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Abstract
We study approximate solutions of a slightly viscous conservation law in one
dimension, constructed by two asymptotic expansions that are cut off after the
third order terms. In the shock layer an inner solution is valid and an outer solution
is valid elsewhere. The two solutions are matched in a matching region.

Based on the stability results in [10] we show that for a given time interval the
difference between the approximate solutions and the true solution is not larger
than ����, where � is the viscosity coefficient.
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1 Introduction
Computations in one and two dimensions presented in e.g. [1], [3] and [4] indicate
that numerical solutions of conservation laws obtained by a higher order method
degenerate in order of accuracy in space downstream of a shock layer.

Analysis of the source of the degeneracy have been made in e.g. [1], [2],
[4] and [8] In [2] and [8] we study the steady state solution of slightly viscous
hyperbolic systems of conservation laws with a lower order term. We base our
results on the existence of matched asymptotic expansions. In the shock layer an
inner solution is valid and an outer solution is valid elsewhere. The two solutions
are matched together in the so called matching region. However, in [2] and [8] we
do not prove that the asymptotic expansions exist.

In this report we consider

��� � ������ � ������ �� � � ��� � � ��
����� �� � �����	

(1)

where �� � ��, � � �� � �
�, � � � and � is small. We shall investigate how

well the first two terms of an asymptotic expansion approximates the solution of
(1).

With � � ��
�, 
 being the grid size in a calculation, (1) is a so called model
equation for a first order numerical scheme, see [13]. In this report we study an
approximate solution of (1), ��, constructed by the first three terms of the inner
and the outer expansions, respectively. The first term in the outer solution is the
solution of the inviscid system. Based on the stability results in [10] we show that
the difference between the approximate solution and the true solution is not larger
than��������, � � ��	��� 	�. This means that the difference between the solution
of (1) and the corresponding inviscid system is to leading order the next term in
the outer expansion. Since the result in [10] is for a traveling wave, corresponding
to two constant states separated by a shock and moving with constant speed, we
have to assume initial data such that the solution is close to the traveling wave.

In [14] the first terms in the expansions are used to analyze and eliminate the
degeneracy to first order downstream of shocks observed in computations of time
dependent solutions.

In [2], [8] and [14] the viscosity coefficient is a function of �. A larger vis-
cosity coefficient is switched on in the shock region and a smaller is switched on
elsewhere. In this report we only consider a constant viscosity problem. Prelimi-
nary studies indicate that the inclusion of a variable viscosity coefficient seems to
effect the analysis presented in this report in a minor way. However, the stability
analysis in [10] has to be extended.

The contents of this paper resembles the analysis presented in [6]. However,
only weak shocks are considered in [6]. The results presented in this report holds
for classical Lax shocks of arbitrary strength, under the assumption that a shock
profile exists and is linearly stable.
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2 Statement of the Problem

In this section we state the problem and the assumptions.

To begin with consider the inviscid problem

�� � ����� � �� �� � � ��� � � ��
���� �� � �����	

(2)

Here, ���� is a piecewise smooth function. Let � ���� denote the Jacobian of the
flux function. We assume that the eigenvalues of � ����, denoted 
�, � � 	� 
� 			� �,
are real, distinct and ordered in increasing order.

For the initial condition we make the following assumption.

Assumption 2.1 The function �� is smooth except at � � � and it is constant
outside a ��	�-domain around the discontinuity, i.e. for some �

����� �

�
�� � � �
�� � � ��

We will consider the problem in some time interval, � � � � � . We make the
following assumption about the solution

Assumption 2.2 The solution ���� �� of Eq (2) is a single shock solution up to
time � . That is, � is smooth except at a point of discontinuity, � � ����, travel-
ing with speed ��. There we require the solution to satisfy the Rankine–Hugoniot
condition

����
 � �� 
 at � � �	 (3)

Here ��
 � ���� �� � ��� � ��, where ���� �� � ���Æ��� ���� Æ�. Also we
assume that ��� �� together with some �� satisfies the Rankine-Hugoniot condi-
tion.

We call the discontinuity a ��shock if it in addition satisfies the Lax entropy
condition [12],


���� � �� � 
�� �


�� � �� � 
�����

where 
�� � 
����������. This means that exactly ��	 characteristics impinge
on the shock. In this paper we only consider 1-shocks. Also, the matrix

� �
�
��
�� ��


�
(4)

is non-singular. Here ��
�� are the eigenvectors of �� corresponding to the eigen-

values 
�� � 

�
� 	� 			� 


�
� .

Remark: For simplicity 1-shocks are considered in this paper. This is since in
a 1-shock only one side of the shock are influenced by the first order error. For
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other �-shocks, however, both sides of the shock is polluted. The analysis is the
same for all values of �, but the notation becomes more troublesome for � 	� 	.

The inviscid problem (2) is connected to Eq (1) in the following way. Many
numerical solutions of (2) can be viewed as higher order accurate solutions of (1).
See e. g. [13]. For strong shocks there are no general results on the existence of
viscous profiles. Therefore we make the following assumption.

Assumption 2.3 We assume that at each instant there is a viscous profile con-
necting the states on either side of the shock, that is for each � � ��� � 
 there
exists a smooth solution of

� ������	 � ����	 � �		

���	��� ���� � �������� ��	 (5)

Also, the solution depends smoothly on boundary data. Especially we assume
that a viscous profile corresponding to ��� �� and �� exists. Denote this profile
by �����.

The results of this paper are based on the stability result in [10] for ��. The
following assumption is clearly necessary for the stability of the viscous profile
��.

Assumption 2.4 Consider the eigenvalue problem

��		 �
�
�����

�
	
� ���� 
�
� ��

��
�� ������ ���

���� � � ��������� ���	
(6)

We assume there are no eigenvalues with Re� � �� � 	� �� and the dimension of
the eigenspace connected with the eigenvalue � � � is one.

Clearly, �� will approach the end states exponentially fast and �� and its deriva-
tives will be uniformly bounded. Also, � � � is an eigenvalue with corresponding
eigenfunction ��	 .

Initial condition for (1) in the outer region is

����� � ������ � ������� � �������	

Here �� is the inviscid initial condition and the functions �
, � � 	� 
� � are smooth
except at � � � and are non-zero only on an��	�-domain around the shock. That
is,

����� � �� ��� � �� � � 	� 
� �	

Let


��
���� �  �� � � �� 	� 
� ��

where the point of discontinuity is excluded from the integral. In the inner region
the initial conditions will be given by the construction. See Section 4.
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3 Asymptotic Expansions

In this section we introduce the asymptotic expansions in the regions inside and
outside the shock layer. Also, we derive the matching conditions valid in the
matching regions. For a detailed presentation of matched asymptotic expansions
we refer to [7] and [11].

Outside the shock region we assume that the solution can be expanded in
powers of � as

����� �� � ����� �� � ������ �� � ������� �� � 			 (7)

The terms in the expansion (7) are solutions of the following equations

��	� � ��� � ������ � � (8)

���� � ��� � �� ��������� � ���� (9)

����� � ��� � �� ��������� � ���� � 	



�� ���������� ����� (10)

����� � ��� � �� ��������� � ���� � 	



�� ���������� ����� �

	

�
�� ����������� ��� ����� (11)

Here � �������� !� and � ��������� �� �� are quadratic and cubic terms in the Taylor
expansion of ���� � � !�, respectively.

The initial data of (8) – (11) are

����� �� � ����� (12)

��������� �� � ��������� (13)

where �� � � �� 	� 
� � are introduced in the previous section.
By construction, for � � � � � ,

����� �� � �� � "� ������ �� �
�� ���� � �� �
�
� � � 	� 
� �	

Here 
�� denotes the #th eigenvalue of � �����, ordered in increasing order.
In the shock region the solution is expanded as

����� �� � $���� �� � �$���� �� � ��$���� �� � 			 (14)

Here � is the stretched variable

� �
�� ����

�
� �
��� �� (15)

where

�
��� � ����� � ������ � ������� � 			 (16)
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is the expansion of the perturbation in the shock position. The equations for dif-
ferent orders in � are

��	� � $�		 � ��$�	 � ��$��	 � � (17)

���� � $�		 � ��$�	 � �� ��$��$��	 � ���$�	 � $�� (18)

����� � $�		 � ��$�	 � �� ��$��$��	 � ���$�	 � ���$�	 � $�� �

	



�� ���$���$�� $���	 (19)

����� � $�		 � ��$�	 � �� ��$��$��	 � ���$�	 � ���$�	 � ��$�� � $�� �

	



�� ���$���$�� $���	 �

	

�
�� ����$���$�� $�� $���	 (20)

Both expansions are valid in the matching regions and are connected by the so
called matching conditions. As � � �� the inner solution shall approach values
of the outer solution at � � �� �. The outer solution expressed in the variable �
is

�� � ����� � ����� ��
� �� � ������ � ����� ��
� �� � ������� � ����� ��
� �� �

������� � ����� ��
� �� � 			

Taylor expansion around � � �� � yields

����� �� � ����� �� �� � ��� � �
������� �� �� �

	



���� � �
�

����� �
	

�
���� � �
�

������ �

������� �� �� � ��� � �
���� �
	



���� � �
�

������ �

�������� �� �� � ��� � �
����� � ������� �� �� ������

It follows that the matching conditions are,

$���� �� � ����� �� �� � o�	� (21)

$���� �� � ����� �� �� � �� � ��������� �� �� � o�	� (22)

$���� �� � ����� �� �� � �� � ��������� �� �� �
	



�� � ���

����� �
����� � o�	� (23)

$���� �� � ����� �� �� � �� � ��������� �� ��� �������� �� �� �
�������� �� ��� �� � ��������� �

	



�� � ���

����� �

	

�
�� � ���

������ � o�	� (24)

in the matching region. Note that the o(1)-terms are exponentially small, i.e. %��	�.
We also need boundary conditions for the outer solution at the shock. The

boundary conditions for �� are the Rankine-Hugoniot condition (3) with � � ��.
No boundary conditions are needed for the upstream branch of �� at � � ���,

since the flow is supersonic upstream and all characteristics go into the shock.
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The boundary conditions at � � �� � are achieved in the following way. Let
��� and ��� be points in the matching regions upstream and downstream of the
shock, respectively. By integrating (1) over the interval ����� ���
 we have

����
���

��� � ������
�
�
�

���
� �����


���
���

� � (25)

Since ��� and ��� are functions of � it follows that

����
���

����� �
�

��

����
���

����� ����
��

������� �
����
��

������� (26)

The matching points moves with the speed of the viscous shock layer, that is

����
��

�
����
��

� ��� � ��� � �� ��� ������ (27)

With the change of variable

� �
�� ����

�
� �
���

and the use of the inner expansion it follows that

����
���

����� � �
�

��

�����
����

�$� � �$� � ��$
 ��������� �

� ��� � ��� � �� ��� ����������
�
�
�

���

By using the matching conditions we obtain

����
���

����� � �
�

��

�����
����

�$� � �$� � ��$� ��������� �

� ��� � ��� � �� ��� �����������
 � ���� � �� � ������
 �������

Here �

 �� �


��
��
��.

Also, by using the inner expansion and the matching conditions, the second
term in Eq (25) can be written as

������
�
�
�

���
� ����� � ������� �� �� � �� � ��������� �� ��� ��������

����� � ������� �� �� � �� � ��������� �� ��� �������

� ������
 � ��� �������� � �� � �������
 ������

Similarly, the last term in Eq (25) can be written as

�����

���
���

� �����
 � ������� �� � �������
 ������ (28)

13
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It follows from Eq (25) that for the ��	� and ����-terms, respectively, it
should hold that

��	� � � �����
 � ������
 � � (29)

���� �

��
��

$��� � ����� � �� � ������
 � ������
 � (30)

�� �������� � � � ������
� ����
 � ��	� � � (31)

In (31) we have used that $� converges to its boundary states exponentially
fast. Hence, ���� can be replaced with �� with only introducing exponentially
small errors.

Since �� satisfy the Rankine–Hugoniot condition by assumption 2.2 Eq (29)
is fulfilled.

After some elementary calculus and algebra we end up with the boundary
condition for �� at � � �� � from Eq (31), namely

����� �� � ���� � ��������� �
�

��
������
� � ����
 � � ��� � �������� ���

where

�� �
�

��
�

��
��

�$� � ����� �

��
�

�$� � ������

and

�� � � ������� ��� �� � � ������� ���

Finally, the equations for ����� �� and ����� are

��� � ��������� �� � ������
�� � ���� � ����
 � (32)

� ��� � �������� ��� (33)

����� � �

or equivalently�
!�
��

���

	
�

�
��
�� � ��� �

� �	

	��
���&��� �� (34)

����� � � (35)

where

&��� �� � ���� � �����
� � ����
 � � ��� � �������� ��� � ��
� �
�� � ���!�

� �

In (34) !�
�� are the characteristic variables of ���� � �� going out of the shocks,

!�
� is the characteristic variable going into the shock, ��

�� � �����
�� � 			� 

�
� �,

��
� is the eigenvector of �� corresponding to the eigenvalue 
�� and � is defined

by (4). That is, in general ����� �� 	� � downstream of the shock.
By the assumptions on �� and $� it follows that the forcing in (34) is a smooth

function of �. Thus, one can show by standard methods, see [9], that if �� is smooth
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away from � � �, then �� and its derivatives are smooth except at � � ����.
Condition (34) is the solvability condition for Eq (18). Thus (18) has a smooth
solution which approaches its limiting shape exponentially fast. A proof of this
can be found in [10]. Since the forcing in (18) depends smoothly on � so will $�.

The procedure can be continued. Boundary conditions for ��, ' � 
 at
� � �� are derived analogously by including higher order terms in � in the
above derivation. These boundary conditions are the solvability conditions for
the equations $�, ' � 
. Smoothness follows as before.

Note that for the special case

����� �

�
�� � � �
�� � � �

the forcings in (34) and in (9), respectively, vanish since ��� � ���� � � and
�� � �. By standard energy estimates there is a constant (�� � such that for
� � ��� � 


�����������	���

��� � �����������	

����� � (�� �������������	���

��� � �����������	

������

(36)
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4 The Approximate Solution

In this section we construct an approximate solution to Eq (1) by matching trun-
cated inner and outer solutions presented in the previous section.

We define

���� �� � $��
�� ����

�
� �
���� �� � �$��

�� ����

�
� �
� �� �

��$��
�� ����

�
� �
� �� � ��$��

�� ����

�
� �
� ��

�
��� � �� � ������ � �������

)��� �� � ����� �� � ������ �� � ������� �� � ������� ��

where ��, � � �� 	� 
� � satisfies (8)-(11), and $�, � � �� 	� 
� � satisfies (17)-
(20), respectively. Also, the boundary conditions at � � ��� and the matching
conditions are fulfilled.

We introduce the approximate solution to (1), denoted ��, by

����� �� � *�
�� ����

��
����� �� � �	�*�

�� ����

��
��)��� �� � ���� �� (37)

where *�+� � ,�� ���, � � *�+� � 	

*�+� �

�
	 �+� � 	
� �+� � 
	

Hence, � is a parameter that determines the rate of the switch between the inner
and outer solution, that is the width of the matching region. From the matching
conditions, (21) – (24) it follows that � � ��� � 	�, see [5]. The term ���� �� contains
higher order corrections which will be determined below.

The approximate solution, ��, satisfies

��� � ������ � ����� �

�

��� -�
����� �� � ����� �� � ����	

where

-� � �	�*�����)��� ��� � ������ �� ������� � ��� ������� � ��� �������
��� ��� ���������� ����
�� ���

���������� ���� �� �
�
����������� ��� ����� � �������

-� � *�������� ��� � ��$��� �� ��$��$� � ��� ��$��$��
��� ��$��$� � �� ���

���$���$�� $��
��� ��� ���$���$�� $��� �� �
�

����$���$�� $�� $���� � ��$�� ��
��� ���$� � ���$� � � ���$� � ���$� � � ���$� � �� ���$����

-� � *������ ���)��� ��� � �*������� �� �)��� ���

�*������ ���)��� ���� �*�������� ��� � ��)��� �����
��*���� �� � �	�*�)��� ���� �*������ ��� � �	�*���)��� ������

-� � �� � ��������
��� ���� � ����

Here � �������� !� and � ��������� �� �� are quadratic and cubic terms in the Taylor
expansion of ���� � � !�, respectively.
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We have that

��'' -� � ���� �� � �� � ��� �� � ��	�� � � � � ��
��

���
-���� �� � ��	����
� � � �� 	� 
� �

(38)

Also,

��'' -� � ���� �� � ��� �� � 
�� � � � � � ��
��

���
-���� �� � ��	����
� � � �� 	� 
� �

(39)

and

��'' -� � ���� �� � �� � ��� �� � 
�� � � � � � ��
��

���
-���� �� � ��	��
��
�� � � �� 	� 
� �

(40)

In (40) we have used the estimate

.
������ �� �)��� ��� � ��	��
��
�� on ���� �� � �� � ��� ����� � 
�� � � � ��� � 
�	
(41)

which can be obtained from the matching conditions.
Let ���� �� be the solution of

�� � ���� �

�

��� -���� ��
���� �� � �	

(42)

or in the scaled variables �� � ��

��
�

�� � �"�.

��� � ���������� � ����� � �

�

��� -����� ���
�� � as ��� ��
����� �� � �	

(43)

Remark The initial data ���� �� is allowed to be of����� in the shock region and
zero elsewhere.

The equation for �� hence becomes

��� � ������ � ����� � ������� ���� � ����	

Below, we use the notation

����
� ������� �� �

�


��

��
��

�.
����� ������ ����
� �������� �� �

�


��

��
��

�.
������� �������

����
� ������ �� �

�


��

��
��

�.
����� ����� ����
� ������� �� �

�


��

��
��

�.
������� ������
����
� ����� � ���� ���
� ���

If ' � � we suppress it.
For future reference we here present some estimates on ����� ���.

Lemma 4.1 Let ����� ��� be the solution of Eq (43). The following estimates hold
for �� � ��� �"�
.

���������� � ��	��
������� (44)

���������� � ��	������ (45)

������ � ��	���� (46)
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Proof Firstly, by an energy estimate derived from (42) it holds that

����
� ������ �
��

�

��-�
� /������/

where - � -� � -� � -�. By definition

����
� ������ � �

��
��

����� ���������� �
�
��

��
��

������ ����������� �
�
�����
� ��������

Hence

����
� �������� �
	�
�
����
� ������ �

	�
�

��
�

��-�
� /������/

Now, by (38), (39) and (40), respectively,

��-��
� /����� � �

�
������
���
��

�-���� /��������� � ��	���

��-��
� /����� � �

�
���
�����

�-���� /��������� � ��	�������

��-��
� /����� � �

�
������
�����

�-���� /��������� � ��	������

Since � � ��	� it follows that

����
� �������� � ��	��
������� (47)

To estimate ��� and ����� we first estimate �� and ���. Differentiation of Eq
(42) w.r.t. � and partial integration it follows that

�

��
��.
������� � ����.
��

� ������ � ��.
��
� ������ ��.
��-���� �

	

�
��.
��-����� � � 	� 


Hence

��.
������ �
	�
�
�

��
�

��.
��-�
� /�������/����

Now,

��.���
� ������ � �
��
��

������ ���������� � ��
��
��

�
��
�������� ������������ �

�	
�
��.����
� ��������

��.����
� ������ � �
����

��.�����
� ��������
It follows that

��.
�������� � �
��
�
���.
������ � �
���

��
�

��.
��-�
� /�������/����
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By (38),(39)and (40), respectively,

��.
�-��
� ������ � �����
��
��.
�-��
� ������ � �����

������ �
��.
�-��
� ������ � ���
����
�� �

and since � � ��	�, it holds that

��.
�������� � ���

���
���������� l=1,2 (48)

Hence

����
� ���������� � ���
�������� (49)

We now proceed to estimate ����
� �������� . We let ���� �� � ���0�����%�'����"������
and 1��� �� � ��2������ ��� ���� ��� 			� ���� ���. The solution of (42) is hence

���� �� �

��
�

��
��

1��� +� �� /���
��

���

-��+� /���+�/	

It follows that

����
� ������ �

��
��

�
��

�

��
��

1��� +� �� /�-�+� /��+�/ ��� �

��
�

��
��

��
��

1��� +� �� /����-�+� /���+�/ �

��
�

��-�
� �������/

where as before -��� �� � -���� �� � -���� �� � -���� ��. By definition

����
� ������ �

��
��

����� ����� � �

��
��

������ ������� � �����
� ��������

Hence

����
� �������� �
	

�
����
� ������ �

	

�

��
�

��-�
� /������/

Since

��-����� � ��	���

��-����� � ��	�����

��-����� � ��	����

it follows that

����
� �������� � ��	������ (50)
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Differentiation w.r.t. � of Eq (42) yields

�.
���� � ��.
����� � .
�- � � 	� 


By partial integration it follows that

��.
������ �

��
��

�
��

�

��
��

�� +


���� /�
1��� +� �� /�.
��� -�+� /��+�/ ��� �

��
�

	�
�0���� /�

��
��

��
��

�.
��� -�+� /���+�/ � ��������

��
�

��.
��� -�
� �������/

By definition

��.������ �

��
��

�.����� �

��
��

�.������� � ��.��������

��.������� �

��
��

�.������ �
	

�

��
��

�.�������� �
	

�
��.���������

hence

��.
�������� � �

�����.
������
With

��.�-����� � ��	�����

��.�-����� � ��	���

��.�-����� � ��	����

it follows that

��.
����
� �������� � ��	��

���
����������� � � 	� 
 (51)

and hence

����
� ���������� � ��	������ (52)

Finally, we see that

����
� ����� � ���
�
�

��
�

��
��

1��� +� �� /�-�+� /��+�/ � �

���
�

��
�

���
�
�-�+� /��

��
��

1��� +� �� /��+�/ �

��
�

��-�
� ������/

By (38)–(40) we have that

����
� ����� � ��	����

which proves the lemma.
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5 Stability Analysis

In this section we shall show that in a given time interval � � � � � the difference
between the approximate solution, ��, that was defined in (37), and the solution
�� of (1), is small.

We define !��� �� as

!��� �� � ����� ��� ����� ��

It follows that ! satisfies the equation

!� � �� �����!�� �3���� !�� � �!�� � ����� � ��� �������
!��� �� � �

(53)

Here3���� !� � ������������� �����!, which by the smoothness assumptions
on � satisfies �3� � (�!�� and �3�� � (�!��!�� for small !.

Below, we will use the stability results presented in [10]. However, to apply
these results, the Jacobian in the second term in (53) should be evaluated along a
traveling wave solution of (1). We will use ��, the profile connecting �� with ��

and moving with speed ��.

Introducing �� and the scaled variables �� � �����
� � �� � �

� into (53) yields

!�� � ������!��� �3���� !��� � �4���� ���!��� � !���� � 5 ���� �����	 (54)

Here ����� � � ��������� ��� , 4���� ��� � � ���������� ������ ������ � ��������� and
5 � ���� � ��� �����. By the smoothness of � and the properties of �� and ��

we have

�4� � ,��� � ����
�4��� � ,���� � ���� ����� � ������
�5 � � ,����
�5��� � ,����� ������	

(55)

From [10] we have the following Lemma

Lemma 5.1 Consider (54) with 3 � � and 4 � �. Under the assumptions 2.2,
2.3, 2.4 there is a constant 6, independent of �� � �"� and 5 such that the
solution satisfies the estimate

� ��

�

��
� ���
���� � 
���
� ���
�������

� 6


�� ��

�

5 �
� ���
������

��
�

� ��

�

5 �
� ���
�������

�
	 (56)
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We need to estimate the right hand side of (56). By (55) and Lemma 4.1

����
�

��
��

�5 ���� ����������� � ,

����
�


��
� ��
������� � ,��
�����

����
�

��
��

�5������ ����������� � ,

����
�


��
� ���
��������� � 7��
�����

����
�

��
��

�5 ���� ���������� � ,

����
�


��
� ���
������ � 7��
�����

����
�

��
��

�5������ ���������� � ,

����
�


��
� ���
������� � ,��
���� (57)

It follows that� ��

�

5 �
� ���
����������

�� ��

�

5 �
� ���
��������

�� � (������ � ������ � 
(�����	

(58)

The last inequality follows since � � ��	��� 	�.
We expect the nonlinear problem to satisfy a similar estimate. Therefore we

introduce the scaling

! � Æ �!� 5 � Æ �5 � Æ � ������ (59)

in (54), yielding

�!�� � ��� ����� ���� �!��� � Æ �3���� �!��� � �4 �!��� � �!���� � �5��	 (60)

Here 3���� Æ �!� � Æ� �3���� �!�, since 3 is essentially quadratic in !.
In [10] a corresponding nonlinear estimate is proved by considering the omit-

ted terms, �4!�� and �3�, as part of the forcing. Therefore we need to consider

� ��

�

4!�
� ���
����������

�� ��

�

4!�
� ���
��������

�� � 8

� ��

�

!�
� ���
�����������

8 � �4��� � �4���� �

� ��

�

4�
� ���
���������	

The nonlinear term is estimated using its quadratic property and a Sobolev esti-
mate for the maximum norm. From [10] we have the following theorem

Theorem 5.2 If the assumptions 2.1, 2.2,2.3,2.4 are satisfied and Æ and 8 are
sufficiently small then the solution of (60) satisfies

� ��

�

 �!�
� ���
���� � 
 �!��
� ���
������� � �6(	 (61)

Here6 and( are the constants appearing in Lemma 5.1 and in (58), respectively.
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The quantity Æ can be made sufficiently small by choosing � sufficiently small.
The quantity 8 must also be sufficiently small. Therefore we make the following
assumption

Assumption 5.3 The initial data of the zeroth order term, (12), are constant
states separated by a shock, that is

����� �

�
�� for � � �
�� for � � �

(62)

By assumption 2.2 �� together with �� satisfies the Rankine-Hugoniot condi-
tion. Clearly the zeroth order term, ��, will be the constant states connected by a
shock moving with speed ��, that is

����� �� �

�
�� for � � ���
�� for � � ���

It follows that the boundary condition for �� at the shock is homogeneous. Thus


��
���� � ( �	

see (36). Further,

���� �� � ���
�� ���

�
� ����� )��� �� � ����� �� � ��� ������	 (63)

Since ��� is bounded, see Lemma 4.1, and �� approaches its limiting values expo-
nentially we have

��� � ���� � ����� � ������ � �(	

Therefore �4�� � �4��� � (�, and if � is sufficiently small

����
�

��
��

�4�������� �
����
�

��
��

��� � ���������� �

,�
����
�

�
���������

�������������������

����
�

�
����
����

�����������������������������������

� ,��� �
	

�
%��

���
�  �

�� � ( �
� (64)

Here we have used (63) and (37). Similarly,

����
�

��
��

�4���������� �
����
�

��
��

,���� � ��� � ����� � ������������ �

,��
� �

����
�

�
����
����

���� � ��� � ������� � ������������� � ( �
�	 (65)

Note that from (61) it follows that � �!���� ���� is bounded uniformly. Thus we
have the following theorem
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Theorem 5.4 If all the assumptions are satisfied and  � is sufficiently small then
there exists constants ( and �� � � such that for all � � ��

������ ��� ����� ��� � (������ �� � � ��� � � � � �	

Here ( is independent of �� � and �.
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6 Conclusions
In this report we show that the solution of a slightly viscous conservation law
can be approximated well by the first two terms in a matched asymptotic expan-
sion.We prove the results for cases where the solution is close to a traveling wave.
If a result corresponding to Lemma 5.1 was available where the Jacobian is evalu-
ated along some more general solution than a traveling wave, this restriction could
probably be removed.
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