
english

FOI-R--0460--SE
April 2002
1650-1942

Scientific report

Bengt Boberg
Sven-Lennart Wirkander

Robust Navigation Using GPS and INS:
Comparing the Kalman Estimator and the

Particle Estimator.

System Technology Division
SE-172 90 STOCKHOLM

Sweden





Swedish Defence Research Agency
System Technology Division
SE-172 90 STOCKHOLM
Sweden

FOI-R--0460--SE
April 2002
1650-1942

Scientific report

Bengt Boberg
Sven-Lennart Wirkander

Robust Navigation Using GPS and INS:
Comparing the Kalman Estimator and the Particle

Estimator.



Issuing organization

Swedish Defence Research Agency
System Technology Division
SE-172 90 STOCKHOLM
Sweden

Author/s (editor/s)

Bengt Boberg
Sven-Lennart Wirkander

Report title

Robust Navigation Using GPS and INS: Comparing the Kalman Estimator and the Particle Estimator.

Abstract

The robustness of navigation systems based on a Global Satellite Navigation System (GNSS) is crucial
and can be achieved in many ways, e.g. by using smart antennas (adaptive beamforming antennas or
switched beam antennas) or complementing the GNSS with a jamming resistent sensor system.
In order to investigate this latter method, a comparison has been performed between a relatively new
type of state estimator, called the Particle method based on a linear Kalman Estimator (KE) when
both are applied to the problem of combining information from a GNSS with an Inertial Navigation
System (INS). This report is a detailed description of this comparison.
The comparison of the two estimators regards essentially their robustness towards different types of un­
modeled errors in the three acceleration measurements. These errors consist of different combinations
of white noise components and constant components (biases).
KE uses a continuous linear error model. The task for the KE is to estimate the errors of the INS
solution by using the difference between external measurements of velocity and position (from e.g.
GPS) and the velocity and position as calculated by the INS.
As the PE does not require linear system equations, it uses a nonlinear full state discrete model. The
same external measurements are used as for the KE.english

Keywords

Particle Estimator, Particle Filter, Navigation Equations, GNSS, GPS, Jamming, Inertial Navigation

Further bibliographic information

ISSN

1650-1942
Distribution

By sendlist

Report number, ISRN

FOI-R--0460--SE

Report type

Scientific report
Research area code

Electronic Warfare
Month year

April 2002

Project no.

E6034
Customers code

Commissioned Research
Sub area code

Electronic Warfare including
Electro-magnetic Weapons and Protection

Project manager

Bengt Boberg
Approved by

Monica Dahlén
Sponsoring agency

Scientifically and technically responsible

Martin Hagström

Language

English

Pages

63

Price Acc. to pricelist

Security classification Unclassified

ii



Utgivare

Totalförsvarets forskningsinstitut
Avdelningen för Systemteknik
SE-172 90 STOCKHOLM
Sweden

Författare/redaktör

Bengt Boberg
Sven-Lennart Wirkander

Rapportens titel

Robust navigering med GPS och TN: Jämförelse av Kalman- och partikelestimator

Sammanfattning

Störfasthet är en kritisk egenskap hos sådana navigeringssystem som utnyttjar satellitnavigering
(GNSS). Den kan åstadkommas på olika sätt, t ex genom elektrisk styrning av antennerna eller genom
att komplettera GNSS med ett icke störningskänsligt sensorsystem.
För att undersöka den senare av dessa metoder har en jämförelse gjorts mellan en förhållandevis ny typ
av tillståndsestimator, den s k partikelestimatorn (PE), och Kalmanestimatorn (KE), då båda applice­
ras på problemet att optimalt kombinera information från ett GNSS och ett tröghetnavigeringssystem
(INS). Föreliggande rapport innehåller en detaljerad beskrivning av denna jämförelse.
Jämförelsen mellan de två estimatorerna avser väsentligen deras robusthet mot olika slags ic­
ke-modellerade störningar hos de tre accelerationsmätningarna. Dessa fel består av kombinationer
av vitt brus och bias.
KE använder en underliggande kontinuerlig, lineariserad felmodell. Dess uppgift är att estimera
INS-felen genom att använda skillnaden mellan externa hastighets- och positionsmätningar och de
hastigheter och positioner som INS räknar fram.
Eftersom PE inte kräver linjära systemekvationer, använder den en olinjär diskret modell med fulla
tillstånd samt samma externa mätningar som KE.english

Nyckelord

Partikelestimator, Partikelfilter, Navigeringsekvationer, GNSS, GPS, Störning, Tröghetsnavigering

Övriga bibliografiska uppgifter

ISSN

1650-1942
Distribution

Enligt missiv

Rapportnummer, ISRN

FOI-R--0460--SE

Klassificering

Vetenskaplig rapport
Forskningsområde

Telekrig
Månad, år

April 2002

Projektnummer

E6034
Verksamhetsgren

Uppdragsfinansierad verksamhet
Delområde

Telekrigföring med EM-vapen och skydd
Projektledare

Bengt Boberg
Godkänd av

Monica Dahlén
Uppdragsgivare/kundbeteckning

FM
Tekniskt och/eller vetenskapligt ansvarig

Martin Hagström

Språk

Engelska

Antal sidor

63

Pris Enligt prislista

Sekretess Öppen

iii





FOI-R--0460--SE

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 3

2 Navigation Equations 5
2.1 Reference Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Navigation equations in a fixed inertial i-frame. . . . . . . . . . . . . . 5
2.3 Navigation equations in an arbitrary concentric rotating a-frame. . . . 5

2.3.1 Navigation equations in the e-frame. . . . . . . . . . . . . . . . 6
2.4 Navigation Equations in the e-frame in component form. . . . . . . . . 7
2.5 Navigation equations in the n-frame. . . . . . . . . . . . . . . . . . . . 7
2.6 Navigation Equations in the n-frame in component form . . . . . . . . 8

3 Error dynamics 11
3.1 Nonlinear System Error Dynamics . . . . . . . . . . . . . . . . . . . . 11
3.2 Linear Error Dynamics in the a-frame . . . . . . . . . . . . . . . . . . 11
3.3 Linear Error Dynamics in the i-frame . . . . . . . . . . . . . . . . . . 13
3.4 Linear Error Dynamics in the e-frame . . . . . . . . . . . . . . . . . . 14
3.5 Error Dynamics in the e-frame on component form . . . . . . . . . . . 14
3.6 Linear Error Dynamics in the n-frame . . . . . . . . . . . . . . . . . . 16
3.7 Error Dynamics in the n-frame on component form . . . . . . . . . . . 17

4 The studied problem 19
4.1 Navigations equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Error dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Linearized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Estimation methods 21
5.1 Kalman estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Discrete case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Continuous case. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 Kalman Estimation of INS errors . . . . . . . . . . . . . . . . . 22

5.2 Particle Estimator (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Simulation Results 25
6.1 Simulation model description . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Generation of Inertial Navigation System measurements . . . . . . . . 25
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.1 Comments to plots . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.2 RMS values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



FOI-R--0460--SE

7 Simulation Environment 57
7.1 Simulink model of the Inertial Navigation System . . . . . . . . . . . . 57
7.2 Estimator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



FOI-R--0460--SE

1. Introduction

1.1 Background

Jamming of navigation systems is a current threat since Global Navigation Satellite
Systems (GNSS) became a key component in modern navigation systems. The use of
the United States’ Global Positioning System (GPS) is expanding, and recently the
European Union has approved funding of the Galileo project, which is the European
equivalent to GPS.

Generally, new demands are being solved by using more advanced navigation sys­
tems. The demands from the US defence, the American program Common Guidance
Inertial Measurement Unit (CG-IMU), and also from car manufacturers, to design
small, cheap and well performing integrated sensor systems based on GPS and Mi­
cro Electro Mechanical System (MEMS) sensors, are important driving forces for the
development of future navigation systems.

For the development of personal positioning technologies, the most important
force is the United States Federal Communication Commission Enhanced 911 ser­
vice (FCC-E911 service). FCC-E911 sets explicitly defined requirements on position
accuracy of emergency calls made from mobile phones: 67 % CEP 50 m (Circular
Error Probable, i.e. 67 % of the measurements within a circle with radius 50 m) and
95 % CEP 150 m. GPS is the only globally applicable technology that meets the
FCC-E911 requirement. The European Union is promoting, but so far not requiring,
an equivalent E112 service.

The robustness of navigation systems is crucial and can be achieved in many
ways. One way is to protect the GPS receiver by using different software and hard­
ware solutions. Another is to support the GPS system with external complementary
measurements. Two efficient methods have shown to be, see [9]:

• supporting the GPS receiver with a complementary jamming robust sensor sys­
tem, e.g. integrating GPS and Inertial Measurement Unit (IMU). This is treated
in [6] and [7].

• protecting the GPS receiver by using smart antennas (adaptive beamforming
antennas and switched beam antennas), thereby achieving spatial null steering
or spatial beam forming, [5].

There are of course also other interesting sensors to support the navigation sys­
tem during GPS outages and intentional jamming. An interesting example of sensor
combination in order to achieve a robust navigation system is the use of an INS and
a radar altimeter in combination with a height database to determine the position by
correlating height profiles.

However, the terrain navigation system has poor performance at high altitudes due
to the radar maximun mesuring range and/or lack of information in the terrain due to
flatness, eg. sea surface. In [8] the problem of integrated aircraft navigation is treated
and specifically how to integrate inertial navigation with terrain aided positioning.

1
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1.2 Aim of work

This report describes how a relatively new type of state estimator, called the Particle
Estimator (PE), has been evaluated and compared with the well established method
based on a linear Kalman Estimator (KE). The GPS receiver position and velocity
are used as measurements to the estimators.

The estimators use different forms of the navigation equations which convention­
ally, and also here, have been expressed in the so called n-frame (local geographic),
[10]. For completeness, and as a preparation for future work, we also present these
equations in a couple of different frames, namely the e-frame (earth centered/earth
fixed, ECEF) and the i-system (inertial). All these frames are derived as special cases
of a completely general frame, called the a-frame.

The task for the KE is to estimate the errors of an Inertial Navigation System
(INS) by using the difference between the GPS measurements of velocity and posi­
tion and the integrated INS velocity and position. For this purpose, the KE uses a
linearization of the INS system as its system model. The error estimates are used as
corrections to the values calculated by the INS, in order to get an optimal full state
Kalman estimate. The PE, on the other hand, uses the GPS values as measurements
that are directly applied to a full state model of the system to be tracked, thereby
producing directly an estimate of the position and velocities that are closer to the
truth than are the INS values themselves.

The KE is continuous and assumes white Gaussian noise and is based on linearized
navigation error dynamics expressed in the n-frame. The PE, on the other hand, is
discrete and also assumes Gaussian noise distribution,

In the original and well cited paper [1] and also in [11] , the PE is applied to a
nonlinear tracking problem. A framework for positioning, navigation and tracking
using PE:s (sequential Monte Carlo methods) is developed in [2]. Also [8] mentioned
above uses the PE.

The PE does neither require white Gaussian noise distribution nor linear equa­
tions. This is a reason why the full states can be estimated directly, without use of
the linearized error equations as in the KE case. The computational load for the PE
increases with the complexity of the problem, e.g. the number of states. However,
considering the current development in the computing field, the PE seems to be a
promising method. For example, a combination of both PE and KE can be applied,
as described in [3].

1.3 Results

The two estimators were compared, essentially regarding their robustness against
different types of errors in the three acceleration measurements. At all simulations,
these errors contained a white noise component. If, in addition, constant components
(biases) were added to some of them, the Kalman Estimator gave different results:

• When none of the measurement errors contained any bias, the estimates were
correct within its 3σ-limit. They were also substantially smoother than the GPS
measurements, thus showing a low frequency filtering effect.

• Also when the measurement of the first acceleration component contained a
bias, the estimates were smooth, but the estimate of the velocity component
corresponding to the biased measurement were itself biased. This bias could be
decreased by increasing the elements of the process noise matrix in the estim­
ator.

• When all three acceleration measurement components were biased, all three
velocity component estimates became also biased. This effect could also be
reduced by an increase of the process noise matrix elements (note, however,
that such an increase always makes the estimator more sensitive to noise).

2
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The PE estimates were, on the contrary, independent of biases in the acceleration
measurements, indicating that the external measurements of the velocities and posi­
tions from the GPS had a dominating influence, since these measurements themselves
contain no bias. This is also confirmed by the fact that they had essentially the same
noise characteristics as the estimates.

1.4 Suggestions for Future Work

• The Particle Estimator used in this work uses the simplest form of importance
sampling distribution, namely the state prior distribution, that does not de­
pend on the measurements. Investigate what type of more general importance
sampling distribution that could be used in order to improve the Particle Es­
timates in our application. For a treatment of the case with such a general
sampling, see [13].

• Analyze the PE performance theoretically using the Cramer-Rao bound, [8].

• Investigate the possibility of using so called Rao-Blackwellization, which is a
method of exploiting the existing linearities of the system as much as possible.
The KE is used for the linear parts, and the PE only for the remaining nonlinear
ones. This method is described in [12].

• A natural continuation of the PE/KE-comparison could be to replace the KE
with a discrete version of the Extended Kalman Filter (EKF), which is a non­
linear generalization of the KE, utilizing linearization of the system equations
around the estimate. This would possibly be a more fair comparison as regards
the Kalman method. The use of non-linear estimation methods is still more
motivated by the need to investigate the use of smart antennas (adaptive beam­
forming antennas or switched beam antennas), because this necessitates the
use of GNSS raw observables (pseudo range and phase), giving rise to further
non-linearities.

• Use the Earth Centered Earth Fixed (ECEF) reference frame instead of the
navigation frame for the navigation equations (derived in this report).

3
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2. Navigation Equations

2.1 Reference Frames.

The estimators use different forms of the navigation equations which conventionally,
and also here, have been expressed in the so called n-frame (local geographic), [10].
For completeness, and as a preparation for future work, we also present these equa­
tions in a couple of different frames, namely the e-frame (earth centered/earth fixed,
ECEF) and the i-system (inertial). All these frames are derived as special cases of a
completely general frame, called the a-frame.

2.2 Navigation equations in a fixed inertial i-frame.

Inertial navigation is basically integration of inertially sensed acceleration with re­
spect to time. In an inertial frame the differential equations needed to be solved
are

d

dt
ẋi = ẍi = gi

(
xi
)

+ f i, (2.1)

d

dt
xi = ẋi,

where xi is the position vector coordinates in the i-frame, gi
(
xi
)

is the acceleration
components due to the gravitational field and f i the signals sensed by the accelero­
meters.

2.3 Navigation equations in an arbitrary concentric rotating a-frame.

Let the a- and the i-frame be concentric. The a-frame rotates with respect to the
i-frame with the angular rate components in the a-frame ωa

ia (the superscript a denotes
the used reference frame). The transformation of a position vector from the a-frame
to the i-frame is given by

xi = Ci
axa, (2.2)

using the transformation matrix Ci
a , whose the corresponding time derivative is given

by

Ċi
a = Ci

aÚa
ia, (2.3)

where Úa
ia is the skew-symmetric matrix with elements from ωa

ia = (ω1, ω2, ω3)
T

according to

Úa
ia = [ωa

ia×] =

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 . (2.4)

For the general case the second time derivative is also needed:

C̈i
a = Ci

aÚ̇a
ia + Ci

aÚa
iaÚa

ia. (2.5)

5
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Differentiating (2.2) twice with respect to time and using (2.3) and (2.5) yield

d

dt
xi = Ċi

axa + Ci
aẋa,

d

dt
ẋi = C̈i

axa + 2Ċi
aẋa + Ci

aẍa

= Ci
a

(
Ú̇a

ia + Úa
iaÚa

ia

)
xa + 2Ci

aÚa
iaẋa + Ci

aẍa. (2.6)

Solving for ẍa and combining with (2.1) gives the navigation equations coordinatized
(mechanized) in an arbitrary a-frame

d

dt
ẋa = −2Úa

iaẋa −
(
Ú̇a

ia + Úa
iaÚa

ia

)
xa + fa + ga (xa) , (2.7)

d

dt
xa = ẋa,

where fa and ga (xa) are the specific force and gravity vector components in the
a system, i.e., fa = Ca

i f i and ga (xa) = Ca
i gi
(
Ci

axa
)
. In this strapdown inertial

navigation system the accelerometer signals, f b, are the specific force components in
the vehicle’s own system (b). In order to be used in (2.7) , they need to be transformed
as

fa = Ca
b f b, (2.8)

where the transformation matrix is given by the differential equation

Ċa
b = Ca

b Úb
ab. (2.9)

The elements in the skew-symmetric matrix Úb
ab =

[
ωb

ab×
]

are based on the inertially
sensed angular rotation, expressed in the b system, ωb

ib. ωb
ab can be split in two parts

as

ωb
ab = ωb

ib − ωb
ia

= ωb
ib − Cb

aωa
ia, (2.10)

where ωa
ia is a constant if a is the e-frame (depends on earth rate alone) and depends

on the navigation solution if a is the n-frame (earth rate and transport rate).

2.3.1 Navigation equations in the e-frame. The following derivation is based
on (2.7), where all indices a are substituted by e. Then, assuming that the angular
velocity of the earth relative to inertial space, Úe

ie , is constant, i.e. Ú̇e
ie = 0

d

dt
ẋe = −2Úe

ieẋ
e − Úe

ieÚ
e
iex

e + fe + ge (xe) , (2.11)

d

dt
xe = ẋe.

The accelerometer signals are transformed from the body frame b to the earth frame
e as

fe = Ce
b f b, (2.12)

where Ce
b is determined by the differential equation

Ċe
b = Ce

b Úb
eb. (2.13)

The elements of the matrix Úe
eb = [ωe

eb×] are based on the measured angular rates
ωb

ib as

ωb
eb = ωb

ib − Cb
eωe

ie. (2.14)

6
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2.4 Navigation Equations in the e-frame in component form.

With the definitions

xe =
(

xe
1 xe

2 xe
3
)T

, (2.15)

ẋe =
(

ve
1 ve

2 ve
3
)T

, (2.16)

fe =
(

fe
1 fe

2 fe
3
)T

, (2.17)

and the expressions

ωe
ie =

(
0 0 ωe

)T or Úe
ie =

 0 −ωe 0
ωe 0 0
0 0 0

 (2.18)

and

ge (xe) = −
kM

(
xe

1 xe
2 xe

3
)T(

(xe
1)

2 + (xe
2)

2 + (xe
3)

2
)3/2 (2.19)

for the earth’s rotation rate and gravitation, respectively, (2.11) can be written in
component form as

v̇e
1 = 2ωev

e
2 + ω2

ex
e
1 + fe

1 − GMxe
1(

(xe
1)

2 + (xe
2)

2 + (xe
3)

2
)3/2 , (2.20)

v̇e
2 = −2ωev

e
1 + ω2

ex
e
2 + fe

2 − GMxe
2(

(xe
1)

2 + (xe
2)

2 + (xe
3)

2
)3/2 ,

v̇e
3 = fe

3 − kGxe
3(

(xe
1)

2 + (xe
2)

2 + (xe
3)

2
)3/2 ,

ẋe
1 = ve

1,

ẋe
2 = ve

2,

ẋe
3 = ve

3.

where G is the constant of gravitaion and M is the mass of earth.

2.5 Navigation equations in the n-frame.

The n-frame serves to define local directions for the velocity vector determined in the
e-frame. The components in the n system for the movement relative to the earth
is expressed as a transformation of the same vector’s components in the e system
according to

vn = Cn
e ẋe. (2.21)

Note that, in general, vn 6= ẋn , where xn is defined as

xn = Cn
e xe, (2.22)

Indeed, differentiating this expression gives

7
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ẋn = Cn
e ẋe + Ċn

e xe (2.23)
= vn + Cn

e Úe
nex

e

= vn + Cn
e Úe

neC
e
nxn

= vn + Ún
nex

n

= vn − Ún
enxn.

Substituting ẋe = Ce
nvn in the navigation equations coordinatized in the e-frame,

(2.11), and using (2.23) together with

d

dt
(Ce

nvn) = Ce
n

d

dt
(vn)+

d

dt
(Ce

n) vn = Ce
n

d

dt
(vn)+Ce

nÚn
envn = Ce

n

(
d

dt
vn + Ún

envn

)
,

(2.24)
gives

Ce
n

(
d

dt
vn + Ún

envn

)
= −2Úe

ieC
e
nvn − Úe

ieÚ
e
iex

e + fe + ge (xe) ,

d

dt
vn = −Ún

envn − Cn
e 2Úe

ieC
e
nvn − Cn

e Úe
ieÚ

e
iex

e + Cn
e fe + Cn

e ge (xe) ,

d

dt
vn = − (Ún

en + 2Ún
ie) vn − Cn

e Úe
ieÚ

e
iex

e + fn + gn (xn) , (2.25)

where gn (xn) = Cn
e ge (Ce

nxn) .

It is common to introduce a gravity vector ḡn (xn) which consists of the centrifugal
acceleration and the gravitational vector as

ḡn (xn) = −Cn
e Úe

ieÚ
e
ieC

e
nxn + gn (xn) , (2.26)

leading to the following differential equation for the velocities:

d

dt
vn = − (Ún

en + 2Ún
ie) vn + fn + ḡn. (2.27)

The accelerometer signals are transformed from the body frame b to the earth
frame n as

fn = Cn
b f b, (2.28)

where Cn
b is determined by the following differential equation:

Ċn
b = Cn

b Úb
nb. (2.29)

The elements of the matrix Ún
nb = [ωn

nb×] are based on the measured angular rates
ωb

ib according to

ωb
nb = ωb

ib − Cb
nωn

in. (2.30)

2.6 Navigation Equations in the n-frame in component form

In order to write (2.27) in component form, we introduce the components of vn as

vn =
(

vN vE vD

)T
. (2.31)

8
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Now, the latitude (L), longitude (λ), and the height above the earth (h) can be
defined through the differential relations

L̇ =
vN

R + h
, (2.32)

λ̇ =
vE

(R + h) cosL
,

ḣ = −vD.

The angular rate components used in (2.27) are easily realized to be

ωn
ie =

(
ωe cos L 0 −ωe sin L

)
,T (2.33)

ωn
en =

(
λ̇ cos L −L̇ −λ̇ sin L

)T

in vector form, or in matrix form:

Ún
ie =

 0 ωe sin L 0
−ωe sin L 0 −ωe cos L

0 ωe cos L 0

 , (2.34)

Ún
en =

 0 λ̇ sin L −L̇

−λ̇ sin L 0 −λ̇ cos L

L̇ λ̇ cos L 0

 .

Also, define the components of the specific forces and the generalized gravity according
to

fn =
(

fN fE fD

)T
, (2.35)

ḡn =
(

ḡN ḡE ḡD

)T
.

Then (2.27) can be written

v̇N = fN + ḡN − 2ωevE sin L + L̇vD − λ̇vE sin L, (2.36)
v̇E = fE + ḡE + 2ωevN sin L + 2ωevD cos L + λ̇vN sin L + λ̇vD cos L,

v̇D = fD + ḡD − 2ωevE cos L − λ̇vE cos L − L̇vN ,

or, with the above expressions for L̇ and λ̇,

v̇N = fN + ḡN − 2ωevE sin L +
vNvD

R + h
− v2

E

R + h
tan L, (2.37)

v̇E = fE + ḡE + 2ωe (vN sin L + vD cos L) + vE

(
vN tan L + vD

R + h

)
,

v̇D = fD + ḡD − 2ωevE cos L − v2
E + v2

N

R + h
.

By introducing ωb
nb =

(
ωx ωy ωz

)T and ωb
ib =

(
p q r

)T and by using ωn
in =

ωn
ie + ωn

en the following expression can be derived

ωx =̂ p − c11

(
ωe cos L +

vE

R + h

)
+ c12

vN

R + h
+ c13

(
sin L +

vE tan L

R + h

)
(2.38)

ωy =̂ q − c21

(
ωe cos L +

vE

R + h

)
+ c22

vN

R + h
+ c23

(
sin L +

vE tan L

R + h

)
(2.39)

ωz =̂ r − c31

(
ωe cos L +

vE

R + h

)
+ c32

vN

R + h
+ c33

(
sin L +

vE tan L

R + h

)
(2.40)

9
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If the elements of the transformation matrix Cn
b from the body coordinate system to

the n-system are called cij , i, j = 1, 2, 3, then the differential equation for this matrix
can, according to (2.29), be written in component form as

ċ11 = c12ωz − c13ωy, ċ12 = c13ωx − c11ωz, ċ13 = c11ωy − c12ωx, (2.41)
ċ21 = c22ωz − c23ωy, ċ22 = c23ωx − c21ωz, ċ23 = c21ωy − c22ωx, (2.42)
ċ31 = c32ωz − c33ωy, ċ32 = c33ωx − c31ωz, ċ33 = c31ωy − c32ωx. (2.43)

10
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3. Error dynamics

3.1 Nonlinear System Error Dynamics

The navigation equations expressed in the general a-frame are differential equations
for velocity and positions where the forcing functions are the sensed acceleration
components. The error dynamics equations describe how the sensor errors affect
the position and velocity errors. These equations can be derived by perturbing the
navigation equation (2.7). Subtracting the equation that results from driving (2.7)
with the measured accelerations f̃a and the angular velocities Ú̃a

ia from the one driven
by the corresponding true values (f̃a and Ú̃a

ia, respectively) results in

d

dt

(
·

x̃a − ẋa

)
= f

(
x̃a,

·
x̃a, Ú̃a

ia,
·

Ú̃a
ia, f̃a, g̃a (x̃a)

)
−f
(
xa, ẋa, Ú̇a

ia, Úa
ia, fa, ga (xa)

)
(3.1)

=
∂f

∂xa
(x̃a − xa) +

∂f

∂ẋa

(
·

x̃a − ẋa

)
+

∂f

∂Úa
ia

(
Ú̃a

ia − Úa
ia

)
+

∂f

∂Ú̇a
ia

( ·
Ú̃a

ia − Ú̇a
ia

)
+

∂f

∂fa

(
f̃a − fa

)
+

∂f

∂ga
(g̃a − ga) + ...,

d

dt

(
x̃a − xa

)
=

·
x̃a − ẋa, (3.2)

where the function f is the right hand side of the upper equation in (2.7). The “tilde”
entities correspond to the solution with measured driving funtions, and the “tilde-free”
to the true solution. Observe that the gravitation error g̃a (x̃a) − ga (xa) depends on
two error sources, namely x̃a − xa and error in the model of the gravitation, i.e. the
function ga itself.

The expansion can be interpreted as a Taylor expansion around the approximate

value. Differences with respect to the “Taylor expansion point ”
(

x̃a,
·

x̃a, Ú̃a
ia,

·
Ú̃a

ia, f̃a, g̃a

)
represent negative errors and partial derivatives are evaluated in this point. In the
sequel the error dynamics for higher order terms are neglected.

3.2 Linear Error Dynamics in the a-frame

Applying (3.1) to (2.7) with the perturbations denoted by the prefix “δ ”, we have the
linearized error equations

d

dt
δẋa = −2δÚa

iaẋa − 2Úa
iaδẋa −

(
δÚ̇a

ia + δÚa
iaÚa

ia + Úa
iaδÚa

ia

)
xa (3.3)

−
(
Ú̇a

ia + Úa
iaÚa

ia − Ð a
)

δxa + δfa + δga

d

dt
δxa = δẋa,

11
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where Ð a= ∂ga

∂xa . The δga-term arises as a consequence of possible modelling errors of
the gravitation vector and is equal to ga (x̃a)−ga (xa). The perturbation δfa consists
not only of accelerometer errors but also orientation errors. Taking the differential of
the relation fa = Ca

b f b gives

δfa = δCa
b f b + Ca

b δf b. (3.4)

The differential δCa
b is caused by errors in the orientation of the b-frame relative to the

general a-frame. A vector of small error angles are introduced as φa = (φa
1 , φa

2 , φa
3)T

and the skew-symmetric matrix equivalent is

Øa =

 0 −φa
3 φa

2
φa

3 0 −φa
1

−φa
2 φa

1 0

 . (3.5)

The transformation from the true a-frame to an erroneously computed a-frame can
be expressed as

C̃a
b = (I − Øa) Ca

b . (3.6)

Then the differential of Ca
b is

δCa
b = C̃a

b − Ca
b = −ØaCa

b , (3.7)

and when substituted into (3.4), it gives the acceleration error

δfa = −ØaCa
b f b + Ca

b δf b (3.8)
= −Øafa + Ca

b δf b

= − [φa×] fa + Ca
b δf b

= fa × φa + Ca
b δf b.

Next, the dynamics of the error angles will be derived by first taking the differential
of (2.9):

δĊa
b = δCa

b Úb
ab + Ca

b δÚb
ab, (3.9)

where δÚb
ab = Ú̃b

ab − Úb
ab is the perturbation in angular rate. If (3.7) is differentiated

with respect to time and set equal to (3.9), this leads to the expression

−Ø̇aCa
b − ØaCa

b Úb
ab = δCa

b Úb
ab + Ca

b δÚb
ab, (3.10)

where also the expression for Ċa
b according to (2.9) is used. Substituting (3.7) results

in the matrix equation

Ø̇a = −Ca
b δÚb

abC
b
a, (3.11)

and the corresponding vector equation

φ̇
a

= −Ca
b δωb

ab, (3.12)

The gyros sense

ωb
ib = ωb

ia + ωb
ab = Cb

aωa
ia + ωb

ab. (3.13)

Perturbing this equation and using (3.7) as δCa
b = −ØaCa

b = (δCb
a)T leads to

12
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δωb
ib = δCb

aωa
ia + Cb

aδωa
ia + δωb

ab (3.14)

= (−ØaCa
b )T

ωa
ia + Cb

aδωa
ia + δωb

ab

= Cb
aØaωa

ia + Cb
aδωa

ia + δωb
ab,

where we also have used the skew-symmetry of Øa , i.e. ØaT = −Øa.
Then (3.14) is solved for δωb

ab and then substituted into (3.12):

φ̇
a

= −Ca
b δωb

ab (3.15)
= −Ca

b

(
δωb

ib − Cb
aØaωa

ia − Cb
aδωa

ia

)
= −Ca

b δωb
ib + Øaωa

ia + δωa
ia

= −Ca
b δωb

ib + [φa×]ωa
ia + δωa

ia

= −Ca
b δωb

ib − ωa
ia × φa + δωa

ia.

Using (3.3), (3.15), (3.8) and some vector matrix manipulations, we can summarize
the dynamics of the error states

(
φa δẋa δxa

)T as

d

dt
φa = −ωa

ia × φa − Ca
b δωb

ib + δωa
ia, (3.16)

d

dt
δẋa = [fa×]φa − 2Úa

iaδẋa −
(
Ú̇a

ia + Úa
iaÚa

ia − Ð a
)

δxa

+Ca
b δf b + δga + 2ẋa × δωa

ia + 2Úa
ia [xa×] δωa

ia + [xa×] δω̇a
ia,

d

dt
δxa = δẋa,

which also can be written in block matrix state space form as

d

dt

 φa

δẋa

δxa

 =

 −Úa
ia 0 0

[fa×] −2Úa
ia −

(
Ú̇a

ia + Úa
iaÚa

ia − Ð a
)

0 I 0


 φa

δẋa

δxa

(3.17)

+

 −Ca
b 0 0

0 Ca
b I

0 0 0

 δωb
ib

δf b

δga


+

 I 0
2 [ẋa×] + 2Úa

ia [xa×] [xa×]
0 0

( δωa
ia

δω̇a
ia

)
.

3.3 Linear Error Dynamics in the i-frame

Substituting i for a in (3.16) and using Úi
ii = 0, Ú̇i

ii = 0, δωi
ii = 0, δω̇i

ii = 0 leads to

d

dt
φi = −Ci

bδω
b
ib, (3.18)

d

dt
δẋi =

[
f i×

]
φi + −Ð iδxi + Ci

bδf
i + δgi,

d

dt
δxi = δẋi,

and the same substitutions in (3.17) lead to

13
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d

dt

 φi

δẋi

δxi

 =

 0 0 0[
f i×

]
0 Ð i

0 I 0

 φi

δẋi

δxi

 (3.19)

+

 −Ci
b 0 0

0 Ci
b I

0 0 0

 δωb
ib

δf b

δgi

 .

3.4 Linear Error Dynamics in the e-frame

The constant earth rate ωe
ie implies δωe

ie = 0 and ω̇e
ie = 0 as well as δω̇e

ie = 0. The
resulting dynamics of the error states x̄ =

(
φe δẋe δxe

)T can be written as

d

dt
φe = −ωe

ie × φe − Ce
b δωb

ib, (3.20)

d

dt
δẋe = [fe×]φe − 2Úe

ieδẋ
e − (Úe

ieÚ
e
ie − Ð e) δxe + Ce

b δf b + δge,

d

dt
δxe = δẋe,

and in block matrix form

d

dt

 φe

δẋe

δxe

 =

 −Úe
ie 0 0

[fe×] −2Úe
ie − (Úe

ieÚ
e
ie − Ð e)

0 I 0

 φe

δẋe

δxe

 (3.21)

+

 −Ce
b 0 0

0 Ce
b I

0 0 0

 δωb
ib

δf b

δge


3.5 Error Dynamics in the e-frame on component form

Below are the explicit linear error dynamics of the navigation equations. Here we use
the relaxed notation where the superscript e is neglected for the position ,

xe =
(

x1 x2 x3
)T (3.22)

and the equivalently for the error angles, the position error and velocity errors as

φe =
(

φ1 φ2 φ3
)T

, δxe =
(

δx1 δx2 δx3
)T

, δẋe =
(

δẋ1 δẋ2 δẋ3
)T

.
(3.23)

respectuively.
The earth rate is constant, giving Ú̇e

ie =
(

0 0 0
)T

. Writing the gravitation
vector in (2.19) ge (xe) as

(
g1 g2 g3

)T and taking the partial derivative leeds to

Ð e =
∂ge (xe)

∂xe
=


∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

∂g3
∂x1

∂g3
∂x2

∂g3
∂x3

 = GM


−1
R3 + 3

x2
1

R5 3x1x2
R5 3x1x3

R5

3x2x1

R5
−1
R3 + 3

x2
2

R5 3x2x3
R5

3x3x1
R5 3x2x3

R5
2

R3 + 3
x2
3

R5


(3.24)

14
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where R =
√

x2
1 + x2

2 + x2
3 , and for the case when navigating locally (small x1 and

x2 components) then the terms containing R−5 can be neglected, and

Ð e ≈ GM

R3

 −1 0 0
0 −1 0
0 0 2

 . (3.25)

The driving terms in the time derivatives of the angles and the translational velocities
are defined as

δωb
ib =

(
δp δq δr

)T (3.26)

δf b =
(

δf1 δf2 δf3
)T (3.27)

δge =
(

δg1 δg2 δg3
)T (3.28)

and then transformed from b- to e-frame with the matrix Ce
b defined as

Ce
b δωb

ib = Ce
nCn

b δωb
ib (3.29)

=

 − sin L cos λ − sin λ − cos L cos λ
− sin L sin λ cos λ − cos L sin λ

cos L 0 − sin L

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 δp
δq
δr


=

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 δp
δq
δr

 =

 d11δp + d12δq + d13δr
d21δp + d22δq + d23δr
d31δp + d32δq + d33δr


where the following extra variables has been used

d11 = − (sin L cos λ) c11 − (sin λ) c21 − (cos L cos λ) c31 (3.30)
d12 = − (sin L cos λ) c12 − (sin λ) c22 − (cos L cos λ) c32

d13 = − (sin L cos λ) c13 − (sin λ) c23 − (cos L cos λ) c33

d21 = − (sin L sin λ) c11 + (cos λ) c21 − (cos L sin λ) c31

d22 = − (sin L sin λ) c12 + (cos λ) c22 − (cos L sin λ) c32

d23 = − (sin L sin λ) c13 + (cos λ) c23 − (cos L sin λ) c33

d31 = (cosL) c11 − (sin L) c31

d32 = (cosL) c12 − (sin L) c32

d33 = (cosL) c13 − (sin L) c33

and cij , i = 1, 2, 3, j = 1, 2, 3 , are defined by the differential equations (2.41)-(2.43).
Inserting the previously defined angular velocities and needed expressions: (3.23) -
(3.30) into (3.20) leads to the following time derivatives of the error angles

d

dt
φ1 = ωeφ2 − d11δp + d12δq + d13δr, (3.31)

d

dt
φ2 = −ωeφ1 − d21δp + d22δq + d23δr, (3.32)

d

dt
φ3 = −d31δp + d32δq + d33δr, (3.33)

and of the velocities

15
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d

dt
δẋ1 = −fe

3φ2 + fe
2φ3 + 2ωeδẋ2 (3.34)

+

(
ω2

e − GM(
x2

1 + x2
2 + x2

3
)3/2

)
δx1

+d11δf1 + d12δf2 + d13δf3 + δg1,

d

dt
δẋ2 = fe

3φ1 − fe
1φ3 − 2ωeδẋ1 (3.35)

+

(
ω2

e − GM(
x2

1 + x2
2 + x2

3
)3/2

)
δx2

+d21δf1 + d22δf2 + d23δf3 + δg2,

d

dt
δẋ3 = −fe

2φ1 + fe
1φ2 + 2

GM(
x2

1 + x2
2 + x2

3
)3/2 δx3 (3.36)

+d31δf1 + d32δf2 + d33δf3 + δg3,

and of the positions

d

dt
δx1 = δẋ1, (3.37)

d

dt
δ2 = δẋ2, (3.38)

d

dt
δx3 = δẋ3, (3.39)

3.6 Linear Error Dynamics in the n-frame

Now the objective is to formulate the error dynamics with respect to the geodetic
coordinates xn =

(
L λ h

)T . The error state is then defined as

x̄ =
(

φn δvn δxn
)T

. (3.40)

Instead of specializing (3.16), the compact form of the navigation equations ex­
pressed in the n-frame (2.27) is perturbed. The resulting dynamics of the velocity
error state, δvn , can then be written as

d

dt
δvn = −δ (Ún

in + Ún
ie) vn − (Ún

in + Ún
ie) δvn + δfn + Ð̄ nδxn + δḡn (3.41)

where Ð̄ n = ∂ḡn

∂xn .
The previously derived attitude errors (3.15) for the case of using the general

a-frame follow the equation

φ̇
a

= −Ca
b δωb

ib − ωa
ia × φa + δωa

ia.

and substituting n for all a results in the expression for the n-frame

φ̇
n

= −Cn
b δωb

ib − ωn
in × φn + δωn

in.

The latitude (L), longitude (λ), and the height above the earth (h) are are used as
state variables for the position and defined through the three first order differential
equations (2.32) and also vn =

(
vN vE vD

)T are needed and defined by (2.21).
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3.7 Error Dynamics in the n-frame on component form

Below the explicit linear error dynamics of the navigation equations in the navigation
frame are derived. Here as also previously a relaxed notation is used, where the
superscript n is neglected for the components of the angular error, the position error
and the velocity error as

φn =
(

φN φE φD

)T
, (3.42)

δvn =
(

δvN δvE δvD

)T
, (3.43)

δxn =
(

δL δλ δh
)T

, (3.44)

where “δ ” means, as before, perturbation from true values. The error state vector is
then

x̄ =
(

φn δvn δxn
)T (3.45)

=
(

φN φE φD δvN δvE δvD δL δλ δh
)T

. (3.46)

Starting with (3.41), the explicit expressions in component form are derived term
by term. Taking the partial derivative of the angular rates (2.34) gives

− δ (Ún
en + 2Ún

ie) vn = −δ (Ún
in + Ún

ie) vn (3.47)

= −



(
2ωe cos LδL + tan LδvE

RE+h +
vE(1+tan2 L)δL

RE+h − vE tan Lδh
RE+h

)
vE +

(
− δvN

RN+h + vN δh

(RN+h)2

)
vD(

−2ωe cos LδL − tan LδvE

RE+h − vE(1+tan2 L)δL

RE+h + vE tan Lδh
(RE+h)2

)
vN +

(
2ωe sin LδL − δvE

RE+h − vEδh

(RE+h)2

)
vD(

δvN

RN+h − vN δh

(RN+h)2

)
vN +

(
−2ωe sin LδL + δvE

RE+h − vEδh

(RE+h)2

)
vE


and

− (Ún
en + 2Ún

ie) δvn = − (Ún
in + Ún

ie) δvn = (3.48)

= −


(
2ωe sin L + vE tan L

RE+h

)
δvE − vN δvD

RN+h(
−2ωe sin L − vE tan L

RE+h

)
δvN +

(
−2ωe cos L − vE

RE+h

)
δvD

vN δvN

RN+h +
(
2ωe cos L − vE

RE+h

)
δvE

 .

The third termin in (2.34), δfn , is derived by substituting all indeices a with
n in (3.8) and substituting (3.26), (3.27) and (), as for the e-frame and fn =(

fN fE fD

)T , which results in

δfn = fn × φn + Cn
b δf b (3.49)

=

 −fNφE + fEφD

fDφN − fNφD

−fEφN + fNφE

+

 c11δf1 + c12δf2 + c13δf3
c21δf1 + c22δf2 + c23δf3
c31δf1 + c32δf2 + c33δf3


where the last term Cn

b δf b is the driving term of the acceleration error dynamics
originating from accelerometer errors. Next the term Ð̄ nδxn is derived by taking the
partial derivatives of the gravitation vector

ḡn (xn) = GM
(

0 0 1
(R+h)2

)T

(3.50)
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with respect to xn =
(

L λ h
)T .

Ð̄ nδxn =
∂gn

∂xn
δxn =


∂g1
∂L

∂g1
∂λ

∂g1
∂h

∂g2
∂L

∂g2
∂λ

∂g2
∂h

∂g3
∂L

∂g3
∂λ

∂g3
∂h

 δxn (3.51)

= GM

 0 0 0
0 0 0
0 0 −2 1

(1+ h
R )3

R3


 δL

δλ
δh

 =

 0
0

−2 GMδh

(1+ h
R )3

R3

(3.52)

Finally the attitude error equations φ̇
n

= −Cn
b δωb

ib −ωn
in ×φn +δωn

in are treated term
by term starting with −Cn

b δωb
ib

−Cn
b δωb

ib = −

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 δp
δq
δr

 =

 −c11δp − c12δq − c13δr
−c21δp − c22δq − c23δr
−c31δp − c32δq − c33δr

 (3.53)

where the cij :s are calculated from (2.41-2.43) and δωb
ib =

(
δp δq δr

)T . Then
ωn

ie and ωn
en in (2.33) are added together using (2.32) resulting in

ωn
in = ωn

ie + ωn
en =

 ωe cos L + vE

R+h

− vN

R+h

−ωe sin L − vE

(R+h) tan L

 . (3.54)

and then

− ωn
in × φn = −

 ωe cos L + vE

R+h

− vN

R+h

−ωe sin L − vE

(R+h) tan L

×

 φN

φE

φD

 (3.55)

= −


− vN

R+hφD −
(
−ωe sin L − vE

R+h tan L
)

φE(
−ωe sin L − vE

R+h tan L
)

φN −
(
ωe cos L + vE

R+h

)
φD(

ωe cos L + vE

R+h

)
φE + vN

R+hφN


The last term δωn

in can be obtained by partial differentiation of ωn
in in (3.54), with

respect to x̄ resulting in

δωn
in =


δvE

R+h − ωe sin LδL − vEδh

(R+h)2

− δvN

R+h + vN δh

(R+h)2

− tan LδvE

R+h +
(

−ωe cos L − vE(1+tan2 L)
R+h

)
δL + vE tan Lδh

(R+h)2

 (3.56)

The final collection of the above terms are straight forward.
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4. The studied problem

4.1 Navigations equations

The state equations can be written in the following way, where, if not otherwise stated,
all vector components refer to the navigation system (the so called “n system”):

v̇N = fN − 2ÚvE sin L +
vNvD

R + h
− v2

E tan L

R + h
, (4.1)

v̇E = fE + 2Ú (vN sin L + vD cos L) + vE
vD + vN tan L

R + h
, (4.2)

v̇D = fD − 2ÚvE cos L − v2
E

R + h
− v2

N

R + h
+ g, (4.3)

L̇ =
vN

R + h
, (4.4)

λ̇ =
vE

(R + h) cosL
, (4.5)

ḣ = −vD. (4.6)

vN , vE, and vD are the components of the vehicle’s velocity vector relative to the
earth, L and λ are the latitude and longitude, respectively, for the vehicle, h is its
height over the earth’s surface, Ú is the earth’s angular speed, and R is the radius
of the (spherical) earth.

The specific force components (fN , fE , fD) in the n system are considered input
signals.

No attitude is included in this system, i.e. the vehicle is considered as a point
moving in space.

4.2 Error dynamics

4.2.1 Exact The driving terms in the above equations are the components of the
specific force vectors, in the appropriate coordinate systems. In an Inertial Navig­
ation System, the equations are fed with measurements of these quantities, which
necessarily contain errors, which in turn give rise to erroneous results for the integ­
rated velocities and positions. Symbolically, suppose that the navigation equations
in an arbitrary coordinate system are

dx

dt
= f (x, u) , (4.7)

where x contains the state vector components corresponding to the coordinate frame
in question, and u is the vector of specific force components in the same frame. If
(4.7) is driven by measurements, ũ, of the specific forces, instead of the true, error
free ones, u, then the resulting state vector, x̃ , follows the equation

dx̃

dt
= f (x̃, ũ) . (4.8)
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This is the Inertial Navigation System (INS), where, as opposed to the case for
(4.7), the resulting state vector is known, because the input, ũ, consists of the known
(although more or less erroneous) measurements of the angle velocities and specific
forces. Note that the equations themselves, i.e. the function f , is considered to be
correct for the INS. Define the errors of the specific force measurements as

Ñu=̂ũ − u, (4.9)

and the error of the resulting INS state vector as

Ñx=̂x̃ − x. (4.10)

By subtracting (4.7) from (4.8), this gives the following equation for the INS error
Ñx :

d

dt
Ñx = f (x̃, ũ) − f (x̃ − Ñx, ũ − Ñu) , (4.11)

where the only unknown component is the measurement error Ñu.

4.2.2 Linearized If the errors, Ñx and Ñu , are small enough that the second
term on the right hand side of (4.11) can be approximated to a first order Taylor
expansion, then this equation can approximately be written

d

dt
Ñx = F (x̃, ũ) Ñx + G (x̃, ũ) Ñu, (4.12)

where F (x̃, ũ) and G (x̃, ũ) are the Jacobians with respect to x̃ and ũ, respectively,
of the system dynamics function f (x̃, ũ) (note that both x̃ and ũ are known entities
at each point in time).
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5. Estimation methods

5.1 Kalman estimator

In order to compare the method of using nonlinear estimation methods applied to
the full state equations (4.1)-(4.6) with the established method of estimating the INS
error from an error model based on linearization, we will now recapitulate the Kalman
estimation algorithm, both for the discrete and the continuous cases.

5.1.1 Discrete case. Consider the time discrete, linear, time variant, state space
model

xk+1 = Fkxk + Gkwk, (5.1)
yk = Hkxk + vk, (5.2)

where k is the time index, xk and yk are state and measurement vectors, respect­
ively. Fk, Gk, and Hk are time dependent matrices of appropriate dimensions. wk ∼
N (0, Qk) and vk ∼ N (0, Rk) are white noise. Then it is an established fact, see for
example [4] , that the recursion

Pk = Pk|k−1 − KkHkPk|k−1, (5.3)

Pk+1|k = FkPkF T
k + GkQkGT

k , (5.4)

Kk+1 = Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 + Rk+1
)−1

, (5.5)
x̂k+1 = Fkx̂k + Kk+1 [yk+1 − Hk+1Fkx̂k] (5.6)

minimizes the expected value of (x̂k − xk) T (x̂k − xk) , i.e. the expected sum of
the quadratic estimation errors in all state variables. The matrices Pk and Pk|k−1
are the covariance matrices for the estimation error at time k with and without the
measurement yk at that time included, respectively. The algorithm described in (5.3)
– (5.6) happens to be linear in structure, but is nevertheless optimal (in the given
sense) among all possible estimators, linear or nonlinear (if the noises wk and vk are
not Gaussian, the algorithm is still the optimal one in the class of linear estimators).

5.1.2 Continuous case. In the continuous case, we consider the model

ẋ(t) = F (t) x(t) + G (t) w(t), (5.7)
y(t) = H(t)x(t) + v(t). (5.8)

Here, t is the time, x and y are the state and measurement vectors. F,G , and
H are the system matrices. w and v are continuous white (Gaussian) noise with
(possibly time dependent) spectral density matrices Q and R. In this case, the
optimal algorithm consists of the two differential equations

Ṗ = FP + PF T + GQGT − PHT R−1HP, (5.9)
dx̂

dt
= Fx̂ + PHT R−1 [y − Hx̂] . (5.10)
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5.1.3 Kalman Estimation of INS errors The Inertial Navigation System is
the set of equations (4.1) – (4.6), or, in compact symbolic form, (4.8). The output
from this system differs from the true state as given by the “true system”, (4.7),
because of the measurement errors Ñu, contained in the measurement vector ũ as
defined in (4.9). One possibility to reduce this error is to introduce so called “external
measurements”, i.e. measurements of the same position and/or velocity coordinates
that the INS system tries to calculate. The INS error, Ñx, defined in (4.10), can then
be estimated by means of Kalman estimation in the following way: the state vector
x is measured by means of an external device, that is independent of the INS. This
measurement and the measurement error are called xext and Ñxext, respectively, so
we have xext = x+ Ñxext. According to the definition of the INS error, (4.10), we also
have x̃ = x+Ñx. Now the difference Ñy between these two known entities is the same
as the difference between the corresponding errors, as Ñy=̂x̃ − xext = Ñx − Ñxext.
According to (4.12), if the error Ñx is small, it follows the dynamics

·
Ñx = F (x̃, ũ) Ñx + G (x̃, ũ) Ñu, (5.11)

Now we can regard the equation

Ñy = Ñx − Ñxext (5.12)

as a measurement equation belonging to the state equation (5.11). The measurement
is a direct observation of the INS error Ñx with an error added (or rather, subtracted),
that is exactly the external measurement error, for which we know the error covariance
Rext=̂E

[
ÑxextÑxT

ext

]
. Therefore, an optimal estimator for Ñx is the equations (5.9),

(5.10) with x̂ replaced by Ñx̂ , y by Ñy, F by F (x̃, ũ) , G by G (x̃, ũ) , H by the identity
matrix I, R by Rext , and Q by QINS .

5.2 Particle Estimator (PE)

The Kalman Estimator, in the application described above, is an unrivalled tool for
using external measurements in estimating the errors of the INS values, as long as
these values are “small”. When the errors grow in magnitude, however, the underlying
error model according to (5.11) will no longer be valid, so we will have a good estimate
of a bad model, which is not satisfactory.

A remedy is to go back to the original, nonlinear, equations (4.7), used together
with the external measurements of the velocity and/or position coordinates, and apply
some kind of nonlinear estimator. One such estimator is the Extended Kalman Filter
(EKF), which can be regarded as a generalization of the linear Kalman Estimator
to the nonlinear case. However, the EKF is an ad hoc method, for which no general
theoretical convergence results exist, so we have no guarantee that it will work (even
if it does often enough). Therefore we will try to use a completely different method,
based on realizations of discrete random processes, called Particle Estimation.

A complete mathematical derivation is presented in [13]. The idea is to draw
a number of points in the state space (“particles”) randomly, according to a given
initial distribution. For each time step, all the particles are propagated according
to (4.8) and (4.9), with noise terms Ñu individually drawn from the distribution of
the INS measurement errors, and then exclude particles that have too large external
measurement residues, so that the particles that are most consistent with the external
measurements will be retained. The minimum variance estimate of the state will at
each time be the arithmetic mean of all the particles’ positions in the state space.

5.2.1 Description A theoretical description is given in [13]. Below follows a brief
algorithmic description. x, u are true state values and INS measurements (i.e. specific
forces), respectively, that follow (4.7): ẋ = f(x, u).
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x̃, ũ are the corresponding, noisy, INS entities, thus following (4.8):
·
x̃ = f(x̃, ũ).

Define the INS state error and the INS measurement error according to (4.10): Ñx ,
x̃ − x, and (4.9): Ñu , ũ − u, respectively. { Ñu(t) : t ≥ 0} is supposed to be a
stationary random process with probability density function (pdf) d

dmP (Ñu ≤ m) =
pÑu(m) (not necessarily Gaussian!).

We are going to work with the system at discrete points in time, and we suppose
that the time step h is long enough for the time discrete process {Ñu(kh) : k = 0, 1, 2, ...}
to be uncorrelated.

For the true state, x , we have ẋ = f(x, u) = f(x, ũ − Ñu), which describes a
random process where ũ(t) is a known function of time, and Ñu (t) is process noise.

External measurements {ỹk : k = 0, 1, 2, ...} are taken at discrete points in time,
according to ỹk = h(xk) + µk , where {µk : k = 0, 1, 2, ...} is an uncorrelated random
process with pdf d

dmP (µk ≤ m) = pµk
(m) , and where xk , x(kh).

The algorithm is described as follows::

Algorithm 1 First, N particles xi
0, i = 1, ..., N are drawn from a given initial distri­

bution.
Then, the following is done for k = 0, 1, 2, ... :
Measurement update:

• ỹk := h(xk) + µk,

• wi := p(ỹk

∣∣xk = xi
k

)
= pµk

(ỹk − h(xi
k)) for 1 ≤ i ≤ N,

• wi := wi/
N∑

j=1
wj for 1 ≤ i ≤ N (resampling probabilities) ,

• xi∗
k is drawn from a distribution with pdf pxi∗

k
(x) =

∑N
j=1 wjδ

(
x − xj

k

)
for

1 ≤ i ≤ N (posterior values).

Prediction step:

• Ñui
k is drawn from a distribution with pdf pÑu(·) for 1 ≤ i ≤ N ,

• ẋi(τ) = f(xi(τ), ũ(τ)−Ñui
k) is integrated with τ from kh to (k+1)h with initial

value xi(kh) = xi∗
k for 1 ≤ i ≤ N .

• xi
k+1 , xi((k + 1)h) for 1 ≤ i ≤ N .

• Finally, the minimum variance estimate is calculated as x̂(kh) , 1
N

∑N
i=1 xi∗

k

(posterior estimate).

5.2.2 Observations We make the following observations and comments regard­
ing the algorithm described above.

• If the particles at time kh end up in the same point after the prediction step, i.e.
xj

k = xi
k,∀i, j , the measurement yk will have no effect, because the resampling

never produces any new points, but only removes or copies old ones.

• Furthermore, if the process noise after this point in time remains zero (Ñul ≡ 0,
l > k) , all particles will also in the future end up in the same point , i.e.
xj

l = xi
l,∀i, j for l > k , as the N prediction equations in that case are identical

and have the same initial value (ẋi(τ) = f(xi(τ), ũ(τ)), kh ≤ τ ≤ (k + 1)h
with initial value xi(kh) = xi∗

k , which thus is the same for all i). Therefore, the
estimator will in this case and from this point in time (kh) simply be driven
by the same signal {ũ(τ) : τ > kh} as the INS is driven by. In particular, if all

23



FOI-R--0460--SE

the particles right from the beginning, i.e. at the time kh = 0, are initialized
with the same value as the initial value for the INS, then the trajectories for
the estimator will coincide with the one for the INS. This will of course be
the case irrespective of the number of particles, N . Also, in this case not
even the distribution,

{
pµl

(·) : l ≥ k
}

, including the accuracy of the external
measurement errors, is of any significance whatsoever.

• If the particles at some point in time, e.g. right from the start, have some
spreading, and the process noise, as in the description above, is =0 after this
time, then the number of points that the particles occupy will (statistically)
decrease at each time step, because the resampling reduces the number of
points, and the prediction will retain this number, as the prediction step will be
completely deterministic. Sooner or later, the particles will assemble in the same
point, and according to the reason described above, we will get an “estimator”
that does not use its measurements at all! A conclusion is that the process
noise, Ñu, is necessary for the external measurements to have any significance
to the estimates.

• Compare with the Kalman Estimator:
·
x̂ = F x̂ + PHT R−1 [y − H x̂] ,

Ṗ = FP + PF T + GQGT − PHT R−1HP.

Here, the particle distribution corresponds to the P matrix. The particles oc­
cupying the same point corresponds to P being =0, which in turn implies that
the external measurements have no impact on the estimate. If there is no pro­
cess noise, i.e. Q = 0, P will remain =0, and the external measurements will
have no effect on the estimate, just as for the particle estimator. Even if P 6= 0,
P will converge to 0, (if F is stable). Therefore, the measurements will become
insignificant, just as for the particle estimator.
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6. Simulation Results

The navigation equations in navigation frame as described in (4.1) - (4.6) have been
implemented in a SIMULINK model, an overview of which is described and shown in
figure 7.

6.1 Simulation model description

The equations are simulated in two identical, green, blocks. One of these is called
“Reality”, and the other “INS”. The first one of these (“Reality”) is fed with exact
(error free) measurements of specific forces as inputs, so that its output will be the
exact state variables for the true trajectory.

The second block (“INS”) is fed with measurements with errors included, thus
simulating an Integrated Navigation System.

These measurement errors also feed a linear error model (“nav_error2slw6”), that
can calculate the INS errors, provided they are “small”. These errors are of course
unknown in a real system, so the error calculations are only done for checking pur­
poses.

The same linear model is used in a Kalman Estimator (KE) that estimates the
INS error using the method described in subsection 5.1.3. Exact values of velocity and
position components are thus taken from the output of “Reality”, and measurement
errors are added from the block “GPS error”. These simulated external measurements
(also called “GPS measurements”) are subtracted from the corresponding INS values,
and the result is used as input to the estimator, which is implemented in continuous
form.

The KE is split into two parts: “errTNK_innov6”, that calculates the innovation
term PR−1

ext [Ñy − Ñx̂] , and “errTNuppdat6”, that adds the innovation to FÑx̂ in
order to get the time derivative of the estimate (see (5.10) with x̂ replaced by Ñx̂ ,
H with I , and R with Rext). All inputsignals to the block “errTNK_innov6” are
described in table (7.1).

6.2 Trajectory

The trajectory used in the simulations is shown in figures 6.1 – 6.3. It is nearly flat
and starts 5 km east of the Greenwhich meridian in north direction and moves in a
square with rounded corners. The speed is constant =1000 m/s.

6.3 Generation of Inertial Navigation System measurements

The specific forces fN , fE , and fD to be used in the simulations are calculated from
(4.1) – (4.3), with all other variables known as functions of time.

The measurement errors, added to these calculated, exact, values, are of two kinds:
Gaussian uncorrelated with zero mean (“white noise”) and unknown-but-constant
(“bias”).

The Gaussian uncorrelated noise process with zero mean (or “white noise”) is
impossible to realize exactly in a continuous simulation (and even more so in reality),
because it has infinite bandwidth, and hence infinite power. However, when input

25



FOI-R--0460--SE

0 10 20 30 40 50 60 70 80 90 100
−1500

−1000

−500

0

500

1000

1500

 time(s)

  vN ,  vE

  v
N
 , 

v E
 (

m
/s

)

 v
N

 v
E

Figure 6.1: Velocity components vN and vE for the trajectory
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Figure 6.2: Position components λR and LR for the trajectory

to a system with limited bandwidth, the high frequencies in its power spectrum will
be damped out and thus have no effect on the output. Therefore, white continuous
noise can always be approximated with a discrete sequence of piecewise constant,
independent, random values, where the discretization step and the variance of the
discrete random values are chosen in such a way that the result on the output will
be the same as it would have been, had the white noise been continuous. For a more
detailed explanation, see Appendix A.

If the white noise is the only acceleration measurement error, the KE will give
a mean square optimal estimate of the INS error. If the acceleration measurement
error also contains a constant (“bias”), it can be shown that the Kalman estimate
will contain a static error, the size of which however can be reduced by increasing
the elements of the process covariance matrix QINS . The price for this reduction is
an increased sensitivity to errors in the external measurements, as the time constant
for the error decreases (a remedy would be to introduce the biases as new states,
b = (b1, b2, b3) , with state equation ḃ = 0, but this is not done here).
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Figure 6.3: Trajectory (LR plotted against λR).

6.4 Results

6.4.1 Comments to plots The upper plot in figure 6.4(a) shows vN as a function
of time in a simulation with no bias in the INS measurements (b1 = b2 = b3 = 0)
and optimal covariance matrix QINS in the KE. Five different calculations of vN are
shown: the true vN , vN calculated by the Inertial Navigation System (INS), the vN

estimated by the Particle Estimator (PE) by means of the external measurements,
and the Kalman estimated vN , also by means of the external measurements.

Because of the absence of acceleration measurement bias in this case, all these
plots overlap in practice, so they look like one single curve. The lower plot of figure
6.4(a) shows the Kalman estimate of the INS error of the same quantity (vN ). Here
is also shown the 3σ-limits for the estimation error.

In figure 6.4(b) these curves are shown magnified in a small time interval. Here
we can see that the Kalman estimate is close to zero. The estimated value is still
inside the 3σ- limits. The same conclusions can be drawn from the figures 6.5 and
6.6 regarding vE and vD , respectively.

In figures 6.18(a) – 6.20(b) , error plots are shown for vN , vE , and vD , respectively,
for the same specific force measurement case, i.e. without bias. The upper plots of
the (a) parts show four different (true) errors, namely the INS error, the PE error, the
external measurements error, and the KE error. The lower plots of the (a) parts show
the KE innovation terms for the measurements of the velocity components in question,
together with the corresponding 3σ-limits (the dashed straight lines). As there is no
bias in the process noise to the KE in this case, these innovations are inside the
3σ-limits most of the time. The (b) parts of these three figures show magnifications
of certain chosen time interval of the (a) parts.

In figure (6.7(a)) vN is shown for the case where the measurement of fN contains
a bias 1 m/s2. Here it is obvious that the INS value is drifting away from the true
value. Furthermore, the Kalman estimate of the vN error shows a constant bias of
approximately 40 m/s2 , whereas the particle estimate still is bouncing around near
the true value, which can be seen from the magnification in figure 6.7(b).

As a comparison, look at the figures 6.8(a) and 6.8(b). Here, the simulation
duration is only 200s, as compared to 1000s in the previous case. The main change,
compared to the earlier case, is, however, that the variances in the process noise
matrix, QINS , is now made 10 times greater in the KE. This gives a smaller Kalman
estimate bias (≈ 25m/s). This bias is even smaller (≈ 15m/s) in the case with 100
times greater QINS-variances, as is shown in figures 6.9(a) and 6.9(b).
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Figure 6.4: vN without bias in specific force measurements.

The corresponding results for the vE component are shown in figures 6.10(a) ,
6.10(b) , 6.11(a) , 6.11(b) , 6.12(a) , and 6.12(b). Here, the Kalman estimate bias is
considerably smaller, 0.2m/s with nominal QINS , and practically zero when QINS is
multiplied by 10 or 100.

The results for vD , seen in figures 6.13(a)-6.15(b) , show that the vD Kalman
estimate error practically disappears when QINS is multiplied by 10 or 100.

The error plots corresponding to figures 6.7(a)-6.15(b) are shown in figures 6.21(a)-6.29(b).
Here, we see biases in estimates and innovations for the vN (which has a bias in the
corresponding specefic force measurement), but not for the other two components (vE

and vD).
Next, we investigated what happens if, in addition to the bias in the fN meas­

urement, we also introduce biases in the fE and fD measurements. First, it was
observed that no change whatsoever occurred in the behavior of the estimates of vN .
Therefore, no plots are shown for this case. For vE , however, the figures 6.16(a) ,
6.16(b) , and 6.16(c) show that an increase of the Kalman Estimator QINS matrix
elements reduces the estimate bias considerably.

The same thing happens for vD , which is shown in figures 6.17(a) , 6.17(b) , and
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Figure 6.5: vE without bias in specific force measurements (magnification)
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Figure 6.6: vD without bias in specific force measurements (magnification)

6.17(c).
The error plots for the case with bias in all specific force measurements, finally,

are shown in figures 6.30(a)-6.32(c).
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Figure 6.7: vN with bias in fN -measurement.
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Figure 6.8: vN with bias in fN -measurement and QINS multiplied by 10.
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Figure 6.9: vN with bias in fN -measurement and QINS multiplied by 100.
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Figure 6.10: vE with bias in fN -measurement.
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Figure 6.11: vE with bias in fN -measurement and QINS multiplied by 10.

34



FOI-R--0460--SE

(a)

0 50 100 150 200 250
−1500

−1000

−500

0

500

1000

1500

t

 v
E
 with b

N
=1,  b

E
=0,  b

D
=0,  Q

INS
=Q

INS
*100

True
INS 
PE  
Ext 
KE  

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

t

RMSvEINS = 0.0001513, RMSvEKE = 0.00082486, RMSvEPE=0.041498 , RMSvEExt = 0.044638

Kalman estimate of INS error
True INS error              

146.5 147 147.5 148 148.5 149 149.5

−1005.465

−1005.46

−1005.455

−1005.45

t

b1=1, b2=0, b3=0, Rv:=Rv*100

real vE  
vEINS    
vEparpost
vEmeasext

148 150 152 154 156 158 160 162 164 166
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

RMSvETN = 0.0001513, RMSvEKE = 0.00082486, RMSvEpar=0.041498 ,RMSvEext = 0.044638

vEerrINSest
vEerr real 

(b)

Figure 6.12: vE with bias in fN -measurement and QINS multiplied by 100.
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Figure 6.13: vD with bias in fN -measurement.
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Figure 6.14: vD with bias in fN -measurement and QINS multiplied by 10.

37



FOI-R--0460--SE

0 50 100 150 200 250
−10

−5

0

5

10

t

 v
D

 with b
N

=1,  b
E
=0,  b

D
=0,  Q

INS
=Q

INS
*100

True
INS 
PE  
Ext 
KE  

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

t

RMSvDINS = 0.0043155, RMSvDKE = 0.0010544, RMSvDPE=0.038865 , RMSvDExt = 0.044602

Kalman estimate of INS error
True INS error              

(a) QINS ∗ 100

106 108 110 112 114 116 118 120 122 124

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

b1=1, b2=0, b3=0, Rv:=Rv*100

real vD  
vDINS    
vDparpost
vDmeasext

85 90 95 100 105 110 115

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

RMSvDTN = 0.0043155, RMSvDKE = 0.0010544, RMSvDpar=0.038865 ,RMSvDext = 0.044602

vDerrINSest
vDerr real 

(b) QINS ∗ 100 , magnified

Figure 6.15: vD with bias in fN -measurement and QINS multiplied by 100.
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(a) QINS ∗ 1
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(c) QINS ∗ 100

Figure 6.16: vE with bias in fN -, fE-, and fD-measurements.
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(b) QINS ∗ 10
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(c) QINS ∗ 100

Figure 6.17: vD with bias in fN -, fE-, and fD-measurements.
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Figure 6.18: vN error without bias in specific force measurements.
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Figure 6.19: vE error without bias in specific force measurements.
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Figure 6.20: vE error without bias in specific force measurements.
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Figure 6.21: vN error with bias in fN -measurement.
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Figure 6.22: vN error with bias in fN -measurement and QINS multiplied by 10.
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Figure 6.23: vN error with bias in fN -measurement and QINS multiplied by 100.

6.4.2 RMS values In tables 6.1 , 6.2 , and 6.3 RMS values can be compared in
three different cases of specific force measurement bias: no bias, bias in fN , and bias
in fN , fE , and fD. All the biases are 1.0 m/s2. The “estimation” methods compared
in these tables are: INS, PE with QINS multiplied with 1, 10, and 100, PE, and the
raw external measurements.

Without any bias, the KE is optimal and gives far better result than the PE. INS
tends to be still better in this realization, which can be explained by the quality of
the external measurements. Bias in fN affects of course the INS value for vN to a
very high degree, but also the KE estimates, although in lesser extent with increasing
QINS . It can also be seen that the fN bias affects the KE estimates of vE and vD

somewhat.
With bias in all three specific force measurements, the KE estimates of all three

velocity components seem to be affected by the same amount. The PE estimates, on
the other hand, can be seen to be quite unaffected by the specific force measurements
biases, and always be slightly better than the external measuremetns themselves.
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Figure 6.24: vE error with bias in fN -measurement.

No bias fN -bias fN , fE , fD-bias
INS 9.7 ·10−5 2.6 2.6

KE, QINS ∗ 1 2.3 ·10−3 0.81 0.81
KE, QINS ∗ 10 - 0.48 0.48
KE, QINS ∗ 100 - 0.28 0.28

PE 4.0 ·10−2 4.0 ·10−2 4.0 ·10−2

Ext meas (GPS) 4.5 ·10−2 4.5 ·10−2 4.5 ·10−2

Table 6.1: RMS values for errors in the vN component.

No bias fN -bias fN , fE , fD-bias
INS 1.7 ·10−4 1.5 ·10−4 2.6

KE, QINS ∗ 1 0.8 ·10−4 8 .0·10−4 0.80
KE, QINS ∗ 10 - 8.0 ·10−4 0.47
KE, QINS ∗ 100 - 8.2 ·10−4 0.26

PE 4.1 ·10−2 4.5 ·10−2 4.0 ·10−2

Ext meas, (GPS) 4.5 ·10−2 4.5 ·10−2 4.5 ·10−2

Table 6.2: RMS values for errors in the vE component.
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Figure 6.25: vE error with bias in fN -measurement and QINS multiplied by 10.

No bias fN -bias fN , fE , fD-bias
INS 7.3 ·10−5 4.3 ·10−3 2.6

KE, QINS ∗ 1 7.0 ·10−4 2.2 ·10−3 0.82
KE, QINS ∗ 10 - 1.5 ·10−3 0.49
KE, QINS ∗ 100 - 1.1 ·10−3 0.28

PE 3.9 ·10−2 4.0 ·10−2 3.8 ·10−2

Ext meas, (GPS) 4.5 ·10−2 4.5 ·10−2 4.5 ·10−2

Table 6.3: RMS values for errors in the vD component.
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Figure 6.26: vE error with bias in fN -measurement and QINS multiplied by 100.
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Figure 6.27: vD error with bias in fN -measurement.
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Figure 6.28: vD error with bias in fN -measurement and QINS multiplied by 10.
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Figure 6.29: vD error with bias in fN -measurement and QINS multiplied by 100.
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Figure 6.30: vN error with bias in fN -, fE-, and fD-measurements.
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Figure 6.31: vE error with bias in fN -, fE-, and fD-measurements.
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Figure 6.32: vD error with bias in fN -, fE-, and fD-measurements.
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7. Simulation Environment

7.1 Simulink model of the Inertial Navigation System

The inertial navigation system for the special case with no attitudes is implemented
in simulink, according to figure 7.1. The assumption of no attitudes means that the
angular rate between the n-frame and the b-frame, ωnb , is zero. All the output signals
from this block are listed in table 7.2. The two green blocks,“INS” and “Reality”, are
identical and contain the navigation equations. The upper green block (INS) simulates
the Inertial Navigations System with its noisy accelerometer input signals. The lower
green block is the “ideal” INS, or the reality, which is fed with the true noise free
accelerometer signals.

The Kalman estimator is based on a linear error model nav_error2slw , which is
the upper red block. All Simulink S-functions are colored red in figure 7.1 and are
briefly described in table 7.1. This model is evaluated by comparing its output with
the true error, i.e. the difference between the outputs navoutTN and realout.

S−Function
First order Taylor 

expansion of error dynamics 

Zero−Order
Hold

f_n

True accelerometer

Pinnov

To Workspace9

P

To Workspace8

innov

To Workspace7

fnmeas

To Workspace6

errTNest

To Workspace5

errnavoutTN

To Workspace4

navoutTN

To Workspace3

realout

To Workspace2

GPSout
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errout

To Workspace
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S−Function
Measurment update &

Prediction update

errTNK_innov6
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Calculates

Kalman gain
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Navigation eqs
Reality

f_nmeas 11out

Navigation eqs
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Meas. errors

 

GPS error
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Vector
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Vector
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Vector
Selector

 Vector
Selector 
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y
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Noisy  acceleration

Noisy  acceleration

True acceleration
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Figure 7.1: simulinkblock

The simulation parameters used are collected in table 7.1. The performance of the
inertial sensors (accelerometers) are choosen to be in the same class as Litton LN200.
Table 7.5 shows the stochastic parameters and initial variables for the integrated
navigation system simulation model.

(∗) Band limited white noise, given as noise power with sampling time 0.1 s.
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S-Function/file Description Input Output
nav_error2slw6.m linear error dynamics realout errout
errTNK_innov6.m continous KE gain K , co­

variances for the
y − HÑx̂ ,x K (y − HÑx̂) ,

diag(P ) ,
diag(Pinnov)

errTNuppdat6.m measurement update and
time update of KE

K (y − HÑx̂) ,
x

errTNest

Table 7.1: Description of all S-functions, marked red in figure 7.1.

Output Description Size
fnmeas noisy accelerometer signals 3
navoutTN position, velocity integrated from noisy measurements 14
errnavoutTN actual errors in position and velocity (navoutTN-realout) 14
realout position and velocity integrated from true signals 14
errout linear errors in position and velocity 6
GPSout noisy GPS measurements in position and velocity 6
Clock simulation time 1
errTNest Kalman estimate of position and velocity 6
P covariance of KE state vector 6
Pinnov covariance of KE innovations, y − HÑx̂ 6
innov innovations, measurments - predicted measurments, y − HÑx̂ 6

Table 7.2: Description of all outputs, marked blue, of the simulink block in figure 7.1.

Input signal Description
K_innov=u(1:6) K*(y - H*x_tak)
v_n=u(7) Vel. north
v_e=u(8) Vel. east
v_d=u(9) Vel. down
L=u(10) Latitude
l=u(11) Longitude
h=u(12) Height
r_n=u(13) Earth north radius
r_e=u(14) Earth east radius
f_n=u(15) North Specific force expressed in N
f_e=u(16) East Specific force expressed in N
f_d=u(17) Down Specific force expressed in N

Table 7.3: Description of the inputsignals of the S-function errTNK innov6.

Description Value
Solver ode45 (Dormand-Prince)
Max step size auto
Min step size auto
Initial step size auto
Relative tolerance 1e-3
Absolute tolerance auto

Table 7.4: Parameters of the simulated Inertial Navigation System.
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Description Variable Value Unit
GPS white noise
spectral density, po­
sition, velocity(∗)

Cov (Ñxext) diag(0.04/R2 ,
0.04/R2 , 0.04 ,
0.04 , 0.04 , 0.04)

rad2s , rad2s ,
m2s , m/s3 ,
m/s3 , m/s3

Accelerometer.
White noise spec­
tral density(∗)

Cov (Ñu)
(
80 ∗ 10−6g

)2 ,(
80 ∗ 10−6g

)2 ,(
80 ∗ 10−6g

)2
(
m/s2

)2 ,(
m/s2

)2 ,(
m/s2

)2
Initial values posi­
tion, x (0)

L (0) , λ (0) ,
h (0)

0 , 0 , 0 rad , rad , m

Initial values velo­
city, v (0)

vN (0) , vE (0) ,
vD (0)

1000 , 0 , 0 m/s , m/s , m/s

Initial INS position
error Ñx (0) (linear
error model)

ÑL (0) , Ñλ (0) ,
Ñh (0)

0 , 0 , 0 rad , rad , m

Initial INS velocity
error Ñv (0) (linear
error model)

ÑvN (0) ,
ÑvE (0) ,
ÑvD (0)

0 , 0 , 0 m/s , m/s , m/s

Table 7.5: Parameters of the simulated Inertial Navigation System.

7.2 Estimator parameters

The Kalman Estimator (KE) is continuous and it estimates the errors Ñx̂KE . The
estimator parameters and initial variables are found in table 7.2.

Description Variable Value Unit
initial estimates Ñx̂KE (0) 0 , 0 , 0 , 0 , 0 , 0 m/s , m/s ,

m/s , rad , rad ,
m

initial covari­
ances

Cov (Ñx̂KE (0)) 1 , 1 , 1 , 3·10−12 ,
3 · 10−12 , 3

(m/s)2 ,
(m/s)2 ,
(m/s)2 , rad2 ,
rad2 , m2

process noise co­
variance, INS

Cov () = QINS

measurement
noise covari­
ance, GPS

Cov () = Rext

Table 7.6: Kalman estimator parameters.

The Particle Estimator (PE) estimates the full states x̂P E and the estimator
parameters and initial variables are found in table 7.7.
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Description Variable Value Unit
initial estimates x̂P E (0) 1000 , 0 , 0 ,

0 , 0 , 0
m/s , m/s ,
m/s , rad ,
rad , m

initial covariances Cov (x̂P E (0)) 1 , 1 , 1 ,
3 · 10−12 ,
3 · 10−12 , 3

(m/s)2 ,
(m/s)2 ,
(m/s)2 ,
rad2 , rad2 ,
m2

process noise cov­
ariance, INS

Cov () =
QINS

measurement noise
covariance, GPS

Cov () =
Rext

roughness
param
param
param

Table 7.7: Particle estimator parameters.
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Appendix A: Band limited white noise

The Simulink model used in the simulations of this report works in continuous time.
This means that all the white noise components, such as measurement noises, should
be specified by means of spectral densities that are constant with respect to frequency.
However, as is well known, such noise has infinite power and is therefore not realizable.
The concept of continuous white noise can nevertheless be useful for modeling noise
sources in continuous simulation models when it is input to a linear system with a
bandlimited transfer function. The output signal from such a system will have finite
power even when driven by continuous white noise.

In order to realize this white noise process in the simulation model, we look for
a corresponding discrete white noise process that gives the same variance on the
output as the given continuous white noise process would do. The great advantage
with substituting the latter process with the former is that it is very easy to realize
a discrete random process with a given covariance matrix. Therefore, suppose a
continuous linear system driven by continuous white noise is given, described by the
state equations

ẋc (t) = Axc (t) + wc (t) , (7.1)
yc (t) = Cxc (t) , (7.2)

where xc is the state vector, wc is the white noise process with a spectral density Qc

that is independent of frequency. yc is the random signal vector at the output of the
system, and A and C are constant matrices of appropriate dimensions.

If the process is started at t = 0 with zero initial values, the output can be written

yc (t) = C

∫ t

0
eA(t−τ)wc (τ) dτ . (7.3)

Using the fact that E
[
wc (τ)wT

c (s)
]

= Qcδ (τ − s) , we can therefore write the cov­
ariance matrix of the output as

Cov (yc (t)) = E
[
yc (t) yT

c (t)
]

= E

[
C

(∫ t

0
eA(t−τ)wc (τ) dτ

)(∫ t

0
wT

c (s) eAT (t−s)ds

)
CT

]
= C · E

[∫ t

τ=0

∫ t

s=0
eA(t−τ)wc (τ) wT

c (s) eAT (t−s)dsdτ

]
· CT

= C ·
∫ t

τ=0

∫ t

s=0
eA(t−τ)E

[
wc (τ) wT

c (s)
]
eAT (t−s)dsdτ · CT

= C ·
∫ t

τ=0
eA(t−τ)Qc

(∫ t

s=0
δ (τ − s) eAT (t−s)ds

)
dτ · CT

= CeAt

(∫ t

τ=0
e−AτQce

−AT τdτ

)
eAT tCT . (7.4)

Now we try to find the covariance matrix Qd of a discrete white process {dk}∞
k=0 that,

when driving the same system, will give the same covariance matrix at the output.
Therefore we will analyze the solution yd (t) to the system
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ẋd (t) = Axd (t) + wd (t) , (7.5)
yd (t) = Cxd (t) , (7.6)

where the input random signal wd (t) is piecewise constant according to

wd (t) = dk for kh ≤ t ≤ (k + 1)h, (7.7)
E
[
dkdT

l

]
= Qdδkl. (7.8)

If the step size h is small enough that e−Aτ can be regarded as constant during a
sampling interval, i.e. when the variation in τ is less than h, then

∫ (k+1)h

kh
eA(t−τ)dτ ≈

heA(t−kh) if k is a positive integer, and for the output signal after N = t/h discrete
steps we get approximately

yd (t) = C

∫ t

0
eA(t−τ)wd (τ) dτ

= C
N−1∑
k=0

(∫ (k+1)h

kh

eA(t−τ)dτ

)
dk

= hC
N−1∑
k=0

eA(t−kh)dk. (7.9)

The covariance matrix for this signal is

Cov (yd (t)) = E
[
yd (t) yT

d (t)
]

= E

[
hC

(
N−1∑
k=0

eA(t−kh)dk

)(
N−1∑
l=0

dT
l eAT (t−lh)

)
CT h

]

= h2C
N−1∑
k=0

N−1∑
l=0

eA(t−kh)E
[
dkdT

l

]
eAT (t−lh)CT

= h2C

N−1g∑
k=0

N−1∑
l=0

eA(t−kh)Qdδkle
AT (t−lh)CT

= h2C
N−1∑
k=0

eA(t−kh)QdeAT (t−kh)CT

= CeAt

(
N−1∑
k=0

h · e−Akh (h · Qd) e−AT kh

)
eAT tCT . (7.10)

For h small enough, the sum inside the big parenthesis is approximately equal to the
integral inside the parenthesis of (7.4) provided that we choose

Qd =
Qc

h
, (7.11)

which means that if the continuous white process with spectral density Qc is replaced
with a discrete white process with covariance Qc/h at the input of the linear system,
the covariance at the output will be unchanged.
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