


Contents

1 Introduction 2

2 Estimation of Nonlinear Dynamical Models 2

3 Hypothesis Testing 4

4 Hybrid Detector 6

5 Sonar Data 7

6 Detection Test 11

6.1 RPM Speci�c Detectors . . . . . . . . . . . . . . . . . . . . . . . 12

6.1.1 1500 RPM recording . . . . . . . . . . . . . . . . . . . . . 13

6.1.2 2000 RPM recording . . . . . . . . . . . . . . . . . . . . . 16

6.1.3 3000 RPM recording . . . . . . . . . . . . . . . . . . . . . 19

6.1.4 4000 RPM recording . . . . . . . . . . . . . . . . . . . . . 22

6.2 RPM Independent Detectors . . . . . . . . . . . . . . . . . . . . . 25

6.2.1 For the 1500, 2000, 3000 and 4000 RPM recordings . . . . 25

6.2.2 For the 1500, 2000 and 3000 RPM recordings . . . . . . . 29

7 Conclusions 33

1



1 Introduction

In this report we present a detection study on real-world sonar recordings using
a deterministic time domain method. Speci�cally, we discuss the estimation of
the parameters of a nonlinear delay di�erential equation from this data. Using
these estimated model coeÆcients as detection features we design signal detec-
tors by implementing a Mahalanobis distance-based decision criteria to perform
rigorous hypothesis testing and characterize performance. By analyzing acoustic
data recorded in shallow water in the Baltic Sea, we compare the performance
of the dynamical detector with a frequency band-matched energy detector and
demonstrate that the former provides increased detection performance. Since
the dynamical detector does not include signal information due to energy 
uc-
tuations, we also construct a hybrid detector which incorporates dynamical and
energy features, and compare this performance to the simple energy detector.

In general dynamical detectors should be sensitive to signal structure which is
generated by low-dimensional dynamics from some physical system. Hence, we
expect that they should provide good performance on signals derived from e.g.
mechanical systems. They also can provide more parsimonious representations
of such data than spectral methods, hence we hypothesize that the dynamical
detectors may be very useful for signals which are deterministic but moderately
broadband. As the boat signatures discussed here are already known to possess
some nonlinear structure by previous analyses using bispectral methods, the
intention of this study is to characterize the performance on such signatures
using the dynamical methods.

2 Estimation of Nonlinear Dynamical Models

Here we present a brief description of our model estimation procedure using
time-domain delay di�erential equation signal models. For a detailed description
the reader is referred to [1, 2]. Delay di�erential equations are utilized due
to generality of their solution spaces, and their generally easier treatment over
ODEs in the context of the dynamical model estimation problem. CoeÆcients
estimated by this procedure are then used as features in the detection process,
which will be discussed in the next section.

We �rst assume that we observe a continuous scalar data stream x(t) generated
by a measurement of some physical process. We hypothesize that the process
evolution itself can be reasonably approximated by a deterministic, relatively
low-dimensional dynamics. Using up to D time-delayed copies of x(t), written
x(t � �d) with 1 � d � D, and introducing the shorthand notation x � x(t),
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_x � _x(t), and x� � x(t� �), our general model form is:

_x = F (x; x�1 ; : : : ; x�D) : (1)

The function F is often expanded in terms of some basis functions. For our
analysis here we will restrict our attention to a two-delay second order model of
type

_x = a1x�1 + a2x�2 + a3x�1x�2 : (2)

Equation (2) has been used successfully to model and detect deterministic quadratic
phase couplings [1], for example.

Our goal here is not to create an exact model for the signal but rather to �nd
a relatively few dimensional (small D) and low order (preferably quadratic or
cubic) model form, which allows us to distinguish between the signal classes
of interest. By de�ning a general model representing several signal classes the
model is in fact used as a �xed \dynamical �lter" which allows direct comparison
between the various signal classes.

The model coeÆcients a1, a2, and a3 in Eq. (2) are estimated for each data win-
dow, and they comprise our classi�cation feature space. This estimation must be
numerically robust and preferably preserve the low-order nonlinear correlations
that might be present in the original signal. Here we present a method which
can accomplish both of these goals, and make explicit connection to higher-order
spectral theory [1][3]. To proceed, we multiply Eq. (2) consecutively by each ba-
sis term x�1 , x�2 , and x�1x�2 to generate a system of equations, and average over
an observation window of length T to obtain expectations. Hence, the model
coeÆcients are computed by solving the following linear equation:

R � A = B (3)

where

R =

0
BBB@

h x2 i h x�1x�2 i h x2�1x�2 i
h x�1x�2 i h x2 i h x�1x2�2 i
h x2�1x�2 i h x�1x2�2 i h x2�1x2�2 i

1
CCCA (4)

A =

0
BBB@

a1

a2

a3

1
CCCA B =

0
BBB@

h _xx�1 i
h _xx�2 i
h _xx�1x�2 i

1
CCCA ; (5)

and h�i stands for the expectation value.
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The main practical advantage of using Eq. (3) is that we can avoid directly
estimating the signal derivatives, which is the main diÆculty for noisy signals.
Indeed, the correlation involving the signal derivative can be calculated instead
from the derivative of the correlation function, i.e.

h _xx�1i =
d

d�1
hxx�1i; (6)

and

h _xx�1x�2i =
d

d�1
hxx�1x�2i+

d

d�2
hxx�1x�2i: (7)

These formulas are valid in the long window limit for a bounded stationary
signal x(t). We note that the expectation values on the left hand side of Eq. (3)
can be written as the standard higher-order data moment functions [4]. For
example, hx�1x2�2i = mxxx(�2 � �1; �2 � �1) where the 3rd order moment function
is de�ned as mxxx(�1; �2) = hx(t)x(t� �1)x(t� �2)i and describes bi-correlations.
However, the dynamical moments involving _x express information not utilized
in standard higher order methods, and arise exactly because of the dynamical
signal hypothesis.

3 Hypothesis Testing

In this Section we describe the Mahalanobis distance-based discriminationmethod
which we will use later in our data analysis. For the simple detection problem,
we assume that there are only two data classes: noise and signal. For each of
these we make Nn and Ns observations, respectively, using a �xed window length.
By applying the DDE model we obtain for each class a set of model coeÆcientsn
A

(n)
i

oNn

i=1
and

n
A

(s)
i

oNs

i=1
where the vector notation A = (a1; a2; a3)

0 has been

introduced. The detection problem now reduces to how well one can discriminate
between these multi-variate feature distributions.

A systematic treatment of this discrimination problem was done in [5], who
considered the de�nition of distance between multi-variate normal populations.
While the distribution of the DDE model coeÆcients is typically not Gaussian,
for low-SNR they are nearly so. We have found that alternative methods that do
not rely on the normality assumption, e.g. logistic discrimination [6], do not show
signi�cant improvement over the Mahalanobis method when the signal-to-noise
ratio is very low.

Thus, for each independent realization A we compute the squared Mahalanobis
distance

�(A) =
�
�A(s) � �A(n)

�0
��1

�
A� �A

�
: (8)
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Here � is the common covariance matrix approximated by � = (�s+�n)=(Ns+
Nn), �A(s) and �A(n) are the mean of the distributions for the signal and noise
classes respectively, and �A =

�
�A(s) � �A(n)

�
=2. In practical cases the means and

the covariance matrix are unknown and have to be estimated from a training set,
unless the analytic signal forms are known.

To perform hypothesis testing on new observations, we use the Matusita alloca-
tion principle [7], de�ned by the following discrimination rule for the unknown
observation A:

if �(A)

� � 0; allocate A to the signal class
< 0; allocate A to the noise class

(9)

The Matusita allocation principle as formulated in (9) leads to an optimal sepa-
ration between the two distributions, but results in a �xed false alarm rate. The
false alarm rate, however, is often speci�ed by operational design, and therefore
the detector has to be modi�ed to include a threshold distance:

if �(A)

� � �c; allocate A to the signal class
< �c; allocate A to the noise class

(10)

where the threshold distance �c is set to obtain the preset false alarm rate Pfa.
If P(n)(�) is the estimated probability density function for the noise sample then
the condition for �c is Z

1

�c

P(n)(�) d� = Pfa: (11)

Using the discrimination principle (10) we are able to generate performance es-
timates for various detection scenarios.
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4 Hybrid Detector

Since the dynamical detector is insensitive to signal power, we also design a
hybrid detector. The hybrid detector is a combination of the dynamical detector
and the band-matched energy detector. We simply use a four dimensional feature
space constituted by the three model parameters (i.e. a1, a2, and a3) and the
signal energy. The output decision can then be made with Mahalanobis distance
as described in the previous section.

We made a numerical experiment, in which both the noise and the signal were
generated by a white Gaussian process, only their energy content were di�erent.
Since the signal is truly random the dynamical detector should not provide any
detection and hence the hybrid detector performance should be identical to the
energy detector. In Fig. 1 the ROC curve for the energy, dynamical and hybrid
detector are displayed and we observe the expected behavior.
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Figure 1: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the noise test using the dynamical detector, energy detector and
hybrid detector. We use the delays �1 = 7 and �2 = 82.
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5 Sonar Data

Experimental sea trials were performed by the Swedish Defense Research Agency
in the Baltic Sea, which contributed to the acoustic data set analyzed here.
The experiments were performed in waters of approximately constant depth of
30 m using a 23 ft �berglass motor boat powered by a 4-cylinder, 4-stroke turbo
charged Volvo-Penta (VP) diesel engine (type AD31P-A) having a VP Aquamatic
stern drive (type AD31/DP) with an engine/drive gear ratio of 2.3:1. The stern
drive was equipped with two counter rotating propellers (VP type A7) with
3 (front) and 4 (rear) blades. The sound propagated through the water was
recorded with a passive hydrophone array, of which one hydrophone located at
a depth of 17 m is used in the subsequent analysis presented in this report. All
data was sampled at a rate of 25 kHz (no pre�ltering), which was considered
suÆcient since virtually all the power in the signals and noise was con�ned to
the frequency region below 5 kHz. In Fig. 2 a sketch of the test site is displayed.

In each recording the boat was run on constant throttle on a straight-track path
passing directly above the hydrophone (see Fig. 2). The data analyzed here were
taken from a time frame with the closest point of approach (CPA) corresponding
to the middle of the frame. Moreover, ambient noise was recorded using the
hydrophone array both before and after the sea trial.

Figure 2: The test site

In Fig. 3 to Fig. 6 representative time-series and power spectra from the 1500,
2000 ,3000 and the 4000 RPM recordings are displayed.

This data was in part previously analyzed by the Swedish Defence Research
Agency using higher-order spectral techniques. This analysis showed that by
using the skewness (a normalized version of the bispectrum) it is possible to �nd
coupled frequencies that could be generated by quadric phase coupling. In Fig. 7
the skewness is displayed for the 3000 RPM recording. For more details on this
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analysis the reader is referred to [8].

These results seem to indicate interesting mechanical processes contributing to
the acoustic signatures. Here we attempt to exploit these using our dynamical
detectors.
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Figure 3: Time-series (top) and power spectrum (bottom) from the 1500 RPM
recording.
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Figure 4: Time-series (top) and power spectrum (bottom) from the 2000 RPM
recording.
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Figure 5: Time-series (top) and power spectrum (bottom) from the 3000 RPM
recording.
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Figure 6: Time-series (top) and power spectrum (bottom) from the 4000 RPM
recording.
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Figure 7: Skewness for the 3000 RPM recording.
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6 Detection Test

Here we numerically implement the dynamical detector on the sonar data and
compare the results with a band-matched energy detector. For the analysis here
we build both RPM speci�c detectors and RPM independent detectors, for four
di�erent RPMs, namely 1500, 2000, 3000 and 4000. Note that these di�erent
RPM ranges correspond to di�erent boat dynamics, such as engine loading and
hydrofoiling, which somewhat change the acoustic properties in the far �eld,
hence it is of interest to examine detection performance for all RPM ranges. We
analyze a 15 seconds segment around the closest-point-of-approach (CPA) from
each recording. As a background noise sample we use a one minute sea noise seg-
ment recorded in quiet water after the boat experiments. To preprocess the data
we low-pass �ltered the signal using a Chebyshev �lter with the cut-o� frequency
at 1250 Hz. To obtain our features we estimated the dynamical model with a
window length of 0.5 seconds for a sampling rate of 25 kHz (12,500 samples)
and the window was shifted by 0.25 seconds (6250 samples). By using the DDE
model of Eq. (2) and the estimation procedure of Section 2, we computed the
model coeÆcients for the selected data segments. Using the feature distributions
generated from the data as above, we next implemented the Mahalanobis deci-
sion criteria described in Section 3 to design a detector, choosing a �xed false
alarm rate of Pfa = 0:1 as a design parameter.

As a benchmark, we compared to a frequency band-matched energy detector
which monitors the signal power below 1 kHz, where most of the boat signatures
are located. We note here that knowing the boat type and the exact RPM
one could design a more sensitive energy detector which monitors only certain
frequency bins. However, such detailed information is usually not available in an
operational environment and therefore the comparison with the energy detector
tuned to the full 0-1 kHz band provides a more realistic benchmark. In addition,
we also estimate the detection performance of the hybrid detector and compare
it to the other two detectors. All detectors are designed with a �xed false alarm
rate Pfa = 0:1.

To calculate the detection performance as a function of varying SNR levels we
arti�cially degraded the signal by adding additional re-scaled sea noise recorded
after the experiments. First, the hydrophone recordings are scaled such that the
ocean noise n is a zero mean, unit variance signal. Since the recording of the
boat noise x also contains the same level of sea noise, the arti�cially degraded
signal is de�ned as

y =
x+ c np
1 + c2

; (12)

where c = 10�SNRF =20 and SNRF is the \full bandwidth" SNR. One can observe
that for a large SNRF (c! 0) the variance of the degraded signal y is close to
the variance of x, while in the limit of small SNRF (c ! 1) the variance of y
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is the same as the variance of the noise. This ensures proper calibration of the
energy of the degraded signal, which is important for the accurate calculation of
the energy detector's performance.

Since nearly all of the boat signatures are located below 1 kHz, for a more
accurate determination of the SNR we will use the following formula

SNR (dB) = 10 log10

�Pf (y)

Pf (n)
� 1

�
: (13)

Where Pf (y) and Pf (n) stands for the signal and noise power below 1 kHz,
respectively. The factor -1 arises due to the fact that y is not a clean signal but
also contains the sea noise by default.

6.1 RPM Speci�c Detectors

In this section and the next we design two slightly di�erent types of dynamical
detectors in order to characterize their performance. For the �rst type, we design
detectors which are optimized for each RPM value. For the second type, we
design a single dynamical detector for all RPM values. We will see that the two
types of detectors are generally close in terms of model parameters.

The delay di�erential equation models are characterized signi�cantly by the delay
time parameters, hence it is necessary to estimate good values for these parame-
ters (in this case two delays) �rst. Generally, this involve some search procedure
over a wide range of values, and comparison to some performance metric. Here
we use two di�erent methods to select the delays. For both methods we search
all possible combinations of delays between 3 and 100 samples, which provides a
large range of possible time scales.

Method 1:
This procedure simply calculates the deviation of the mean estimated model
coeÆcients from the origin of the feature space, which is a rough measure of the
statistical signi�cance of the detection output. To do so, we use a subset (12.5
%) of each recording to select the delays from the maximum signi�cance of L,
where L is given by,

L =
q
a21(�1; �2) + a22(�1; �2) + a23(�1; �2): (14)

and constitutes simply the vector distance of the mean coeÆcient distributions
from the feature space origin. The time delays are then chosen which maximize
this distance.

Method 2:
Here we calculate the time delays using a method which relies on maximizing the
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output detection performance, and is thus a more direct and desirable metric.
First, we determine the SNR of a signal for which the energy detector has some
reasonable performance level, in this case a probability of detection of about
0:7. Using this SNR level, we then calculate the time delays which maximize
the detection probability Pd for the dynamical detector. This method generally
yields time delays somewhat di�erent than the �rst method, and produce slightly
better overall classi�cation performance.

6.1.1 1500 RPM recording

Figure 8 shows the signi�cance of L estimated from a subset of the 1500 RPM
recording. The maximum signi�cance of L is achieved with the delays �1 = 9
and �2 = 18 samples.

In Fig. 9 the ROC curves for the dynamical detector (delays selected with
method 1) and the band-matched energy detector are displayed. As can be
seen the dynamical detector shows a performance gain of 2-3 dB over the energy
detector.

Figure 10 shows the numerically estimated detection probability Pd for the dy-
namical detector (1500 RPM recording) at a SNR at which the energy detector
has Pd = 0:68. As can be seen the dynamical detector out performs the energy
detector for a wide range of delay pairs. The maximum detection Pd for the
dynamical detector is achieved for the delays �1 = 9 and �2 = 91 samples.

In Fig. 11 the ROC curves for the dynamical detector, the band-matched energy
detector and the hybrid detector are displayed. The deleys for the dynamical and
hybrid detector were selected with method 2. As can be seen the dynamical and
hybrid detector shows a performance gain of 3-4 dB over the energy detector.
In this case, since the dynamical detector performance is signi�cantly greater
than the energy detector, the later contributes very little to the hybrid detector
performance.
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Figure 8: Signi�cance of L estimated from a subset of the 1500 RPM recording.
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Figure 9: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 1500 RPM recording using the dynamical detector and energy
detector. We use the delays �1 = 9 and �2 = 18, selected from the maximum
signi�cance of L.
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Figure 10: Numerically estimated detection probabilities Pd for the dynamical
detector for the 1500 RPM recording at a SNR at which the energy detector has
Pd = 0:68.
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Figure 11: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 1500 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 9 and �2 = 91 selected
from the maximum Pd for the dynamical detector when the energy detector has
Pd = 0:68.
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6.1.2 2000 RPM recording

Figure 12 shows the signi�cance of L estimated from a subset of the 2000 RPM
recording. The maximum signi�cance of L is achieved with the delays �1 = 11
and �2 = 38 samples.

In Fig. 13 the ROC curves for the dynamical detector (delays selected with
method 1) and the band-matched energy detector are displayed. As can be seen
the dynamical detector shows a performance gain of 2-3 dB over the energy
detector.

Figure 14 shows the numerically estimated detection probability Pd for the dy-
namical detector (2000 RPM recording) at a SNR at which the energy detector
has Pd = 0:69. As can be seen the dynamical detector out performs the energy
detector for a wide range of delay pairs. The maximum detection Pd for the
dynamical detector is achieved for the delays �1 = 5 and �2 = 58 samples.

In Fig. 15 the ROC curves for the dynamical detector, the band-matched energy
detector and the hybrid detector are displayed. The deleys for the dynamical and
hybrid detector were selected with method 2. As can be seen the dynamical and
hybrid detector shows a performance gain of 2-3 dB over the energy detector.
In this case, since the dynamical detector performance is signi�cantly greater
than the energy detector, the later contributes very little to the hybrid detector
performance.
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Figure 12: Signi�cance of L estimated from a subset of the 2000 RPM recording.
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Figure 13: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 2000 RPM recording using the dynamical detector and energy
detector. We use the delays �1 = 11 and �2 = 38 selected from the maximum
signi�cance of L.
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Figure 14: Numerically estimated detection probabilities Pd for the dynamical
detector for the 2000 RPM recording at a SNR at which the energy detector has
Pd = 0:69.

17



−15 −10 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
d

2000rpm:  τ
1
 = 05  τ

2
 = 58

Energy detector   
Dynamical detector
Hybrid detector   

Figure 15: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 2000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 5 and �2 = 58 selected
from the maximum Pd for the dynamical detector when the energy detector has
Pd = 0:69.
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6.1.3 3000 RPM recording

Figure 16 shows the signi�cance of L estimated from a subset of the 3000 RPM
recording. The maximum signi�cance of L is achieved with the delays �1 = 9
and �2 = 88 samples.

In Fig. 17 the ROC curves for the dynamical detector (delays selected with
method 1) and the band-matched energy detector are displayed. As can be seen
the dynamical detector shows a performance gain of 3-5 dB over the energy
detector.

Figure 18 shows the numerically estimated detection probability Pd for the dy-
namical detector (3000 RPM recording) at a SNR at which the energy detector
has Pd = 0:63. As can be seen the dynamical detector out performs the energy
detector for a wide range of delay pairs. The maximum detection Pd for the
dynamical detector is achieved for the delays �1 = 7 and �2 = 82 samples.

In Fig. 19 the ROC curves for the dynamical detector, the band-matched energy
detector and the hybrid detector are displayed. The deleys for the dynamical and
hybrid detector were selected with method 2. As can be seen the dynamical and
hybrid detector shows a performance gain of 4-5 dB over the energy detector.
In this case, since the dynamical detector performance is signi�cantly greater
than the energy detector, the later contributes very little to the hybrid detector
performance.
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Figure 16: Signi�cance of L estimated from a subset of the 3000 RPM recording.
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Figure 17: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 3000 RPM recording using the dynamical detector and energy
detector. We use the delays �1 = 9 and �2 = 88 selected from the maximum
signi�cance of L.
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Figure 18: Numerically estimated detection probabilities Pd for the dynamical
detector for the 3000 RPM recording at a SNR at which the energy detector has
Pd = 0:63.
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Figure 19: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 3000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 7 and �2 = 82 selected
from the maximum Pd for the dynamical detector when the energy detector has
Pd = 0:63.
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6.1.4 4000 RPM recording

Figure 20 shows the signi�cance of L estimated from a subset of the 4000 RPM
recording. The maximum signi�cance of L is achieved with the delays �1 = 7
and �2 = 32 samples.

In Fig. 21 the ROC curves for the dynamical detector (delays selected with
method 1) and the band-matched energy detector are displayed. In this case the
dynamical detector does not show a performance gain over the energy detector.

Figure 22 shows the numerically estimated detection probability Pd for the dy-
namical detector (4000 RPM recording) at a SNR at which the energy detec-
tor has Pd = 0:69. The maximum detection Pd for the dynamical detector is
achieved for the delays �1 = 13 and �2 = 21 samples.

In Fig. 23 the ROC curves for the dynamical detector, the band-matched energy
detector and the hybrid detector are displayed. The deleys for the dynamical
and hybrid detector were selected with method 2. As can be seen the dynamical
detector shows a performance gain of 1-2 dB over the energy detector. In this
case since the dynamical detector performance is not signi�cantly better than
the energy detector, the hybrid detector shows additional gain over the energy
detector.
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Figure 20: Signi�cance of L estimated from a subset of the 4000 RPM recording.
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Figure 21: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 4000 RPM recording using the dynamical detector and energy
detector. We use the delays �1 = 7 and �2 = 32 selected from the maximum
signi�cance of L.
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Figure 22: Numerically estimated detection probabilities Pd for the dynamical
detector for the 4000 RPM recording at a SNR at which the energy detector has
Pd = 0:69.
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Figure 23: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 4000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 13 and �2 = 21 selected
from the maximum Pd for the dynamical detector when the energy detector has
Pd = 0:69.
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6.2 RPM Independent Detectors

In this section we aim to design RPM independent dynamical detectors, i.e. we
select one model time delay pair which provides the maximum average detection
performance over all input RPM values. The idea is to try to design a robust
detector which gives reasonable performance for any data set.

In order to select the RPM independent delays, we �rst calculate the SNR levels
at which the detection probability for the energy detector is approximately 0:7
for each RPM, as in the previous section. We next calculate the corresponding
detection probabilities of the dynamical detector for all four RPM values, and
average them. The model time delays are then chosen to maximize this average
detection probability.

We also designed two di�erent detectors, one for all four RPMs and one for all
RPMs except 4000 RPM. The reason for excluding the 4000 RPM recording is
that the dynamical detectors that were designed for the 4000 RPM recording in
the previous section did not show reasonable performance due to amplitude clip-
ping in some of the 4000 RPM data segments. Hence we calculated performance
for both sets of data to gain more insight.

6.2.1 For the 1500, 2000, 3000 and 4000 RPM recordings

Figure 24 shows the average numerically estimated detection probabilities for
the dynamical detectors for the 1500, 2000, 3000 and 4000 RPM recordings at
SNRs at which the energy detectors have Pd = 0:68, Pd = 0:69, Pd = 0:63 and
Pd = 0:69, respectively. The maximum average Pd for the dynamical detectors
is achieved with �1 = 8 and �2 = 79.

In Fig. 25 the ROC curves for the dynamical, energy and the hybrid detector for
the 1500 RPM recording are displayed. The delays for the dynamical and hybrid
detectors are chosen from the maximum average Pd for all 4 RPMs. As can be
seen the dynamical detector and the hybrid detector shows a performance gain of
2-3 dB over the energy detector. In this case, since the dynamical detector per-
formance is signi�cantly greater than the energy detector, the later contributes
very little to the hybrid detector performance.

In Fig. 26 the ROC curves for the dynamical, energy and the hybrid detector
for the 2000 RPM recording are displayed. The delays are chosen from the
maximum average Pd for all 4 RPMs. As can be seen the dynamical detector
and the hybrid detector shows a performance gain of 2-3 dB over the energy
detector. In this case, since the dynamical detector performance is signi�cantly
greater than the energy detector, the later contributes very little to the hybrid
detector performance.
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In Fig. 27 the ROC curves for the dynamical, energy and the hybrid detector for
the 3000 RPM recording are displayed. The delays for the dynamical and hybrid
detectors are chosen from the maximum average Pd for all 4 RPMs. As can be
seen the dynamical detector and the hybrid detector shows a performance gain of
2-3 dB over the energy detector. In this case, since the dynamical detector per-
formance is signi�cantly greater than the energy detector, the later contributes
very little to the hybrid detector performance.

In Fig. 28 the ROC curves for the dynamical, energy and the hybrid detector
for the 4000 RPM recording are displayed. The delays for the dynamical and
hybrid detector are chosen from the maximum average Pd for all 4 RPMs. In
this case the dynamical detector and the energy detector have basically identical
detection performance. The hybrid detector shows a performance gain of 1-2 dB
over the other two detectors.
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Figure 24: Numerically estimated detection probabilities Pd for the dynamical
detector for the 1500, 2000, 3000 and 4000 RPM recordings at SNRs at which
the energy detectors have Pd = 0:68, Pd=0.69; Pd = 0:63 and Pd = 0:69,
respectively.
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Figure 25: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 1500 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 8 and �2 = 79.
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Figure 26: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 2000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 8 and �2 = 79.
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Figure 27: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 3000 RPM recording using the dynamical detector, energy
detector and hybrid. We use the delays �1 = 8 and �2 = 79.
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Figure 28: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 4000 RPM recording using the dynamical detector, energy
detector and hybrid. We use the delays �1 = 8 and �2 = 79.
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6.2.2 For the 1500, 2000 and 3000 RPM recordings

Figure 29 shows the average numerically estimated detection probabilities for
the dynamical detectors for the 1500, 2000 and 3000 RPM recordings at SNRs
at which the energy detectors have Pd = 0:68, Pd = 0:69 and Pd = 0:63,
respectively. The maximum average Pd for the dynamical detectors is achieved
with �1 = 7 and �2 = 67.

In Fig. 30 the ROC curves for the energy, dynamical, and hybrid detector for the
1500 RPM recording are displayed. The delays are chosen from the maximum
average Pd for the 1500, 2000 and 3000 RPM recordings. As can be seen the
dynamical detector and the hybrid detector shows a performance gain of 2-4 dB
over the energy detector. In this case, since the dynamical detector performance
is signi�cantly greater than the energy detector, the later contributes very little
to the hybrid detector performance.

In Fig. 31 the ROC curves for the energy, dynamical, and hybrid detector for the
2000 RPM recording are displayed. The delays are chosen from the maximum
average Pd for the 1500, 2000 and 3000 RPM recordings. As can be seen the
dynamical detector and the hybrid detector shows a performance gain of 3-5 dB
over the energy detector. In this case, since the dynamical detector performance
is signi�cantly greater than the energy detector, the later contributes very little
to the hybrid detector performance.

In Fig. 32 the ROC curves for the energy, dynamical, and hybrid detector for the
3000 RPM recording are displayed. The delays are chosen from the maximum
average Pd for the 1500, 2000 and 3000 RPM recordings. As can be seen the
dynamical detector and the hybrid detector shows a performance gain of 4-6 dB
over the energy detector. In this case, since the dynamical detector performance
is signi�cantly greater than the energy detector, the later contributes very little
to the hybrid detector performance.

In Fig. 33 the ROC curves for the energy, dynamical, and hybrid detector for the
4000 RPM recording are displayed. The delays are chosen from the maximum
average Pd for the 1500, 2000 and 3000 RPM recordings. As can be seen the
dynamical detector does not provide any performance gain over the energy de-
tector. The hybrid detector shows a performance gain of 1-2 dB over the other
two detectors.
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Figure 29: Numerically estimated detection probabilities Pd for the dynamical
detector for the 1500, 2000 and 3000 RPM recordings at SNRs at which the
energy detectors have Pd = 0:68, Pd = 0:69 and Pd = 0:63, respectively.
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Figure 30: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 1500 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 7 and �2 = 67.
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Figure 31: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 2000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 7 and �2 = 67.
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Figure 32: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 3000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 7 and �2 = 67.
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Figure 33: Numerically estimated detection probabilities Pd vs. signal-to-noise
ratio (SNR) for the 4000 RPM recording using the dynamical detector, energy
detector and hybrid detector. We use the delays �1 = 7 and �2 = 67.
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7 Conclusions

In this report we presented an acoustic detection study of real-world sonar data,
derived from a closely controlled sea trial in the Baltic Sea. In this study we
designed detectors based on the dynamical model approach, combined with the
Mahalanobis distance-based decision criteria. To benchmark the detection per-
formance we compared the dynamical detector to a band matched energy de-
tector. Since the dynamical detector is insensitive to signal amplitude, we also
designed a hybrid detector which combined three dynamical model features with
an energy feature, and estimated performance using this four-dimensional fea-
ture space. In a practical system, the hybrid detector would provide the best
performance for all possible signal classes encountered.

We have designed both RPM speci�c and RPM independent dynamical detectors,
depending on whether one wishes to maximize performance for a particular boat's
RPM operational range or not, respectively. We generally found a performance
gain for the dynamical detector of 2-6 dB over the band passed energy detector
in almost all cases. It was only for the 4000 RPM recording that we could not
show a signi�cant gain over the band matched energy detector.

The fact that the dynamical detector does not provide a performance gain over
the energy detector for the 4000 RPM recording, can be explained by the fact
that the signal amplitude was greater than the range of the ADC at a few samples
during the recording. This degrades the performance of the dynamical detector
drastically, while the band matched energy detector is hardly e�ected.

In the case of the hybrid detector we found similar gains as for the dynamical
detector over all the data sets. In no case did the hybrid detector do worse than
the energy detector or the dynamical detector. The hybrid detector did provide
better performance on the 4000 RPM case.

In summary, even the simplest detector using a dynamical model utilized here ap-
pears to be more 
exible and robust than standard band-matched energy meth-
ods. The principal result in this paper is thus that the dynamical modeling
approach is viable on real-world data applications.
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