Neumann 1941). As illustrated in section 4, these two alternatives

are really two sides of the same coin. Mathematically speaking, a local

"fjord mode" is a superposition of several global eigenmodes with close

frequencies.

However, the interpretation as a local mode focuses on the most rubust

aspect of the problem. If for example, the bathymetry is modified out-

side of the Gulf of Finland, the local mode there remains almost the same,

and so does the temporal evolution of a sea-level perturbation in the gulf.

Yet the global eigenmodes of which this quasi-mode consists may have

changed strongly.

The most pronounced non-local effect seen in our simulations is the

frequency splitting that appears to be caused by a coupling between the

local modes in the Gulf of Bothnia and the Belt Sea. In the analysis of ob-

served oscillatory events by Neumann (1941) there is in fact indications of

a similar double peak, but this cannot be seen in the spectra of sea-level

observations in the Gulf of Finland that we have analysed. There are sev-

eral reasons why one would expect this double peak to be less pronounced

in observations than in our model.
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One is that this splitting is an effect of these two modes coincidentally

having almost the same resonant periods, and as already remarked, we are

not confident about the accuracy of our value of the period of the Belt Sea

mode. Another reason is that some effects, such as nonlinearities and cou-

pling to internal waves, that would tend to decorrelate the global modes,

are not present in our model. Also note that the oscillatory events found

be Neumann encompass at most four oscillation periods, which by itself

indicates a spectral width comparable to the difference between the two

periods we observed the Gulf of Finland, and also comparable to the dif-

ference between the periods of first few global eigenmodes found by Wüb-

ber and Krauss (1979).

It is curious that the periods of all the three most distinct local modes

are all so similar (using the value 24 hours in the Gulf of Riga, as given

by Otsmann et al.). This of course enhances the interaction between them.

Theoretically this should lead to frequency splitting, but in practice the

result is most likely that the response is broadened, so that no distinct

resonance at all is observed.

This also means that if one wants to compute the global eigenmodes

with periods in this range, one must have a good description of all these

local modes. In particular, it is necessary to have a good resolution in

the straits of the Gulf of Riga. This shows that the local modes are also

the computationally robust aspect of the problem, while the global eigen-

modes, involving the interaction of the local modes, are not.
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Location of water−level stations

  18oE   21oE   24oE   27oE   30oE 
  59oN 

 20’ 

 40’ 

  60oN 

 20’ 

 40’ 

  61oN 

Hanko

Hamina

Helsinki

Figure 1: Location of three Finnish water-level stations in the Gulf of Fin-
land
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Figure 2: Spectral diagram of water-level timeseries sampled at three sta-
tions in the Gulf of Finland 1997.
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Figure 3: Spectral diagram of water-level timeseries sampled at different
locations in the Baltic sea 1997.



Figure 4: Two nautical-miles bathymetry of the Baltic sea. Transect for
analysing spectral amplitudes plotted.
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Figure 5: Spatial plots of harmonic amplitudes in the baltic sea. Each iso-
line represents 5 centimeters.
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Figure 6: Spectral amplitudes of all gridpoints on the transect in Figure 4.
Normal bathymetry. Each isoline represents 5 centimeters.
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Figure 7: Spectral amplitudes of all gridpoints on the transect in Figure
4. Bathymetry with the Gulf of Finland closed. Each isoline represents 5
centimeters.



Figure 8: Bathymetry where Sweden have been replaced with a 90 metre
deep basin.
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Figure 9: Spectral amplitudes of all gridpoints on the transect in Figure 4.
Bathymetry in Figure 8 used. Each isoline represents 5 centimeters.
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Figure 10: Ratio of the energy density in the shallow sub-basin to that in
the deep one as a function of frequency. The curve is eq. (8), and the dots
represent the global eigenfrequencies for two different values of L2.
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Figure 11: Time development of the free surface, with one time unit be-
tween each curve. The elevation is decreasing in the left half of the figure
and increasing in the right half. The shallow sub-basin is in -1<x<0.


