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1 Introduction

The relationships between the micro-structure of an alloy and its mechanical properties are
not always easily predicted. There are situations where one posseses a good knowledge
about the properties of single grains in the structure, but not about their interaction
characteristics.

The development of a simulation tool is motivated by the assumption that a carefully
defined mathematical model will help bringing insight into the physics of grain interaction
and texture formation.

One first has to choose an appropriate spatial scale of modelling. There are a few
commonly applied methods to choose between.

A molecular dynamics model is suitable for studying the interaction between individual
atoms, c.f. Horstemeyer et.al [1] and Hansen et.al [2]. With an interatomic spacing of a
few tenths of a nanometer, a micrometer sized cube of material contains several billion
atoms. Todays largest clusters of fast computers can not practically model even such a
small piece of material.

In dislocation dynamics the corpuscular treatment of single atoms is abandoned, c.f.
Rhee et al. [3]. Instead, the core material is modelled as an elastic continuum, into
which the dislocations are embedded as explicitly described one-dimensional structures.
A dislocation dynamics model is completed by assumptions regarding the dislocation
activation stresses and their interaction properties. This approach readily allows the
study of micrometer sized structures. However, defining the dislocation properties is not
a trivial task.

KRYP works at an even larger spatial length scale. The theory is completely based
based on continuum mechanics and crystal lattice defects are described by field variables.
It is important to note that the approach is not well suited for studying the interaction
between dislocations, inclusions and vacancies on a nanoscopic level. The code is devel-
oped for meso-mechanical simulations, where a typical model may consist of between 1
and 1000 grains. Each grain is normally modelled with between 1 and 104 finite elements.
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2 Governing Equations

The mathematical model consists of the equations of motion, boundary conditions and of
kinematical and constitutive relations.

2.1 Equations of Motion

In KRYP the acceleration field of a body is defined through the momentum balance
equation, c.f. Gurtin [4].

%a− divσ − f = 0 (1)

where %(x, t) is the density, a(x, t) is the acceleration vector and σ(x, t) is the Cauchy
stress tensor. f(x, t) represents external body forces, such as gravity or magnetic forces.
x is a spatial coordinate in space and t is the time.

The acceleration field can be integrated in time to deliver the velocity field, v(x, t), and
the displacement field, d(x, t). The acceleration depends on the divergence of the current
stress field. The stress state is material and deformation history dependent. Hence,
a temporal solution to the momentum equation requires definitions of constitutive and
kinematical relations.

2.2 Crystal Plasticity

The kinematics and the constitutive relations in KRYP are based on crystal plasticity
theories, where plastic deformations are imposed by the activation of crystallographic
glide planes.

The continuum approach of modeling naturally leads to a treatment of dislocations
as field variables. This requires evolution laws, defining the formation and motion of
dislocations.

2.2.1 Kinematics

The velocity gradient, L(x, t), is defined as the sum of crystal slip, Lc(x, t), the elastic
strain rate, De(x, t), and a rigid spin, Wr(x, t).

L =
∂v

∂x
= Lc + Le

Lc = Dc + Wc

Le = De + Wr

Lc =
M∑
i=1

N∑
j=1

α̇ijL̂
c
ij =

M∑
i=1

N∑
j=1

α̇ij t̂ij ⊗ n̂j

(2)

6



n̂j is a glide plane normal and t̂ij is a glide plane slip direction (t̂ij ⊥ n̂j). For an FCC
crystal M = 3 and N = 4. Further, n̂j, j = [1, N ] are the four {1 1 1}-directions and t̂ij,
(i, j) = [1, M ]× [1, N ] are the corresponding orthogonal < 1 1 0 >-directions.

Observe that α̇ij = 0 for a purely elastic deformation.

2.2.2 Elastic Deformation

The elastic respons of the material is assumed linear and isotropic. The Lie derivative
σ∇(x, t), c.f. Belytschko et al. [5], of the Cauchy stress tensor σ(x, t) is defined as

σ∇ = λtrDe I + 2µDe (3)

where

λ =
νE

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

(4)

E and ν are the Young’s modulus and the Poisson’s ratio, respectively.

2.2.3 Inelastic Deformation

According to Equation (2), the inelastic velocity gradient, Lc, is a function of α̇ij, (i, j) =
[1, M ]× [1, N ]. The slip system stress, τij, determines the magnitude of α̇ij.

α̇ij =

{
0 if |τij| ≤ τ y

ij

|τij| − τ y
ij

c sgn(τij) if |τij| > τ y
ij

τij = σn̂j · t̂ij

(5)

τ y
ij is the activation stress for slip direction t̂ij and it is assumed to be a function of the

material properties and of history variables, such as the dislocation densities and the
temperature. c is a viscosity.

The rheological model of a single slip system is shown in Figure 1.

2.2.4 Objective Stress Update

The Cauchy stress, σ, is a spatial tensor. Observer independency requires an objective
update of the stress components due to rigid body rotations.

KRYP uses the computationally efficient Jaumann stress rate, c.f. Belytschko et al.
[5]. The rigid spin tensor, Wr, is assumed defining the rate of rigid body rotation. This
is not very accurate at large strains and it is a potential source of errors.
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E, ν

c

τij τij

τ y
ij

Figure 1: Rheological Model of a Slip System

σ̇ = σ∇ + Wrσ − σWr (6)

It should be noted that Wr is not equivalent to the total spin, W.

W = Wc + Wr (7)

It is assumed that spin due to plastic slip does not rotate the stress tensor. The assumption
does not violate the objectivity and the author actually finds the idea physically appealing.
A motivation based upon a deformation event is displayed in Figure 2, where a small
material element is stretched and subsequently plastically deformed, such that Wc 6= 0.
The plastic deformation does not alter the direction of the elastic stretch. Consequently,
σ should not spin due to a non zero Wc.

t = 0 t = t1

t = t1 t = t2

De
11 6= 0

Lc
12 6= 0

Figure 2: Deformation and plastic slip in a crystal.
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2.3 Crystal Orientation

In abcense of twinning or sub-grain formation, the crystal orientation within a grain, Bg,
should only fluctuate due to variations in the elastic strain field. These elastically induced
rotations are, for most practical applications, negligible.

The crystal orientation at a spatial coordinate, xe ∈ Bg, is defined by three vectors,
c1(xe, t), c2(xe, t) and c3(xe, t). They point in the crystallographic {1 0 0}, {0 1 0} and
{0 0 1}-directions, respectively. The components of the vectors are stored in a tensor
C(xe, t).

C = [Cij]
Cij(xe, t) = cj,i(xe, t)

(8)

The crystal orientation, C(xe, t), will rotate due to any non-zero rigid spin tensor,
Wr(xe, t).

Ċ = WrC (9)

There is nothing in the kinematical relations preventing a non-uniform Wr and hence,
the development of a non-uniform crystal orientation. Preserving a uniform crystal orien-
tation within each grain requires special attention. The method introduced below focuses
on a local suppression of those glide systems increasing the error in crystal orientation.
This can be achieved by defining an orientation error dependent slip system activation
stress, τ y

ij.
The plan is to first define a measure of orientation error. Secondly, plastic slip increas-

ing the error will be supressed to a certain degree. The chosen measure of the orientation
error is based on the difference between the local and the grain average crystal orientation.
The average crystallographic directions, c̄j, j = [1, 3], in Bg are defined as

c̄1 =

∫
Bg

c1(x, t)dBg/

∣∣∣∣∣
∫
Bg

c1(x, t)dBg

∣∣∣∣∣
ĉ2 =

∫
Bg

c2(x, t)dBg/

∣∣∣∣∣
∫
Bg

c2(x, t)dBg

∣∣∣∣∣
c̄3 = c̄1 × ĉ2

c̄2 = c̄3 × c̄1

(10)

The definition above ensures an orthogonal tensor C̄.

C̄ =
[
C̄ij

]
C̄ij = c̄j,i

(11)
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The measure of error, e(xe), is defined as

e = (C̄−C) : (C̄−C) =
tr
[
(C̄−C)t(C̄−C)

]
= 6− 2tr

[
C̄tC

]
≥ 0

(12)

It is now possible to check if the activation of a specific glide direction, t̂ij, will increase
or decrease the error. Knowing v(x) and consequently also W and L,

Wr = W −Wc =

W − 1

2

M∑
i=1

N∑
j=1

α̇ij

[
L̂c

ij − (L̂c
ij)

t
]

(13)

Equation (13) displays how the activation of a specific glide system influences the rigid
spin Wr. The direction of spin, due to the activation of a specific glide system is

∂Wr

∂α̇ij

= −1

2

[
L̂c

ij − (L̂c
ij)

t
]

(14)

Equations (9) and (14) give

∂Ċ

∂α̇ij

=
∂Wr

∂α̇ij

C = −1

2

[
L̂c

ij − (L̂c
ij)

t
]
C (15)

Combining this expression with Equation (12),

∂ė

∂α̇ij

= −2tr

[
C̄t ∂Ċ

∂α̇ij

]
= tr

[
C̄t
[
L̂c

ij − (L̂c
ij)

t
]
C
]

(16)

The expression for ∂ė/∂α̇ij is used to directly scale the glide plane activation stress, τ y
ij.

τ y
ij = Qij τ̂

y
ij

Qij = 1 + Q0 max(0,
∂ė

∂α̇ij

· sgn(τij)) =

1 + Q0 max(0, tr
[
C̄t
[
L̂c

ij − (L̂c
ij)

t
]
C
]
· sgn(τij))

(17)

τ̂ y
ij is the unscaled activation stress and Q0 is a material parameter. Note that e is

quadratic in C− C̄. As a consequence Qij is linear in C− C̄. This is highly important,
as small orientational errors will not significantly stiffen the system.
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2.4 FCC Dislocation Density Model

In a first test model the glide plane yield stresses are simply defined as functions of the
dislocation densities. The model has been built to qualitatively capture some grain size
effects.

2.4.1 Dislocation Kinematics

The total dislocation density, ρ(X, t), is the sum of immobile, ρI(X, t), and mobile,
ρM(X, t), densities. X denotes a material coordinate.

ρ = ρI + ρM (18)

The mobile dislocation density is further split into eight groups according to

ρM =
4∑

j=1

ρ+
j +

4∑
j=1

ρ−j (19)

ρ+
j and ρ−j are densities of dislocations that move in directions orthogonally to glide plane

normal n̂j. ρ+
j and ρ−j -dislocations are geometrically different and they are, for a certain

slip rate α̇ij, bound to move in opposite directions. This is schematically visualized in
Figure 3.

A ρ−j -dislocation moves
in the direction of −α̇ij t̂ij

A ρ+
j -dislocation moves

in the direction of α̇ij t̂ij

τij τij

τij τij

n̂j

t̂ij

τij τij

τij τij

n̂j

t̂ij

Figure 3: Dislocations moving through the lattice.

There is an assumed direct relationship between the flux of dislocations and the de-
veloped rate of gliding, α̇ij.

α̇ij = α̇+
ij + α̇−ij

α̇+
ij = bρ+

j v̄+
ij

α̇−ij = −bρ−j v̄−ij

(20)

b is Burger’s vector. v̄+
ij and v̄−ij are the average flux velocities of ρ+

j and ρ−j -dislocations

moving in the t̂ij slip direction, respectively.
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2.4.2 Dislocation Evolution Laws

The evolution of the total dislocation density is governed by the production of new dislo-
cations and by the dislocation flux.

ρ̇ = ρ̇p + ρ̇f (21)

The dislocation production is defined as

ρ̇p = (z3 − z4ρ)
√

Lc : Lc (22)

z3 and z4 are constants. The flux arises from slip induced motion of mobile dislocations.

ρ̇f =
N∑

j=1

(
ρ̇f+

j + ρ̇f−
j

)
(23)

where

ρ̇f+
j =

M∑
i=1

∇
(
ρ+

j v̄+
ij

)
· t̂ij =

1

b

M∑
i=1

∇α̇+
ij · t̂ij

ρ̇f−
j = −

M∑
i=1

∇
(
ρ−j v̄−ij

)
· t̂ij = −1

b

M∑
i=1

∇α̇−ij · t̂ij

(24)

Defining of the evolution of mobile dislocations completes the dislocation density evo-
lution laws.

ρ̇+
j = ρ̇p+

j + ρ̇f+
j

ρ̇−j = ρ̇p−
j + ρ̇f−

j

(25)

where ρ̇p+
j and ρ̇p−

j are productions of mobile dislocations. The production is a combi-
nation of the creation of new dislocations, immoblization of exisiting mobile dislocations
and remobilization of immobile dislocations. The production is assumed isotropic and it
is defined as

ρ̇p+
j = ρ̇p−

j =
1

8

(
z5ρ

I − z6ρ
M
)√

Lc : Lc (26)

z5 and z6 are constants.
Having the total and the mobile dislocation density evolutions defined, the evolution

the immobile dislocation density becomes

ρ̇I = ρ̇− ρ̇M = (z3 − z4ρ− z5ρ
I + z6ρ

M)
√

Lc : Lc (27)
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2.4.3 Slip Activation Stress

There are two activations stresses for each glide mechanism, τ y+
ij and τ y−

ij . They refer to
the stresses necessary to activate the motion of the ρ+

j and ρ−j dislocations, respectively.

τ y+
ij = τ y

0

(
z1 + (1− z1)

√
ρ

ρ0

)(
z2 + (1− z2)

ρM
0

8ρ+
j

)
Qij

τ y−
ij = τ y

0

(
z1 + (1− z1)

√
ρ

ρ0

)(
z2 + (1− z2)

ρM
0

8ρ−j

)
Qij

(28)

z1, z2, ρ0, ρM
0 and τ y

0 are material constants. Following the relations in Equations (2) and
(20),

Lc =
M∑
i=1

N∑
j=1

α̇ijL̄
c
ij =

M∑
i=1

N∑
j=1

(
α̇+

ij + α̇−ij
)
t̂ij ⊗ n̂j (29)

where

α̇+
ij =

{
0 if |τij| ≤ τ y+

ij

|τij| − τ y+
ij

c sgn(τij) if |τij| > τ y+
ij

α̇−ij =

{
0 if |τij| ≤ τ y−

ij

|τij| − τ y−
ij

c sgn(τij) if |τij| > τ y−
ij

(30)

2.5 Grain Boundaries

Grain boundary charateristics and criterias for dislocations propagating to adjacent grains
are not yet taken into account in KRYP.
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3 Numerical Implementation

KRYP is written in Fortran 90. The code outputs ascii files containing geometry and
connectivity information, nodal velocities and element history variables. MATLAB is
used for visualization of the results.

3.1 Element Formulation

The program only works with eight-noded selectively reduced integrated brick elements,
where deviatoric stresses are computed at eight integration points per element. The
pressure is sampled at the center of each brick, c.f. Hughes [6].

Since volmetric strains are only evaluated at the element centers local inversion of the
material is numerically possible. Material inversion at deviatoric integration points likely
leads to bad results or to no results at all.

KRYP uses a technique where deviatoric integration points are moved towards the
element center whenever the material is in danger of inverting.

3.2 Time Integration

The 2nd order accurate central difference finite difference scheme is applied for the time
integration. The scheme is explicit and conditionally stable, c.f. Hughes [6].

Ÿn = M−1(Fint + Fext)

Ẏn+ 1
2 = Ẏn− 1

2 + Ÿn∆t

Yn = Yn−1 + Ẏn+ 1
2 ∆t

(31)

Yn is the global node displacement vector at time increment n. M is a lumped mass
matrix, a diagonal matrix of nodal masses. ∆t is the time step size and Fint and Fext are
the internal and external nodal force vectors, respectively.

3.3 Overall Structure

The program flow and the time integration loop is depicted with a flow chart in Figure
4, where ∆tout is the time interval for writing geometry, stress and history variable data
to the disk.

14



START

read input

convert to internal
element/node numbering

initialize arrays

write to disk
tout := tout + ∆tout

t := t + ∆t
n := n + 1

Yn = Yn−1 + Ẏn− 1
2 ∆t

compute stresses

compute Fint and Fext

Ÿn = M−1(Fint + Fext)

Ẏn+ 1
2 = Ẏn− 1

2 ∆t

t ≥ tstop

STOP

t ≥ tout

yes

yes

no

no

Figure 4: Internal structure of KRYP
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4 Benchmark Tests

A few of benchmark tests have been designed for verification of the code. The validation of
the program is a continuously ongoing process and extensive further testing is necessary.

4.1 Elastic Stress Pulse

The treatment of elastic deformations has been tested in a model of a stress pulse prop-
agating through a circular bar. The pulse was generated by specifying an initial axial
velocity of 10 m/s at the first 0.1 m of the bar, see Figure 5.

The respons of an element located on the material surface, 1.0 m from both ends of
the bar, was compared to results obtained with LS-DYNA. Figure 6 shows the axial stress
history of the element.

(((((((((((((((((((((((((((

hhh

hhh

2.0 m

0.1 m

monitored element
A
A

E = 100 GPa
ν = 0
ρ = 1000 kg/m3

Figure 5: Elastic bar in pressure pulse benchmark test

4.2 Bar Impact

KRYP is equipped with an isotropic elasto-plastic constitutive model with linear plastic
hardening. The effective stress is according to von Mises and the plastic flow is assumed
associated.

σy = σ0 + H · εp
eff (32)

where σy is the yield stress, σ0 it the initial yield stress, H is a hardening parameter and
εp

eff is the effective plastic strain.
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Figure 6: Registered data in pressure pulse benchmark test

LS-DYNA has no constitutive laws based on crystal plasticity. The isotropic elasto-
plastic model was implemented in KRYP to allow for more extensive comparisons between
the two codes.

The treatment of isotropic plasticity has been put to the test in a model of a metal bar
impacting a rigid wall at a velocity of 200 m/s, see Figure 7. The displacement history of
a node and the effective plastic strain of an element were recorded, see Figure 8.

Both KRYP and LS-DYNA were running with eight point selectively integrated ele-
ments and with a constant time step ∆t = 0.25 µs. The discrepancy between the codes
is to some extent related to different contact stiffnesses.
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Figure 7: Metal bar impacting a rigid wall at 200 m/s.
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Figure 8: Registered data in metal bar impact simulation.
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4.3 Aggregate of 8× 8× 8 grains

Some characteristics of the, in Section 2.4, introduced FCC constitutive law have been
tested on two 8 × 8 × 8 cubic grain aggregates. The two aggregates were defined with
1.25µm and 12.5µm grains, respectively, and they were subjected to a uni-axial tension-
compression history, see Figure 10.

The initial crystallographic {100}-directions were chosen parallell to the global x, y
and z-axes.

z

x

y

vx(t)

E = 100 GPa
ν = 0.3
ρ0 = 1.0 · 108 cm−2

ρM
0 = 1.0 · 108 cm−2

ρ(0) = 1.0 · 108 cm−2

ρ
(+/−)
j (0) = 1.25 · 107 cm−2

τ y
0 = 100 MPa

b = 0.3 nm
c = 100 Pa s
z1 − z6 = see below

Figure 9: Uniaxial loading of a single grain.

4.3.1 Test A

In the first test z1 and z2 were set to 1. This leads to a constant glide plane yield stress.

τ
y(+/−)
ij = τ y

0 (33)

The stress strain curve from deforming the 12.5 µm aggregate is presented in Figure 11.
The strain hardening effects are related to the formation of a chrystallographic texture.

4.3.2 Test B

Further strain hardening effects were introduced by setting z1 = 0, z2 = 1, z3 = 1 ·
109 cm−2, z4 = 1 and z5 = z6 = 0. z3 and z4 ensured the production of new dislocations
and z1 = 0 gave a glide plane yield stress according to

τ
y(+/−)
ij = τ y

0

√
ρ

ρ0

(34)

Once more the 12.5 µm aggregate was tested, see Figure 12.
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4.3.3 Test C

Finally, the yield stress function was modified to include mobile dislocation density effects.
By setting z2 = 0 and copying the remaining parameters from Test B, one obtained

τ
y(+/−)
ij = τ y

0

√
ρ

ρ0

√
ρM

0

8ρ
(+/−)
j

(35)

For this set of parameters, both the 12.5 µm and the 1.25 µm grain aggregatres have
been tested. The mobile dislocations quickly reached the boundary of the small grains,
where they were immobilized. This explains the stiffer respons of the 1.25 µm grain
aggregate, see Figure 13.
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Velocity profile, vx(t), for 1.25 µm grain

Velocity profile, vx(t), for 12.5 µm grain

Figure 10: Prescribed tension/compression history in uni-axial tensile test.
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Grain size 12.5 µm, τ
y(+/−)
ij = τ y

0

Figure 11: Stress-strain curve from Test A.
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Grain size 12.5 µm, τ
y(+/−)
ij = τ y

0

√
ρ

ρ0

Figure 12: Stress-strain curve from Test B.
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τ
y(+/−)
ij = τ y

0
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ρ

ρ0

√
ρM

0

8ρ
(+/−)
j

1.25 µm grain size

12.5 µm grain size

Figure 13: Stress-strain curve from Test C.
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4.4 Texture

A texture evolution test has been performed by plastically deforming a model of 10×10×1
cubic one-element grains under plane strain conditions, see Figure 14. Each cube had the
initial size of 10 µm. The constitutive data were picked without any deeper thoughts.
Figure 15 contains stereographic projections of the four {111}-directions in the initial
and final configurations.

E = 100 GPa
ν = 0.3
ρ0 = 3.0 · 1012 cm−2

ρM
0 = 1.5 · 1012 cm−2

ρ(0) = 3.0 · 1012 cm−2

ρ
(+/−)
j (0) = 1.875 · 1011 cm−2

τ y
0 = 100 MPa

b = 0.3 nm

z1 = 0.5
z2 = 0.5
z3 = 0.0
z4 = 0.0
z5 = 0.0
z6 = 0.0
c = 1000 Pa s

6

-x

y

Initial configuration, t = 0
100 µm× 100 µm

Intermediate configuration, t = 50 µs
45% height reduction

Final configuration, t = 100 µs
90% height reduction

Figure 14: Compression of 100 initially cubic one-element grains.
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Initial configuration, t = 0

Final configuration, t = 100 µs
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x

-

6

z

x

Figure 15: Pole figures showing the texture of the {111}-directions.
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4.5 Crystal Orientation Control

A model of a rigid spherical punch indenting a single cubic grain resting on a friction free
surface was set up to qualitatively examplify the effect of the non-local crystal orientation
control, introduced in Section 2.3.

The punch had a diameter of 100 µm and the indentation velocity and depth were
10 m/s and 20 µm, respectively. The cubic grain, modeled with 8 × 8 × 8 elements, had
a size of 100 µm.

To minimize any effects of elastic strains, the grain was defined with a relatively small
glide plane activation stress. The specifics of the model are shown in Figure 16. Figure 17
contains sterographic projections of the {111}-directions for simulations with and without
the orientation control activated. Each element is represented by four points in the pole
figures, one point for each crystallographic {111}-direction.

Even with a large non-zero Q0 there are, unexpectedly, some elements significantly
deviating from the average orientation. The problem needs to be analysed in more detail.

Initial geometry Final geometry

E = 100 GPa
ν = 0.3
ρ0 = 1.0 · 1010 cm−2

ρM
0 = 1.0 · 1010 cm−2

ρ(0) = 1.0 · 1010 cm−2

ρ
(+/−)
j (0) = 1.25 · 109 cm−2

τ y
0 = 10 MPa

b = 0.3 nm

z1 = 0.5
z2 = 0.5
z3 = 0.0
z4 = 0.0
z5 = 0.0
z6 = 0.0
c = 10 Pa s
Q0 = [0, 104]

XXXz
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�
�*

XXXz

6

�
�*

x
y

z

x
y

z

Figure 16: Spherical indentation in a single grain.
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{111}-directions, Q0 = 0

{111}-directions, Q0 = 104
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Figure 17: Stereographic projection after spherical indentation.
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5 Next Step

There are certainly many functionalities missing in KRYP. Complex boundary conditions
can hardly be defined, the code is not optimized for speed and there is no treatment of
fracture. Eventually KRYP will need its own graphical interface for visualizing results
and geometries. MATLAB is used for this purpose today, but it is a relatively expensive
and slow software.

The list of important, but still not implemented, capabilities can be made longer.
However, prior to the development of new functionalities it is suitable to proceed with
the benchmarking and to try out the exisiting FCC model in comparisons with real
experimental data.

It is the authors wish to optimize the material parameters against a set of well mon-
itored uni- or bi-axial experiments on a one-phase FCC metal. The obtained set of
parameters is to be used in the analysis of more complex processes, preferably at different
grain sizes.

The outcoming of such a test would provide experience, helping out when staking out
the course for the future of the project.
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