
FOI-R--0386--SE
February 2002

1650-1942

Scientific report

Daniel Martin

Learning to Cooperate in a Search Mission via
Policy Search

System Technology Division
SE-172 90 STOCKHOLM

Sweden

Swedish Defence Research Agency
System Technology Division
SE-172 90 STOCKHOLM
Sweden

FOI-R--0386--SE
February 2002

1650-1942

Scientific report

Daniel Martin

Learning to Cooperate in a Search Mission via
Policy Search

Issuing organization

Swedish Defence Research Agency
System Technology Division
SE-172 90 STOCKHOLM
Sweden

Author/s (editor/s)

Daniel Martin

Report title

Learning to Cooperate in a Search Mission via Policy Search

Abstract

The dangers of and the time needed when clearing an area from unexploded ordnance can be reduced
by a system consisting of unmanned, autonomous robots. The system will need less time when more
than one robot cooperate to search the area.
The reinforcement learning algorithm GPOMDP is evaluated for the specific case of finding a decision
rule that, given a map and the robot’s position on the map, enables the robot to automatically choose
between different possible actions. The actions lead to a near optimal path through an area where
some parts need to be searched. A neural network is used as a function approximator to store and
improve the decision rule, and also to find actions according to it. The problem is expanded to include
two robots using the same decision rule, distributed in a sense that the robots pick actions according
to their own perception of the surroundings and independent of the other robot’s action. To achieve
cooperation between the robots, they are trained to maximise a shared reward that is equal to the
sum of individual rewards that are given according to the consequences of the robots’ actions.
When using the learnt policy to search the largest of the experiment’s areas, two robots that have
been trained with a shared reward use 70% of the time that one optimal robot would need, while two
agents that have been trained with their individual rewards need 88%.

Keywords

reinforcement learning, policy search, collaborating control, neural networks

Further bibliographic information

ISSN

1650-1942
Distribution

By sendlist

Report number, ISRN

FOI-R--0386--SE

Report type

Scientific report
Research area code

Combat
Month year

February 2002

Project no.

E6003
Customers code

Contracted Research
Sub area code

Weapons and Protection
Project manager

Peter Alvå
Approved by

Monica Dahlén

Scientifically and technically responsible

Martin Hagström

Language

English

Pages

50

Price Acc. to pricelist

Security classification Unclassified

ii

Utgivare

Totalförsvarets forskningsinstitut
Avdelningen för Systemteknik
SE-172 90 STOCKHOLM
Sweden

Författare/redaktör

Daniel Martin

Rapportens titel

Inlärning av samarbete under sökuppdrag genom policysökning

Sammanfattning

Farorna vid och tiden som krävs för att rensa ett område från ammunition och artillerigranater som inte
har exploderat kan minskas genom att använda ett system bestående av obemannade och självgående
robotar. Systemet behöver mindre tid när flera robotar samverkar under avsökningen av området.
Reinforcement learning-algoritmen GPOMDP utvärderas för att hitta en beslutsregel som möjliggör
att, givet en karta och robotens position på kartan, automatiskt välja bland flera möjliga handlingar.
Handlingarna leder till en nära optimal väg genom ett område där vissa delar behöver sökas av. Ett
neuronnät används som funktionsapproximator för att lagra och förbättra beslutsregeln samt att hitta
handlingar som följer den. Problemet expanderas till att innehålla två robotar som använder samma
beslutsregel, distribuerad så att robotarna väljer handlingar efter sin egen rumsuppfattning oberoende
av den andra robotens handling. För att åstadkomma samverkan mellan robotarna är de tränade
att maximera en delad belöning, bestående av summan av individuella belöningar som har utdelats
utifrån konsekvenserna av robotarnas handlingar.
När den intränade policyn används för att söka av det största området som använts under experimenten
behöver två robotar tränade med gemensamma belöningar 70% av tiden som en ensam optimal robot
skulle behöva, medan två robotar som har tränats med individuella belöningar behöver 88%.

Nyckelord

reinforcement learning, policysökning, samverkande styrning, neuronnät

Övriga bibliografiska uppgifter

ISSN

1650-1942
Distribution

Enligt missiv

Rapportnummer, ISRN

FOI-R--0386--SE

Klassificering

Vetenskaplig rapport
Forskningsområde

Bekämpning
Månad, år

Februari 2002

Projektnummer

E6003
Verksamhetsgren

Uppdragsfinansierad verksamhet
Delområde

VVS med styrda vapen
Projektledare

Peter Alvå
Godkänd av

Monica Dahlén

Tekniskt och/eller vetenskapligt ansvarig

Martin Hagström

Språk

Engelska

Antal sidor

50

Pris Enligt prislista

Sekretess Öppen

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose of the Thesis . 1
1.3 How to Read This Thesis . 2

2 Tactical Background 3
2.1 Current Use of Unmanned Vehicles . 3
2.2 Need For Autonomous Vehicles . 3
2.3 Example scenario: Eliminating Hazardous Ordnance 3

3 Technical Background 5
3.1 Introduction to Reinforcement Learning 5

3.1.1 Concepts . 6
3.1.2 Estimating the Expected Return 7
3.1.3 Improving the Policy . 8
3.1.4 Classes of Algorithms . 8

3.2 Function Approximation . 9
3.2.1 Neural Networks . 9
3.2.2 Generalisation . 11

3.3 Policy Search Methods . 13

4 Solution 15
4.1 Algorithm Evaluated - GPOMDP . 15

4.1.1 Why GPOMDP? . 15
4.1.2 Mathematical Background . 15
4.1.3 GPOMDP - The Algorithm . 17
4.1.4 Conjugate Gradient Search . 19

4.2 Structure of the Solution . 22
4.3 Sensor . 22
4.4 Policy . 23

4.4.1 Neural Network . 23
4.4.2 Finding ∇µ/µ . 24

4.5 More Than One Agent . 25
4.5.1 Distributed Common Actor . 25
4.5.2 Global Reward Function . 26
4.5.3 Sensing the Other Agents . 26
4.5.4 GPOMDP in a Multi Agent Setting 27

5 Experiments and Results 29
5.1 Single Agent . 29

5.1.1 Non-Repeating Markov Decision Process 31
5.1.2 Repeating the Markov Decision Process 31
5.1.3 Modifications of the Reward Functions 35
5.1.4 Summary of Single Agent Experiments 38

5.2 Two Agents . 39
5.2.1 Terminating the Conjugate Gradient Search 40

v

5.2.2 Two Independent Agents . 40
5.2.3 Agents Receiving a Local Reward 40
5.2.4 Agents Receiving a Global Reward 41
5.2.5 Combination of Global and Local Reward 42
5.2.6 Scalability of the Algorithm . 42
5.2.7 Summary of the Two Agent Experiments 43

6 Conclusions 45

7 Continued Work 47
7.1 Reinforcement Learning . 47
7.2 Modelling of Multi Agent Systems . 47

vi

Chapter 1

Introduction

This report is a master’s thesis in numerical analysis written at the Swedish De­
fence Research Agency (FOI), Systems Technology Division. The thesis is the final
part of a master’s degree in mechanical engineering at the Royal Institute of Techno­
logy (KTH), Stockholm, Sweden. Supervisors are Antonios Fokas at FOI and Peter
Raicevic at KTH. Examiner is Anders Lansner.

1.1 Background

The goals of FOI’s project ‘Guidance of Collaborating Missiles’ are to develop tech­
nology and methods for coordinated and autonomous control of cooperating missiles,
and to find possible tactical benefits and drawbacks with collaborating missile sys­
tems. One important part of the project is to study robust and optimal real time
control algorithms.

The number and importance of unmanned vehicles is expected to increase in
tomorrow’s army. Unmanned vehicles both need ‘low level’-control algorithms that
controls the different functions of the vehicle, such as the rotation of its wheels, and
‘high level’-control that decides which actions the vehicle is going to take, such as
which path the vehicle will follow.

FOI’s project studies missiles, but will use an experimental platform with ground
vehicles to illustrate the coordinated control. The algorithm studied in this thesis can
be used in ground as well as aerial vehicles and to enable a trouble free implemenation
into the experimental platform, a scenario with unmanned ground vehicles is used as
background during the thesis.

This thesis studies high level-control and assumes vehicles that have certain defined
actions, such as go left and go right. The objective is to find control rules, or beha­
viours, that efficiently uses these actions to solve the problem dealt with.

Earlier work at FOI include finding vehicles’ optimal flight paths [1].
One problem with previous algorithms has been the fast increase in complexity

when expanding a problem to more details and to more agents. This thesis studies
algorithms where the complexity does not grow as fast.

The algorithms studied are using reinforcement learning, presented in section 3.1 ,
which is one of several methods to calculate optimal solutions to given problems.
Within reinforcement learning, a special class of algorithms that use gradient des­
cent-search in the policy function’s parameter space is studied. This class of al­
gorithms, often referred to as policy search-algorithms, has some qualities that are
useful as the problems become more complex.

1.2 Purpose of the Thesis

The objective of the master’s thesis is to conduct a survey of policy search algorithms,
to choose an algorithm to study in detail and to evaluate it empirically. The thesis
evaluates a single vehicle system and then expands it to a multi vehicle system with
a few specific limitations.

1

The evaluation includes a Matlab implementation of an example scenario and an
evaluation of the performance of the solution found versus the computational cost to
find the solution. A more theoretical understanding of the algorithm is also desired
to enable correct implementation of the algorithm and expansion into more than one
vehicle.

In the multi vehicle section of the thesis it is specified that all vehicles should use
the same control rule, often referred to as policy, but with different perception of the
outside world. It is also specified that the improvement of the vehicles’ ability to
cooperate and strive towards a common goal when using a global reward function
should be studied.

1.3 How to Read This Thesis

A number of military applications where reinforcement learning could be used to find
an efficient solution are discussed in chapter 2. A more detailed example scenario is
described and used as background during the implementation of the algorithm.

Technical background to reinforcement learning, function approximation and policy
search methods is presented in chapter 3. A survey is made of different policy search
algorithms. The presentation is meant as an introduction and is needed to understand
the technical parts of the thesis. In the references, there are a number of papers and
books that can be read for more in-depth knowledge.

In chapter 4 , the algorithm that is evaluated is presented. The chapter also
discusses how the policy is represented and how the solution is expanded into more
agents. This chapter provides a detailed view of how the problem is solved.

The simulations made and the result from the simulations are presented in chapter 5.
This chapter is difficult to understand without reading chapter 4 first.

The conclusions on how the algorithm performs are presented in chapter 6 and
recommendations on continued work are given in chapter 7.

2

Chapter 2

Tactical Background

The number and importance of unmanned vehicles is expected to increase in tomor­
row’s army. So far, much of the focus has been on unmanned aerial vehicles (UAV),
but unmanned ground vehicles (UGV) will probably play an important role and have
a variety of applications.

2.1 Current Use of Unmanned Vehicles

The current UGV applications are often remotely controlled standard tanks with
operators guiding. For example the US Army used UGVs for mine clearing in Bosnia.
In Sweden, tests have been performed using the S103 tank with a remote control kit [6].

Controlling UGVs by remote is problematic due to a number of reasons. The high
capacity communication link needed for control is difficult to maintain in a combat
situation and the operator have difficulties assessing the UGVs situation and thereby
getting stuck in situations where a manned vehicle would not have any problem.

2.2 Need For Autonomous Vehicles

In the future, a wide variety of UGVs with different sizes, numbers and applications
are expected. The U.S. Department of Defence’s Joint Robotics Program (JRP) is
developing UGVs that fall into five main categories: reconnaissance, surveillance and
target acquisition; military operations in urban terrain; explosive ordnance disposal;
physical security; and countermine operations [8].

Many of the applications mentioned demand many robots that are more or less
autonomous to be efficient. First and foremost they have to avoid obstacles and
penetrate terrain by themselves (a subject not covered in this thesis). They will also
need the ability to take tactical decision and cooperate with other UGVs while doing
so. These vehicles will be ’tele-supervised’, that is they will only need the operator
to occasionally provide command and the ultimate goal is for one operator to control
a group of autonomous vehicles [6].

In this thesis an algorithm is evaluated that teaches the robots how to behave in
different situations to efficiently perform the mission and generalise this behaviour
to deal with unexpected situations. The algorithm is meant to work on a high level,
telling the robot where to go next more than telling it how to avoid an obstacle.

In the next section an example scenario will be presented. The scenario will work
as an illustration for the technical discussion following in the rest of the report.

2.3 Example scenario: Eliminating Hazardous Ordnance

An infantry troop has advanced and regained control of a territory. The area ahead
used to be an enemy fortification and was bombarded with artillery. In the area,
hundreds of small unexploded ordnance items (UXO) are believed to be scattered.
Two different kinds of UXO is around, small grenades designed to injure personnel,
which is used as an area-denial weapon and ammunition that have failed to function
as intended.

3

The area needs to be cleared for two purposes, to clear the danger of people moving
around in the area getting hurt and to allow usage of available facilities in the area.
Troops could be used to clear out the UXO, but it is dangerous and time consuming.

Instead, small, cheap robots (deminers) in large numbers are used to pick up and
dispose the ordnance. The deminers need to be cheap since accidents with explosive
ammunition is likely. For them to be cheap, they use simple sensors and control
algorithms that need to have all the ordnance items pinpointed on the map.

More expensive robots with advanced sensors (scouts) are used to pinpoint all the
items of ordnance before the deminers are used. Since they are expensive, the scouts
are instructed to only mark the location of ordnance and not to get too close.

The scouts need to be fed with information about the terrain and where the ord­
nance is likely to be located (could be made from information about terrain and where
the bombardment have been focused). An operator controls the robots, confirms the
robots’ decisions and supervises the operation.

A system like this is developed within the U.S. Joint Robotics Program (JRP).
The system is called Basic UXO Gathering System (BUGS). One of the suggested
solutions is having deminers that are directed by the previously mentioned scouts.
The scouts will be developed from the existing Remote Controlled Reconnaissance
Monitor (RECORM) vehicle.

The robots are to either place a counter-charge on the target or pick it up and
deposit it at a common collection point. The goal is full autonomy but an operator will
probably be needed for functions such as visual verification of detected targets [15 ,
pages 29-33].

4

Chapter 3

Technical Background

The simulated robots will use reinforcement learning to solve the search problem as
efficiently as possible. A neural network will store and implement the controller. The
controller translates the robots sensations and the map into a benefitial action.

This chapter will give a short introduction to reinforcement learning and neural
networks that will be needed to understand the rest of the thesis.

3.1 Introduction to Reinforcement Learning

In reinforcement learning, the decision maker learns how to maximise a numerical
reward signal by picking the most rewarding action for different situations. The
learner explores the possible actions to learn their corresponding rewards by trying
them in a safe, simulated environment. [13]

In reinforcement learning the world is divided into the agent , the learner and
decision-maker, and the environment , the world around the agent. The agent and the
environment interact with each other. Contrary to many other optimisation methods,
the dynamics of the environment does not necessarily need to be known by the agent.
The environment can be seen as a black box that is fed with an action, u ∈ U , by
the agent and then return a new state, i ∈ S , and a reward signal, r , see figure 3.1.

The dynamics of the environment can be defined by the two parameters Pu
ii′ , prob­

ability for state i′ when in state i and taking action u , and Ru
ii′ , expected immediate

reward for the same transition. To learn about the environment, the agent is trained
in a simulated environment. Numerical rewards or penalties will be given for each
step depending on what improvement it has lead to. By iteration and exploration of
different actions and states, the agent learns about the environment and when the
simulation has iterated to infinity, the agent will have learned Pu

ii′ and Ru
ii′ .

Not needing an explicit model for the environment, causes both advantages, such
as making it easier to model complex non-linear dynamics, and disadvantages, such
as needing many iteration before a good result is achieved. An important problem
that reinforcement learning has to deal with is the balance between exploring actions
whose properties are unknown since they have not been explored before and exploiting
knowledge that the agent already has learnt.

��

�

agent

environment

state, ireward, r

action, u

black box

Figure 3.1: The agent and the environment interact in reinforcement learning, but
the agent does not necessarily know the dynamics of the environment.

5

�

�

�

�
�
�
�
�
�
�
�
���

�

�
�
�
�
�
��

actor

critic

environment

action, u

�θ

agent

environment

state, ireward, r

Figure 3.2: The actor and the critics are introduced to structure the agent.

3.1.1 Concepts The reward signal is central in reinforcement learning, the al­
gorithm tries to find the solution to the problem that maximises the expected sum of fu­
ture rewards, also known as the expected discounted return, equation 3.1. The rewards
can be discounted using the parameter β to prioritise the better-known short-term
rewards to the long term ones.

Rt = rt+1 + βrt+2 + β2rt+2 + · · · =
∞∑

k=0

βkrt+k+1 (3.1)

The agent used in reinforcement learning is divided in different parts that each
has an important task in structuring and solving the problem. The actor, figure 3.2 ,
is used to map any state i to an action u. The actor is usually made up by a policy
function, µ(i, u) , that returns the probability for picking action u given state i , equa­
tion 3.2 , and a function that picks an action randomly according to the probabilities
given by µ.

A table where each action for each state is stored or a parameterised function can
for example make up the policy function.

µ(i, u) = P (ut = u|it = i) (3.2)

A critic, figure 3.2 , is also introduced to evaluate the policy and to structure the
rewards given by the environment. The critic usually stores the return, Rt , in one
way or the other. The stored experience from the training is used to improve the
actor’s policy.

The return is traditionally stored in one of two ways. The state-value function ,
Jµ(i) , is defined as the expected return when in state i and following policy µ(i, u)
(see equation 3.3). The action-value function , Qµ(i, u) , is defined as the expected
return when in state i taking action u and following policy µ(i, u) , equation 3.4.

Jµ(i) = Eµ{Rt|it = i} = Eµ

{ ∞∑
k=0

βkrt+k+1|it = i

}
, (3.3)

Qµ(i, u) = Eµ{Rt|it = i, ut = u} = Eµ

{ ∞∑
k=0

βkrt+k+1|it = i, ut = u

}
. (3.4)

6

action

state

�

��
��

�

��
��

�� �

��
��

��
��

��
��

��
��

�
�
��

	
	
		

�
�

��

�������

...

...

a)

i’

i

�

��
��

��
��

�

time

i’

i

c)

��
��

��
��

���

�

�

�

��
��

i”

i’

i

terminal state

b)

Figure 3.3: The backup diagram shows which states affect the value of state i for a)
dynamic programming, b) Monte Carlo methods, c) temporal-difference learning [13].

3.1.2 Estimating the Expected Return In reinforcement learning there are
three basic ways to estimate the expected return. The three ways all have different
advantages but the primarily used one is probably temporal-difference learning.

The term dynamic programming here refers to methods that use knowledge of the
dynamics of the environment to estimate the value function. The value of the state
value function for state i , is updated by weighting the value of the state value function
for the possible next states, i′ , depending on the likelihood of i′ in concern of the
current policy and the dynamics of the environment [13 , page 91] , see equation 3.5.

Jµ(i) = Eµ{rt+1 + βJµ(it+1)|it = i} =
∑

u

µ(i, u)
∑
i′
Pu

ii′ [Ru
ii′ + βJµ(i′)], (3.5)

Notice that the estimated value for state i is based on the estimated value for
state i′. This is common in reinforcement learning and is called boot strapping. The
backup diagram in figure 3.3a shows how every possible state in the next time step
affects the value of state i.

Monte Carlo methods estimate value functions and discover optimal policies without
having knowledge of the environment’s dynamics, Pu

ii′ and Ru
ii′ . The expected return

is calculated when an episode is completely simulated, by summing all the rewards

7

received. This is averaged to the experience of previous episodes, see equation 3.6.

Jµ(i) = Eµ{rt+1 + βrt+2 + β2rt+3 + · · · = lim
n→∞

1
n

n∑
i=0

[∞∑
k=0

βkrt+k+1

]
(3.6)

where the index i denotes the episode number. This return will depend on the
random result of each action selection and environment reaction, and if simulated an
infinite amount of times the value function is supposed to converge to the expected
values. The backup diagram in figure 3.3b shows that each consecutive step affects
the value of state i.

Temporal-difference (TD) learning is a combination of the ideas of dynamic pro­
gramming and Monte Carlo methods. Similar to Monte Carlo methods, no mathem­
atical model of the environment is needed and similar to dynamic programming, TD
bootstraps, using estimates of the next state-value to estimate the current state-value.
The backup diagram in figure 3.3c shows that only state i′ affect the value of state i.

3.1.3 Improving the Policy The improvement of the policy and the calculation
of the value function are iterative processes. First, an arbitrary policy is chosen
and used to calculate a value function. The value function is used to choose a new,
improved policy. There are many different algorithms, but in each state they all seek
an action that will maximise the expected return.

µ(i, u) = arg max
u

[∑
i′
Pu

ii′ [Ru
ii′ + βJµ(i′)]

]
Note that when the action space is limited, selecting the action that in the scope

of the value function would maximise the expected value is simple. Still, care has to
be taken to make sure that the other actions are properly explored as well. Usually
the probability to select an action is not set to one to secure exploration.

3.1.4 Classes of Algorithms Reinforcement learning algorithms can be divided
into three important classes.

• Actor-critic The agent has separate functions for the policy and the value es­
timation. The value function is used to improve the policy function, while the
policy is used to pick an action depending on the state.

• Actor-only The agent only keeps a policy function. The policy function is up­
dated from Monte Carlo runs of the simulated agent-environment interaction.
When the policy has been updated, the rewards given in previous runs are
discarded.

• Critic-only The agent only keeps a value function and do not store a separate
policy function. Actions are chosen by picking the action that, according to the
value function, returns the highest expected return. A small change in the value
function can cause large changes in the policy when more than one action in
a state have similar expected values. Critic-only methods have long been the
most common reinforcement learning approach, examples are Q-learning [10]
and SARSA(λ) [13].

Actor-critic and actor-only algorithms are often called policy search methods since
the policy parameter space is searched for a policy that will maximise the expected
discounted return. The policy function is often a parameterised, continuous function.
The gradient of the policy function’s expected return with respect to its parameters

8

is calculated. To improve the policy, a small step is taken in the direction of this
gradient.

This thesis focuses on actor-only and actor-critic methods. Lately these classes
have received more focus since they have been shown to converge to a near optimum
policy even when function approximation is used to reduce the needed memory and
training of the agent (function approximation is introduced in section 3.2).

3.2 Function Approximation

One way of organising the value function estimates are by storing them in a table.
Although intuitive, this will only work for small problems with a limited amount of
states and actions. When using a relatively small map with one hundred squares (a
10x10 map) and only two possible values, 0 and 1, in each square, more than 2100

states are possible. That is, even when solving a small discrete problem, the amount
of states that needs to be explored and the size of the tables that needs to be stored
are too large.

When modelling a continuous problem, the number of states is infinite. For large
or continuous problem the need for parameter functions to approximate the tables is
obvious.

The idea of function approximation is to approximate the value or the policy
function as a parameterised function. Typically, the number of parameters is much
less than the number of states. Using a function that tries to represent the previously
mentioned tables is the first, intuitive approach. A better approach is to set up a
vector of features, yi , each representing an important part of the state. The function is
then represented as a combination of these features. The combination can for example
be linear, equation 3.7 , or in the shape of a neural network where the parameters,
θt , sets the influence of each feature.

Jt(i, θt) = θT
t yi =

n∑
i=1

θt(i)yi(i) (3.7)

Since there is generally no vector θ of limited size that gets all the states and values
correctly, the strategy is to minimise the value prediction error from the observed
samples. A class of learning methods for function approximation suiting reinforcement
learning well is gradient-descent methods. These methods adjust the parameter vector
by a small amount in the direction that will reduce the error the most, i.e. the negative
gradient direction.

θt+1 = θt − 1
2
α∇θt

[Jµ(it)− Jt(it, θt)]2 = θt − α[Jµ(it)− Jt(it, θt)]∇θt
Jt(it, θt)

Where α is a positive step-size parameter and ∇θt
f(θt) is the gradient of any

function f with respect to θt [13 , pages 197-198].

3.2.1 Neural Networks Like Fourier series, neural networks are parameterised
approximation of functions. The exactness of the approximation is a function of how
many parameters are used, how well the parameters are chosen and how complicated
the original function is.

In a single layer neural network, figure 3.4 , each value, yi , in the input vector is
multiplied by a parameter θj,i. These multiplied values are added together with a
bias, bj , to form the node internal activity vj . The node activity is used as input to
a non-linear activation function , φ(·) , such as a sigmoidal or exponential function to
form the values yj in the output vector.

yj = φ1(vj)
vj =

∑
i θj,iyi + bj

}
⇒ yj = φ1

(∑
i

θj,iyi + bj

)
(3.8)

9

−1

y1

yi

bj

θj,i

vj φ1 yj

Figure 3.4: Each value, yi , in the input vector is multiplied by a parameter θj,i and
then added together with a bias, bj , to form the output vector of a single layer neural
network.

−1 −1

y1

yi

bj

θj,i

vj φ1 yj

bk

θk,j

vk φ2 yk

Figure 3.5: By using multi-layer neural networks, any arbitrary function can be ap­
proximated arbitrarily well.

If the neural network is to approximate a complicated function, the neural network
has to consist of more than one layer, figure 3.5. When using more than one layer,
the function is called multi-layer neural networks. In such a case, the output vector,
yj , of the single neural network is now a middle layer of the network, often called a
hidden layer. The values in this vector are added in the same fashion as with the
single layer.

yk = φ2

∑
j

θk,jyj + bk

 (3.9)

The advantage of using a non-linear function is exploited when using multi-layer
neural networks. If the input values had been linearly added, there had been no
point using a second layer since the same effect could have been accomplished by a
trivial recalculation of the parameter values, θj,i. For non-linear functions this is not
possible.

Adjusting a Neural Network A common method for tuning the neural network’s
weights is called back-propagation. It is a recursive method where each iteration goes
as follows: The parameter when starting iteration t+1 are θt

j,i and θt
k,j and the biases

are bt
j and bt

k. The output values yt+1
k are calculated by equation 3.8 and 3.9. These

values are used in a target function, δ(θt
j,i, θ

t
k,j , y

t+1
i) , that the back-propagation will

strive to minimise or maximise.
To optimise δ(θt

j,i, θ
t
k,j , y

t+1
i) , the target function’s partial derivatives with respect

10

to the parameter is used to form the gradient ∇θtδ(θt, yt+1
i) , where all the parameter

θt
j,i and θt

k,j are denoted by θt.
To improve the parameters, a small step γ is taken in the direction of the gradient

(negative gradient if the function is to be minimised): θt+1 = θt + γ∇θtδ(θt, yt+1
i).

To find the gradient, ∇θtδ(θt, yt+1
i) , the partial derivatives of the target func­

tion with respect to each parameter needs to be calculated. Using the chain rule to
back-propagate the derivative through the network does this. The partial derivatives
with respect to the parameters closest to the output are the easiest to find,

∂δ(θt, yt+1
i)

∂θk,j
=

∂δ(θt, yt+1
i)

∂yk

∂yk

∂vk

∂vk

∂θk,j
(3.10)

When calculating the partial derivative for the target function with respect to the
parameters in a hidden layer, the effect of the parameter to each outer layer node that
affect the target function have to be taken into account. The parameter θj,i affect the
node j and the effect that node j has on all the nodes in the k-layers is summated
and the chain rule gives

∂δ(θt, yt+1
i)

∂θj,i
=
∑

k

[
∂δ(θt, yt+1

i)
∂yk

∂yk

∂vk

∂vk

∂yj

]
∂yj

∂vj

∂vj

∂θj,i
(3.11)

The back-propagation algorithm fits reinforcement learning well because of it’s
iterative behaviour and that it does not fit the parameters all the way to the max­
imum/minimum of δ in one iteration. The gradient ascent search method will bal­
ance the different inputs and find parameters that approximate the target function
as closely as possible with the given number of parameters.

3.2.2 Generalisation Using function approximation will allow the agent to gen­
eralise between similar states. The generalisation comes from using a continuous func­
tion to encode the action decision in each state. A non linear interpolation between
learned points in the state space produces reasonable actions for similar inputs. The
selection of features, used to describe the state can reduce the time needed for the
learning process. Good feature selection allows the agent to generalise from an action
in one state to another closely related state.

To illustrate how the feature selection affects the agent’s ability to generalise
between similar states, consider the case described in section 2.3. To simplify the
problem and to represent the world surrounding the agent, a table representing a
simple map is created. An unknown area in the world is shadowed in the table
while an already explored area is not shadowed. Now, consider using the map as to
represent the state that the agent will use to take decisions. The value of each square
will then be a feature used to represent the state. Although each state is uniquely
represented, and the agent has all the information it needs to take a decision, this
approach is problematic from a generalisation point of view. If the map would be
displaced, for example if the agent and each known and unknown square would be
moved one step to the left, figure 3.6 , almost every feature would be changed. Almost
every square on the map changes from known to unknown.

However, from the agent’s point of view, the new, displaced state is exactly the
same as the non-displaced. A state representation centered on the agent would obvi­
ously solve this problem since the optimal behaviour of the agent is to keep acting as
the displacement had never happened.

In [1] , Axelson solves this by using a sensor that translates the global map to a
local state, see figure 3.7. The sensor sums the amount of unknown map squares in
each sensor area, creating an approximation of the global state, centralised around
the agent. Since the sensor areas are larger further away from the agent, the parts of
the global map close to the agent are more detailed.

11

Figure 3.6: If the map would be displaced, for example if the agent and each known
and unknown square would be moved one step to the left, almost every feature would
be changed. The grey squares are map squares that needs to be searched before the
displacement and the black squares needs to be searched after. The circles represent
the agent before and after the displacement.

Figure 3.7: The local sensor averages the parts of the map so as data close to the
agent is more detailed than data far away.

12

When using the local state to choose an action, a displacement in the global map
would cause the centering of the local view to be displaced as well, ending up with
the same local view as before the shift.

3.3 Policy Search Methods

Below is a brief presentation of some of the policy search algorithms that exist. The
algorithm that is chosen to be investigated is presented in detail in section 4.1.

William’s REINFORCE method [16] uses no value function to learn and store
the expected return from an action or state. Instead, the method runs one complete
episode until termination and uses the return as an approximation of Jµ. This gives
an unbiased estimation of the return but since the method has not stored any previous
experience, chance can create large variance in the return.

The policy function is updated in the direction of the gradient, estimated from the
return estimation. Since the return estimation has a large variance, the gradient also
shows large variance. The estimation is however unbiased, i.e. the average gradient
is in the correct direction. Unfortunately, the large variance in performance makes
the method converge slowly.

Sutton et al. have developed a modification of the REINFORCE method [14].
The form the gradient is written on was changed to make it suitable to store the
experience in the form of a state-value or action-value function. Using a value function
reduces the variance in performance gradient estimates that are problematic in the
REINFORCE algorithm. The method is shown to converge to a locally optimal policy
using an arbitrary differentiable function approximation.

Konda and Tsitsiklis present a similar method in which the critic uses TD learn­
ing with a linear approximation architecture and where the actor is updated in the
approximate gradient direction [9]. In the rest of the text, this method and that
of Sutton et al. will be considered similar and called PIFA (Policy Iteration with
Function Approximation).

The Action Transition Policy Gradient (ATPG) algorithm presented in [7] is sim­
ilar to the REINFORCE method in a sense that it does not use function approximation
to represent the action-value function Q. Instead it uses a selective process to choose
direct samples of Q to reduce the variance in the performance gradient estimates.
The ATPG algorithm is compared by experiments to the PIFA and the REINFORCE
methods and is shown to converge with order of magnitude fewer iterations. It is also
shown that the ATPG converges to an optimal policy when the policy and action
value function follows piece-wise continuity conditions.

In [2 , 5 , 3] an algorithm called GPOMDP is introduced. The algorithm is shown
to optimise the performance of the policy in a partially observable Markov decision
process. As the REINFORCE and the ATPG algorithms, GPOMDP do not store a
value function. In [3] , the GPOMDP algorithm is also used in a conjugate-gradient
procedure that might find local optimas faster than using gradient ascent.

13

Chapter 4

Solution

4.1 Algorithm Evaluated - GPOMDP

4.1.1 Why GPOMDP? Algorithms that use a separate policy function, often
called policy search algorithms, have been increasingly popular within reinforcement
learning. Some policy search algorithms have been proven [14] to converge to local
optimum even when using function approximation instead of tables to represent the
policy. Since the use of function approximation is needed when studying larger prob­
lems, this convergence property is very important.

Within the policy search class, the actor-only model has one large advantage.
When using a global reward function and a distributed actor, actor-only methods can
be expanded into more than one agent with relatively small changes [11]. The global
reward function used in this thesis is presented in section 4.5.2 and the distributed
actor in section 4.5.1.

Grudic and Ungar presented an actor-only algorithm in [7]. Since it is actor-only
it does not store a value function, but takes one sample episode to decide how the
policy function is to be improved. After the policy function is improved, the data
from the episode is thrown away. Grudic and Ungar show that this algorithm not
only converges when using function approximation but it also converges faster than
the traditional actor-critic algorithm and the PIFA algorithm mentioned in section 3.3.

GPOMDP, an algorithm developed by Baxter and Bartlett [2 , 5 , 3] , is also an
actor-only algorithm. I have not seen a speed comparison between GPOMDP to
Grudic’s and Ungar’s algorithm, but GPOMDP models the environment as a partial
observable Markov decision process (POMDP) instead of a Markov decision process.

It is important that the algorithm converges for POMDPs when using the sensor
presented in section 3.2.2 since the sensor cannot discriminate between every possible
global state, i.e. more than one global state can look exactly the same to the agent.

The mathematical analysis of GPOMDP is clear and more developed than that of
Grudic and Ungar, which combined with Baxter’s good reputation in reinforcement
learning suggest that GPOMDP is a promising algorithm.

4.1.2 Mathematical Background Most of the information in this section and
section 4.1.3 can be found elsewhere [3 , 2 , 5]. These articles are recommended for
formal proofs and a more detailed explanation of GPOMDP.

The formal framework used to describe the agent’s interaction with the environ­
ment is a partial observable Markov decision process, POMDP. A POMDP iterates
in the following way: At time t , the environment is in state it. The agent receives an
observation of the environment, y(it) , according to a probability distribution vy(i).
From the observation, the agent decides to take an action ut according to the policy
µut

(θ, yt) , where θ are the parameters in a parametric policy function. Depend­
ing on the action, the environment returns a new state it+1 according to the prob­
ability pii′(ut). The Markov chain corresponding to θ has state transition matrix
P (θ) = [pii′(θ)] given by pii′(θ) = Ey∼v(i)Eu∼µ(θ,y)pii′(u). When the POMDP has
reached its final state iN , the process is finished.

15

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
−4

−2

0

2

4

−4

−2

0

2

4
−120

−100

−80

−60

−40

−20

0

20

Figure 4.1: Two different views of a gradient ascent search. Gradient ascent finds a
maximum by recursively taking small steps in the gradient direction.

Assumption 1
From now on it is assumed that each P (θ) has a unique stationary distribution
π(θ) := [π(θ, 1), . . . , π(θ, n)]T satisfying the balance equations π(θ)T P (θ) = π(θ)T .
The magnitudes of rewards, |r(i)| , are uniformly bounded by R < ∞ for all states i
([3 , Assumption 1]).

The goal of the method is to find a θ that maximises

ηβ(θ) :=
n∑

i=1
π(θ, i)Jβ(θ, i) = πT Jβ

where
Jβ(θ, i) := limT→∞ 1

T Eθ

[∑T
t=0 βtr(it)|i0 = i

]
= {the value of each state i ∈ S} ,

and ηβ(θ) is called the expected discounted reward. ηβ(θ) can be thought of as
the reward that can be expected for the next step averaged over each state in the
POMDP.

A recursive method for finding the maximum of a function is gradient ascent,
which goes as follows: A starting parameter vector θ0 is chosen. The gradient at θ0 is
calculated and a small step is taken in the direction of the gradient, θ1 ← θ0+γ∇η(θ0).
This is repeated until the gradient is small enough and the maximum is considered
reached. An illustration of gradient ascent for a two-element parameter vector is
shown in figure 4.1. This two-dimensional search can easily be expanded to a more
complex policy function with more than two parameters.

There are two important limitations to the gradient ascent search: The policy
needs to be differentiable and a local optimum can be found and picked instead of
the global optimum. Using a differentiable neural network to calculate a stochastic
policy solves the first limitation but the second remains a problem.

According to [2 , Theorem 1]

ηβ(θ) =
η(θ)
1− β

,

where η(θ) is the average reward. In other words, it is equivalent to maximise the
expected discounted reward and to maximise the expected reward.

The long-term expected reward

η(θ) = lim
T→∞

1
T

Eθ

[
T∑

t=1

r(it)

]
,

16

is independent of the starting state i0 and equal to

η(θ) =
n∑

i=1

π(θ, i)r(i) = π′r.

The gradient of the expected reward with respect to the parameters θ can be
calculated exactly by solving

∇η = ∇πT r = πT∇P [I − P + eπT]−1r, (4.1)

where the dependence on θ has been left out. Equation 4.1 should be read as one
equation for each ∂

∂θi
. However, solving this equation system is only possible when

having a small amount of states and a better way is to find an approximation of the
gradient. Equation 4.1 can be rewritten as

∇η = (1− β)∇πT Jβ + βπT∇PJβ, (4.2)

where Jβ is the discounted value of state i. It can be shown that when β approaches
1, the first term in equation 4.2 becomes negligible. That is, when β approaches 1,

∇βη := βπT∇PJβ , (4.3)

is a good approximation of the gradient ∇η. It can also be shown that β does not
need to be close to 1 if 1/(1 − β) is large compared to the mixing time, i.e. the
time constant determining how quickly the underlying Markov chain converges to it’s
stationary distribution.

4.1.3 GPOMDP - The Algorithm GPOMDP is an algorithm that uses one
sample path of the POMDP to approximate ∇βη. ∇βη is used to approximate the
gradient of η since ∇η is unknown in general. ∇βη can be an arbitrary good ap­
proximation of η(θ) by choosing β with respect to the mixing time of the underlying
Markov chain [2].

To understand how GPOMDP (algorithm 1) works, first note that the approxim­
ation of ∇βη after T steps in the POMDP, �T , approaches ∇βη as T →∞ since [2 ,
Theorem 6]

∇βη = πT∇PJβ =
∑

i,j,y,u

EZT ,

where

ZT := χi(Xt)χj(Xt+1)χu(Ut)χy(Yt)
∇µu(θ, y)
µu(θ, y)

J(t + 1), (4.4)

J(t + 1) =
∞∑

s=t+1

βs−t−1r(Xs),

and χi(·) denotes the indicator function for state i

χi(Xt) :=

{
1 if Xt = i,

0 otherwise.

The letters i and j denote the possible states and Xt is the state at time t , u
denotes the possible actions and Ut is the action taken at time t. y represents the
possible observations and Yt is the observation at time t.

ZT in equation 4.4 equals zero except for when all the χi(·) functions are one.
In a simulation of a POMDP, the indicator functions are only one for the actions
and states that occur. Because of this, the sum of ∇µu(θ,y)

µu(θ,y) J(t + 1) for the states

17

and actions that occur during a non-biased simulation will converge to ∇βη as the
simulation iterates to infinity.

lim
T→∞

1
T

T∑
t=0

∇µut
(θ, yt)

µut
(θ, yt)

J(t + 1)→
∑

i,j,y,u

EZT = ∇βη. (4.5)

GPOMDP offers a clever way of adding up the ∇µu(θ,y)
µu(θ,y) J(t+1) during a simulation

of a POMDP and approximating ∇βη without storing all the rewards, states and
actions found in the process. To understand how GPOMDP finds the average, note
that each term in left hand side of equation 4.5 can be rewritten as

t = 0 ∇µu0 (θ,y0)
µu0 (θ,y0) J(1) = ∇µu0 (θ,y0)

µu0 (θ,y0) (r1 + βJ(2)) = ∇µu0 (θ,y0)
µu0 (θ,y0) (r1 + βr2 + β2J(3)) = · · ·

t = 1 ∇µu1 (θ,y1)
µu1 (θ,y1) J(2) = ∇µu1 (θ,y1)

µu1 (θ,y1) (r2 + βJ(3)) = ∇µu1 (θ,y1)
µu1 (θ,y1) (r2 + βr3 + β2J(4)) = · · ·

...

t = n

∇µun (θ,yn)
µun (θ,yn) J(n + 1) = ∇µun (θ,yn)

µun (θ,yn) (rn+1 + βJ(n + 2)) =

= ∇µun (θ,yn)
µun (θ,yn) (rn+1 + βrn+2 + β2J(n + 3)) = · · ·

Now, collect all terms in the left-hand side of equation 4.5 that should be multiplied
with each reward.

1
T

T∑
t=0

∇µut (θ,yt)
µut (θ,yt)

J(t + 1) = 1
T

∇µu0(θ, y0)
µu0(θ, y0)︸ ︷︷ ︸

z1

r1 + . . .

. . . +
(

β
∇µu0(θ, y0)
µu0(θ, y0)

+
∇µu1(θ, y1)
µu1(θ, y1)

)
︸ ︷︷ ︸

z2

r2 + . . .

. . . +
(

β2∇µu0(θ, y0)
µu0(θ, y0)

+ β
∇µu1(θ, y1)
µu1(θ, y1)

+
∇µu2(θ, y2)
µu2(θ, y2)

)
︸ ︷︷ ︸

z3

r3 + · · ·



(4.6)

Note the relation

zt+1 = βzt +
∇µut

(θ, yt)
µut

(θ, yt)
,

which is used in the GPOMDP algorithm to reduce the amount of data needed to be
stored to approximate the gradient.

The GPOMDP algorithm will only work properly if assumption 2 and assump­
tion 1 are satisfied.

Assumption 2
The derivatives ∂µu(θ,y)

∂θk
exist for all u ∈ U , y ∈ Y and θ ∈ �K . The ratios
∣∣∣∂µu(θ,y)

∂θk

∣∣∣
µu(θ, y)


y=1...M ;u=1...N ;k=1...K

are uniformly bounded by B <∞ for all θ ∈ �K ([3 , Assumption 5]).

There is one parameter that needs to be set in GPOMDP, the discount factor
β ∈ [0, 1). Setting it is a trade-off between having a low variance (β close to 0) and
having a low bias (β close to 1).

18

Algorithm 1 The GPOMDP algorithm [3 , Algorithm 1]
1: Given:

• Parameterised class of randomised policies {µ(θ, ·) : θ ∈ �K} satisfying
Assumption 2.

• Partially observable Markov decision process which when controlled by the
randomised policies µ(θ, ·) corresponds to a parameterised class of Markov
chains satisfying Assumption 1.

• β ∈ [0, 1)

• Arbitrary (unknown) starting state i0

• Observation sequence y0, y1, ... generated by the POMDP with controls
u0, u1, ... generated randomly according to µ(θ, yt)

• Bounded reward sequence r(i0), r(i1), ... where i0, i1, ... is the (hidden) se­
quence of states of the Markov decision process.

2: Set z0 = 0 and �0 = 0 (z0, �0 ∈ �K).
3: for each observation yt , control ut , and subsequent reward r(it+1) do
4: zt+1 = βzt + ∇µut (θ,yt)

µut (θ,yt)

5: �t+1 = �t + 1
t+1 [r(it+1)zt+1 −�t]

6: end for

4.1.4 Conjugate Gradient Search In a gradient ascent search, taking a small
step in the direction of the gradient changes the parameter values. When making a
conjugate gradient search, a clever combination between the previous search direction
and the gradient is used as search direction. Due to its better use of earlier data,
conjugate gradient converges faster to a maximum than gradient ascent. For a more
detailed description of the conjugate gradient method, we recommend [12].

The algorithm CONJPOMDP, algorithm 2, uses the Polak-Ribiere conjugate
gradient algorithm that is designed to use noisy and biased data of the gradient,
for example provided by GPOMDP. When the quadratic norm of the gradient is
small enough, the algorithm terminates.

In this thesis, CONJPOMDP will be using GPOMDP to approximate the gradient
∇βη(θ) but any well-working method of approximation would do. In the algorithm,
the symbol · is used to denote inner products.

Instead of just taking a small step in the search direction, the conjugate gradient
method often finds a maximum in the search direction by doing a line search. The
algorithm GSEARCH, algorithm 3, can be used to bracket this maximum and finding
a step size while only using the gradient information that GPOMDP can produce.
By using GSEARCH, the convergence time of CONJPOMDP might be reduced.

The algorithm GSEARCH works by projecting the gradient on the search direction,
figure 4.2. If the projection is positive, the point in which the gradient is taken is in an
upward slope in the search direction, if the projection is negative, there is a downward
slope.

At the starting point, θ0 , there is an upward slope if the gradient has been correctly
estimated. GSEARCH then tries the initial step size s0 and calculates the gradient
at the new point θ1 → θ0 + s0θ0.

If the new gradient’s projection on the search direction is positive, the point θ1 is in
an upward slope and the maximum has not been reached. Since this means that the
maximum point is beyond θ1 the step size is doubled and the gradient is calculated
at the new point θ2 → θ0 + 2s0θ0. This is repeated until a point, θN , is found where

19

Algorithm 2 CONJPOMDP (GRAD,θ ,s0 ,ε)← �K [3 , Algorithm 2]
1: Given:

• GRAD: �K ← �K : an estimate of the gradient of the objective function to
be maximised.

• Starting parameters θ ∈ �K

• Initial step size s0 > 0.

• Gradient resolution ε

2: g = h =GRAD(θ)
3: while ‖g‖2 ≥ ε do
4: GSEARCH(GRAD, θ, h, s0, ε)
5: � =GRAD(θ)
6: γ = (�− g) ·�/‖g‖2
7: h = � + γh
8: if h ·� < 0 then
9: h = �

10: end if
11: g = �
12: end while
13: return θ

θ∗ θ0

θ1

θ2

Figure 4.2: By projecting the gradient on the search direction, GSEARCH is able to
find a maximum along the search direction given to GSEARCH.

20

Algorithm 3 GSEARCH (GRAD,θ0 ,θ∗ ,s ,ε)← �K [3 , Algorithm 3]
1: Given:

• GRAD: �K ← �K : gradient estimate

• Starting parameters θ0 ∈ �K

• Search direction θ∗ ∈ �K with GRAD(θ0) · θ∗ > 0

• Initial step size s > 0

• Inner product resolution ε ≥ 0

2: θ = θ0 + sθ∗

3: � =GRAD(θ)
4: if � · θ∗ < 0 then
5: Step back to bracket the maximum
6: repeat
7: s+ = s, p+ = � · θ∗, s = s/2
8: θ = θ0 + sθ∗

9: � =GRAD(θ)
10: until � · θ∗ > −ε
11: s− = s
12: p− = � · θ∗

13: else
14: Step forward to bracket the maximum
15: repeat
16: s− = s, p− = � · θ∗, s = 2s
17: θ = θ0 + sθ∗

18: � =GRAD(θ)
19: until � · θ∗ < ε
20: s+ = s
21: p+ = � · θ∗

22: end if
23: if p− > 0 and p+ < 0 then
24: s = s−p+−s+p−

p+−p−
25: else
26: s = s−+s+

2
27: end if
28: return θ0 + sθ∗

21

the projection is negative. The maximum is located between θN−1 and θN . By using
the gradient values in these two points to interpolate, a good approximation of the
maximum is found.

If the gradient’s projection in point θ1 is negative, the point θ1 is in a downward
slope and the maximum is somewhere between θ1 and θ0. To bracket this maximum,
the step size, s0 , is halved and a new gradient is calculated at the point θ2 →
θ0 + s0/2θ0. This is repeated until a point, θN , has been found where the gradient
projection on the search direction is positive. The maximum is located between θN−1
and θN and the maximum is approximated by the same fashion as before.

There are two issues with using GSEARCH: GSEARCH calls GPOMDP a few
times which is a computationally expensive function and if no maximum is found,
GSEARCH can return high values that seriously overshoots the target.

4.2 Structure of the Solution

The problem that will be used as an illustration of the GPOMDP algorithm is the
example scenario in section 2.3. To simplify the problem and to represent the world
surrounding the agent, a grid that divides the map into a network of equal-sized
squares is created. A table with an entry for each square in the grid is stored. Squares
where UXOs are believed to be scattered and which have not been searched are
marked with 1. Already searched squares and squares that have not been bombarded
with artillery are not interesting to the robots and are marked with 0,2 to separate
the world outside the map from the parts of the world included.

For a square to be considered searched, a robot has to travel through it. Once
the robot has travelled through the square, all the grenades are considered discovered
and the square is marked with 0,2.

The robots have four possible actions. Go up, left, down and right. Each action
will lead to the expected next state and reward. If a robot chooses an action that
makes it leave the map, a penalty is given and the robot’s position is not updated,
i.e. the robot is still at the same position as it was before it chose to leave the map.

4.3 Sensor

To improve the agent’s ability to generalise and to reduce the input to the neural
network, the agent is using a local sensor similar to the one described in section 3.2.2.
The sensor divides the map in areas centered around the agent. The values of the
map squares within each area are averaged, figure 4.3. The average is used as a
representation of the map within that area. Together the averages from each sensor
area represents the entire map, but with a lower resolution and centered around the
agent.

yi =

∑
x∈Ai

map values(x)

number of map squares in sensor area

The averages yi will be the input to the policy function.
The map squares that lie on the diagonal lines of the sensor are divided in half

by two sensor areas. Each of these areas receive half of the divided map square and
the mean value calculation is modified accordingly.

All sensor areas with the same distance to the agent forms a sensor layer where
each area cover the same number of map squares. The number of squares covered by
a layer is decided by the layer length, ln , figure 4.4 . Different number of layers and
layer lengths have been used during the experiments to compensate for larger maps.
The areas are numbered as in figure 4.4.

The disadvantage with the sensor is that it does not fully discriminate between all
the possible states. For example, consider a state where the map square to the left

22

������
����

��������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

Map square

Sensor area

Figure 4.3: The sensor adds the values of the map square within each sensor area.
The average values from each area gives a representation of the map centered around
the agent.

1
4

3
2

5

6

7

8

9

10

11

12
l1

l2

Figure 4.4: Each sensor layer has length ln and each sensor area is numbered as in
the figure.

of the agent is unknown and the squares above and under the unknown square are
known. The sensor picture of this state looks the same as the picture of a state where
the map square to the left is known but the squares above and under is unknown.
The lack of discrimation between states can cause the variance to increase, slowing
down the learning process and limiting the performance of the agent.

4.4 Policy

The agents are using stochastic policies with neural networks that translate the sensor
values to probabilities to choose each action. The input to the neural network is the
value in each sensor area, yi , and the output are four values, yk , that are divided
with

∑
k

yk to make sure that the sum of probabilities is one. The input vector is

normalised to length 1.

4.4.1 Neural Network The neural network consists of two layers as in figure 3.5.
The output layer has four nodes (one for each action) and the number of hidden nodes
can be varied between experiments.

The hidden layer uses the sigmoidal activation function yj = φ(vj) = tanh(vj)
which has the maximum value 1 and minimum value -1. The output layer uses the
exponential activation function yk = φ(vk) = evk .

When using the activation functions above, the probability to pick action ul be­
comes

µul
(θ, yi) =

yl∑
k

yk
, (4.7)

where

yk = evk ,

23

vk =
∑

j

θk,jyj + bk,

yj = tanh(vj),

vj =
∑

i

θi,jyi + bj .

4.4.2 Finding ∇µ/µ In algorithm 1, the gradient of the policy function with
respect to its parameters needs to be calculated. To find the gradient, the partial
derivatives of the policy with respect to its parameters need to be found. In equa­
tion 3.8 and 3.9 , these derivatives for a two layer neural network were derived. The
partial derivatives with respect to the output layer parameters are

∂µul
(θ, yi)

∂θk,j
=

∂µul
(θ, yi)

∂yk

∂yk

∂vk

∂vk

∂θk,j

The partial derivatives are easy to derive using the definitions in section 4.4.1.

µul
(θ, yi) = yl∑

k

yk
⇒ ∂µul

(θ,yi)
∂yk

=


∑

k

yk−yl

(
∑

k

yk)2 l = k,

−yl

(
∑

k

yk)2 l
= k.

yk = φ2(vk) = evk ⇒ ∂yk

∂vk
= evk = yk

vk =
∑
j

θk,jyj + bk ⇒ ∂vk

∂θk,j
= yj

∂µul
(θ, yi)

∂θk,j
=


∑

k

yk−yl

(
∑

k

yk)2 ylyj l = k,

−yl

(
∑

k

yk)2 ykyj l
= k.
(4.8)

The derivatives with respect to the hidden layer parameters are

∂µul
(θ, yi)

∂θj,i
=
∑

k

[
∂µul

(θ, yi)
∂yk

∂yk

∂vk

∂vk

∂yj

]
∂yj

∂vj

∂vj

∂θj,i

The partial derivatives that have not yet been derived are easy to derive using the
definitions in section 4.4.1.

vk =
∑
j

θk,jyj + bk ⇒ ∂vk

∂yj
= θk,j

yj = φ1(vj) = tanh(vj)⇒ ∂yj

∂vj
= 1− tanh(vj)2 = 1− y2

j

vj =
∑
i

θj,iyi + bj ⇒ ∂vj

∂θj,i
= yi

∂µul
(θ, yi)

∂θj,i
=

(
∑

k

yk − yl)θl,j +
∑
k �=l

[−ykθk,j]

 (1− y2
j)ylyi

(
∑
k

yk)2
(4.9)

In GPOMDP, the gradient should be divided by the policy function µul
(θ, yi).

Dividing equation 4.8 and 4.9 with the policy returns the demanded ∇µul
(θ,yl)

µul
(θ,yl)

. The
elements of the gradient for parameters of the outer layer,

∂µul
(θ,yi)

∂θk,j

µul
(θ, yi)

=


∑

k

yk−yl

∑

k

yk
yj l = k,

−yk∑

k

yk
yj l
= k.

(4.10)

24

For the hidden layer

∂µul
(θ,yi)

∂θj,i

µul
(θ, yi)

=

(
∑

k

yk − yl)θl,j +
∑
k �=l

[−ykθk,j]

 (1− y2
j)yi∑

k

yk
(4.11)

According to assumption 2 , equations 4.10 and 4.11 have to be bounded by B < ∞
for all θ ∈ �K for GPOMDP to work properly. Since∑

k

yk − yl <
∑
k

yk,

yl <
∑
k

yk,

yj = tanh(vj) ∈]− 1, 1[,

equation 4.10 is bounded. Since

∂µul
(θ,yi)

∂θj,i

µul
(θ,yi)

=
(
∑

k

yk−yl)θl,j(1−y2
j)yi

∑

k

yk
+

∑

k �=l

[ykθk,j](1−y2
j)yi

∑

k

yk
,∑

k

yk − yl <
∑
k

yk,

yl <
∑
k

yk,

yj = tanh(vj) ∈]− 1, 1[and all yi are bounded.

4.5 More Than One Agent

How the agents are to interact is not set when using reinforcement learning as an
optimisation method. As in all reinforcement learning the agents have to learn the
necessary cooperation in order to solve a problem as efficiently as possible.

The agents are given information about the other agents and use this information
as part of the input to their policy functions. The learning is implemented in the
same way as for the single agent case, but now the agents have a state space where
the other agents are included.

Although they change their behaviour as they change their policies, the other
agents’ interaction with the environment is seen as part of the environment during
the learning process.

4.5.1 Distributed Common Actor In a multi robot setting, the agent can
either be central, taking decisions for all the different robots or distributed where
each robot has its own agent that uses sensor information and its policy to pick an
action.

One of the objectives of this thesis is to investigate a case where each agent uses
the same distributed actor. Each agent will use the same parameters in their neural
network, but will come to different decisions since they have different sensor data as
input into the policy function.

A distributed actor is more robust in a sense that an agent can take a decision
without having contact with a central agent. The actor can be made simpler since the
complexity in an agent’s policy does not increase as fast with respect to the number
of agents as for a central agent.

Distributed actors need special care when there are problems that demand syn­
chronisation between the different agents’ actions. For example, if two cars face
each other head on, it is important that the drivers both turn in the same direc­
tion, otherwise they will have an accident. Either this problem has to be solved by
communication or by having a rule such as using right-hand traffic. The agents are
supposed to spontaneously learn the social conventions needed during the training
phase in multi agent reinforcement learning.

25

δx

δy

Figure 4.5: The distances δx and δy can be used to locate the other agents.

The benefits when all agents use the same actor function are that only one policy
function has to be found and the solution is expandable in a sense that the actor only
needs to be installed into an added agent.

One problem with having the same policy function for all agents is when two agents
are at the same position with the same sensor input. Two agents with identical policy
functions and identical sensor input will produce the same policy. If not special care
is taken, the agents will have trouble finding decisions that separate them from each
other. By communication or by having special rules for these situations, this problem
might be solved.

Note that the problem with two agents in the same position is a problem that
might not occur in reality. The agents would collide if they were in the same position
and the best way to solve the problem might be to penalise collisions between the
agents during learning.

4.5.2 Global Reward Function In the example problem, the agents’ common
goal is to search the area as quickly as possible. To make sure that the agent strive
towards this common goal, the agents uses the sum of all agents’ rewards as their
reward function.

rt =
∑

n

rt,n

From now on the index n represent each agent. If each agent was given it’s own
reward rt,n , a semi-optimal situation where each agent tries to search as many areas
as possible and not uses the advantage of the other agents could arise.

The common reward function will probably cause a larger variance to the reward
since not only the agent’s own, but also all the other agents’ actions influence the
rewards given.

4.5.3 Sensing the Other Agents The agents need to know where the other
agents are located. A simple implementation is the distance δx and δy , figure 4.5.
With this implementation, two extra features are needed per other agent.

If an agent is lost, or if another agent is allowed into the search, a new policy
function with more parameters is needed when using the distance implementation.
This counteracts the goal of having an implementation that easily can be expanded
to more agents.

26

A suggested improvement is using a similar sensor as in section 4.3 , but instead of
averaging the amount of unsearched areas in each sensor area, the amount of agents
per map entry is averaged.

With this implementation one policy is enough no matter how many agents that
are added or removed. Adding or removing agents from the problem only increases
or decreases the values in each sensor area. The number of features stay the same
and the same policy function can be used if the agent has been trained for similar
situations. The policy function can probably also generalise between a problem with
ten and a problem with eleven agents cooperating to solve a problem.

In this thesis, only agents that use the distance to each other as sensor input have
been implemented.

4.5.4 GPOMDP in a Multi Agent Setting Suppose each agent, n ∈ [1, . . . , N] ,
have their own parameter set θn and observation of the environment yn. As previously
mentioned, each agent decides on its own action according to its policy µun

(θn, yn).
If all the agents receive the same reward signal, GPOMDP can be applied to the
POMDP obtained when concatenating the observations, controls and parameters
into single vectors y = [y1, . . . , yN] , u = [u1, . . . , uN] and θ = [θ1, . . . , θN] respect­
ively. However, an identical result would be received if GPOMDP would be applied
to each agent independently and then concatenating the results � = [�1, . . . , �N] [4 ,
section 7.1].

The result is an algorithm where the agents adjust their parameters according
to gradient estimates that have been calculated independently for each agent. The
agents have no explicit communication, but they still strive to maximise the global
reward function.

In the case considered in this thesis, all the agents have the same policy para­
meters, θ. Independent of which agent GPOMDP is applied to, the algorithm tries
to estimate the same gradient. To make good use of the data, GPOMDP is simul­
taneously applied to each agent in the simulations during the learning process. The
mean gradient is then calculated and used to update the policy. The following shows
that the implementation is simple in the GPOMDP algorithm. The implementation
is used during the multi agent simulations in this thesis.

�T = 1
N

N∑
n=1

�T,n = 1
N

N∑
n=1

[
T−1∑
t=0

∇ut,n µn(θ,yt,n)
µn(θ,yt,n)

T∑
s=t+1

βs−t−1rt

]
,

where N is the number of agents used during the simulations.
The part of the equation inside the brackets could be written as equation 4.6 , in

other words, row 5 in algorithm 1 now becomes

�t+1 = 1
N

N∑
n=1

[
�t,n + 1

t+1 [rt+1zt+1,n −�t,n]
]

=

1
N

N∑
n=1

�t,n + 1
t+1

[
1
N

N∑
n=1

rt+1zt+1,n − 1
N

N∑
n=1

�t,n

]
=

�t + 1
t+1

[
rt+1

1
N

N∑
n=1

zt+1,n −�t

]
. (4.12)

Hence, it is necessary to keep a separate z for each agent, but not a separate �
in the GPOMDP algorithm.

27

Chapter 5

Experiments and Results

The experiments were conducted in a simulated MATLAB environment where the
solution presented in chapter 4 was implemented. First the algorithm was tested,
using only one agent to search the map, then the experiments were expanded to
include more agents.

The studies showed that the complexity of the problem grew as the size of the map
and the complexity of the pattern to be searched on the map grew. Three different
maps, figure 5.1 , of different sizes were used to see how the implementation handled
problems with different complexity.

The maps are referred to by their sizes, the left map is called 3x3, the middle 6x6
and the right 8x8. When the results are presented, three figures are displayed, one
for each map and in the order of figure 5.1.

5.1 Single Agent

During the single agent part of the experiments, some parameters were held constant
to make the simulations comparable. The discount factor β was set to 0,95 and the
initial step size of the line search s0 was set to 0,01.

The number of hidden nodes used in the experiments for each map was respectively
12, 24 and 48.

The rewards given to the agent were
stepping out of the map -1,0
taking a step -0,1
searching an unknown area 0,8
reaching the terminal state 5,0

CONJPOMDP was terminated either if ‖�‖2 was smaller than 10−4 or if a max­
imum of ten thousand policy updates had been conducted.

3x3 6x6 8x8

Figure 5.1: Three different maps of different sizes were used in the experiments to see
how the implementation handled problems with different complexity.

29

If no step size had been found after four iterations in GSEARCH, no step was
taken in the search direction. This prevented serious overshooting of the maximum
discussed in for example [5].

Different sensors were used for the different maps. The layer most distant to the
agent was always given a length that made sure that the sum of layer lengths were
equal to the largest side length of the map minus one.

For the 3x3 map, the agent used a sensor with two layers, the inner layer had
length l1 of 1 and the outer layer length is decided by the previous rule. For the
6x6 map, a three-layer sensor with lengths 1 and 2 is used and for the 8x8 map, a
four-layer sensor with lengths 1, 1 and 2 is used.

Ten independent simulations where the CONJPOMDP algorithm was used to find
a policy were conducted for each experiment. This was done to reduce the effects on
the result caused by random events during the learning process. The results shown
in this chapter are averages over all ten simulations.

To evaluate the policy found, the final policy of each of the ten simulations was
used in the same environment as during the learning process. For each policy, the
agent searched the map a thousand times with random starting points. The rewards
collected and steps needed to reach the final state were stored for comparison.

If some of the ten final policies were a lot worse than the others, these policies
were discarded and the number of bad policies was noted. For the other policies,
the average discounted reward collected ηβ(θ) , the average steps s(θ) , the standard
deviation of the average steps σ(θ) and the average number of policy updates needed
to find the policy was used as a measurement of how well the algorithm performed.

The average steps were divided by the average steps taken before reaching the
terminal state using an optimal policy (denoted by % from optimal in the result
tables). The minimum possible steps to reach the terminal state were calculated for
each map position, p , when p is used as a starting point. The average minimum for
the entire map was then used as the average steps needed for the optimal policy. The
maps have the optimal average steps (in order): 3,1111, 15,1111 and 20,125.

The second measurement is how the algorithm behaved during the learning pro­
cess. For each of the simulations, the average amount of steps needed to reach the
terminal state was stored before each time the policy was updated and used to create
a trend plot of how the policy had improved.

To create a more readable plot, each point was not included in the plot. A distance
between the points, d , on the x-axis was chosen and values at each xn = d/2+nd, n ∈
[0..N] were used in the plot. For each point xn , the average steps is calculated by
taking the mean value of each stored average step, ŝ , between �snd−d/2+1 and �snd+d/2.

To find the standard deviation, the average steps are first filtered

st+1 = st + α(ŝt+1 − st),

where st is the filtered average amount of steps for policy update t and α is a
constant (set to 0,1). The standard deviation at each xn is then found by

σn =

√√√√√1
d

nd+d/2∑
k=nd−d/2+1

(ŝk − sk)2.

The mean values and the standard deviation is averaged over the ten simulations
and normalised by

normalised average steps =
optimal steps− average steps

steps for random policy− optimal steps
+ 1,

normalised standard deviation =
standard deviation

steps for random policy− optimal steps
,

30

0 200 400 600
0

0.5

1

1.5

2

2.5

3

3.5
3x3

0 1000 2000 3000
0

0.5

1

1.5

2

2.5

3

3.5
6x6

Policy updates
0 2000 4000 6000 8000

0

0.5

1

1.5

2

2.5

3

3.5
8x8

ηβ(θ)

σ(||∆||)

Figure 5.2: The standard deviation of the norm of the gradient approximation and
the average reward as a function of the number of policy updates when not repeating
the Markov decision process. Note that the variance in the gradient approximation
grows as the policy improves.

where the steps for a random policy is the average steps before the first policy
update in all the simulations conducted for the different algorithms.

The normalised average steps enable simple comparisons between different maps
and different variations of the algorithm where one is an optimal and zero is a random
policy.

The normalised average steps and standard deviation are plotted, for example in
figure 5.4 , where the middle line is the average steps, the bars represent the standard
deviation and the x-axis is how many times the policy has been updated in the
CONJPOMDP algorithm.

5.1.1 Non-Repeating Markov Decision Process The first experiment im­
plements the algorithm as presented in [2 , 5 , 3]. The gradient approximation of
GPOMDP is considered good enough and GPOMDP is stopped when the terminal
state of the POMDP has been reached, i.e. the entire map has been searched, or
when a maximum number of steps has been taken.

As the policy improves, the variance in the gradient approximation, � , increases,
see figure 5.2. The Markov process examined becomes shorter as the policy improves
and fewer steps are needed to reach the terminal state. This causes the gradient
approximations to become very noisy. In some cases only two steps are taken in the
POMDP before the policy is updated.

The large random component in the gradient approximation makes the algorithm
unstable and reduces the chances to find an optimal policy.

% from bad policy
map size s(θ) optimal σ(θ) ηβ(θ) policies updates

3x3 3,5116 13 1,1 6,0622 3 454
6x6 18,5897 23 6,1 7,6643 6 2 638
8x8 35,2840 75 5,8 5,9194 9 6 767

5.1.2 Repeating the Markov Decision Process To reduce the variance of
the gradient approximations, the POMDP repeats the search procedure until the
maximum amount of steps has been reached. Each time the agent reaches the terminal

31

state, the estimate of the gradient, � , is accumulated and a new episode starts with
the original map restored and with the agent in a new starting position.

The POMDP will more direct satisfy assumption 1 if the POMDP is restarted.
An MDP will only have a stationary distribution if it is ergodic, i.e. irreducible
and aperiodic. It is only irreducible if it, with a probability one, will return to each
state when iterating an infinite amount of times. Certainly the POMDP for the
non-repeating Markov decision process can return to the same state the next time
GPOMDP is called and by this, the ergodic property will be stored into the neural
network, but in a less direct way.

Modification of GPOMDP for Repeating Markov Processes During the
derivation of equation 4.6 , it was shown that each term in the gradient estimation

�T =
1
T

T∑
t=0

∇µut
(θ, yt)

µut
(θ, yt)

J(t + 1),

can (for t = n) be rewritten as

∇µun (θ,yn)
µun (θ,yn) J(n + 1) = ∇µun (θ,yn)

µun (θ,yn) (rn+1 + βJ(n + 2)) =
= ∇µun (θ,yn)

µun (θ,yn) (rn+1 + βrn+2 + β2J(n + 3)) = · · · .
In equation 4.6 it was shown that this sum lead to the relation

zt+1 = βzt +
∇µut

(θ, yt)
µut

(θ, yt)
.

When the terminal state occurs, unbiased Monte Carlo estimates of the value
functions J(t) have been found. If the POMDP is restarted, it is important that the
rewards following the restart not are added to the value functions for states occurring
before the restart.

To avoid adding too many rewards to the value function, the gradient approxima­
tions for each repetition of the POMDP are added separately. If A is the number of
times the POMDP is restarted, a is the episode number and Ta is the steps taken in
episode a , then

�T =
1
T

A∑
a=1

[
Ta−1∑
t=0

∇µut,a
(θ, it,a)

µut,a
(θ, yt,a)

Ta∑
s=t+1

βs−t−1r(is,a).

]
(5.1)

In a similar fashion to the derivation of equation 4.6 , the GPOMDP approximation
of the gradient is

�T = 1
T

∇µu0,1(θ, y0,1)
µu0,1(θ, y0,1)︸ ︷︷ ︸

z1,1

r1,1 +
(

β
∇µu0,1(θ, y0,1)
µu0,1(θ, y0,1)

+
∇µu1,1(θ, y1,1)
µu1,1(θ, y1,1)

)
︸ ︷︷ ︸

z2,1

r2,1 + . . .

. . . +

(
βT1−1∇µu0,1(θ, y0,1)

µu0,1(θ, y0,1)
+ . . . +

∇µuT1−1,1(θ, yT1−1,1)
µuT1−1,1(θ, yT1−1,1)

)
︸ ︷︷ ︸

zT1,1

rT1,1+

+
∇µu0,2(θ, y0,2)
µu0,2(θ, y0,2)︸ ︷︷ ︸

z1,2

r1,2 + · · ·

 .

(5.2)

32

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

3x3

0 2000 4000
0

0.5

1

1.5

2

2.5

3

3.5
6x6

Policy updates

ηβ(θ)

σ(||∆||)

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3

3.5
8x8

Figure 5.3: The standard deviation of the norm of the gradient approximation and
the average reward as a function of the number of policy updates when repeating the
Markov decision process. Note that the variance in the gradient approximation has
been reduced and does not grow as the policy improves.

Equation 5.2 implies that z has to be set to zero every time the POMDP is
restarted to receive unbiased estimates of the value functions.

Result with Repeating POMDP During the simulations for this and all the
following single agent experiments, a hundred steps were taken in the POMDP before
the policy was updated. The number of steps was not increased with increasing map
size and problem complexity.

The reason for repeating the POMDP was to decrease the variance in the gradient
approximations, �. This was also achieved, which can be observed in figure 5.3.

The average steps taken in each episode of GPOMDP is plotted in figure 5.4 as
described in section 5.1.

Note that the variance is much lower in the left figure, which illustrates the ex­
periments with the 3x3 map. The larger problems have increasing complexity and
the variance can cause the algorithm to loose a well working policy for a bad one. In
these figures, it is not possible to see that the large variance can cause the algorithm
to choose very bad policies, especially when the policy parameters reach high values.

Bad, almost deterministic policies are especially dangerous. Any almost determ­
inistic policy, even a bad one, can cause CONJPOMDP to terminate, with the risk
of returning a bad policy as a result.

When an almost deterministic policy has been found, a change in the parameters
in the direction towards the likely action will not cause a significant difference and
hence ∇µut

(θ, y) will become small. If the agent due to the stochastic policy picks an
action which is less likely, the gradient will grow, especially because of that ∇µut

(θ, y)
should be divided by µut

(θ, y). But if the policy is close to deterministic, no unlikely
action might be taken during a GPOMDP run and, if so, the gradient approximation
returned will be very small. The criteria used for an optimum and to terminate
CONJPOMDP is a small gradient and hence CONJPOMDP can return any almost
deterministic policy found.

In figure 5.5 , the norm of the gradient approximation is plotted in the same plot
as the average reward during the learning phase. The norm of the gradient grows as

33

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 a
ve

ra
ge

d
st

ep
s

3x3

0 2000 4000
0

0.2

0.4

0.6

0.8

1

Policy updates

6x6

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.4: Convergence behaviour for the CONJPOMDP algorithm when the
POMDP is repeated during GPOMDP run, plotted as described in section 5.1.

0 2000 4000
0

0.5

1

1.5

2
6x6

Policy updates

ηβ(θ)

||∆||

0 500 1000 1500
0

0.5

1

1.5

2
3x3

0 2000 4000 6000 8000
0

0.5

1

1.5

2
8x8

Figure 5.5: The average reward received by the agent and the norm of the gradient
approximation as a function of the number of policy updates when repeating the
POMDP. Note that the norm is the smallest at the start of the algorithm in the
larger map cases.

34

the policy improves and the gradient does not become small until very close to the
optimum point.

A large value of the gradient approximation norm combined with noisy gradient
approximations is dangerous. The gradient approximation norm determines the size
of the step taken in the parameter space when the policy is updated. As the para­
meters of the neural network grows, almost deterministic policies become more likely
and it is more likely to find a random, almost deterministic policy. A step size that
is reduced when the parameters grow might be needed.

% from bad policy
map size s(θ) optimal σ(θ) ηβ(θ) policies updates

3x3 3,1905 3 0,8 6,1743 0 1 360
6x6 15,9797 6 3,1 8,3064 0 4 183
8x8 26,5576 32 7,0 7,3429 0 10 000

In the 8x8 case, the policy has been updated the maximum number of times
allowed. The calculations were not stopped since a small gradient had been reached,
but since a predetermined number had been reached. This might be the reason for
the large deterioration of the result for the large map.

5.1.3 Modifications of the Reward Functions The reward function has a
large effect on the gradient estimation since it is an important part of equation 5.1.
A badly chosen reward function increases the size of the gradient estimation and
reduces the stability of the conjugate gradient search. If the absolute value of the
reward given to the agent grows when the policy improves, the norm of the gradient
approximation will grow.

An attempt to reduce the growth of the gradient norm is to subtract the average
reward to the rewards given in the learning phase.

�T =
1
T

A∑
a=1

[
Ta−1∑
t=0

∇µut,a
(θ, it,a)

µut,a
(θ, yt,a)

Ta∑
s=t+1

[
βs−t−1r(is,a)− ηβ(θ)

]]
, (5.3)

where ηβ(θ) is the discounted reward per step. The change in the gradient approx­
imation will keep the mean reward at zero and make sure that ∇µut (θ,yt)

µut (θ,yt)
applies the

major effect on the gradient approximation norm and the size of change in the policy.

Subtracting the Average Reward from the Previous GPOMDP Run A
simple method of implementing the modification of the reward function is to calculate
ηβ(θ) during a GPOMDP run and using it as an approximation of ηβ(θ) for the next
run. Even though the policy and ηβ(θ) has changed, the change is small and most
of the time, so is the error in this approximation. However, due to the non-linear
property of the environment and the non-linear property of the policy function, a
small change in the policy weights can cause large changes in ηβ(θ).

In figure 5.6 it is shown that subtracting the average reward reduces the growth
of the gradient approximation norm.

The average steps taken in each episode of GPOMDP is plotted in figure 5.7 as
described in section 5.1.

% from bad policy
map size s(θ) optimal σ(θ) ηβ(θ) policies updates

3x3 3,1265 0,5 0,8 6,1986 0 640
6x6 15,6208 3 1,5 8,3485 1 3 117
8x8 23,4456 17 5,0 7,7796 1 10 000

As in section 5.1.2 , the maximum number of policy updates were reached in the
8x8 case and the result was highly deteriorated.

35

0 1000 2000 3000
0

0.5

1

1.5

2
6x6

Policy updates

ηβ(θ)

||∆||

0 2000 4000 6000 8000
0

0.5

1

1.5

2
8x8

0 200 400 600
0

0.5

1

1.5

2
3x3

Figure 5.6: The average reward received by the agent and the gradient approximation
norm as a function of the number of policy updates when subtracting the average
reward. Note that the norm of the gradient approximation is reduced as the policy
improves.

0 200 400 600
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 a
ve

ra
ge

d
st

ep
s

3x3

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Policy updates

6x6

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.7: The progress of the agent’s learning when subtracting the average reward
from the previous GPOMDP run, plotted as described in section 5.1.

36

0 200 400 600
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 a
ve

ra
ge

d
st

ep
s

3x3

0 1000 2000
0

0.2

0.4

0.6

0.8

1

Policy updates

6x6

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.8: The progress of the agent’s learning when subtracting the average reward
calculated during the same GPOMDP run, plotted as described in section 5.1.

Subtracting the Non-Biased Average Reward Using the average reward of
the previous policy as an estimate of ηβ(θ) causes a bias on the gradient estimation.
This can be removed by subtracting the average reward of the current policy.

One obstacle is that ηβ(θ) is subtracted in each iteration in equation 5.3 , but not
known until the last iteration of the GPOMDP run. A modification where ηβ(θ) is
not subtracted until after the last iteration of GPOMDP is derived, starting from
equation 5.3.

�T = 1
T

A∑
a=1

[
Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a)

Ta∑
s=t+1

[
βs−t−1r(is,a)− ηβ(θ)

]]
=

= 1
T

A∑
a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a)

Ta∑
s=t+1

βs−t−1r(is,a)− 1
T

A∑
a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a)

Ta∑
s=t+1

ηβ(θ).

Focusing on the right hand side of the previous equation

1
T

A∑
a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a)

Ta∑
s=t+1

ηβ(θ) = {ηβ(θ) is a constant =}

= 1
T

A∑
a=1

Ta−1∑
t=0

ηβ(θ)
∇µut,a(θ,it,a)
µut,a (θ,yt,a) (Ta − t) =

= 1
T ηβ(θ)

A∑
a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a) (Ta − t) =

= 1
T ηβ(θ)

A∑
a=1

Ta

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a) − 1

T ηβ(θ)
A∑

a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a) t,

�T = 1
T

A∑
a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a)

Ta∑
s=t+1

βs−t−1r(is,a)−

− 1
T ηβ(θ)

A∑
a=1

Ta

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a) + 1

T ηβ(θ)
A∑

a=1

Ta−1∑
t=0

∇µut,a (θ,it,a)
µut,a (θ,yt,a) t.

(5.4)

This equation can be implemented, storing four extra vectors in the GPOMDP al­
gorithm.

The average steps taken in each episode of GPOMDP is plotted in figure 5.8.
% from bad policy

map size s(θ) optimal σ(θ) ηβ(θ) policies updates
3x3 3,1466 1 0,8 6,1955 0 618
6x6 15,8327 5 2,4 8,3343 0 2 491
8x8 22,4580 12 3,6 7,9653 3 10 000

37

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

3x3

N
or

m
al

is
ed

 a
ve

ra
ge

d
st

ep
s

0 1000 2000
0

0.2

0.4

0.6

0.8

1

Policy updates
6x6

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

8x8

Figure 5.9: The progress of the agent’s learning when subtracting the average reward
from the previous runs of GPOMDP with a low pass filter, plotted as described in
section 5.1.

As before, the maximum number of policy updates were reached in the 8x8 case
and the result was highly deteriorated.

Subtracting the Average Reward with Low Pass Filter Using the approxim­
ation of ηβ(θ) from one GPOMDP run can cause a noisy ηβ(θ). A solution with bias
but with less noise is using an approximation of ηβ(θ) averaged over the previous
GPOMDP runs. To prioritise rewards given to policies close to the current, a low
pass filtered reward is subtracted.

ηβ(θt+1) = ηβ(θt) + α
(
�ηβ(θt+1)− ηβ(θt)

)
,

where �ηβ(θt+1) is the average reward per step in GPOMDP iteration t + 1 and
the constant α is set to 0,1.

The average steps taken in each episode of GPOMDP is plotted in figure 5.9 as
described in section 5.1.

% from bad policy
map size s(θ) optimal σ(θ) ηβ(θ) policies updates

3x3 3,1255 0,5 0,8 6,1972 0 677
6x6 15,9047 5 2,7 8,3622 1 2 864
8x8 23,0316 14 4,0 7,8475 3 10 000

As before, the maximum number of policy updates were reached in the 8x8 case
and the result was highly deteriorated.

5.1.4 Summary of Single Agent Experiments The experiments have shown
that the algorithm can find well working policies in the single agent case. The best
experiments have come to a mean policy that takes an average of 1%, 5% and 12%
more steps to search the map than an optimal policy.

For the largest, 8x8, map, the search for an optimal policy was stopped since the
maximum number of policy updates was reached and not since a small gradient was
found. This might be the reason for the large deterioration in result with increasing
map size.

More reliable convergence and better solutions for the larger problems might be
found by changing β or by taking more steps in the Markov decision process before
the policy is updated. However, the time it takes for the agent to find an optimal

38

3x3 map
optimal steps: 3.1111 % from bad policy
algorithm s(θ) optimal σ(θ) ηβ(θ) policies updates
not repeated MDP 3,5116 13 1,1 6,0622 3 454
repeated MDP 3,1905 3 0,8 6,1743 0 1 360
subtracting previous ηβ(θ) 3,1265 0,5 0,8 6,1986 0 640
subtracting current ηβ(θ) 3,1466 1 0,8 6,1955 0 618
subtracting filtered ηβ(θ) 3,1255 0,5 0,8 6,1972 0 677
6x6 map
optimal steps: 15.1111 % from bad policy
algorithm s(θ) optimal σ(θ) ηβ(θ) policies updates
not repeated MDP 18,5897 23 6,1 7,6643 6 2 638
repeated MDP 15,9797 6 3,1 8,3064 0 4 183
subtracting previous ηβ(θ) 15,6208 3 1,5 8,3485 1 3 117
subtracting current ηβ(θ) 15,8327 5 2,4 8,3343 0 2 491
subtracting filtered ηβ(θ) 15,9047 5 2,7 8,3622 1 2 864
8x8 map
optimal steps: 20.125 % from bad policy
algorithm s(θ) optimal σ(θ) ηβ(θ) policies updates
not repeated MDP 35,2840 75 5,8 5,9194 9 6 767
repeated MDP 26,5576 32 7,0 7,3429 0 10 000
subtracting previous ηβ(θ) 23,4456 17 5,0 7,7796 1 10 000
subtracting current ηβ(θ) 22,4580 12 3,6 7,9653 3 10 000
subtracting filtered ηβ(θ) 23,0316 14 4,0 7,8475 3 10 000

Table 5.1: Summary of the experiments with single agents.

policy is already long for these small problems. If the algorithm is to find solutions
to continuous or more complex problems, an improvement in speed has to be found.

A comparison between the different modifications tried in this section is presented
in table 5.1. It shows that repeating the Markov decision process before updating
the policy improves the performance of the policy found, but subtracting the average
reward only improves the solution slightly or not at all. The needed policy updates
decreases when the average reward is subtracted but more bad policies are found.

One way of reducing the time and improve the stability might be to change the
termination criteria for CONJPOMDP. The criterion with a small gradient norm is
time costly and can be triggered for bad policies. A criterion where either a reached
goal average reward or a converged reward function terminates the algorithm might
improve the algorithms reliability and reduce the computational cost and still produce
well working policies.

5.2 Two Agents

During the experiments with two agents, the same algorithm as in section 5.1.2 was
used, i.e. the Markov decision process was repeated but no average reward was sub­
tracted. Subtracting the average reward does not improve the algorithm significantly
and repeating the POMDP has for example been done by Baxter and Bartlett [5 ,
section 4.2] and should provide an interesting comparison.

The parameters, sensors and maps of the single agent simulations were held con­
stant, section 5.1 , with the following exceptions: The number of hidden nodes for each
map was respectively 16, 32 and 64. The steps taken in the GPOMDP algorithm be­
fore the policy is updated is for each map 100, 200 and 400.

The results accomplished are shown in tables but ηβ(θ) is not comparable between
each experiment and is not shown. The average number of steps needed is a better

39

measurement since it is comparable between experiments and what is supposed to
be minimised in the scenario. The average number of steps is divided by the optimal
average number of steps for a single agent as a measurement of the time saved when
using two agents instead of one. Note that the value used, s(θ) , is actually time
steps, i.e. one step in the two agent case means two agents taking one step each. The
measurement is denoted by % of single agent in the result tables.

A new column, indicating the total amount of steps taken by the agents during
the learning phase, is added to the result table. The number, denoted by steps during
learning , is a measurement of the amount of calculations needed to find the policy
and is used during the discussion of how calculation effort increases with increasing
map size.

The average number of steps during the learning phase is plotted as discussed in
section 5.1. However, the normalisation is changed to

normalised average steps =
0, 5 · optimal steps for single agent− average steps

0, 5 · optimal steps for single agent
+ 1.

The normalisation results in a plot where the value one represents 50% of the
average number of steps that an optimal single agent would need to search the map
and zero represents 100%. The standard deviation is normalised in the same fashion.

5.2.1 Terminating the Conjugate Gradient Search In algorithm 2 it is sug­
gested that the conjugated gradient search should be iterated until ‖�‖2 is small
enough. When the norm is small enough, a local optimum is assumed and this is
accepted as the policy.

During the simulations, it seems that long before the norm of the gradient de­
creases, the reward function has almost reached it’s maximum. As the agent gets
closer to it’s maximum, the algorithm becomes more unstable and since CONJ­
POMDP terminates when the gradient is small, bad policies might be returned, see
page 33.

A second criterion for terminating the search is when a chosen amount of steps
have been taken. However, there is a chance that after the chosen number of steps,
variance has caused a temporary bad policy.

A third criterion is to see if the average reward between updates of the policies has
converged. If the changes in the mean average reward have been small during the last
policy updates, the algorithm terminates independent of the norm of the gradient.

During the experiments with two agents, all three criteria have been used to ter­
minate CONJPOMDP. The first one fulfilled, usually a converged reward function,
terminates the algorithm.

5.2.2 Two Independent Agents During the first simulation the agents have
no knowledge of each other except that the other agent’s actions influence the map
of the problem. The agents are given the rewards caused by their own actions. In
other words, these are two single agents trained in an environment where two robots
searches the area.

The convergence behaviour is plotted in figure 5.10.
% of single bad policy steps during

map size s(θ) agent σ(θ) policies updates learning
3x3 2.1972 71 0.82836 0 2 858 804 965
6x6 12.8587 85 3.8241 0 2 065 1 048 960
8x8 18.1709 90 6.2436 0 4 307 3 019 980

5.2.3 Agents Receiving a Local Reward In the second experiment, the other
agent’s position relative to the agent is added to the policy function’s input. Both

40

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1
3x3

N
or

m
al

is
ed

 a
ve

ra
ge

 s
te

ps

0 1000 2000
0

0.2

0.4

0.6

0.8

1
6x6

Policy updates
0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.10: The progress of the agent’s learning when two independent agents search
the area, plotted as described in section 5.2.

0 2000 4000
0

0.2

0.4

0.6

0.8

1
3x3

N
or

m
al

is
ed

 a
ve

ra
ge

 s
te

ps

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1
6x6

Policy updates
0 2000 4000 6000 8000

0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.11: The progress of the agent’s learning when only local rewards are given
to the agents, plotted as described in section 5.2.

agents still receive reward for their own actions. The agent that searches the last
area is rewarded with the terminal state reward. If two agents search the same area
at the same time, they share the given reward.

There is a risk that the agent will not strive towards a common goal but will try
to counteract the other agent so that they have the chance of getting as much reward
as possible for themselves.

The convergence behaviour is plotted in figure 5.11.
% of single bad policy steps during

map size s(θ) agent σ(θ) policies updates learning
3x3 2.2743 73 1.082 0 3 576 954 040
6x6 11.4599 76 3.3501 0 2 643 1 330 340
8x8 17.754 88 5.831 0 8 650 6 041 020

5.2.4 Agents Receiving a Global Reward In the third experiment, the input
to the policy function is the same as in section 5.2.3 , but the rewards given to the
agents are added together to a global reward, see section 4.5.2. The agents will try
to maximise the total reward and could perform actions that are not optimal for

41

0 2000 4000
0

0.2

0.4

0.6

0.8

1
3x3

N
or

m
al

is
ed

 a
ve

ra
ge

 s
te

ps

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
6x6

Policy updates
0 2000 4000 6000 8000

0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.12: The progress of the agent’s learning when global rewards are given to
the agents, plotted as described in section 5.2.

themselves but might be optimal for the group.
The rewards are independent of who that performs the successful (or not success­

ful) action. The variation will probably be larger since a good action can receive
negative reward if the other agent at same time picks a bad action.

The convergence behaviour is plotted in figure 5.12.
% of single bad policy steps during

map size s(θ) agent σ(θ) policies updates learning
3x3 2.0239 65 0.77097 0 4 080 1 018 780
6x6 11.1330 74 3.0432 0 5 050 2 576 142
8x8 14.6862 73 4.9414 0 5 290 3 691 220

5.2.5 Combination of Global and Local Reward To reduce the variation
when using the global reward and to still achieve a cooperating behaviour, the agents
are given a combination of global and local reward. For each of the agent’s actions,
it is given the subsequent reward. When the terminal state has been reached, both
agents receive a terminal state reward. The input to the policy function includes the
other agent’s relative position as in section 5.2.3

If both agents are given the terminal state reward, they will strive to search the
map as quickly as possible since the discounting factor causes the final reward to
become less valuable for each step. To maximise the value function the agents need
to search the map as quickly as possible.

Since both agents receive a local reward for their own action, the variation will be
reduced. An action will lead to its consequence except for when the terminal state
has been reached.

The convergence behaviour is plotted in figure 5.13.
% of single bad policy steps during

map size s(θ) agent σ(θ) policies updates learning
3x3 2.0134 64 0.75913 0 2 083 536 870
6x6 10.6546 71 3.5539 0 4 537 2 265 100
8x8 14.1348 70 3.5884 0 4 403 3 081 620

5.2.6 Scalability of the Algorithm An important measurement of the algorithm
is how well it handles increasing problem complexity. How much more calculations
are needed when a large problem is to be solved compared to a small one?

To provide a measurement, three different map sizes have been used during the
experiments and the number of squares in each map is compared to the calculation

42

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1
3x3

N
or

m
al

is
ed

 a
ve

ra
ge

 s
te

ps

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
6x6

Policy updates
0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1
8x8

Figure 5.13: The progress of the agent’s learning when given a combination of the
global and the local reward, plotted as described in section 5.2.

effort needed to find the solution. The total number of steps taken in the map during
the learning phase is used as a computer independent measurement of the calculations
needed to find an efficient solution.

The number of steps taken in the map during the learning phase, t , is divided by
the number of squares in each map, m and by m2 to study if the calculation effort
grows linearly or quadratic.

Two single agents Local reward
m t t/m t/m2 t t/m t/m2

9 804 965 89 441 9 938 954 040 106 000 11 778
36 1 048 960 29 138 809 1 330 340 36 954 94 391
64 3 019 980 47 187 737 6 041 020 94 391 1 475

Global reward Combined reward
m t t/m t/m2 t t/m t/m2

9 1 018 780 113 200 12 580 536 870 59 652 6 628
36 2 576 142 71 559 1 988 2 265 100 62 919 1 748
64 3 691 220 57 675 901 3 081 620 48 150 752

The values implies that the calculations needed to find an efficient policy is linearly
dependant on the number of squares in the map that is to be searched. However, the
amount of data is limited and other factors, such as the number of hidden nodes and
the number of steps in the map before the policy is updated, could affect the result.

5.2.7 Summary of the Two Agent Experiments The experiments with two
agents have shown that the agents perform better when informed of the other agent’s
location. Two agents that did not have information of the other fulfilled the search
mission, for each map respectively, using 71%, 85% and 90% of the steps that an
optimal single agent would need. Note that one step means each agent taking one
step. Agents that had information about the other did the same using 73%, 76% and
88% of the steps.

The experiments have also shown that the agents perform better when both agents
strive to maximise a global reward function, instead of a local one. Two agents
that received the sum of both agents’ rewards fulfilled the mission, for each map
respectively, using 65%, 74% and 73% of the steps that one agent would need.

To reduce the large variance that occurs when a global reward function was used
during the learning phase, a combination of global and local rewards were used. The
agents were given rewards for their own action, but both agents received the terminal
state reward. Somewhat surprisingly, the policy found outperformed the policy found

43

Experiment 3x3 map 6x6 map 8x8 map
Optimal single agent 100 100 100
Two single agents 71 85 90
Local reward 73 76 88
Global reward 65 74 73
Combination reward 64 71 70

Table 5.2: A summary over all two agent experiments with a comparison to an optimal
single agent search. The table values are the time steps needed to search the map
using the resulting policies from each experiment divided by the time steps needed
for an optimal single agent. The values have been called % of single agent during the
two agent experiment.

with a global reward function. The agents fulfilled the mission using 64%, 71% and
70% of the steps that one agent would need, the performance of the resulting policies
of each different experiment is summarized in table 5.2.

The anticipated result with the combination reward had been a quicker conver­
gence but a slightly worse final policy. Why the result was reached has not been fully
investigated but possible reasons are:

• A behaviour where the two agents repelled each other was noted in the global
reward case. This behaviour lead to cases where a single unsearched square
was in between the two agents but it took a while until an agent searched it.

• The training phase did not iterate until the norm of the gradient was small.
Due to the lower variance of the local and global reward case, a better policy
had been reached when the algorithm was terminated.

• The problem itself did not need a sophisticated coordination to be solved. The
difference between receiving local and global rewards or only global rewards was
not strong enough.

• Reaching the terminal state at the shortest amount of time was encouraged in
both cases. Every step costs a penalty of -0.1 and the terminal state reward is
discounted for each step until the terminal state is given.

44

Chapter 6

Conclusions

The thesis evaluated a reinforcement learning algorithm within the policy search class.
In the evaluation, the algorithm was to produce a policy that guided agents to the
shortest search path through a map.

The algorithm chosen, GPOMDP, was first evaluated in a single agent environ­
ment. Three different maps with different sizes were used during the evaluation to
see how the algorithm handled increasing complexity. Different modifications to the
algorithm were made to improve the algorithm’s speed and stability. The best result
was reached when taking a chosen number of steps in the search process before up­
dating the policy and subtracting the average discounted rewards from the rewards
received during the search. The average policy searched the map using 1%, 5% and
12% more steps than an optimal policy would (starting with the smallest map).

Hence, an optimal policy was not found, but for each map except the largest, the
policy was near optimal. For the largest map, the learning algorithm was stopped
due to time limitations instead of assumed optimality. This partly explains the large
deterioration in result.

The thesis also evaluated how the algorithm could be expanded to two agents and
if the algorithm could find an efficient policy for them. By giving the agents a global
reward, i.e. a reward consisting of the sum of all the agents’ instantaneous rewards,
the agents were made to cooperate towards a common goal.

Four different experiments were conducted with agents having different properties:
Independent agents with no knowledge of the other’s position; agents with knowledge
of the other’s position, given rewards only based on their own actions; agents given
the total rewards created by both agents; agents given rewards based on their own
actions and the rewards given when the entire map was searched.

The best results were found with agents having the last set of properties, rewards
given based on their own actions and a global terminal state reward. With the
resulting policies, each respective map was searched using 64%, 71% and 70% of the
steps that an optimal single agent would need. Note that one step means that each
agent has taken a step. As a comparison, the policies found with agents that only
were given rewards based on their own actions, searched the map using 73%, 76%
and 88% of the steps that an optimal single agent would need.

During the two agent experiments, the amount of calculations seemed to increase
linearly with respect to the number of squares in the search map. However, the
amount of data is small and other factors could affect the calculation time.

The evaluation shows that the GPOMDP algorithm can find near optimal policies
for the search problems explored. It also shows that a global reward function improves
the performance of a two-agent solution.

The most important problems occurring in the simulations are slow convergence
and problems with stability of the algorithm. Suggestions on how these problems can
be solved in future work are given in chapter 7.

45

Chapter 7

Continued Work

7.1 Reinforcement Learning

Optimising the Algorithm There are a few parameters that can be set to optimise
the GPOMDP algorithm’s stability and performance. The effects of changing these
parameters have only briefly been investigated during this project. Parameters that
can be changed are for example:

• The discounting factor, β , sets the balance between a noisy or a biased gradient.

• The sensor layers’ lengths, ln , set the agent’s resolution of the environment.

• The number of iterations in GPOMDP before the policy is updated sets the
balance between a noisy gradient approximation and computational cost.

• The reward function influences the behaviour of the algorithm.

• The number of hidden nodes in the neural network sets the balance between the
resolution of the agents’ policies and the storing and computational cost.

• The initial step size, s0 , sets the balance between having an unstable or a slow
algorithm.

Another area of interest is how to terminate the CONJPOMDP algorithm. Trying
to reach a maximum of the policy function in the parameter space has some prob­
lems. The algorithm can become unstable when getting close to the maximum and
it is a computationally costly target. In this thesis, the convergence of the expected
discounted rewards or a maximal number of iterations have been used as examples
of termination criteria.

Other Algorithms An equal comparison to other policy search algorithms would
be beneficial. Examples of algorithms of interest include the PIFA algorithm [14] , the
ATPG algorithm [7] and the OLPOMDP [5].

Only minor changes of the Matlab code used in this thesis would be needed to
implement the OLPOMDP algorithm.

Expanding the Problem By increasing the size of the map and the number of
agents in the problem, the complexity would rise. This would increase the variance
and set higher demands on the algorithm, but is needed to model more realistic
problems. The final goal would be continuous action and state spaces.

7.2 Modelling of Multi Agent Systems

Sensing Other Agents The implementation presented here has used the distance
to other agents to sense where the other agents are located. As discussed in sec­
tion 4.5.3 , a better solution might be to implement a sensor, similar to the one that
filters the global map, that detects the other agents. The distance implementation

47

is problematic if an agent is lost or added. The change would improve the agents’
ability to generalise problems with different amount of agents.

Limiting Knowledge In many applications for unmanned vehicles, the communic­
ation link between the agents is limited. The agents are not likely to have complete
knowledge of what the other agents have explored and discovered.

If the knowledge about the map was limited but could be updated by special
actions, an interesting scenario where the agents would have to communicate to solve
the problem might occur.

48

Bibliography

[1] Lars Axelson. Reinforcement learning for missile control. Technical Re­
port FOA-R–98-00916-314–SE, Swedish Defence Research Establishment (FOA),
November 1998.

[2] Jonathan Baxter and Peter L. Bartlett. Direct gradient-based reinforcement
learning: I. Gradient estimation algorithms. Technical report, Research School
of Information Sciences and Engineering, Australian National University, July
1999. URL http://citeseer.nj.nec.com/250374.html.

[3] Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in POMDP’s
via direct gradient ascent. In Proc. 17th International Conf. on Machine
Learning, pages 41–48. Morgan Kaufmann, San Francisco, CA, 2000. URL
http://citeseer.nj.nec.com/baxter00reinforcement.html.

[4] Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estima­
tion. Journal of Artificial Intelligence Research, 15:319–350, 2001. URL http:
//www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume15/baxter01a.pdf.

[5] Jonathan Baxter, Lex Weaver, and Peter L. Bartlett. Direct gradient-based re­
inforcement learning: II. Gradient ascent algorithms and experiments. Tech­
nical report, Research School of Information Sciences and Engineering, Aus­
tralian National University, July 1999. URL http://citeseer.nj.nec.com/
baxter99direct.html.

[6] Erik Berglund. Unmanned ground vehicles. Militärteknisk tidskrift , 3:18–20,
2001.

[7] Gregory Z. Grudic and Lyle H. Ungar. Localizing policy gradient estimates to
action transitions. In Proc. 17th International Conf. on Machine Learning , pages
343–350. Morgan Kaufmann, San Francisco, CA, 2000. URL http://citeseer.
nj.nec.com/grudic00localizing.html.

[8] Mark Hewish. GI , robot. Jane’s International Defense Review , pages 34–40, jan
2001.

[9] V. Konda and J. Tsitsiklis. Actor-critic algorithms, 2000. URL http://
citeseer.nj.nec.com/434910.html.

[10] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In Proc. 17th International Conf.
on Machine Learning , pages 535–542. Morgan Kaufmann, San Francisco, CA,
2000. URL http://citeseer.nj.nec.com/lauer00algorithm.html.

[11] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling.
Learning to cooperate via policy search. In Proceedings of the Sixteenth In­
ternational Conference on Uncertainty in Artificial Intelligence. , 2000. URL
http://citeseer.nj.nec.com/peshkin00learning.html.

[12] J.R. Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. URL http://www.cs.cmu.edu/\simquake-papers/
painless-conjugate-gradient.ps. August 1994.

49

[13] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduc­
tion. The MIT Press, 1998.

[14] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approxima­
tion. In Advances in Neural Information Processing Systems, volume 12, pages
1057–1063. MIT Press, 2000. URL ftp://ftp.cs.umass.edu/pub/anw/pub/
sutton/SMSM-NIPS99-submitted.pdf.

[15] Joint Robotics Program Master Plan. U.S. Department of Defence , 2001. URL
http://www.jointrobotics.com.

[16] Ronald J. Williams. Simple statistical gradient-following algorithms for con­
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992. URL
http://citeseer.nj.nec.com/williams92simple.html.

50

	Blanksida.pdf
	

