
FOI-R–0407–SE
March 19, 2002

ISSN 1650-1942

Scientific report

Division of Aeronautics, FFA
SE-172 90 STOCKHOLM

Stefan Jakobsson

Frequency optimized computation methods

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

ξ∆ x

E
ffe

ct
iv

e 
w

av
e 

nu
m

be
r





FOI – Swedish Defence Research Agency
Division of Aeronautics, FFA
SE-172 90 STOCKHOLM

FOI-R–0407–SE
March 19, 2002

ISSN 1650-1942

Scientific report

Division of Aeronautics, FFA
SE-172 90 STOCKHOLM

Stefan Jakobsson

Frequency optimized computation methods



FOI-R–0407–SE

2



FOI-R–0407–SE

Abstract
In this paper we develop an alternative method to derive finite difference approx-
imations of derivatives. The purpose is to find schemes which work for a broader
range of frequencies than the usual approximations based on polynomial fitting
and Taylor’s Theorem to the expense of less accuracy for low frequencies. The
numerical schemes are obtained as solutions to constrained optimizations prob-
lems in a weighted L2-norm in the frequency domain. We examine the accuracy
of these schemes and compare them with the standard approximations. We also
use the same approach to derive numerical schemes for time integration for dif-
ferential equations with time independent operators. To test the accuracy of the
different schemes, we study dispersion errors for a simple wave equation in one
space dimension. We examine the number of points per wave length which is
needed in order for the relative error in the phase velocity to be below a certain
bound. A similar examination is carried out for the different time integration
schemes.
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1 Introduction
To solve a partial differential equation numerically one approximates the equation
by a discrete equation and then solves this equation by a computer. In many
applications this discrete equation contains a huge set of variables. This is in
particular the case for radar cross section calculations for an aircraft. The radar
cross section measures how visible the aircraft is for the radar. The radar transmits
an electro-magnetic wave of a certain frequency (or rather a wave packet with a
range of frequencies). The wave is scattered by the aircraft and the scattered
wave is detected by the radar. The governing equations for this problem are the
Maxwell equations and the typical range of frequencies is about 1-10 G Hz which
corresponds to a wave length of about 3-30 cm. Many numerical methods require
10-20 grid points per wave length in order to resolve the wave accurately. For a
typical aircraft this leads to a discrete equation with a huge number of variables.
By choosing an efficient numerical method this number might be reduced. A
common way to do this is to choose a higher order method. Such schemes are
derived by using Taylor’s theorem and polynomial fitting.

In this paper we propose an alternative method to derive the approximations
which can reduce the number of variables. We consider the finite difference ap-
proximation in the frequency domain and choose our approximation such that it
gives good result for a range of frequencies at the expense of less accuracy for
low frequencies. The schemes are obtained as solutions to optimization problems
in weighted L2-norms in the frequency domain. The optimization may be subject
to a linear constraint given by polynomial fitting. Similar ideas have been stud-
ied before by other authors, see for example Efraimsson [1], and Tam and Webb
[9]. In [7], Tam and Kurbatskii studied extrapolation and interpolation using this
approach.

In Section 2 we give some background to finite difference approximations and
in Section 3 we derive the optimized schemes. We also use the same idea to derive
time stepping methods for time dependent linear equations and this is carried out
in Section 4 and 5. In Section 6 we discuss dispersion and numerical dispersion
for a simple wave equation in one space dimension. We define a criterion in terms
of the relative error in the phase velocity in order to measure how many points
per wave length is needed for different finite difference approximations and levels
of accuracy. A similar measure is defined for time integration schemes. These
criteria are then applied in Section 7 to both standard and optimized schemes in
order to evaluate there performance on wave problems.

5



FOI-R–0407–SE

6



FOI-R–0407–SE

2 Finite difference approximations of derivatives
One of the most basic problems in numerical analysis is to approximate the deriva-
tives of a function at a point by using the function values at some neighbor points.
In this section we begin by describing the standard way to do this by finite dif-
ferences, that is, by using polynomial fitting and Taylor’s Theorem. We continue
by looking at finite difference approximations in the frequency domain. This will
lead us to the main point of the paper, frequency optimized finite difference ap-
proximations which is described in the following section.

2.1 Polynomial fitting

Suppose we want to approximate the n-th derivative of a function f at the point x
by using the function values f at the points {xj}j∈J, where J is a set of indexes
(the points xj do not necessarily have to be equidistant). The linear nature of this
problem suggest that a general finite difference approximation of f (n)(x) can be
written as

f (n)(x) ≈
∑
j∈J

aj(x)f(xj), (1)

where the coefficients aj(x) depends on the point x. For example, the simplest
first order approximation of the first derivative at x1 by using the function values
at the grid points x1 and x2 is

f ′(x1) ≈ f(x2) − f(x1)
x2 − x1

.

The standard way to find the coefficients aj(x), j ∈ J, is to use polynomial
fitting and Taylor’s Theorem. For equidistant grids, these two methods coincide.
To approximate the derivative by polynomial fitting we take the polynomial Pf of
minimal degree which interpolates f at the points xj : f(xj) = Pf (xj), j ∈ J.
The approximation of the derivative is then

f (n)(x) ≈ P
(n)
f (x). (2)

Since interpolation also is a linear problem this approximation is of the form (1).
In fact, the coefficients a(x) = (aj(x))j∈J can be found as the solution to the
linear equation system

p(n)
m (x) =

∑
j∈J

aj(x)pm(xj), m = 0, 1, . . . , �J − 1, (3)

where pm(x) = xm and �J is the total number of indexes in J. The matrix
P = (pm(xj))j,m∈J is called the Vandermonde matrix for the points {xj}j∈J. It
is easy to check that the approximation of the first derivative above can be derived
in this way.

2.1.1 Equidistant grids

All comparisons will consider central differences approximations on equidistant
grids (although the derivation of the formulas will be on general grids). For an
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equidistant grid {xj}Nj=−N , xj = x + j∆x with mesh size ∆x > 0, we write

f (n)(x) ≈ 1
(∆x)n

N∑
j=−N

ajf(xj) (4)

for a central difference approximation of the n-th derivative. The factor 1
(∆x)n in

front makes the coefficients {aj}Nj=−N independent of the mesh size for schemes
derived by polynomial fitting. We recall the following classical error estimate for
finite difference approximations derived by polynomial fitting on equidistant grids∣∣∣∣∣∣f (n)(x) − 1

(∆x)n

N∑
j=−N

ajf(xj)

∣∣∣∣∣∣ ≤ C(∆x)2N+1−n‖f (2N+1)‖∞,

for some constant C provided that f ∈ C2N+1([x − N∆x, x + N∆x]). The
exponent for ∆x, here 2N + 1 − n, is called the order of the approximation.

2.2 Finite difference approximations in the Fourier do-
main

The above result gives a good error estimate provided that f is sufficiently smooth.
If this is not the case, it is natural to ask whether a lower order method is more
accurate than a higher order for such functions. To answer this type of questions,
at least partially, it is convenient to study finite difference approximations in the
frequency domain and this will also be a natural starting point for our frequency
optimized finite difference schemes. We continue by recalling some facts about
Fourier transforms.

The Fourier transform of a function f ∈ L1(R) is given by the integral

F [f ](ξ) = f̂(ξ) =
∫ ∞

−∞
f(x)e−iξx dx, ξ ∈ R. (5)

According to Fourier’s inversion formula, f can be recovered from its Fourier
transform via

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ)eiξx dξ, x ∈ R,

provided that f̂ ∈ L1(R) as well. The variable ξ is often called the wave number.
For a monochromatic wave eiξx, the wave number is related to the wave length as

λ =
2π
ξ

.

On the Fourier side, the finite difference approximation (1) becomes

1
2π

∫ ∞

−∞
(iξ)nf̂(ξ)eiξx dξ ≈ 1

2π

∫ ∞

−∞

∑
j∈J

aj(x)eiξ(xj−x)f̂(ξ)eiξx dξ, (6)

where we have used Fourier’s inversion formula and the fact that a differentia-
tion of f corresponds to a multiplication of f̂ by iξ on the Fourier side. It is
clear that

∑
j∈J aj(x)f(xj) approximates f (n)(x) well if the difference (iξ)n −

8
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Figure 1. A comparison between Taylor methods of different orders: Taylor order 2, ––––––, Taylor
order 4,−−−−,Taylor order 6, − · − · −, The DRP scheme for ξopt = 1.6, · · · · · · .

∑
j∈J aj(x)eiξ(xj−x) is small for all frequencies ξ in the support of f̂ . Even if f̂

has not compact support but decays fast at infinity, as for smooth functions, the
approximation might be good. In particular, if f ∈ CN (R) has compact support
then

f̂(ξ) =
1

(iξ)N
1

2π

∫ ∞

−∞
f (N)(x)eiξx dx, ξ 	= 0

(this formula can be easily be proved by integration by parts), which shows that f̂
decays as 1/ξN for large ξ. For the coefficients aj(x), on the other hand, one can
prove that if they are determined by polynomial fitting then(iξ)n −

∑
j∈J

aj(x)eiξ(xj−x)

 = O(|ξ|�J) (7)

for small ξ, where x is the point where the derivative is approximated. For exam-
ple, for the two point set we considered above we have

iξ − i
(exp(iξ(x2 − x1)) − 1)

i(x2 − x1)
= O(|ξ|2),

where

a1 = − 1
x2 − x1

, a2 =
1

x2 − x1

and x = x1. We define ξ̃n(x, ξ) as the approximation of ξn induced by the finite
difference scheme, see (7),

ξ̃n(x, ξ) = (−i)n
∑
j∈J

aj(x)eiξ(xj−x).

9
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For n = 1, we have ξ̃(x, ξ) which we call the effective wave number. We will
use these variables to measure the performance of the approximations. Since all
our comparisons will be central differences on equidistant grids it is worthwhile
to treat this case separately. Then we shall use the normalized wave number ξ∆x
and

˜(ξ∆x)n(ξ) = (−i)n
N∑

j=−N
aje

ijξ∆x

where we have used normalized coefficients as in (4). In Figure 1 we plot ξ̃∆x
for Taylor approximations of the first derivative of order 2, 4 and 6 and the DRP
scheme due to Tam and Webb for ξopt = 1.6. The definition of ξopt will be
given in the next section. The figure shows that a higher order approximation
adapt better to ξ∆x on a longer interval than a lower order. This shows that
a higher order method might be better than a lower order even though f is not
sufficiently smooth. For the optimized schemes which we construct below we
give up some accuracy at the origin in the Fourier domain in order to have better
accuracy within a specific chosen band of frequencies. This is exemplified in the
figure by the DRP scheme. As is indicated by the figure, π is an upper limit for the
normalized effective wave number to approximate ξ∆x for any finite difference
approximation. This means that we need at least two points per wave length in
order resolve a wave.

10
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3 Frequency optimization
In this section we introduce a method which we call frequency optimization to
derive finite difference approximations of derivatives. The schemes are obtained
as solutions to optimization problem in a weighted L2-norm in the frequency do-
main. We also combine this method with polynomial fitting in order to derive
schemes which are partly optimized but also have some order of accuracy at the
origin. This method was used by Tam to derive what he called the dispersion
relation preserving scheme [9]. In Section 7 we shall study both the normalized
effective wave number and dispersion relations for these schemes and compare
them with standard higher order schemes.

3.1 The optimization problem

Let ν be a function whose Fourier transform is positive on R, is strictly positive
on the interval [−1, 1] and belongs to L1(R). Furthermore, we assume that ν, and
therefore also ν̂, are even functions. Examples of such functions will be given in
Subsection 3.2. We define the Hilbert space L2

ν,ξopt
(R) as the set of functions g

such that

‖g‖2
ν,ξopt

=
1

2πξopt

∫ ∞

−∞
|g(ξ)|2ν̂(ξ/ξopt) dξ < ∞, (8)

where ξopt > 0 is a parameter. The corresponding inner product is

〈g, h〉ν,ξopt =
1

2πξopt

∫ ∞

−∞
g(ξ)h(ξ)ν̂(ξ/ξopt) dξ.

The parameter ξopt should be thought of as the highest wave number which we
take into account in our optimization problem. Consider an operator Q of the
form

Q[f ](x) =
1

2π

∫ ∞

−∞
q(x, ξ)f̂(ξ)eiξx dξ, x ∈ R.

Operators of this type are called pseudodifferential operators and the function q is
called the symbol of Q. It is clear that this includes all differential operators and
many integral operators. In particular, if

Q[f ](x) =
M∑
n=0

cn(x)
dn

dxn
f(x).

then

q(x, ξ) =
M∑
n=0

cn(x)(iξ)n.

As in the previous section we seek finite difference approximations of Q[f ](x)
which use the function values of f at the points {xj}j∈J

Q[f ](x) ≈
∑
j∈J

aj(x)f(xj).

Clearly, the vector a(x) = (aj(x))j∈J of coefficients determine the approxima-
tion completely. The purpose of the section is to develop a general method, which
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includes polynomial fitting, to obtain such vectors. By using the inverse Fourier
transform we can write the approximation as

Q[f ](x) ≈ 1
2π

∫ ∞

−∞
aJ(x, ξ)f̂(ξ)eiξx dξ, (9)

where

aJ(x, ξ) =
∑
j∈J

aj(x)eiξ(xj−x). (10)

is the symbol for the approximation. In order for the finite difference scheme to be
a reasonable approximation of Q it is natural to require that the symbol aJ(x, ξ)
approximates q(x, ξ) well in some sense. For fixed weight ν, parameter ξopt and
x ∈ R we will choose the symbol aJ(x, ·) as the best approximation of q(x, ·)
in the norm ‖ · ‖ν,ξopt perhaps subject to a linear constraint given by polynomial
fitting. This will determine the vector a(x) completely.

3.1.1 The linear constraint

We want the finite difference approximation to give correct result for all polyno-
mials up to a certain degree, say L. Let pl(x) = xl be the l-th monomial. The
condition is

Q[pl](x) =
∑
j∈J

aj(x)pl(xj), l = 0, . . . , L.

Of course, we must have L ≤ �J − 1 otherwise the condition is over determined.
If we let q(x) = (Q[p0](x), . . . , Q[pL](x)) and P = (Pkl)k∈J,0≤L, Pkl = pl(xk)
(the first L+ 1 columns of the Vandermonde matrix), then the constraint is equiv-
alent to the matrix equation

q(x) = a(x)P (11)

We can now formulate the optimization problem mathematically: Let the
weight ν, parameter ξopt and x ∈ R be fixed. Find the extremal vector a(x) =
(aj(x))j∈J to

inf
q(x)=ã(x)P

∥∥∥∥∥∥q(x, ·) −
∑
j∈J

ãj(x)ei·(xj−x)

∥∥∥∥∥∥
2

ν,ξopt

. (12)

If the coefficients are determined in this manner we say that the corresponding
scheme is frequency optimized. For the optimization to make sense it is of course
necessary that q(x, ·) ∈ L2

ν,ξopt
(R). The following theorem and the proceeding

corollaries show how the coefficient for the frequency optimized finite difference
scheme can be found.

THEOREM 3.1. Let ν, ξopt and x be fixed. Then there exists a unique extremal
vector a(x) to (12). The vector can be found as the solution to the linear equation
system

(a λ)
(

M P
P∗ 0

)
= (b q)

12
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where the matrix M = (Mkl)k,l∈J and the row vector b = (bl)l∈J have the
components

Mkl = ν(ξopt(xk − xl)),

bl(x) =
1

2πξopt

∫ ∞

−∞
q(x, ξ)ei(x−xl)ξν̂(ξ/ξopt) dξ,

respectively. The matrix P and the vector q(x) are as in equation (11) and
λ(x) = (λ0(x), . . . , λL(x)) is the vector of Lagrangian multipliers for the prob-
lem. Moreover,∥∥∥∥∥∥q(x, ·) −

∑
j∈J

aj(x)ei·(xj−x)

∥∥∥∥∥∥
2

ν,ξopt

= ‖q(x, ·)‖2
ν,ξopt

− 2 Re (ba∗) (x) + aMa∗(x),

where a∗ is the Hermitian conjugate of a.

Proof. The theorem follows almost immediately from the results in Appendix A
on constrained minimization in complex Hilbert spaces, Lemma A.1. We only
have to verify that the matrix M and the vector b are given as above. According
to Lemma A.1 M is the mass matrix for the basis {ei·(xj−x)}j∈J in L2

ν,ξopt
(R).

We have

Mkl = 〈ei·(xk−x), ei·(xl−x)〉ν,ξopt =
1

2πξopt

∫ ∞

−∞
eiξ(xk−xl)ν̂(ξ/ξopt) dξ

=
1

2π

∫ ∞

−∞
eiξoptξ(xk−xl)ν̂(ξ) dξ = ν(ξopt(xk − xl))

which is the same formula as above. Here we have used the inversion formula in
the last equality. In the same manner we verify the formula for the components of
the vector b

bl(x) = 〈q(x, ·), ei·(xl−x)〉ν,ξopt

=
1

2πξopt

∫ ∞

−∞
q(x, ξ)eiξ(x−xl)ν̂(ξ/ξopt) dξ.

The value of the infimum problem follows from expanding the norm and the def-
inition of the matrix M and the vectors a(x) and b(x).

For unconstrained minimization we have the following simplification.

COROLLARY 3.2. The coefficient vector for the optimal solution for (12) with-
out any constraint is given as the solution to

a(x)M = b(x).

We remark that since M is a mass matrix it is strictly positive definite and
therefore invertible.

The operators Q which we are primarily interested in are the the differential
operators dn

dxn which have the symbols qn(ξ) = (iξ)n, n = 0, 1, 2, . . . (n = 0

13
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corresponds to the identity operator). These operators have two important prop-
erties: they are translation invariant, which is reflected by that their symbols only
depend on ξ, and their symbols are positively homogeneous of degree n, that is,

q(αξ) = αnq(ξ)

for all α > 0. The next corollary shows how the the expressions for the coeffi-
cients bl(x) can be simplified for such symbols.

COROLLARY 3.3. For a translation invariant operator Q with positively ho-
mogeneous symbol of order n we have

bl(x) = ξnoptQ[ν](ξopt(x− xl)).

In particular, if Q is the n-th derivative then

bl(x) = ξnoptν
(n)(ξopt(x− xl)). (13)

Proof. The result follows from a linear change of variable in the formula for bl

bl(x) =
1

2π

∫ ∞

−∞
q(ξoptξ)eiξoptξ(x−xl)ν̂(ξ) dξ

= ξnopt

1
2π

∫ ∞

−∞
q(ξ)eiξoptξ(x−xl)ν̂(ξ) dξ = ξnoptQ[ν](ξopt(x− xl)). (14)

3.2 Examples of weight functions

We will now give three examples of functions ν which we will use in the nu-
merical tests in Section 7. To simplify the calculation of the finite difference
approximations, we must be able to find closed formulas for both the function and
its derivatives.

Example 3.4 (The sinc function). Let ν̂ be the characteristic function of the in-
terval [−1, 1] times π

ν̂(ξ) =
{

π, |ξ| ≤ 1,
0, |ξ| > 1.

A calculation shows that

ν(x) =
π

2π

∫ 1

−1
eiξx dξ =

sin(x)
x

= sinc (x/π)

where sinc (t) = sin(πt)/(πt) is the function which appears in connection with
Shannon’s sampling Theorem in signal processing. The DRP-scheme due to Tam
and Webb which we mentioned in the introduction is a seven point central dif-
ference approximation which is given as the optimal solution with respect to this
weight and the side condition to give correct result for polynomils up to order 4.
Tam and Shen suggsted to use ξopt = 1.1, see [6] and [8].

As an example of weight with non-compact support we choose the Gauss
function.

14
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Example 3.5 (The Gauss function). Let

ν(x) = e−x
2/(2π2).

The function ν is, apart from a constant factor, its own Fourier transform

ν̂(ξ) =
√

2ππe−π
2ξ2/2.

All derivatives of ν are of the form

ν(n)(x) = π−nPn(x/π)e−x
2/(2π2).

where Pn is a polynomial of degree n. The polynomials satisfy the following
recursion relation

Pn+1(x) = −xPn(x) + P ′
n(x).

In the last example we choose ν as the Bessel function of the first kind.

Example 3.6 (The Bessel function). For our last example we define

ν̂(ξ) =
2√

1 − ξ2

for |ξ| < 1 and zero otherwise. If we apply the inverse Fourier transform to this
function we obtain the Bessel function of the first kind and order zero

ν(x) =
1

2π

∫ ∞

−∞
eiξxν̂(ξ) dξ =

1
π

∫ 1

−1

eiξx√
1 − ξ2

dξ = BesselJ(0, x).

The derivatives of the Bessel functions of the first kind satisfy{
d
dxBesselJ(0, x) = −BesselJ(1, x),

d
dxBesselJ(1, x) = BesselJ(1,x)

x − BesselJ(0, x).

By using these formulas, one can easily prove by induction that

dn

dxn
BesselJ(0, x) = Pn(1/x)BesselJ(0, x) −Qn(1/x)BesselJ(1, x),

for some polynomials Pn and Qn. For n = 0 we have P0(t) = 0 and Qn(t) = 0.
A short calculation gives the following recursion relation for the polynomials{

Pn+1(t) = −t2P ′
n(t) + Qn(t),

Qn+1(t) = −Pn(t) + tQn(t) − t2Q′
n(t),

It is known that optimization with respect to this weight approximates well mini-
mization with respect to the L∞-norm [2].

3.3 Singular weights

For certain applications it may be interesting to use singular weights of the form

µ̂m =
ν̂(ξ)
|ξ|2m

15
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where ν̂ is as before and m a positive integer. For example, if we want to reduce
the relative error of the symbol (iξ)n for the n-th derivative then we should min-
imize with respect to a weight of the above form with m = n. In this section
we limit ourselves to these differential operators so the object function for the
minimization becomes∥∥∥∥∥∥(iξ)n −

∑
j∈J

ãj(x)ei·(xj−x)

∥∥∥∥∥∥
2

µm,ξopt

=
1

2π

∫ ∞

−∞

∣∣∣∣∣∣(iξoptξ)n −
∑
j∈J

ãj(x)eiξoptξ(xj−x)

∣∣∣∣∣∣
2

ν̂(ξ)
|ξ|2m dξ.

We shall assume that m ≤ n and that ξn ∈ L2
µm,ξopt

(R). This includes the case
n = m = 1 which we are most interested in and was also considered by Efraims-
son in [1]. This corresponds to minimizing the relative error of the phase velocity
for a hyperbolic equation, see Section 6.2. Efraimsson constructed second order
accurate central difference approximations, with five and seven points, optimized
with respect to the weight 1/|ξ|2 (in our terminology in Section 7 this corresponds
to sinc sing (1,1) and sinc sing (1,2)).

We shall now explain how the coefficients for the optimal solution can be
found. Clearly, in order for the integral above to be convergent we must have∑

j∈J

ãj(x)eiξoptξ(xj−x) = O(ξm).

As we mentioned earlier, see equation (7), this is equivalent to that the polynomial
fitting constraint is satisfied for all polynomials of degree at most m−1. However,
we cannot write the components of the matrix M and the vector b as before since
the corresponding integrals are divergent. To overcome this difficulty we use the
following trick. Let Pm(x) =

∑m−1
k=0 xk/k! be the Taylor polynomial for the

exponential function of degree m−1. It then follows from our assumption m ≤ n
and the polynomial fitting constraint that∑

j∈J

ãj(x)Pm(iξ(xj − x)) = 0

just because the n-th derivative of Pm is zero and the approximation gives correct
result for polynomials of degree m− 1. Since

eiξ(xj−x) − Pm(iξ(xj − x)) = O(ξm)

we can now expand the object function in a similar way as before but with slightly
different mass matrix M′ and vector b′∥∥∥∥∥∥(iξ)n −

∑
j∈J

ãj(x)ei·(xj−x)

∥∥∥∥∥∥
2

µm,ξopt

=

∥∥∥∥∥∥(iξ)n −
∑
j∈J

ãj(x)
(
ei·(xj−x) − Pm(iξ(xj − x))

)∥∥∥∥∥∥
2

µm,ξopt

= ‖(iξ)n‖2
µm,ξopt

− 2 Re
(
b′a∗) (x) + aM′a∗(x).

16
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Here M′ is the matrix with components

M ′
kl = 〈ei·(xk−x) − Pm(i · (xk − x)), ei·(xl−x) − Pm(i · (xl − x))〉µm,ξopt

and b′ is the vector with components

b′l = 〈(i·)n, ei·(xl−x) − Pm(i · (xl − x))〉µm,ξopt .

The coefficient vector a can now be found as the solution to the linear equation
system

(a λ)M̂ = (b′ q)

where M̂ is the matrix

M̂ =
(

M′ P
P∗ 0

)
.

We close this section by giving the formulas for the special case m = n = 1. For
M ′

kl and b′k we have M ′
kl = M(ξopt(xk−x), ξopt(xl−x)) and b′k = B(ξopt(xk−

x)) where

M(α, β) =
1

2π

∫ ∞

−∞

(
eiξα − 1

)(
e−iξβ − 1

) ν̂(ξ)
|ξ|2 dξ =

∫ α

0

∫ β

0
ν(s− t) dtds

(15)

and

B(β) =
1

2π

∫ ∞

−∞

(
e−iξβ − 1

) ν̂(ξ)
−iξ

dξ =
∫ β

0
ν(−t) dt.

To derive the formula for B we only have to differentiate to obtain

B′(β) =
1

2π

∫ ∞

−∞
e−iξβ ν̂(ξ) dξ = ν(−β)

and use that B(0) = 0. The expression for M can be derived in a similar way.

3.4 Extension to higher dimensions

The above results can easily be extended to higher dimensions. It turns out that al-
most all formulas extend with only obvious modifications. We only need a weight
function ν̂. In most cases it may be natural to choose a spherical symmetric func-
tion. For a spherical symmetric weight the components of the matrix M become

Mkl = ν(ξopt|xk − xl|)

and the components of the vector b(x) for the differential operator ∂α

∂xα become

bl(x) = ξ
N |α|
opt

∂αν

∂xα
(|x − xl|),

where α = (α1, . . . , αN ) is any multi-index and N the dimension.
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4 Time stepping methods

The standard method to solve ordinary differential equations numerically is to use
higher order Taylor or Runge–Kutta methods. Implicit methods such as Euler
backward and θ-methods are also used. The numerical scheme for these meth-
ods are constructed to give correct result for polynomials up to a certain degree.
Two references for numerical methods for ordinary differential equations are [4,
Chapter 7] and [3]. In this section, we discuss general properties of time stepping
methods applied to linear evolution equations with time-independent operators.
This is a preparation for the following section where we develop a method to
derive time integration schemes for such equations.

4.1 Standard numerical methods

A discrete approximation of a linear partial differential equation leads often to a
system of coupled ordinary differential equations of the type{

ut = Au, t > 0,
u|t=0 = u0,

(16)

where u(t) = (u1(t), . . . , uK(t))T is a vector and A a L × L matrix. If the
equation is obtained from a finite difference approximation then the components
of u are approximate values of the solution at the grid points. Since the number
of variables L might be very large we normally have to apply a numerical method
to solve this equation.

Let ∆t > 0 be the time step and put tk = k∆t, k = 0, 1, 2, . . . . We seek
approximations wk of the vector u(t) at the mesh points tk: wk ≈ u(tk), k =
0, 1, 2, . . . . Let us give some examples of numerical methods.

Example 4.1 (Forward Euler and higher order Taylor methods). In the forward
Euler method one calculates wk by using the truncated first order Taylor approx-
imation for u: u(tk) ≈ u(tk−1) + hut(tk−1). Since ut(tk−1) = Au(tk−1), we
have the vector wk

wk = wk−1 + hAwk−1 = ( I + hA)wk−1,

where I is the identity operator and w0 = u0. By iterating the this formula k
times, it follows that

wk = ( I + Ah)ku0.

This can be compared with the exact solution to (16) which is given by the expo-
nential matrix u(t) = exp(At)u0. The exponential matrix can be defined through
the series expansion

exp(At) =
∞∑
n=0

Antn

n!
.

If we adjust the time step such that h = t/k, we see that the forward Euler method
approximates exp(At) by

exp(At) ≈
(

I +
At

k

)k
.
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Even though the right hand side converges to exp(At) as k → ∞ the convergence
is slow. To resolve this problem one can use higher order Taylor methods where
the exponential function is approximated by more terms in its Taylor series

exp(Ah) ≈
N∑
n=0

hnAn

n!
.

It turns out that the standard second and fourth order Runge–Kutta methods co-
incide with the second and fourth order Taylor methods for linear and time inde-
pendent operators.

4.2 Approximation of the exponential matrix

The forward Euler method and higher order Taylor methods are examples of ex-
plicit methods, the approximation wk can be calculated from wk−1 without solv-
ing a linear equation system. Explicit methods correspond to a polynomial ap-
proximation of the exponential matrix

exp(A) ≈ P (A) =
NP∑
k=0

akA
k,

and
wk = P (Ah)wk−1 = P (Ah)ku0.

In contrast to explicit methods we have implicit methods where we have to solve
a linear equation system to find wk. This corresponds to a rational approximation
of the exponential matrix

exp(A) ≈ PR(A)QR(A)−1

where both PR(A) and QR(A) are polynomials in A. An approximation of this
type is called a Padé approximation for certain choices of PR and QR.

Now, assume the matrix A has a spectral decomposition

A = UDU−1,

where U is the matrix of eigenvectors and D = diag(λ1, . . . , λN ) is the diagonal
matrix of eigenvalues λj . In terms of this decomposition, we have

exp(At) = Udiag(eλ1t, . . . , eλN t)U−1, (17)

and

P (At) = Udiag(P (λ1t), . . . , P (λN t))U−1. (18)

Moreover, if

R(x) =
PR(x)
QR(x)

,

then
PR(At)QR(At)−1 = Udiag(R(λ1t), . . . , R(λN t))U−1,

thus, R(A) is well defined. This can of course be seen as a special case of the func-
tional calculus for operators. However, what is important for us is that it shows
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Figure 2. Stability regions for different explicit methods: Forward Euler, –––––––, Taylor order 3,− −
−−,Taylor order 4, − · − · −, Taylor order 5, · · · · · · .

that in order to find a good time integration method one needs a good polynomial
or rational approximation of the exponential function. For example, higher order
Taylor methods correspond to approximation of the exponential function with its
Taylor polynomials. In the next section we propose an optimization procedure to
find the polynomial approximation. In this approach we can also take the location
of the eigenvalues into account.

4.3 Stability of time integration methods

We say that a numerical method is stable if and only if wk stays bounded as
k → ∞ for all initial conditions u0. For an explicit method with polynomial
P and a diagonalizable matrix A this holds if and only if |P (λkh)| ≤ 1 for all
eigenvalues. Here h is the time step. Similarly, we have |R(λkh)| ≤ 1 for implicit
methods. We define the stability region for an explicit method as the set

ΩP = {z ∈ C : |P (z)| < 1}. (19)

Thus, the method is stable provided that λkh ∈ ΩP , k = 1, 2, . . . , L. Figure 2
shows the stability regions for the forward Euler method and the Taylor methods
of order three, four and five. If the matrix A is not diagonalizable then the situation
is slightly more complicated. In order to study stability for such matrices, it is
convenient to write the matrix A in Jordan normal form

A = UDU−1,
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where U is an invertible matrix and D a Jordan block matrix. Each block in D
has the form

Dk =


λk 1 0 . . . 0
0 λk 1 . . . 0

0 0 λk
. . .

...
...

...
. . . . . . 1

0 0 0 . . . λk

 .

One can show that the time stepping method applied to A is stable if and only if
all eigenvalues lie inside ΩP and the ones corresponding to Jordan blocks of size
larger than one lie strictly inside. For the exact solution we instead have that the
solution remains bounded for all initial conditions if and only if Reλk ≤ 0 for
all eigenvalues corresponding to Jordan blocks of size one and Reλk < 0 for all
other eigenvalues.
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5 Optimized time integration methods
The purpose of this section is to develop a general method to derive time integra-
tion schemes for linear and time independent operators. These schemes include
the standard higher order Taylor methods. The approach is very similar to the
frequency optimization in Section 3, that is, we will use a constrained optimiza-
tion problem to find the scheme. We recall from the last section that to find a
good explicit time integration method for a linear and time independent operator
is equivalent to find a good polynomial approximation of the exponential function.

5.1 The optimization problem

Let PK denote the space of polynomials of degree at most K, where K is a
positive integer, and let H be a Hilbert space of functions on Ω ⊂ C, with norm
‖ ·‖H, which includes the exponential function and the space PK . We will choose
our polynomial p ∈ PK as the best approximation of the exponential function in
H subject to the constraint that p also approximates the exponential function to
some order L at the origin. Let us formalize this approach. Every p ∈ PK has a
representation

p(t) =
K∑
k=0

akt
k

and we let a = (a0, . . . , aK) denote the vector of coefficients for p. Since the
exponential function has the power series expansion

et =
∞∑
n=0

tn

n!
,

the polynomial approximation p of et is of order L if and only if

an =
1
n!

, n = 0, . . . , L− 1.

In matrix notation we have

aP = q (20)

where q = (q0, . . . , qL−1) with ql = 1/l! and P = (Pkl) is the K × L matrix
with Pll = 1 for l = 0, 1, . . . , L − 1 and all other components are zero. The
optimization problem for the coefficients is

inf
ãP=q

∥∥∥∥∥exp(·) −
K∑
k=0

ãkpk

∥∥∥∥∥
H

. (21)

where pk is the k-th monomial as before: pk(t) = tk. The following result shows
how the coefficient vector for the optimal solution can be found.

THEOREM 5.1. Suppose that the Hilbert space H, the matrix P and the vector
q are as above, then there exists a unique extremal vector a to (21). The vector
can be found as the solution to the linear equation system

(a λ)
(

M P
P∗ 0

)
= (b q)
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where the matrix M = (Mkl)Kk,l=0 and the row vector b = (bl)Kl=0 have the
components

Mkl = 〈pk, pl〉H, k, l = 0, 1, . . . ,K

and
bl(x) = 〈exp(·), pl〉H, l = 0, 1, . . . ,K,

respectively. Moreover, λ = (λ0, . . . , λL) is the vector of Lagrangian multipliers
for the problem and∥∥∥∥∥exp(·) −

K∑
k=0

akpk

∥∥∥∥∥
2

H
= ‖exp)(·)‖2

H − 2 Re (ba∗) + aMa∗,

where a∗ is the Hermitian conjugate of a.

Proof. The theorem follows immediately from the results in Appendix A on con-
strained minimization in complex Hilbert spaces, Lemma A.1.

For minimization without the linear constraint the coefficient vector is obtained as
the solution to

aM = b.

We shall now specialize to matrices A which only have negative eigenval-
ues (corresponding to parabolic equations) and matrices which only have purely
imaginary eigenvalues (corresponding to hyperbolic equations). More precisely,
we optimize our approximation of the exponential function on the negative half
axis and the imaginary axis, respectively. It follows from the theorem above that
we only have to find the coefficients for the matrix M and vector b to calculate
the polynomials.

5.2 Purely imaginary eigenvalues

For hyperbolic problems, such as wave propagation, we often have operators A
with purely imaginary eigenvalues or eigenvalues clustering at the imaginary axis.
For such operators it is natural to choose a norm of the same type as for frequency
optimization of the finite difference approximation of derivatives from the previ-
ous section but on the imaginary axis. Let the weight ν and the parameter kopt be
as in Section 3. We define the Hilbert space L2

ν,kopt
(iR) as the set of functions g

on the imaginary axis such that

‖g‖2
ν,kopt

=
1

2πkopt

∫ ∞

−∞
|g(iξ)|2ν̂(ξ/kopt) dξ < ∞.

The corresponding inner product is

〈g1, g2〉ν,kopt =
1

2πkopt

∫ ∞

−∞
g1(iξ)g2(iξ)ν̂(ξ/kopt) dξ.

A linear change of variables yields

〈l1, l2〉ν,kopt =
1

2π

∫ ∞

−∞
l1(ikoptξ)l2(ikoptξ)ν̂(ξ) dξ.

24



FOI-R–0407–SE

The formula for the components of the vector b and the matrix M becomes

Mkl = 〈pk, pl〉ν,kopt = (−1)lkk+lopt

1
2π

∫ ∞

−∞
(iξ)k+lν̂(ξ) dξ

= (−1)lkk+lopt ν
(k+l)(0)

and

bl = 〈exp(·), pl〉ν,kopt = (−kopt)l
1

2π

∫ ∞

−∞
(iξ)l exp(ikoptξ)ν̂(ξ) dξ

= (−kopt)lν(l)(kopt).

At a first glance it may look as M is not symmetric. However, since ν is an even
function it follows that all odd derivatives of ν vanishes at the origin. In the same
fashion as for finite difference approximations we can use singular weights of the
form

µ̂m =
ν̂(ξ)
|ξ|2m .

5.3 Negative eigenvalues

Large negative eigenvalues are often associated with parabolic problems such as
the heat equation. For such equations it may be convenient to optimize the ap-
proximation on the negative real axis. Let µ be a positive function on the positive
half axis R+ = {x ∈ R : x > 0} and let h > 0. We assume that the weight is
such that pµ ∈ L1(R+) for all polynomials p. Define L2

µ,hopt
(R−) as the Hilbert

space of functions f on the negative half axis such that

‖f‖2
µ,hopt

=
1

hopt

∫ ∞

0
|f(−t)|2µ(t/hopt) dt < ∞.

The corresponding inner product is

〈f, g〉µ,hopt =
1

hopt

∫ ∞

0
f(−t)g(−t)µ(t/hopt) dt

A linear change of variables yields

〈f, g〉µ,hopt =
∫ ∞

0
f(−hoptt)g(−hoptt)µ(t) dt.

Let µ̃ denote the Laplace transform of µ. We can now calculate the coefficients
for the row vector b and the mass matrix M. We have

bl = 〈exp(·), pl〉µ,hopt = hlopt

∫ ∞

0
e−ht(−t)lµ(t) dt = hloptµ̃

(l)(hopt), (22)

and

Mkl = 〈pk, pl〉µ,hopt = hk+lopt

∫ ∞

0
(−t)k+lµ(t) dt = hk+lopt µ̃

(k+l)(0). (23)

The parameter hopt and the weight µ should be chosen in accordance with the
size of the eigenvalues of the matrix A and the time step. If A is a finite difference
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approximation of some differential operator, then typically the small eigenvalues
for the differential operator agree well with some of the small eigenvalues for A
whereas the large eigenvalues for A do not correspond to any of the eigenvalues
for the differential operator. Therefore, we are more interested to model the small
eigenvalues accurately in our time integration method and the constant hopt should
be chosen relatively this set of eigenvalues. However, the large eigenvalues are
often responsible for instabilities in the time integration. We give one example of
a weight of this type.

Example 5.2 (The box weight). Define

µ(t) =
{

1, 0 ≤ t ≤ 1,
0, t > 1.

Laplace transformation of the weight gives

µ̃(s) =
1 − e−s

s
.

A calculation of the derivatives gives

µ̃(n)(s) = (−1)n
(

1
sn+1

+ e−s
n∑
k=0

n!
k!

1
sn−k+1

)
.
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6 Wave propagation
Recall that all electromagnetic waves in free space propagate with the same veloc-
ity, the speed of light, independent of the shape of the wave. This is not true for
electromagnetic waves in certain materials, for example glass and water, where
waves of different frequencies propagate with different velocities. We say that the
material is dispersive. The rainbow is a well known effect due to this phenomena.
In numerical solutions of hyperbolic equations it may happen that the velocity
of a wave depends on the frequency although this is not true for the governing
equation. For problems in several dimensions the speed may also be different in
different directions. This phenomena is called numerical dispersion and is in most
cases unavoidable but it is important to reduce its effects.

The purpose of this section is to explain dispersion and numerical dispersion
and other related quantities for a simple wave equation in one space dimension.
We also define a precise concept for how many points per wave length we need
for different schemes in order for the relative error in the phase velocity to be less
than a given tolerance. A similar measure is defined for time integration schemes.
These concepts will then be used in Section 7 in order to evaluate the different
schemes which we have derived and to compare them with standard methods.
All the concept which we consider can also be extended to systems in higher
dimensions. We show how this is performed on the two dimensional TMz mode
of the Maxwell equations on an infinite Cartesian grid.

6.1 Dispersion relations

Let us consider the simple advection equation in one space dimension{
ut(x, t) + cux(x, t) = 0, x ∈ R, t > 0,
u(x, 0) = u0(x), x ∈ R.

(24)

The solution to this equation is given by

u(x, t) = u0(x− ct),

which is a wave traveling to the right with velocity c. A dispersion relation is an
equation which relates the wave number ξ for a monochromatic wave

u(x, t) = ei(ξx−ωt).

with the angular velocity ω. If we substitute the monochromatic wave into (24),
we obtain

i(cξ − ω)ei(ξx−ωt) = 0.

After a simplification we get
ω = cξ

which is the dispersion relation for the advection equation. The phase velocity is
the velocity a monochromatic wave with wave number ξ propagates with and is
given by

vp =
ω(ξ)
ξ

.

For the advection equation it equals c, independent of the wave number.
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6.2 Numerical dispersion

We are now in position to study numerical dispersion and phase velocity. We will
consider both exact and numerical time integration. For numerical time integra-
tion, where we combine spatial and time discretization, it is possible, more or less,
to study the dispersion error due to the spatial and time approximation separately.

6.2.1 Exact time integration

Now let us consider a semi-discrete approximation of the advection equation on a
grid with mesh size ∆x

u′
l(t) + cDul(t) = 0, l ∈ Z, (25)

where ul(t) ≈ u(xl, t), xl = l∆x, and Dul a discrete approximation of the
derivative with respect to x. Here we consider central differences approximations
of the derivative of the form

Dul(t) =
1

∆x

N∑
j=−N

ajul+j(t).

Exactly as for the continuous advection equation we seek solutions to (25) of the
form u(x, t) = ei(ξx−ωt). We substitute this into the equation to obtain

−iωei(ξx−ωt) +
c

∆x

 N∑
j=−N

aje
iξj∆x

 ei(ξx−ωt) = 0.

Clearly, this ansatz diagonalizes the equation just as in the continuous case. If we
use the definition of the effective wave number,

iξ̃(ξ) =
1

∆x

 N∑
j=−N

aje
iξj∆x

 ,

we obtain after simplification the numerical dispersion relation

ω(ξ) = cξ̃(ξ).

Compared to the continuous dispersion we see that the wave number is replaced
by the effective wave number. The numerical phase velocity is now given by

vp =
ω(ξ)
ξ

= c
ξ̃(ξ)
ξ

.

A reasonable requirement on a numerical scheme is that the relative error of the
phase velocity is less than a certain quantity for all waves with wave number less
than a given maximal wave number ξmax. For exact time integration the relative
error of the phase velocity becomes

F (ξ) =
∣∣∣∣c− vp(ξ)

c

∣∣∣∣ =

∣∣∣∣∣1 − ξ̃(ξ)
ξ

∣∣∣∣∣ . (26)

In our comparisons between different finite different approximations we will use
the following definition of ξmax and points per wave length (PPW).
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DEFINITION 6.1. Given a κ > 0, we define ξmax as the largest number such
that

F (ξ) ≤ κ, for all ξ ∈ [−ξmax, ξmax].

The number of points per wave length (PPW) for the specified error is given by

PPW =
2π

ξmax∆x
.

To see the relevance of this concept we consider a monochromatic wave which
we propagate a number of wave lengths, say 10. During the propagation the total
phase error of the numerical wave accumulates. If the relative error in the phase
is 2% then the total phase error after a propagation of ten wave lengths is

φ =
2π · 10 · 2

100
=

2π
5

≈ 1.257 radians.

After a propagation of 20 wave lengths the phase error is 2.514 radians. Thus, the
larger the computational region is relative to the wave length the more accurate
the scheme has to be.

6.2.2 Numerical time integration

We will here use the same notation as in Section 4 for the time stepping. This
means that the matrix operator A is given by −cD so the time integration has the
following form

wk = P (−chD)wk−1, k = 1, 2, 3, . . . ,

where D is the discrete approximation of the derivative. Here P is either a poly-
nomial for an explicit method or a rational function for an implicit method, h is
the time step and the vectors wk, k = 0, 1, 2, . . . , are approximations of the so-
lution to (24) at the points (xl, tk). Again we seek solutions of exponential form
wk
l = ei(ξxl−ωtk). If we substitute this into the equation we obtain

ei(ξxl−ωtk) = P (−ichξ̃(ξ))ei(ξxl−ωtk−1).

A simplification yields
e−ihω = P (−ichξ̃(ξ)),

which is the numerical dispersion relation in this case. To express ω as a function
of ξ we need to take the logarithm of the right hand side

ω(ξ) =
i log(P (−ihcξ̃(ξ))

h

Unfortunately, there is no guarantee that the the angular velocity is real valued. In
fact, for polynomials one can show that ω(ξ) has a non-zero imaginary part except
at a finite set of points. The imaginary part corresponds to numerical damping of
the wave if Imω(ξ) < 0 (dissipation) and numerical amplification if Imω(ξ) >
0.

The phase velocity is then given by

ṽp(ξ) = Re

(
i log(P (−ichξ̃(ξ))

hξ

)
.
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We use the tilde sign to distinguish between the phase velocities for exact and nu-
merical time integration. To evaluate and compare different time stepping meth-
ods for hyperbolic problems we want to separate the error in phase velocity due to
the spatial approximation and the time stepping. Although this is not completely
possible it can be done to the first order of the errors. To do this we introduce the
function

Q(x) =
i log(P (−ix))

x
. (27)

The phase velocity ṽp(ξ) can now be written as a product between Q and vp

ṽp(ξ) = cRe
(
Q(hcξ̃(ξ))

) ξ̃(ξ)
ξ

= Re
(
Q(hcξ̃(ξ))

)
vp(ξ). (28)

In analogy with the definition of ξmax, we define the parameter kmax to control the
relative error due to time integration. We also define kstab to specify the stability
interval for imaginary eigenvalues for the method.

DEFINITION 6.2. Given a κ > 0, we define kmax as the largest number such
that

|1 −Q(x)| ≤ κ, for all x ∈ [−kmax, kmax],

The parameter kstab is defined as largest number such that

|P (ix)| ≤ 1, for all x ∈ [−kstab, kstab].

Let us motivate the definition of kmax. It follows from (28) that the relative
error of ṽp(ξ) can be estimated to first order by the sum of the relative error of
Q(hcξ̃(ξ)) and the relative error of ṽp(ξ). If hcξ̃(ξ) ∈ [−kmax, kmax] then we
have for the relative error for Q(hcξ̃(ξ))∣∣∣1 −Q(hcξ̃(ξ))

∣∣∣ ≤ max
x∈[−kmax,kmax]

|1 −Q(x)| ≤ κ.

The parameter kstab is such that i[−kstab, kstab] is the intersection of the stability
region Ωp for P , equation (19), with the imaginary axis.

6.3 Wave propagation in higher dimension and systems

The above argument can of course be generalized to higher dimension and sys-
tems as well. The requirement is that we have a constant coefficient differential
equation and a Cartesian and equidistant grid. We will here show how this can be
accomplished for the two dimensional TMz mode of the Maxwell equations on
an infinite Cartesian grid. The main result is that the relative error in the phase
velocity in any direction is bounded by the maximum of relative error in the phase
velocities along the coordinate axes (see equation (32).

The treatment here is similar to [5, Section 4.2]. The Maxwell equations in
TMz mode are 

∂Hx
∂t = − 1

µ
∂Ez
∂y ,

∂Hy

∂t = 1
µ
∂Ez
∂x ,

∂Ez
∂t = 1

ε

(
∂Hy

∂x − ∂Hx
∂y

)
,

(29)
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For exact time integration we seek numerical solutions which approximate the
fields at the points (xk, yl) where xk = k∆x and yl = l∆y with k, l ∈ Z. For
example, for the electric field component Ez we have

Ez|k,l (t) ≈ Ez(xk, yl, t).

The approximations of the derivatives are along the coordinate axes. For example,
for the derivative of Ez with respect to x we have

∂Ez

∂x

∣∣∣∣
k,l

(t) ≈ 1
∆x

Nx∑
j=−Nx

axj Ez|k+j,l (t)

We define the effective wave number along the x and y direction by

ξ̃x(ξx) = −i
1

∆x

Nx∑
j=−Nx

axj e
ixjξx

and

ξ̃y(ξy) = −i
1

∆y

Ny∑
j=−Ny

ayj e
iyjξy

As before we seek solutions to the discrete TMz mode equation of exponential
form 

Hx|k,l (t) = hxe
i(ξxxk+ξyyl−ωt),

Hy|k,l (t) = hye
i(ξxxk+ξyyl−ωt),

Ez|k,l (t) = eze
i(ξxxk+ξyyl−ωt),

(30)

which is a plane wave traveling along the direction (ξx, ξy). Substituting these
expressions into the discrete TMz mode equations yields after simplification

−iωhx = −i 1
µ ξ̃y(ξy)ez,

−iωhy = i 1
µ ξ̃x(ξx)ez,

−iωez = i1
ε

(
ξ̃x(ξx)hy − ξ̃y(ξy)hx

)
.

(31)

If we combine these equations, we obtain the following dispersion relation

ω2(ξx, ξy) = c2
(
ξ̃x(ξx)2 + ξ̃y(ξy)2

)
,

where c = 1√
εµ is the speed of light. The phase velocity for the wave is

ν(ξx, ξy) =
ω(ξx, ξy)√
ξ2
x + ξ2

y

= c

√
ξ̃x(ξx)2 + ξ̃y(ξy)2√

ξ2
x + ξ2

y

.

The phase velocities along the x and y directions are defined as in the one dimen-
sional case

νx(ξx) = c
ξ̃x(ξx)
ξx

, νy(ξy) = c
ξ̃y(ξy)
ξy

.
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It follows that

ν(ξx, ξy) =

√
ξ2
xνx(ξx)2 + ξ2

yνy(ξy)2√
ξ2
x + ξ2

y

.

The phase velocity ν(ξx, ξy) is thus some kind of weighted mean value of the
phase velocities along the coordinate directions. This give us the following bound

min(νx(ξx), νy(ξy)) ≤ ν(ξx, ξy) ≤ max(νx(ξx), νy(ξy)),

and we can estimate the relative error in the phase velocity by

F (ξx, ξy) ≤ max(Fx(ξx), Fy(ξy)). (32)
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7 Numerical tests

The purpose of this section is to test the methods we have developed and to com-
pare them with some standard methods. We begin by testing the finite difference
approximations.

7.1 Tests of finite difference methods

We limit ourselves to central difference approximations of the first derivative on
equidistant grids. We will focus on dispersion error for the advection equation
which we measure by the relative error in the phase velocity as defined by (26).
In terms of the effective wave number we have

F (ξ) =

∣∣∣∣∣1 − ξ̃(ξ)
ξ

∣∣∣∣∣ .
The number of points per wave length (PPW) and ξmax are estimated for the dif-
ferent tolerances κ = 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02 and 0.01 percent.

Since we use central difference approximations the number of points in the
stencil is odd and can therefore be written

number of points = 1 + 2NTay + 2Nopt.

although a0 = 0 for all central difference approximations of the first derivative.
Thus, 2NTay + 1 is the number of the coefficients which are used for the polyno-
mial fitting and the remaining 2Nopt are used for the optimization. For the first
derivative, the order of the approximation is therefore 2NTay. In all tables for op-
timized schemes we use the names of the function ν from examples 3.4-3.6. For
example, sinc (1, 2) indicates that the weight from Example 3.4 is used, NTay = 1
and Nopt = 2. A subscript sing indicate that we use the corresponding singular
weight ν̂(ξ)/|ξ|2, for example sinc sing, (see Subsection 3.3).

Table 1 shows ξmax and the number of points per wave length which are
needed for different tolerances for the Taylor approximations of order 2, 4, 6 and
8 (this correspond to NTay = 1, 2, 3, 4 and Nopt = 0). The definition of ξmax was
given in Definition 6.1. We see that the number of points per wave length grows
very fast for the second order approximation as the tolerance decreases whereas
we still only need nine points per wave length for the 8-th order approximation
for κ = 0.01%. In the tables for the optimized schemes we have chosen ξopt so
that we need as few points per wave length as possible for the given tolerance κ,
function ν, NTay and Nopt. Table 2 and 3 shows the result for different seven
point schemes. The DRP scheme due to Tam and Webb corresponds to sinc (2, 1)
for ξopt = 1.1. We see that the best result for dispersion errors are obtained for
BesselJsing(0, 3). This may not be so surprising since it is known that optimiza-
tion with respect to the corresponding norm ought to be close to optimization in
the supremum norm [2]. This is also confirmed by Figure 3 which displays the
relative phase velocities for three different seven point schemes including the sixth
order Taylor approximation and BesselJsing(0, 3). The parameter ξopt is chosen
to give the best result for the tolerance κ = 0.5%. If we compare the results the
sixth order Taylor approximation and BesselJsing(0, 3) we see that the optimized
scheme needs about 1.48-1.74 less points per wave length for a given accuracy. In
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Figure 3. Relative phase velocity for different schemes: Exact, –––––––, Taylor order 6,− − −−,
sinc (1, 2), − · − · −,BesselJsing(0, 3), · · · · · · . The right figure is a magnification of the left.

Scheme Taylor (1,0) Taylor (2,0) Taylor (3,0) Taylor (4,0)
Tolerence ξmax PPW ξmax PPW ξmax PPW ξmax PPW
κ = 5% 0.552 11.4 1.15 5.46 1.49 4.23 1.70 3.70
κ = 2% 0.347 18.1 0.902 6.97 1.25 5.03 1.48 4.25
κ = 1% 0.245 25.6 0.753 8.39 1.10 5.71 1.34 4.70
κ = 0.5% 0.173 36.2 0.630 9.98 0.972 6.47 1.21 5.18
κ = 0.2% 0.110 57.3 0.499 12.6 0.827 7.60 1.07 5.87
κ = 0.1% 0.077 81.1 0.418 15.0 0.733 8.57 0.98 6.44
κ = 0.05% 0.055 115 0.351 17.9 0.652 9.65 0.889 7.07
κ = 0.02% 0.035 181 0.279 22.5 0.557 11.29 0.788 7.97
κ = 0.01% 0.024 257 0.234 26.8 0.495 12.7 0.720 8.72

Table 1. Number of points per wave length for a given tolerance for different schemes.

three dimensions the gain is about 3.2− 5.3. Table 4-6 shows the results for some
three, five and nine point schemes.

7.2 Tests of time integration methods

In our tests of time integration methods we will compare the standard higher order
Taylor methods with optimized explicit methods for different weights and param-
eters. As for the finite difference approximations, we will focus on the dispersion
errors due to the time integration. Thus we will use the function Q defined in
equation (27) and Definition 6.2 of kmax and kstab. We assume that all polyno-
mial approximations P (x) =

∑N
n=0 anx

n of the exponential function are of at
least order 1, that is, a0 = 1 (otherwise we cannot define Q at the origin). We
split the degree N of the polynomial into two parts

N = NTay + Nopt.

The integer NTay +1 is the number of coefficients used for polynomial fitting and
the remaining Nopt are used for the optimization. This means that the order of the
approximation is at least NTay + 1. We shall use the same tolerances κ as before
and in analogy with kmax and kopt we choose kopt to give a maximal kmax for
fixed weight function ν, and integers NTay and Nopt. Since stability is important
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Scheme sinc (0,3) sinc (1,2) sinc (2,1)
Tolerance ξopt ξmax PPW ξopt ξmax PPW ξopt ξmax PPW
κ = 5% 1.942 2.025 3.10 2.208 2.152 2.92 2.097 2.007 3.13
κ = 2% 1.697 1.767 3.56 1.923 1.885 3.33 1.794 1.727 3.64
κ = 1% 1.529 1.590 3.95 1.730 1.699 3.70 1.595 1.540 4.08
κ = 0.5% 1.375 1.429 4.40 1.554 1.528 4.11 1.419 1.372 4.58
κ = 0.2% 1.192 1.237 5.08 1.345 1.325 4.74 1.215 1.178 5.33
κ = 0.1% 1.068 1.108 5.67 1.204 1.187 5.29 1.082 1.049 5.99
κ = 0.05% 0.956 0.992 6.34 1.077 1.062 5.92 0.963 0.935 6.72
κ = 0.02% 0.825 0.855 7.35 0.928 0.916 6.86 0.826 0.802 7.83
κ = 0.01% 0.737 0.764 8.22 0.829 0.818 7.68 0.735 0.714 8.80

Table 2. Number of points per wave length for a given tolerance for different schemes.

Scheme sinc sing (0,3) BesselJ (1,2) BesselJsing (0,3)
Tolerance ξopt ξmax PPW ξopt ξmax PPW ξopt ξmax PPW
κ = 5% 2.339 2.189 2.871 2.080 2.134 2.944 2.220 2.202 2.853
κ = 2% 2.030 1.925 3.265 1.821 1.868 3.364 1.950 1.941 3.237
κ = 1% 1.825 1.739 3.612 1.641 1.683 3.733 1.763 1.757 3.575
κ = 0.5% 1.639 1.568 4.007 1.476 1.514 4.151 1.590 1.587 3.960
κ = 0.2% 1.419 1.363 4.611 1.280 1.312 4.790 1.383 1.381 4.549
κ = 0.1% 1.272 1.223 5.138 1.147 1.175 5.347 1.242 1.241 5.064
κ = 0.05% 1.138 1.096 5.734 1.027 1.052 5.975 1.114 1.113 5.644
κ = 0.02% 0.982 0.946 6.639 0.885 0.907 6.929 0.963 0.962 6.529
κ = 0.01% 0.877 0.846 7.427 0.791 0.810 7.756 0.861 0.861 7.301

Table 3. Number of points per wave length for a given tolerance for different schemes.

Scheme sinc (0,1) sinc (1,1) sinc (0,2)
Tolerance ξopt ξmax PPW ξopt ξmax PPW ξopt ξmax PPW
κ = 5% 0.699 0.767 8.19 1.740 1.667 3.77 1.510 1.600 3.93
κ = 2% 0.445 0.488 12.88 1.393 1.341 4.68 1.221 1.291 4.87
κ = 1% 0.316 0.346 18.17 1.176 1.135 5.54 1.036 1.094 5.74
κ = 0.5% 0.223 0.245 25.68 0.992 0.958 6.56 0.876 0.925 6.79
κ = 0.2% 0.141 0.155 40.57 0.790 0.765 8.22 0.701 0.740 8.49
κ = 0.1% 0.100 0.110 57.37 0.665 0.644 9.76 0.591 0.624 10.07
κ = 0.05% 0.071 0.077 81.12 0.560 0.542 11.59 0.498 0.526 11.95
κ = 0.02% 0.045 0.049 128.26 0.446 0.432 14.55 0.397 0.419 15.01
κ = 0.01% 0.032 0.035 181.38 0.375 0.363 17.30 0.334 0.352 17.83

Table 4. Number of points per wave length for a given tolerance for different schemes.
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Scheme sinc sing (0,2) Gausssing (0,2) BesselJsing (0,2)
Tolerance ξopt ξmax PPW ξopt ξmax PPW ξopt ξmax PPW
κ = 5% 1.933 1.741 3.608 2.711 1.724 3.644 1.768 1.748 3.595
κ = 2% 1.545 1.414 4.444 1.959 1.393 4.511 1.429 1.421 4.423
κ = 1% 1.305 1.202 5.228 1.590 1.180 5.323 1.213 1.208 5.199
κ = 0.5% 1.101 1.018 6.169 1.308 0.998 6.295 1.028 1.025 6.131
κ = 0.2% 0.879 0.816 7.704 1.022 0.798 7.878 0.823 0.821 7.650
κ = 0.1% 0.741 0.689 9.125 0.852 0.672 9.347 0.694 0.693 9.064
κ = 0.05% 0.623 0.580 10.827 0.712 0.566 11.092 0.585 0.585 10.748
κ = 0.02% 0.497 0.463 13.578 0.564 0.451 13.923 0.466 0.466 13.482
κ = 0.01% 0.418 0.390 16.128 0.473 0.380 16.543 0.393 0.393 16.002

Table 5. Number of points per wave length for a given tolerance for different schemes.

Scheme sinc (1,3) sinc sing (0,4) BesselJsing (0,4)
Tolerance ξopt ξmax PPW ξopt ξmax PPW ξopt ξmax PPW
κ = 5% 2.441 2.397 2.621 2.546 2.427 2.589 2.457 2.442 2.573
κ = 2% 2.211 2.182 2.880 2.300 2.215 2.837 2.242 2.234 2.812
κ = 1% 2.050 2.027 3.099 2.131 2.061 3.048 2.088 2.083 3.016
κ = 0.5% 1.899 1.880 3.342 1.974 1.915 3.282 1.942 1.938 3.241
κ = 0.2% 1.713 1.698 3.701 1.780 1.732 3.628 1.759 1.757 3.576
κ = 0.1% 1.582 1.569 4.004 1.645 1.603 3.920 1.630 1.628 3.859
κ = 0.05% 1.460 1.449 4.336 1.518 1.481 4.242 1.508 1.507 4.170
κ = 0.02% 1.311 1.302 4.826 1.364 1.332 4.716 1.358 1.357 4.629
κ = 0.01% 1.207 1.199 5.239 1.257 1.228 5.115 1.253 1.253 5.016

Table 6. Number of points per wave length for a given tolerance for different schemes.
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Scheme Taylor (1,0) Taylor (2,0) Taylor (3,0) Taylor (4,0)
Tolerance kmax kstab kmax kstab kmax kstab kmax kstab

κ = 5% 0.108 0.000 0.483 0.000 1.345 1.732 1.468 2.828
κ = 2% 0.041 0.000 0.316 0.000 1.189 1.732 1.147 2.828
κ = 1% 0.020 0.000 0.228 0.000 1.106 1.732 0.961 2.828
κ = 0.5% 0.010 0.000 0.164 0.000 1.049 1.732 0.809 2.828
κ = 0.2% 0.004 0.000 0.106 0.000 0.430 1.732 0.647 2.828
κ = 0.1% 0.002 0.000 0.075 0.000 0.323 1.732 0.548 2.828
κ = 0.05% 0.001 0.000 0.054 0.000 0.248 1.732 0.463 2.828
κ = 0.02% 0.000 0.000 0.034 0.000 0.178 1.732 0.372 2.828
κ = 0.01% 0.000 0.000 0.024 0.000 0.140 1.732 0.315 2.828

Table 7. Maximal imaginary eigenvalues for different tolerances and stability parameters.

Scheme sinc (1,2) sinc (0,3) Gauss (1,2)
Tolerance kopt kmax kstab kopt kmax kstab kopt kmax kstab

κ = 5% 2.498 2.222 0.000 2.262 2.046 0.000 3.274 2.365 0.000
κ = 2% 1.730 1.590 0.000 1.828 1.638 0.000 2.005 1.474 0.000
κ = 1% 1.257 1.271 0.000 1.525 1.377 0.000 1.460 1.185 0.000
κ = 0.5% 0.938 1.107 0.000 1.276 1.174 0.000 1.052 1.054 0.000
κ = 0.2% 0.655 0.797 0.000 0.582 0.991 0.000 0.684 0.994 0.000
κ = 0.1% 0.506 0.528 0.000 0.530 0.557 0.000 0.596 0.541 0.000
κ = 0.05% 0.395 0.400 0.000 0.406 0.412 0.000 0.465 0.405 0.000
κ = 0.02% 0.286 0.285 0.000 0.291 0.290 0.000 0.338 0.287 0.000
κ = 0.01% 0.225 0.223 0.000 0.228 0.225 0.000 0.266 0.224 0.000

Table 8. Maximal imaginary eigenvalues for different tolerances and stability parameters.

for time integration, the variable kstab is calculated for all schemes. The notation
of different schemes is the same as before.

In Table 7 the constants kmax and kstab are given for Taylor schemes of order
2 to 5 for tolerances between 0.01 and 5 percent. Table 8 and 9 shows the result for
some approximations of degree 3 and Table 10 and 11 approximations of degree
4. Apart from the stability constraint it seems as the best result again is obtained
for BesselJsing. However, the interval of stability [−kstab, kstab] does not include
[−kmax, kmax] in most cases so the gain in accuracy cannot be used. It may be
necessary to include a stability constraint into the optimization problem to cope
with this problem. The reason why this is such a big problem is that the imaginary
axis is the boundary for the stability region for exact time integration. Therefore
the optimization technique have a chance to work better for problems with dissi-
pation since the eigenvalues are then strictly included in the left half plane but we
will not investigate this issue here.
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Scheme sinc sing (0,3) BesselJ (0,3) BesselJsing (0,3)
Tolerance kopt kmax kstab kopt kmax kstab kopt kmax kstab

κ = 5% 2.700 2.183 0.000 2.076 2.040 0.000 2.349 2.149 0.000
κ = 2% 2.282 1.795 0.000 1.706 1.658 0.000 1.977 1.773 0.000
κ = 1% 1.718 1.380 0.000 1.424 1.397 0.000 1.511 1.392 0.000
κ = 0.5% 1.099 1.081 0.000 1.191 1.193 0.000 0.984 1.098 0.000
κ = 0.2% 0.643 0.995 0.000 0.550 0.994 0.000 0.597 1.001 0.000
κ = 0.1% 0.563 0.546 0.000 0.491 0.553 0.000 0.504 0.541 0.000
κ = 0.05% 0.436 0.408 0.000 0.376 0.411 0.000 0.390 0.406 0.000
κ = 0.02% 0.314 0.288 0.000 0.269 0.290 0.000 0.281 0.288 0.000
κ = 0.01% 0.246 0.224 0.000 0.211 0.225 0.000 0.221 0.224 0.000

Table 9. Maximal imaginary eigenvalues for different tolerances and stability parameters.

Scheme sinc sing (0,4) BesselJ (0,4) BesselJsing (0,4)
Tolerance kopt kmax kstab kopt kmax kstab kopt kmax kstab

κ = 5% 3.039 2.925 0.869 2.121 2.784 1.217 2.746 2.915 0.915
κ = 2% 2.192 2.216 0.615 1.674 1.904 0.955 2.075 2.224 0.680
κ = 1% 1.774 1.692 0.494 1.404 1.553 0.798 1.673 1.705 0.544
κ = 0.5% 1.468 1.383 0.407 1.178 1.289 0.669 1.382 1.393 0.448
κ = 0.2% 1.161 1.085 0.321 0.936 1.018 0.528 1.091 1.093 0.353
κ = 0.1% 0.977 0.911 0.270 0.787 0.854 0.446 0.919 0.918 0.296
κ = 0.05% 0.825 0.768 0.224 0.662 0.719 0.369 0.775 0.773 0.253
κ = 0.02% 0.660 0.614 0.179 0.526 0.573 0.295 0.621 0.619 0.201
κ = 0.01% 0.559 0.519 0.161 0.443 0.482 0.261 0.525 0.523 0.178

Table 10. Maximal imaginary eigenvalues for different tolerances and stability parameters.

Scheme sinc sing (1,3) BesselJ (1,3) BesselJsing (1,3)
Tolerance kopt kmax kstab kopt kmax kstab kopt kmax kstab

κ = 5% 2.734 2.744 0.000 2.532 2.782 0.000 2.528 2.765 0.000
κ = 2% 1.998 1.960 0.000 1.815 1.958 0.000 1.849 1.943 0.000
κ = 1% 1.643 1.556 0.000 1.486 1.554 0.000 1.520 1.551 0.000
κ = 0.5% 1.369 1.281 0.000 1.236 1.279 0.000 1.267 1.279 0.000
κ = 0.2% 1.087 1.010 0.000 0.980 1.008 0.000 1.006 1.009 0.000
κ = 0.1% 0.916 0.849 0.000 0.826 0.848 0.000 0.848 0.849 0.000
κ = 0.05% 0.774 0.716 0.000 0.698 0.715 0.000 0.716 0.716 0.000
κ = 0.02% 0.620 0.573 0.000 0.559 0.572 0.000 0.574 0.573 0.000
κ = 0.01% 0.525 0.485 0.000 0.473 0.484 0.000 0.486 0.485 0.000

Table 11. Maximal imaginary eigenvalues for different tolerances and stability parameters.
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8 Conclusions and future work
We have developed methods to derive both finite difference approximations of
derivatives and numerical schemes for time integration for differential equations
with time independent operators. We have compared them with the standard ap-
proximations obtained by polynomial fitting. These methods can be extended
straightforwardly to higher dimensions on both structured and unstructured grids.
Unlike polynomial fitting in several variables where the Vandermonde matrix may
become singular for certain distributions of grid points, the optimization problem
will always have a solution unless the constraint is overdetermined.

The numerical tests for finite difference approximation shows that we can re-
duce the number of points per wave length by a factor 1.5-1.7 by using optimized
schemes compared to standard schemes and still have the same accuracy for the
phase velocity for numerical solutions of hyperbolic problems. Here we have
compared central difference approximation on equidistant grid with equally large
stencils.

The results for the time integration schemes which are optimized for imagi-
nary eigenvalues are not that promising. Although the accuracy seems to be quite
good, stability problems appear. In many cases there is no interval of stability on
the imaginary axis. This could perhaps be expected since the imaginary axis is
the boundary of the left half plane and all eigenvalues have to belong to the left
half plane in order for exact solution to remain bounded for all initial condition
as t → ∞. To resolve this problem one should perhaps incorporate a stability
constraint into the optimization problem. This may be a problem for further in-
vestigations.

Other problems that might be interesting to study further is the generaliza-
tions to higher dimensions, handling of boundary conditions, and derive optimized
summation by parts operators. Summation by parts operators are used to force the
numerical scheme to be stable. The optimization procedure is quite general and is
therefore applicable to many different problems.
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Appendix A

Minimization in complex Hilbert spaces

The purpose of this section is to derive formulas for the extremal function for
a minimization problem in a complex Hilbert space subject to a linear constraint.
Let E be a finite dimensional subspace of a Hilbert space H with basis {ek}Kk=1,
that is, every vector a ∈ E has an unique representation

a =
K∑
k=1

akek. (33)

with ak ∈ C. We denote the coordinate vector for a by a = (a1, . . . , aK). The
linear constraint is given by

pl(a) = ql, l = 1, . . . , L, (34)

where {pl}Ll=1 are linear functionals on H and q = (q1, . . . , qL) ∈ CL is a
complex vector. We assume that the restriction of the linear functionals {pl}Ll=1 to
E are linear independent which implies that the dimension of the affine subspace

{ã ∈ E : pl(a) = ql for all l = 1, . . . , L}.
is K − L, in particular, L ≥ K. If we expand pl(a) in its coordinates we see that
(34) is equivalent to the matrix equation

q = aP

for the coordinate vector a. Here P = (Pkl)
k=K,l=L
k=1,l=1 is the K × L matrix with

Pkl = pl(ek) and q = (q1, . . . , qL). For an arbitrary x ∈ H we consider the
following minimization problem

inf
ãP

∥∥∥∥∥x−
K∑
k=1

ãkek

∥∥∥∥∥
H

. (35)

The following theorem shows how the coordinate vector for the optimal solution
can be found. First we need some notation. The mass matrix M = (Mkl)Nk,l=1 for

the basis {ej}Nj=1 is

Mk,l = 〈ek, el〉H, k, l = 1, . . . ,K.

With this notation the norm of a vector a ∈ E is

‖a‖2
H = aMa∗

where a∗ = (ā1, . . . , āK)T is the Hermitian conjugate of the coordinate vector a.

LEMMA A.1. Assume that M, P and q are as above. Then for each x ∈ H there
exists an unique optimal solution a ∈ E to the minimization problem (35). The
coordinate vector a = (a1, . . . , aK) for a is given as the solution to the linear
problem

(a λ)M̂ = (b q)
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where M̂ is the matrix

M̂ =
(

M P
P∗ 0

)
,

and b = (b1, . . . , bK) is row vector with components

bk = 〈x, ek〉H, k = 1, . . . ,K.

Here λ = (λ1, . . . , λL) is the vector with Lagrangian multipliers for the problem.

Proof. The existence and uniqueness of an optimal solution follows since we opt-
mize a strictly convex norm over an affine finite dimensional subspace. Recall
the following result for constrained optimization due to Lagrange. A necessary
condition for a point x to be a minimum for the problem

inf{f(x) : gl(x) = 0 for all l = 1, . . . , L}
where x ∈ RK and L ≤ K, is that the Lagrange function

L(x,Λ) = f(x) +
L∑
l=1

λlgl(x)

where Λ = (λ1, . . . , λL), satisfies

∂L

∂xk
(x) = 0, k = 1, . . . ,K

and
gl(x) = 0, l = 1, . . . , L.

In the rest of the proof we restrict ourselves to real Hilbert spaces. For complex
hilbert spaces we only have to split up all complex variable into real and imaginary
parts and treat them as two separate real variables. With the definition of the
vectors a, b and the matrix M, we have for the object function f(a) = ‖x− a‖2

H

f(a) = ‖x‖2
H − 2〈a, x〉H + ‖x‖2

H

= ‖x‖2
H − 2

K∑
k=1

akbk +
K∑

k,l=1

akMklal,

where b is defined as above. The constraints are

gl(a) = 2

(
K∑
k=1

akpl(ek) − ql

)
, l = 1, . . . , L.

The factor 2 is a matter of convenience. The Lagrange function becomes

L(a,Λ) = ‖x‖2
H − 2

K∑
k=1

akbk +
K∑

k,l=1

akMklal + 2
L∑
l=1

λl

(
K∑
k=1

akpl(ek) − ql

)
.

Differentiation with respect to ai yields

0 =
∂L

∂xi
(a,Λ) = −2bi + 2

K∑
k=1

akMki − 2
L∑
l=1

λlpl(ei).
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We have here used that M is symmetric: Mki = 〈ek, ei〉H = 〈ei, ek〉H = Mik.
Lagrange’s criteria in matrix form becomes

aM + ΛPT = b

and the constraints are
aP = q.

This is the equation system given in the lemma in the real case. It is easy to see
that it has a unique solution under the assumptions that {ek}Kk=1 is a basis for E
and the constraints are linear independent.
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