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1 Introduction

The parabolic wave equations (PE’s), which this paper is built upon, were first used in the
1940s within radio wave propagation in the atmosphere. Since then the field of use has been
extended (seismology, optics, plasma physics), and in the early 1970s Hardin and Tappert [1]
started to use PE’s in underwater acoustics. Today it is one of the most important wave
propagation models in underwater acoustics [3], [7] and [9]. Several theoretical and applied
works on PE’s have been carried out at FOI e.g. [10-14], and this thesis is part of an ongoing
development of PE models at FOI.

PE’s are approximations to the classical wave equation, or the Helmholtz equation for mono-
frequency sound fields. PE-models rely on the presence of a predominant direction of wave
propagation. In underwater acoustics this direction is horizontal with a small angular spread in
the vertical plane. For the two most common PE’s, the standard parabolic equation (SPE) and
the wide-angle parabolic equation (WAPE), the propagation angles around the horizontal
plane should be less than 15° and 40° respectively. As is customary in underwater acoustics
we shall assume that the fields are azimuthally symmetric around the source in the horizontal
plane, which justifies calculations in two dimensions
(2D).

Here a 2D coordinate system will be used, where x is the
horizontal axis and z is the vertical, counted positive
downward going through the source, see Figure 1. The
physical problem is posed on the unbounded z-interval
(-∞, ∞), while one usually is interested in the solution in
the water and sometimes a little bit into the bottom. This
is achieved by applying a Dirichlet (pressure release)
boundary condition (BC) at the surface. However, there is
no well-defined lower boundary on which a value of
pressure (or velocity) can be specified. A standard
strategy to cope with this is to introduce an absorbing
layer terminated by a Dirichlet BC. This artificial
damping layer costs lots of “unnecessary” computation
and can cause reflections when using a less correct
damping profile. There exist many ideas of how to get an Figure 1 Sketch of the
optimal damping profile, but without a correct half-space general solution domain.
solution, it’s hard to say which one to use or how much it
modifies the correct solution.

The need for a “false bottom” can be eliminated by the use of a transparent boundary
condition (TBC), which allows waves to leave the computational domain without
backscattering. Such a BC simulates the acoustic response of a homogeneous, half-infinite
bottom. This BC is usually applied at a horizontal interface
z = zDTBC such that the bottom below is homogeneous. The chief advantage is that the depth
wise extension 0≤ z ≤ zDTBC is much less then using absorbing layers. The first one to
formulate a TBC for the SPE in underwater acoustics was Papadakis [15], whose work has
been followed by several others [16] and [17]. Recently Arnold and Ehrhardt [2] introduced a
somewhat new approach. They constructed discrete transparent boundary conditions
(DTBC’s) by solving the finite difference equation for SPE and WAPE for a homogeneous
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half-infinite bottom. It implies that they are equivalent to solving the discrete equation over a
half-infinite domain. This approach ensures complete transparency and stability. The
disadvantage is that the step-size in range must be uniform.

The purpose with this thesis is:

• implement DTBC’s

• validate the performance of DTBC’s on a set of reference problems

• make comparisons with the absorbing layer approach regarding accuracy and
computational efficiency

Our approach when constructing the DTBC’s is similar to what Arnold and Ehrhardt does in
[2], and implies an analytical solution of the PE’s in the bottom half-space. This DTBC can
then be applied immediately at the water bottom interface, or a bit down into the bottom,
resulting in the correct solution in the restricted domain z∈(0, zDTBC), where zDTBC is the depth
where one chooses to cut the computational domain.

The results from this thesis can be summarised as follows:

• DTBC’s have worked excellently on all test examples

• the computational cost is significantly less with DTBC’s versus absorbing layers if
the step-range is uniform

• the accuracy of the DTBC solutions are much better then the ones obtained with
damping layers
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2 Theory

In this chapter we will derive the transparent boundary conditions (TBC’s), with the
Helmholtz equation as starting point.

2.1 Derivation of the SPE and WAPE approximations

Hydrodynamic and adiabatic relations between pressure and density leads to the acoustic
wave equation in an ideal fluid, which for time-harmonic fields ( tiep ω−∝ ) leads to the
Helmholtz equation:

0
11 2 =+








∂
∂

∂
∂+








∂
∂

∂
∂

pk
z

p

zx

p

x ρ
ρ

ρ
ρ . (1)

The variables in the equation above and the ones used later on in this section are defined in
Table 1.

Table 1 Definition of used variables.

Variable Definition Unit
p Acoustic pressure Pa
ρ Density kg/m3

k 







+

)log(4
1

e
i

c π
δω

, complex wave number m-1

ω 2πf, angular velocity rad/s
f Frequency Hz
c Velocity of sound m/s
δ Absorption dB/λ
λ c/f, wavelength m

Using the mathematical identity
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ρ
ρ , (2)

and assuming that the second derivative of the density, at the right hand side (RHS), is
negligible, i.e. small density fluctuations in x, Eq. (1) becomes
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where pp
ρρ

1= .

Factoring the operators in the above equation into a product of outgoing and incoming
operators gives

( )( ) [ ] 0, =−+− ρρ pQPipiQPiQP
inout
4342143421

, (4)

where

.
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∂+=
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zz

kQ

x
P

The commutator term vanishes when the media parameters are range-independent. Otherwise
we need to assume that the range dependence is so weak that it can be neglected. We can now
write down the parabolic wave equation (PE) also known as the one-way approximation,

( ) 0=− ρpiQP . (5)

Introducing the reference wave number
0

0 c
k

ω= , where c0 usually is the lowest sound velocity

of the water, and rewriting the square root operator, Q, as

,1
1

0
2 qk
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the PE can be written in the more compact form

010 =





 +−

∂
∂

ρpqik
x

. (7)
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By approximating q+1 with the Taylor expansion of the first degree, q
2

1
1+ , and with the

more accurate rational approximation
qp

qpp

2

10

1+
+

, one get the standard parabolic equation

(SPE) and the wide-angle parabolic equation (WAPE). Here the values of the constants p0, p1

and p2 will be set to 1, 0.75 and 0.25, the so called Claerbout approximation. The
approximated equations can now, substituting back the pressure variable, be written as

SPE:
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2 0
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where
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2
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WAPE:
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The SPE can be shown to be a good approximation of wave propagation in the far field within
a 15-degree angle from the horizontal, and the WAPE works up to 40 degrees [3].
A common way to make it possible to increase the step size in the numerical scheme is to
reduce the wave dependence in the propagating direction, and calculate with the envelopes.
This is achieved by substituting p with xikue 0 , which gives the base equations that this thesis is
built upon

SPEenv:
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where

0
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WAPEenv:

0
11 =








∂
∂

∂
∂++











∂
∂+






































∂
∂

∂
∂

∂
∂

z

u

z
i

u
i

u

x

u

xzz envenvenv ρ
ργ

ρ
χ

ρ
β

ρ
ρ

ρ
ρ (11)

where

.2

),(2

,3

0

22
00

2
0

2

k

kkk

kk

env

env

env

−=
−=

+=

γ
χ

β

Hereafter the index env will be dropped and all further calculations will be done with the
envelopes.

2.2 Construction of discrete transparent boundary conditions

When constructing the DTBC, the media parameters in the bottom below zDTBC are assumed
to be constant, which leads to the following simplifications of Eq. (10) and (11),

SPE:

0
2 2

2

0

=−
∂
∂−

∂
∂

ui
z

u

k

i

x

u α , x ≥ 0, z ≥ zDTBC (12)

WAPE:

0
2

2

2

2

=
∂
∂++

∂
∂+








∂
∂

∂
∂

z

u
iui

x

u

x

u

z
γχβ , x ≥ 0, z ≥ zDTBC. (13)

In this section the envelope equations, for the SPE and WAPE approximations, will be solved
in the bottom half-space for the three cases; continuous, discrete in x and discrete in both x
and z. The semi-discretization is made to simplify the analysis of comparison between the
continuous and fully discretized case.
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The continuity conditions at the interface zDTBC are given by

),(),( xzpxzp DTBCDTBC +− = , (14)

z

xzp

z

xzp DTBC
DTBC

DTBC
DTBC ∂

∂
=

∂
∂ +

+
−

−

),(1),(1

ρρ
, (15)

where the minus stands for the variable value just above zDTBC and the plus for the value just
below. Eq. (14) says that the pressure is continuous and Eq. (15) states the continuity of
particle velocity in the z direction at the boundary.

2.2.1 Solving the continuous SPE

For notational convenience we assume that zDTBC = 0. We shall also assume that u(0,z) = 0 for
z ≥ 0. To make Eq. (12) easier to solve it is transformed to the Laplace space,

0),(ˆ)(2
),(ˆ

02

2

=−+
∂

∂
zsuiski

z

zsu α , z ≥ 0. (16)

The solution to this equation, if assuming the solution to be bounded at z = ∞ and that the
initial condition )0,(ˆ su is given, can be written

ziskii
esuzsu

∗−∗= )(2 0)0,(ˆ),(ˆ
α

, (17)

where the imaginary part of the square root must be larger than zero for the solution to be
bounded. If we differentiate the above solution with respect to z and set z=0, Eq. (17) will be

)(2)0,(ˆ
)0,(ˆ

0 αisikisu
z

su −∗=
∂

∂
. (18)

By using the inverse Laplace transform formulas [8]

xie
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L α
πα
111 =







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−
− , (19)
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x

xu
suisL αα −

∂
∂=−− , (20)
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the boundary condition (18) can be expressed as a convolution,

ττα
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1

2)0,(
. (21)

It means that any solution to the SPE in the region x ≥ 0, z ≥ 0 will satisfy the BC in Eq. (21).
Together with the matching conditions in Eq. (14) and Eq. (15), it permits waves to enter the
region z ≥ 0 without any backreflection.

The BC in Eq. (21) is non-local in the sense that the convolution integral involves the entire
solution at the boundary from x = 0 up to the point where the BC is applied. Due to the causal
nature of the PE this solution can be considered as known.

The above derivation also appears in [16], where it was applied to parabolic models of water
waves.

2.2.2 Solving the semi-discrete SPE

We introduce a uniform grid xn = n∆x (n = 0, 1, 2…) while the z-variable is kept continuous.
The corresponding semi-discrete solution is denoted by un(z). Discretizing Eq. (12) in x, with
the Crank-Nicolson algorithm [5], leads to

[ ])()(
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)()( 1
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. (22)

Transforming Eq. (22) with the Z-transform,
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gives
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ζζαζζζζ ++
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∂+=

∆
−

. (24)

Solving Eq. (24), and as in the continuous case, assuming the solution to be bounded at
z = ∞ and with a initial condition )0,(ˆ ζu , the solution can be written



9

.
)1(

)1(4
2 0

0

)0,(ˆ),(ˆ
z

x

ki
ki

euzu
∗

+∆

−
+∗

= ζ

ζ
α

ζζ (25)

Differentiate with respect to z and set z=0, Eq. (25) can be rewritten as
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where
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4
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kC xSPE ∆
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Now using the mathematical identity that the inverse square root can be written as a sum of
Legendre polynomials [6]
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the inverse transform takes the form
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Using the above relation together with
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the Eq. (26) can be inverse transformed to
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where the weights ln-k are defined by
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and µ is given by

xSPExSPE
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2
−=µ . (33)

Eq. (31) is the semi-discrete transparent boundary condition, which corresponds to the
continuous one given by Eq. (21) but with the integral replaced by a sum.

2.2.3 Solving the fully discrete SPE

After this point it’s time to make the full discretization of the SPE. Starting with the semi-
discretized Eq. (23) and discretizing it in z with zj = j∆z (j = 0, 1, 2…) gives
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4

α
. (34)

Z-transforming the above equation in x and rearranging, gives the difference equation

( ) ,0)(ˆ)(ˆ12)(ˆ 11 =+−+ −+ ζζσζ jjj uuu

where σ is defined by









∆
−+








∆
+

+
∆=

x

i

x

izk 22

1

2 2
0 αζα

ζ
σ . (35)
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The solution to Eq. (35) is now, assuming the initial condition 0û to be given,

),(ˆ)(ˆ 0 ζγζ uu j
j = (36)

where γ is defined according to

σσσγ 21 2 −±−=

and demands it to be limited, as γ < 1. This since the modes should decrease, which leads to

the ignoring of the negative sign of the square root. Now the derivative is constructed

( ).ˆˆ
1

11ˆˆ
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01 uu
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(37)

Eq. (37) can in full be written as
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where
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,
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Using the same method as in the semi-discrete case, the inverse transform of Eq. (38), takes
the form

( )
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4 α
, (39)
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where the weights ln-k is defined by Eq. (32) and (33), but with the index SPE_x changed to
SPE_xz. This is the analogue of the continuous BC in Eq. (21), in which the convolution
integral is replaced by a summation.

2.2.4 Solving the continuous WAPE

As for the SPE the WAPE, given by Eq. (13), is Laplace transformed

0
ˆ

ˆˆ
ˆ

2

2

2

2

=
∂
∂+++

∂
∂

z

u
iuius

z

us γχβ , (40)

and using the same approach the solution is found to be

( )
,

)0,(ˆ)0,(ˆ
22 bas

issui

z

su

++

+=
∂

∂ χβ
β

(41)

where

( )
β

χβγ
2

+= i
a and

.
2β

χβγ −=b

Using the inverse formula given by Eq. (23) and [8]

( )
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0
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1 bxJe
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L ax−=











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− (42)

where J0 is the Bessel function of order zero, and the inverse transformed solution looks like
follows

( ) τττ
β
χ

τ
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xu x
xa∫


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
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0

0 )()0,(
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. (43)



13

2.2.5 Solving the semi discrete WAPE

Discretizing Eq. (13) in x gives

.0
2
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Z-transforming the above equation, and solving it the same way as for the semi discrete SPE,
and doing the same inverse transformation leads to the searched equation
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where the weights ln-k is defined by Eq. (32) and (33), where the index SPE_x is changed to
WAPE_x, and

( )γβχγχβ +∆+∆−= xixA xWAPE 24 2
_ ,

γχβ 2
_ 28 xB xWAPE ∆−−= and

( ).24 2
_ γβχγχβ +∆−∆−= xixC xWAPE

2.2.6 Solving the fully discrete WAPE

The full discretization of Eq. (13) takes the form
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Doing the same procedure as for the fully discretized SPE, the solution can be written
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where the weights ln-k is defined by Eqs. (32) and (33), where the index SPE_x is changed to
WAPE_xz, and

( ) ( )χβγβχγχχββ 2
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3 Analyzing the convolution kernels

In this Chapter the kernels that were derived in the previous section, will be examined. The
comparable convolution kernels of Eqs. (21), (33), (39), (43), (45) and (47) that will be used
here are

,
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(SPE continuous) (48)
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n
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l
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. (WAPE discrete in x and z) (53)
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3.1 Plotting and comparing the convolution kernels

At a first look at the kernels, it is interesting to note that the discretized SPE’s are not singular
at the origin, as the continuous one. Furthermore the kernels may be oscillating, setting the
limit for the maximum step size, i.e. we have to sample with twice the oscillation frequencies
to fully resolve the kernels.

Two main cases will be graphically investigated; one where the sound velocity is equal to the
reference velocity, and the other case is when they differ. Some of the behaviors of the first
case will be mathematically confirmed, while the other case is too complex, and therefore we
will be satisfied with a graphical analysis.

Case 1:

Using a frequency of 100Hz, identical velocities for the sound in the bottom and the reference
velocity (1500m/s), the following convolution kernels are achieved.
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Figure 2 The left figures (a) shows the behavior of the continuous convolution kernel for the SPE, and the
right ones (b) correspond to the WAPE. The top panels are the real parts, and the bottom the imaginary.

The analytic expressions for the continuous SPE and WAPE are given by Eqs. (48) and (51),
in which for case 1:

,0=α (SPE)

0kbia =−= and (WAPE)

.
1500

1002
0

π=k

We can see that both kernels decay slowly by range as x/1 . It implies that the solution at a
short range may be important at a long range. The SPE kernel has a square-root singularity at
x = 0 as opposed to the WAPE kernel. On the other hand the WAPE kernel oscillates with a
wavenumber equal to k0 while the SPE kernel is nonoscillatory. The kernel oscillation is a
serious drawback because the solution itself is expected to be less oscillatory.
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In Figures 3 and 4 we have compared the discrete and continuous kernels. The behavior of the
discrete SPE’s are somewhat unexpected, i.e. they are oscillating though the continuous is
smooth. This behavior will be analytically confirmed for the semi-discrete case in Section 3.2.
It is also seen that the Bessel expression, the continuous kernel for the WAPE, is not centered
around zero, which a Bessel function usually is. This behavior is also looked at in the next
section. There is a good agreement between the discrete and continuous WAPE kernels.
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Figure 3 The left panels (a) compares the real respectively the imaginary part for the semi discrete SPE
and the continuous. The right ones (b) compares the same properties for the WAPE.
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Figure 4 The left panels (a) compares the real respectively the imaginary part for the fully discrete SPE
and the continuous. The right ones (b) compares the same properties for the WAPE.
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Case 2:

The only difference from case 1 is that the sound velocity is set to 1700m/s while the
reference velocity is 1500m/s.
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Figure 5 The left panels (a) shows the behavior of the continuous convolution kernel for the SPE, and the
right ones (b) correspond to the WAPE. The top figure is the real part, and the bottom the imaginary.

In opposite to the previous case the SPE kernel is now oscillatory. By looking at the analytic
expressions in Eqs. (48) and (51) we find that

,
2 0

2
0

2

k

kk −
=α (SPE)

( )
,

3

2
2
0

2

2
0

2

0 kk

kk
kia

+
+

= (WAPE)

,
3

4
2
0

2

2
0

0 kk

k
kb

+
−= (WAPE)

1500

1002
0

π=k and

.
1700

1002π=k

Approximately the oscillatory character of the kernels depends on the difference between the
reference velocity and the sound velocity in the bottom. Again the WAPE kernel is less
favourable since the rate of oscillation may be as large as 4k0/3 (when k0>>k).
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Figure 6 The left panels compares the real respectively the imaginary part for the fully discrete SPE and
the continuous. The right ones compares the same properties for the WAPE.

As can be seen in the Figs. 5 and 6 the main difference between case 2 and case 1 is that the
kernel becomes more oscillatory in the second case. However, the behaviors and amplitudes
are somewhat the same.

3.2 Analysis of kernels

In this section we will clarify some of the features of the kernels observed in Figure 3a and b.
From the Figure 3b it was noticed that the kernel oscillation of the WAPE were not centered
around zero. The analytic expression is given by Eq. (51) in which the parameters a and b are
defined according to Eq. (41). For case 1, which is the only case we will examine here, the
variables a and b is equal to –ik0 respective –k0. Approximating the Bessel with the far field
approximation;
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the Bessel expression can be rewritten as follows
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From the above equation it is easy to see that the function oscillates around a value different
from zero, and that value decreases with x, which coincides with the behaviour seen in
Figure 2b.
In Figure 3a we can see a somewhat unexpected behaviour; the semi discrete kernel went
down to zero every second step, and for the others it had a value twice as high as the
continuous one. The semi-discrete SPE convolution kernel, given by Eq. (49), will now be
used to verify this behaviour.
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According to [4] a Legendre polynomial can be written as

( )( ) ( ) ,
4

1

2

1
cos

sin

2
cos

2
1







 −+







≈ πθθ
θπ

θ n
n

Pn (56)

and here cos(θ) is µ, defined by Eq. (33). Series developing the expression for µ, and
neglecting the second order terms of α (α is zero for case 1, but we assume it to be small
since Eq. (55) is singular there), leads to the relation

.
2

x∆≈ αµ (57)

Eq. (56) can, under the small angle assumption that
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which in turn can be approximated;
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The semi discrete convolution kernel given by Eq. (49) can now, under the approximation
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be written as
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From the above equation, and with the fact in mind that α is zero, it is easy to verify the
behavior in Figure 4, i.e. when n is odd the semi discrete SPE goes down to zero. Comparing
the expression in Eq. (61) with the continuous kernel given by Eq. (48), it is seen that the
amplitude (for those different from zero) of the semi discrete kernel is twice as big as the
continuous, which also agrees with Figure 4.
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5 Implementing the model

For the discretization of the continuous PE-models (10) and (11) we apply the Crank-
Nicolson scheme [5]. Then in the range-independent case we obtain,

SPE:
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where 2
0

2 3kk jj +=β , )(2 22
00 jj kkk −=χ and 02kj −=γ . Now a tridiagonal equation system

can be created, which needs to be solved for each step in x. The first and last equation in the
system is created with help of the boundary conditions, i.e. the first one with help of the
Dirichlet pressure release condition and the last with help of the boundary conditions created
for the SPE and WAPE in Section 2.2.3 respective 2.2.6. The system then takes the form
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where the coefficients a, b, c, d, e and f are given by Eq. (62) and (63), for SPE respective
WAPE. The first point, i.e. index 1, corresponds to the first point under the surface, and the
point J is the one just below the z level where the DTBC is applied. The variables D, E, F and
R are identified below by using Eqs. (39), (47) and the matching conditions given by Eqs.
(14) and (15).
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Rewriting the Eqs. (64) and (65),
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one can for SPE identify the constants D, E, F and R as
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For WAPE they take the following form
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6 Source representations

When solving the system of equations in Chapter 5 for the first step, we need the initial
conditions, u(0,z) (RHS). We shall assume that the source of the continuous model can be
represented by a Dirac function at (0,zs), where zs is the source depth. The simplest numerical
analogue would be a spike of the height 1/∆z at one of the grid points in the vicinity of (0,zs).
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This turned out to be a bad initial field. It introduced high frequency components, which
remained within the solution domain despite the presence of a DTBC.

The next source is a Gaussian, first proposed as an initial field for the SPE by Tappert [1],
which in the simplest form looks like

( )
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Aezu
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= (67)

where A is the amplitude of the source, W the source aperture defined as the 1/e-decay point,
and zs is the source depth. In [3] it is shown that through matching with a point-source
solution in the farfield for the Helmholtz equation in homogeneous medium, the normalized
Gaussian source take the form
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where θ1 is the halfwidth of the source aperture defined below, and θ2 is the beam tilt with
respect to the horizontal, measured positive downward,
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Note that the normally used Gaussian source is obtained through setting the beam tilt to zero
and the halfwidth of the source aperture to 45°. Making the source in Eq. (68) applicable to
the half-space case, i.e. the pressure is zero at the surface, a negative mirror source is placed
above the surface. The Gaussian source now takes the form
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The third and last source used here is a Greene’s source, which is a weighted Gaussian source
with good wide-angle properties [3],

( )( )
( )
0512.322

00

22
0

4201.04467.1),0(
szzk

s ezzkkzu
−−

−−= . (71)



24

7 Model verification

In this Chapter the implemented model will be used to solve three benchmark examples, and
the results are then compared with already existing solutions. The examples in question are;
the Lloyd mirror, the Bucker waveguide and the Jensen-Kuperman wedge.

7.1 Matching the 2D solution to the 3D

To be able to compare with well know references, where cylindrical symmetry usually is
used, the 2D solution have to be matched so it represents the 3D case. Solving the Helmholtz
equation for a point source, for the 2 cases and comparing the solutions (see Appendix A) the
following relation is achieved:
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The relation above implies that the correct 3D behavior is obtained if the 2D solution is
divided with the square root of the range. When presenting results in ocean acoustics it is
common practice to use transmission loss (TL), which for a normalized starting field can, for
the 3D case, be calculated as

,log20 103
x

u
TL D −= (73)

and in 2D it takes the following form

.log20 102 uTL D −= (74)
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7.2 Lloyd mirror

The Lloyd mirror case consists of a source in a half-infinite water volume. This implies that
the acoustic field only interacts with the “smooth” water surface. Here the DTBC is applied at
a depth of 100m, the density is set to 1000kg/m3, the sound speed is 1500m/s, a source
frequency of 100Hz and without damping. The source used in this case is the Gaussian given
by Eq. (72), with a half-width opening angle of 45 degrees and zero beam tilt, placed at a
depth of 30m. As one can see the Lloyd mirror is a very simple arrangement, and it’s
analytical solution is therefore possible to find. The analytical solution is obtained by using
the method of mirror sources [6], i.e. summing the whole-space solutions for the source and
its negative mirror,
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2 szzrR ++= . In the Figure 7 a 3D comparison

between the analytical and numerical solutions is made.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

140

160

Lloyd Mirror

Horisontal distance (m)

TL
(d

B
)

SPE DTBC
Analytical solution

950 1000 1050

54

54.5

55

55.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

140

160

180

200

220

Lloyd Mirror

Horisontal distance (m)

TL
(d

B
)

SPE DTBC
Analytical solution

950 1000 1050

54

54.5

55

55.5

(a) (b)

Figure 7 Transmission losses at a depth of 90m for a source at 30m in a homogeneous water half-space,
computed with the SPE approximation compared with the analytical solution. In the left picture (a) the
SPE DTBC model uses dx=5m and dz=2m, and in the right (b) dx=3 and dz=1m.

Looking at Figure 7 (a) one can see that the solution obtained with the SPE DTBC model fits
well with the analytical solution in the far field, though it has some artificial oscillations. The
oscillations originate from the step size in x and z, and can be shown to disappear if reducing
the size of the steps, see Figure 7 (b).
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7.3 Bucker Wave Guide

In this example there is a horizontal bottom at a depth of
240m, and a Gaussian source with a frequency of 100Hz at a
depth of 30m. The density in the water is 1000kg/m3 and in
the bottom 2100kg/m3. The sound speed in the bottom is
1505m/s, and in the water it is given by the sound speed
profile; 60/1201498 zcb −+= m/s, see Figure 8. The DTBC

is applied immediately at the water-bottom interface, i.e. at a
depth of 240m. The 3D transmission loss at a depth of 90m
for the SPE DTBC model is displayed in Figure 9, and it
coincides with the results obtained in several sources ([2], [3]
and [7]).

Figure 8 Sound speed profile for the
Bucker wave guide.

Figure 9 Transmission losses at a depth of 90m for a source at 30m in a
homogeneous water half-space, computed with the SPE approximation.

7.4 The Jensen-Kuperman Wedge

Here, in this Section bottom is at a depth of 200m for the first 5000m and thereafter the water
depth is linearly decreased down to 0m at the range of 12500m, see Figure 10. The source is
placed at a depth of 180m, and close to the bottom. Therefore the Greene’s source, given by
Eq. (71), is used, due to its good wide-angle properties. The frequency is set to 25Hz, the
density in the water is 1000kg/m3 and in the bottom 1200kg/m3. The sound velocity in the
water is 1500m/s and in the bottom 1700m/s. There is no damping in the water but in the
bottom there is a natural damping of 0.5dB/λ. Placing the DTBC at the depth of 600m, i.e.
400m down into the bottom, results in Figure 19 of the transmission loss in 2D.
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Figure 10 Transmission losses in a wedge for a Greene’s source at a depth of 180 m, calculated with the
WAPE DTBC. The blue line represents the water-bottom boundary.

The transmission loss in Figure 10 agrees well with the results presented in [3], and we see
the three “well known fingers” in the bottom slope.

8 Comparison with artificial absorbing layers

A common way to truncate the computational domain in the depth direction is to add an
artificial absorbing layer with a thickness of 10-15 wavelengths. Usually it has the same
density and sound velocity as the homogeneous semi-infinite bottom, while the absorption is
significantly larger than the natural one. The layer is terminated by a pressure release
condition. In order to prevent back reflections all waves must be sufficiently damped until this
boundary condition can be applied. It is also desired to keep the absorbing layer as thin as
possible to save computational time. It turns out that the damping should be increased
gradually. The construction of a suitable damping profile leads to an optimization problem in
which the allowed amount of back reflection is a constraint. Typically such a profile has a
depth of 10-15 wavelengths over which the absorption increases in a nonlinear way. We have
used the same code as in [14] to generate quasi-optimal absorption profiles. A simpler
approach is to let the absorption increase linearly from the natural value to 10dB/λ over 10
wavelengths. We have compared these two alternatives with the use of DTBC’s. A linear
profile with the same thickness as the computed profile is also used, this to get a fair
comparison between the linear and the computed profile.
The implementation of the different models was made in the program MatLab on a PC with
an Intel Pentium III processor 500Mhz and a RAM memory of 128Mb. Below, the damping
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profiles used for the Lloyd mirror case are displayed. There is a difference in thickness,
between the damping profiles in the three cases, which arises from that one prefers to denote
the layer thickness in a specific number of wave lengths. The main behavior of the damping
profiles is given by Figure 11, though the gradient for the linear profiles changes from case to
case since the damping is 10dB/λ over some layer thickness. The input variable that sets the
level of allowed reflections, in the program that computes the “favorable” damping layer, is
set to 50dB.
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Figure 11 Damping profiles used for the Lloyd mirror case. The blue line corresponds to a layer thickness
of 10 wave lengths, the green answers to a 570m thick layer which originates from the thickness of the
computed profile (the red line).

8.1 Evaluating the Lloyd mirror case

Here the Lloyd mirror example, defined in Section 7.2, will be used to compare the SPE
DTBC model efficiency and correctness versus damping layers. Three different damping
profiles are used; a 10 wavelength thick layer (150m), a computed damping profile and one
that has the same thickness as the computed profile (570m). The TL at a depth of 90m is
displayed in Figure 12 for the linear profiles, the computed profile, the SPE DTBC model and
the analytical solution. It is easy to see that the SPE DTBC model is preferable vs. the
damping layers, when it comes to correctness. The SPE coincides well with the analytical
solution, while the computed damping profile works up to a 6500m range were it highly
overestimates the TL and thereafter behaves bad. The linear damping profiles don’t behave as
hysterical, but departs at a closer range from the analytical solution. From Figure 12 it can be
seen that the thicker damping layers, and therefore a smaller damping gradient, the closer to
the analytical solution we get. The linear damping profiles though never get close to the
correctness of the SPE model.



29

Figure 12 Comparison in TL, at a depth of 90m for the Lloyd mirror case, between the SPE DTBC model,
the analytical solution and the damping layers.

In the table below the time elapsed for the respective model is shown for the horizontal range
of 20000m, and the water column is truncated at a depth of 100m.

Table 2 Elapsed time for the different simulation models for the Lloyd mirror case.

Number of
simulations

Mean value
(s)

Standard deviation
(s)

SPE DTBC
(50*4000 points)

10 45 1

Linear 10 lambda
(125*4000 points)

10 85 2

Computed profile
(334*4000 points)

5 434 4

From the figures in Table 2 it is seen that the SPE model is the most time efficient alternative,
almost twice as fast (1.9) as the 10 wavelengths thick damping layer, and 9.6 as fast as the
computed profile.
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8.2 Evaluating the Bucker-wave guide

In this section we will examine the efficiency and correctness for the different models for the
Bucker wave-guide, defined in section 7.3. Below in Figure 13 the TL is plotted at a depth of
90m for the SPE model and the same damping profiles as for the Lloyd mirror case above. As
seen from the picture the solution obtained with the computed profile follows the SPE
solution better then the linear profiles except at the range just above 16000m, where it highly
overestimates the TL. The linear damping profiles get closer to the SPE solution with
thickness, but can never compete with the SPE.

Figure 13 Comparison in TL, at a depth of 90m for the Bucker wave-guide, between the SPE DTBC model
and the different damping layers.

The time it took to solve the physical domain of range 20000m and depth of 240m (cut at the
water bottom interface) is shown in table 3. It can be seen that the SPE is approximately 1.8
times faster than the 10 wavelengths thick layer, and 6.3 times more efficient than the
compute profile.
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Table 3 Elapsed time for the different simulation models for the Barker wave-guide.

Number of
simulations

Mean value
(s)

Standard deviation
(s)

SPE DTBC
(120*4000 points)

10 99 1

Linear 10 lambda
(195*4000 points)

10 174 2

Computed profile
(407*4000 points)

5 621 4

8.3 Evaluating the Jensen-Kuperman Wedge

Here for the Jensen-Kuperman wedge, defined in Section 7.4, the physical domain has the
range 15000m and a depth of 200m. The 2D TL in Figure 14 is taken at a depth of 100m, for
the SPE model. A linear damping layer of the thickness 10 wavelengths and the computed
damping profile is used. As seen, the models coincide well, this due to the rather thick
damping layers and a natural damping in the bottom. The thickness originates from the “low”
frequency (25Hz), leading to a large wavelength.

Figure 14 Transmission losses (2D) at a depth of 100 m for propagation in a wedge, calculated with a
linear damping profile (0 to 10 dB over 10 wavelengths), a computed damping profile and with the WAPE
DTBC.

In Table 4 we can see that the WAPE DTBC model is much more time effective than the
linear model, with the thickness of 10 wavelengths. Due to the natural damping in the bottom,
the damping layer with the computed damping profile, becomes thinner and therefore faster
then the linear one.
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Table 4 Elapsed time for the different simulation models for propagation in a wedge.

Number of
simulations

Mean value
(s)

Standard deviation
(s)

WAPE DTBC
(100*3000 points)

10 59 1

Linear 10 lambda
(439*3000 points)

10 536 5

Computed profile
(365*3000 points)

10 381 4

9 Conclusions

The DTBC models, implemented in this thesis, showed to be much more time efficient than
the so far used damping layer method, and also give a much more exact solution. Especially
in cases without damping the DTBC gives a crucial correctness vs. damping layers. Since the
DTBC is the correct boundary condition, as far as the approximations made are valid, the
DTBC model gives a much more accurate solution and should therefore be used whenever a
more exact solution is needed.

The DTBC boundary condition contains a convolution involving all the boundary points in
the past range, which may be unnecessary. So as further work an algorithm cutting off this
convolution tail, might make the DTBC model even more efficient. As an example it can be
mentioned that, for the Bucker wave-guide with the range of 20000m and depth of 240m, the
summing of the convolution terms took around 10-15% of the elapsed time.

The time figures obtained in this paper don’t give full credit to MatLab, since some routines
that needed too much memory had to be written in MatLab non-optimal code. So the
estimated computational values obtained are not final, but give a hint of the superiority of the
DTBC vs. the damping layers.

In this report we only used uniform step sizes, and since it is preferable to have adaptive grid
spacing, there is possible to further optimize the software in many areas.
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Appendix A: 2D vs. 3D

In a homogenous medium the SPE take the form
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Inverse transforming the solution gives:
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The 3D solution in cylindrical co-ordinates, assuming azimuthal symmetry, for the Helmholtz
equation is
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where R is defined as; ( )22
szzrR −+= . Only being interested in the far field, the above

equation can be approximated as;
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Comparing the 2D and 3D solutions, given by equation A.6 and A.8, the following relation is
obtained:
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