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Abstract

Multiple-scales technique (MSC) is used to examine the instability of non-parallel,
compressible, quasi three-dimensional boundary layer flows. It models the kine-
matics and convective amplification of waves with weakly divergent or curved
wave-rays and wave-fronts, propagating in a weakly non-uniform flow. The sta-
bility equations are put in a system of ordinary differential equations in a gen-
eral orthogonal curvilinear coordinate system. The zeroth- order equations are
homogeneous and govern the disturbance motion in a parallel flow and the non-
local effects are calculated from the inhomogeneous first-order equations. The
equations rewritten as a system of first order differential equations are discretized
using compact finite difference scheme. For validation of the multiple-scales tech-
nique, we have compared the growth rates with results from "parabolized stability
equations’ (PSE).
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1

Introduction

The region where transition from laminar to turbulent flow occurs has to be de-
termined when predicting skin friction and heat transfer along the surface of a
body exposed to a flow field. The transition can be triggered by small unstable
disturbances inside the boundary layer. The disturbances may be caused by local
effects like surface roughness or are a response to external disturbances.

Laminar-turbulent transition is generally associated with an increase of energy
losses due to increase of friction. This effect is more pronounced at supersonic
speeds. - The transition in the boundary layers on high speed vehicles both in-
creases the surface heat transfer and affects the aerodynamic properties of such
vehicles.

Most prediction methods used are either empirical or based on linear stability
theory. The traditional stability theory, based on quasi parallel flow assumption,
does not account for the growth of the boundary layer. The local character of
this theory excludes any effects associated with the varying properties of the basic
flow.

The non-parallel theory accounts for the weak dependence of the flow param-
eters on the streamwise coordinate, as well as the velocity normal to the wall. This
theory will necessarily include the contribution of the streamwise distortion of the
eigenfunction in the measurement of the growth rate of the disturbances. There
are two major techniques to account for non-parallel effects. One is to solve the
parabolic stability equations, see i.e. Hall [5], Itoh [10], Herbert & Bertolotti [9],
Bertolotti [6] and Simen [14]. The other is the multiple-scales method, which
was introduced into stability equations by Saric & Nayfeh [13], Gaponov [4] and
El-Hady [3] among others.

In this presentation the method of multiple scales is used to model the insta-
bility of the compressible boundary layer. The zeroth order equations that corre-
sponds to the parallel flow are put into a system of ordinary differential equations.
The first order equations that includes the streamwise variation and non-parallel
effects are calculated separately.

The purpose of this work is to develop a code to investigate the disturbance
growth in compressible, quasi three-dimensional flows with the method of multiple-
scales. To validate the calculations, test cases have been defined and compared
with some PSE calculations.
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2 Problem formulation

The stability equations are derived from the equations of conservation of mass,
momentum and energy. The equation of state governing the flow of a viscous,
compressible, ideal gas is formulated in primitive variables and in a general, curvi-
linear metric. The task is to model amplified waves with divergent or curved
wave-rays and wave-fronts in a non-uniform flow. Wave amplitude, wave number
and phase distribution can be spatially dependent if the flow is non-uniform. The
non-dimensional conservation equations in vector notation are given by

p| S+ (0 V)] = Vot AT W]+ V- [ (Tuk 7).

Ry

(D

Op
5+ V- (pw) =0, )

oT 1 o[ Op 1
PCp [E + (u-V) T} = ROPTV (kVT)+ (y-1)M {E +(u-V)p+ R—OQS},

3)
YM?p = pT “)

with viscous dissipation given as
¢=\V-u)?+ %,u[Vu +Vu"] : [Vu+ Vua"]. (5)

Here, superscript " refers to matrix transpose. Lengths, velocities and time are
made dimensionless using a fixed reference length scale

vizh
Iy=4 22 (6)
0 UO

Here p,p,T" stand for density, pressure and temperature, u is the velocity vector
and ¢ the time. The quantities X and p stand for the second and dynamic viscosity
coefficient, vy is the ratio of specific heats,  the heat conductivity, c, the specific
heat at constant pressure. U is the local free-stream velocity and vy is the kine-
matic viscosity coefficient and * refers to dimensional quantities. Mach number,
M, Prandt]l number, Pr and Reynolds number, Ry are defined as

Yo

M= ———,
Valad ks
*C*
Pr — 120) >|<pO
Ko
and
U* *
RO - 0*0 3
4
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where ¥ is the specific gas constant.

The mean flow quantities are weakly varying functions of the streamwise and
spanwise coordinates, ! and z? respectively. The parameter e characterizes this
weak variation and dependence of the flow under study. Consider the compress-
ible mean flow to be slightly non-parallel, that is the normal velocity component
W is small compared to the streamwise component U. The derivatives of the scale
factors, are also assumed to scale with the small parameter € which is assumed to
be of order O(1/R). Then the slow scale can be introduced as z1 = ex!, 2% = ez?
and t; = et. This scale governs the growth of the boundary layer, the modulation
of the disturbance amplitude and the change in the eigenfunction. In the govern-
ing equations all flow and material quantities are decomposed into a steady basic
flow plus an unsteady disturbance flow according to

a(z}, a2, 2% t) = Q(zl, 22, 2%) + §(zt, 22, 2%, 1) )

where 3 is normal to the directions of spatial amplification ! and z2. Waves

propagate in z*, 22 planes. Specifically in the above g and q stand for

q:[U)‘/?W7p)T7p]7 (8)

4=[u9a5p7T,75. ©9)

Here U, V, W are the basic and w, v, w the disturbance velocity components in
the streamwise, spanwise and normal directions, respectively. Assume that distur-
bance variables are divided into an amplitude function and an oscillating or wave
function

q =q(z1,2%,2° t1)e® (10)

where q stands for a complex, vectorial or scalar amplitude function and 4 for the
imaginary unit. The complex phase function 6 is defined such that

00 00

01 = a(z],z7), ok B(z1,x3), Frimiats (11)

The phase function is assumed continuously differentiable, thus

Oa op
52 = Bl (12)
o and 3 are the wavenumbers in the streamwise and spanwise directions respec-
tively and w is the frequency. In general these parameters are complex and given
by a = o +1a;, f = Br+40; and w = w, +iw;, where the subscripts . and ; refer
to real and imaginary part of the quantities respectively. The physical components
of the wave vector k(%) are defined as

k(1) = 2, m%@; K(3) = 0 13)

where h; are the scale factors, see Appendix A.
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3 Linearized stability equations

Here we follow the procedure used in the previous works by among others El-
Hady[3] and Nayfeh [12]. To derive the stability equations an expansion in the
form

q = [do +€q1 + ...Je" (14)

are made. We substitute equation (14) into equation (1)-(5) and collect coeffi-
cients of like powers of e. Subtracting the mean flow equations and linearizing the
equations, we obtain the zeroth- and first-order equations.

3.1 Zeroth-order equations

The zeroth-order equation system is written as

Loqgp = 0. (15)
where the zeroth-order operator £y can be written as
B 0 c 62

Lo=A+ — (16)

hs 0z ' 300
The coefficients of the 5 x 5 matrices A, B and C are typed in Appendix A. Note
that some terms of O(1/R) are kept in the zeroth-order equations to remove the
singularity near the critical points in the boundary layer where disturbance phase
velocity is equal to the mean velocity. These are small everywhere and hence
their effects can be neglected compared with the other terms which are O(1). The
zeroth-order equations are homogeneous and govern the disturbance motion in a
parallel flow. In equation (15), qo stands for

610 = (’&'07 1A)07 TO) wOa ﬁO)tT' (17)

The pressure disturbance is related to the density and temperature disturbances
through the equation of state (4). The eighth-order ordinary differential operator
Ly is subjected to the following boundary conditions

dg=9g=To=1wo=0 at 23=0 (18)

ﬁ():f)o:T():?f)o:O as :173——>OO (19)
The zeroth-order problem constitutes an eigenvalue problem whose solution pro-
vides the dispersion relation 7 = 7(a, 8, Ro, 21, 22,t1) corresponding to the
eigensolution

tio = K(z}, 22, t1)é1 (21, 22, 2%) (20)
to = K(z}, 22, t1)& (21, 22, 2%) (1)
To = K (21, 22, t1)é3(at, 22, 23) (22)
g = K(z}, 22, t1)€4 (21, 22, 23) (23)
po = K (1,23, 1) (a1, 21, 2°) (24)

where the function K is an amplitude modulation function and &, are eigenfunc-
tions. K is arbitary at this order.

11
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3.2 First-order equations

The first-order equation system is written as
Loq1 = F (25)

where F = F(F,, Fz, Fy, Fz, Fe)'" and q; is the eigensolution of the first- order
problem. The expressions for components of F are given in Appendix B.

The homogeneous part of the first-order equation is the same as the zeroth-
order problem. The inhomogeneous problem (25) has a solution if, and only if, 7
is orthogonal to the solution of the adjoint of the eigenvalue problem (16). Here,
the solvability condition is

/ (Futh + Foth + Fyel + Ful + Futyda® = 0, (26)
0

where 5;2 are the solutions of the adjoint homogeneous problem which are de-
fined in section 3.4. Now, the amplitude K of the zeroth-order solution can be
determined by solving the equation (26).

The quantity F contains the spatial derivatives of the mean flow quantities and
the eigenfunctions of the zeroth-order problem. Thus, it is necessary to evaluate
the non-parallel terms 9¢,,/0x1 and 8¢,/023. To do this, we replace the com-
ponents of qo in equation (16) with 49 = &;(z1,22,23), 9 = &(zl, 22, 2%),
To = &(zh, 22, 2%), vy = &4(al, 22, 2%), po = &5(zl, 22, 23) and differentiate
the equation with respect to 1 and z?. The inhomogeneous equation system that
has to be solved is

odo
and
9qo
Lo — 8
06.’13% H: (2 )

where G = (G, Gz, Gy, Gz, Ge)'" and H = (He, Ha, Hy, Hz, He)', subject to the
boundary conditions
06  0&  0& 04y

= = = =0 t 3-0 =12
oz7 ~ 0x? 92  Oxf wor (=12 @)

06 0% _ 9& _ & 3
= ol —_— == 0 —_—
o7~ 027 = a7~ Ban as z° — 00 (n=1,2) (30)

The homogeneous part of equations (27) and (28) has the same eigenvalues and
adjoint as for the zeroth-order problem in equation (16). The quantities G and H
contain spatial derivatives of « and (. To calculate these quantities, we apply the
solvability condition to equations (27) and (28), which yield

/ (Gett + Gath + G, + 6.6l + Guth)da® = 0 31)
0
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and
/ (Hetl + Hotd + Hyel + o8] + Hoth)da® = 0. (32)
0

Note that, in general, the equations above are not suficient to solve for all spatial
derivatives of wavenumbers and further approximations should be made. This is
out of scope of this paper. For a deeper discussion, the reader is refered to works
of other authors, i.e. Nayfeh [12].

3.3 Group velocity and growth rate

Substituting the right hand side of equations (25) into equation (26) and rearrang-
ing, the following differential equation for the evolution of the amplitude K is
obtained

oK oK oK
S gt p g = kK 33
91 Bt + g2 Dal + g3 922 1 (33)

and
= / Gida®, k= / P (34)
0 0

where go/g1 and g3/g; are the components of the disturbance group velocity in
the streamwise and spanwise directions, respectively, while k1 reflects the effects
of non-parallelism of the mean flow. The expressions for 7(?\1 and g are given in
Appendix D. Similarly, we can rewrite the solvability equation (31) as

oo op
el L =k 35
g2 (9&3% + g3 3$% 2 ( )
where
OO/\
ky = / koda3. (36)
0

The expression for 752 is given in Appendix D.

To simplify the analysis we assume that both the basic and disturbance flow
are independent of the 22 coordinate. Introducing this simplification in equations
(11) and (35) the following relations for « and 3 are found

Oo ko

= 37
5T = o (37)
o

— =0, (38)
8:1:%

Furthermore the imaginary part of the spanwise wavenumber is zero, i.e 3; = 0,
and real part of it, 3,, is constant. The correction of growth rate can be obtained
from equation (33). Here we consider spatial modulation of a single frequency
disturbance, which means

oK _,

Bt (39)

13
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Then, equation (33) simplifies to

dK
where
k
& = —i—=. (41)
g2
Therefore the amplitude K is
zl
K = Koexp (i / eadzl). 42)
z1

0

Ky is the initial amplitude at ' = z}. Then the disturbance amplitude, to the
first-order approximation, can be given as (10), (20)- (24) and (42) as

an = Ko&n(21,2%) eXpi( / (o + ed)dz! + Bz? — wt). (43)

Here the frequency w is a real number and disturbances vary periodically only
with 22 and ¢. In contrast, their amplitude distribution varies in a non-periodic
manner along the wave front, i. e. z3-direction and z!- direction if the flow is
non-uniform or the rays are divergent. In equation (10), the physical disturbance
is obtained from the real part of q. In order to derive the physical wave number and
amplification rate the components of the physical wave vector, which arises due
to distortion of the eigenfunction, are introduced. A generalization of equation
(13) can be defined as

1/ 189 1 189 B
=5 (gmy) =5 (Eag), F@=0 @

Equation (20)-(24) gives the physical disturbance amplitude as K (z1)&, (21, %),
where K (z1) is the amplitude modulation function and & (1, 2®) is an eigenfunc-
tion. Part of £ can be absorbed in K which means that & is dependent on the
normalization of the eigenfunction &, see equation (40). The physical disturbance
amplitude, on the other hand, is unique and independent of the eigenfunction nor-

malization. The physical growth rate o in direction of spatial amplification z* can

be evaluated using
~ 1 0¢
0=—q eozﬁ-e(Ea—z%)r. (45)
The first term in equation above is the parallel growth rate, while the second and
the third terms together give the non-parallel correction.
The quantity £ in (45) may be taken to be u, v, T or pU + pu, at some fixed
3 or at the location where it reaches its maximum value. Note that this definition
gives a growth rate which is a function of 23. However, it is possible to use the

integral of disturbance kinetic energy to meassure its growth rate.
E= [ pllaf + 3P +[o)ds? 6)
Then, the growth rate is defined as
o= —oy — €q; + egdw?(ln \/E) 47

All growth rates presented here, use the definition given by equation (47).
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3.4 Adjoint problem
Ly is a linear operator and we can define the adjoint operator Eg as
(@, Lodo) = (Lbdh, To) (48)

where ag is the adjoint eigensolution of the zeroth-order problem.The adjoint

equations are derived using the definition of euclidian inner product
o0
(4,7) = / a (c3)5(2%)da® 49)
0

and integration by part. The adjoint homogeneous set of equations are written in

the form

1 1 0a)
h3 (9$3

1 1 0%}

18B" 1 08h3 1 9°CH 4 dngoCH

At =aH - 22 - 78 1 4
e TR TResy Haw o O
Bt=_BH 4 2 oCH 4 Ohs (52)

- hs 028 K2z
ct=cH (53)

where A BH and CH are the transpose and complex conjugate of the zeroth-
order coefficient matrices. The boundary conditions are

fd=ed=¢=¢l=0 a =0 (54)

fl=el=el=€l=0 a 2> (55)

15
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4 Solution method

4.1 Numerical scheme

A fourth-order accurate compact finite difference scheme (see Lele [11]) is used
to discretize the equation (16) and we write (16) as a system of eight first order
differential equations in the following way

o
B—— =0 56
A+ Bt (56)
where
¢ = (7}'07@07T07w07[)07ﬁ6’ @6’7\#6)157" (57)

where prime refers to the derivative with respect to the normal coordinate, 2°. The
8 x 8 matrices .A and B can be represented as

(A O (B £cC
(o %) o= (1)

and [ is a 3 x 3 identity matrix. Matrix C is a 5 X 3 matrix which contains
the first three columns of the matrix C, and I is a 3 x 5 matrix with I as its
left sub-matrix. When solving the equation system in equation (16), a fourth-
order compact difference scheme is applied to approximate the derivatives of the
normal coordinate. For this scheme the approximation on a non-uniform grid can
be written (see [7])

afirr+eafjtesfion = Cifjg + Cofj + Csfjy (58)

where f; and f J’ are the values of the function and its derivative on the grid points,
and

2N + DNjq
_  \342 J _ ) NN A
c1 —2(AJ_1) (Aj+Aj_1)7 Co Z(AJ +A]_1) (AJ Ag-l),
D420
ez = —2(0;)> L ———1—
3 (&) NV

Cr= (02105,  Ca=(8;4+4;01)%00511, Cs= ()30,

with A; = z";’ i1 a:;’ For a uniform grid the coefficients in equation (58) reduce
to

3 1

1= —cg =7 co =0, Ci=0C3=—, Cy =1,
J

which recover the classical Padé scheme. Equation (58) can be represented in
matrix form as

ME = NT' (39)

where matrices M and N are tridiagonal (for more details see [7])

17
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4.2 Discretized equations

The relation between the amplitude functions and their derivatives at the grid
points is written as

0

3

&,

M =N (60)

Q

where

b= (o), ey (D) oy () ), (61)

and the subscript ; denotes the j-th grid point in the normal direction. Matrices M
and NV have a block tridiagonal structure with c11, co1, csI and C11, CoI, C31 on
the diagonals respectively. Iis a 8 x 8 identity matrix. Inserting (60) into (56)
yields

A+ BN My =0, (62)

which in the homogeneous case can be rewritten as

L =0, (63)
and in the inhomogeneous case
L =b, (64)
where
= [m?—ui + 4,
and

b=-NB'f,

where f is the vector on the right hand side of the equation systems (25) and (27).
Matrices A and B are block diagonal with matrices A and B as diagonal elements,
see [7].

The equation system (56) is solved by using a partial pivoting Gauss elimina-
tion with backward substitutions method by using the Richtmyer algorithm, which
is a fast solution algorithm for block- tridiagonal systems. For further details see

[7].

4.3 Solution procedure

First the zeroth-order equations are solved to find o and qp. This is done in an
iterative manner. One of the homogeneous boundary conditions, i.e. Wy = 0 at
z3 = 0, is replaced by a normalization condition, i.e pp = 1 or (8Up/dz> = 1)
at 23 = 0. In each iteration step the value of « is updated using a secant method
until the missing homogeneous boundary condition is fulfilled.

The correction of the growth rate due to the non-parallel effects are given by
quantities k1, g2 which are functions of dgp/ 3:::%. The latter one is given by the
solution of the inhomogeneous equation (27). The fact that the operator Lg in (27)
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is the same as in (16), makes the problem singular. The matrix corresponding to
the discretized equation has a sparse and block-tridiagonal form which makes use
of a fast numerical algorithm possible. Here, the task is to disturb the operator
matrix in order to avoid singularity without destroying its tridiagonal structure. In
this case the use of Woodbury formula [15], which is the block-matrix version of
the Sherman-Morrison formula, solves the problem. Woodburys formula is

(L+U.-VEYy =t |-t u. @+ VHE. L7h.u)t . vE . 1)
(65)
here £ = L + ey - €} is the disturbed N x N matrix and e; = (1,0, ...,0) is
the unit vector, while U and V are N x 2 matrices. U is the matrix formed by
columns out of the vectors u; and up, and V is the matrix formed by columns out
of the vectors v and vo, where u; and v are chosen to be the unit vector e; and

—el", respectively, ug and vy the null space out of LY and £ respectively. Then
the expressions for the correction to £ is

2
L+ wev)=(L+U-VH) (66)
k=1

Equation (65) is then solved in the following way:
first the problems

c- Z1 = Ui, C- Z2 = U3, 7
are solved and the matrix
Z = [z1,29) (68)
obtained. Next, the 2 X 2 matrix inversion

H={1+VH.z2)7! (69)

are done. I is the 2 x 2 identity matrix. The solution for L- y = b, where b is the
right hand side of equations (25) and (27), gives the solution vector x

x:y—Z-{H.(VH-y)}. (70)

The solution of the first-order equations, due to singularity of Lo, is not unique.
To select the desiered solution we project the solution according to

)A(:X—-(XT'VQ)‘VQ 7D

where vy, which here is equal to Go, is normalized such that [ vadr® = 1.
We also found an alternative way to remove the singularity of operator £o. Here
we replace one of the homogeneous boundary conditions, i.e. dwo/dz' = 0 at
23 = 0, with an normalization condition i.e. 8pp/0z' = 1 at 23 = 0. Both
methods delivered same results.

19
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5 Results and discussions

Figure 1. derivative of a in
streamwise direction.

ozl 1.5e-05

To check accuracy of the non-parallel terms dc/Oz} and 9¢/8z1, the calculated
values are compared with the finite difference approximation of the streamwise
derivative of the wavenumber and eigensolutions of the zeroth-order problem.

3e-05 T T T T T T

2.5e-05 |- b

2e-05 |- MSC 1
o Finite difference

o

1e-05

5e-06

0 " 1 1 1 L I n
400 500 600 700 800 900

Comparisons of streamwise derivative of the wavenumber are presented in figure
(1) and eigensolutions in figure (2). Here R is Reynolds number defined as = !

*
e
* 9
Ve

* g%
Lele

where [* = /== According to the results all of the calculations are in good

agreement with the solutions from finite differences. Here the Mach number is set
to be 1.6 and the constant reduced frequency F' = 3 x 10~* and defined as

*
l/e

2%
e

F=2rnf*

(72)

where f* is the constant, dimensional, physical frequency.

In the following sections the stability of boundary layer flows at different Mach
numbers and for different geometries have been investigated. The growth rates
are calculated based on the integral of disturbance kinetic energy and are made
normalized using local reference length /v}z*/U}.

21
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Figure 2. derivatives of the
eigensolutions compared with fi-
nite differences.
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Figure 3. Variation of the spa-
tial growth rates with Reynolds
number in incompressible flat
plate boundary layer flow of 2D
waves (M = 1074).

0.00

-0.02 -

Growth rate

-0.04 -

-0.06
0 800

5.1 Subsonic flow past a flat plate

The growth rates of disturbances in an incompressible flow are calculated using
the multiple-scales (MSC) technique and compared with PSE. The Mach number
was chosen to be 10~ and calculations are made for two different reduced fre-
quencies F' = 1.4 x 107* and 3 x 10~%. The growth rates are presented in figure
(3). All of the results are in agreement with PSE except some small differences
at initial part of calculation domain. This is due to the well known ’transient’ be-
haviour of the PSE . The PSE calculations are started with solution of the zeroth-
order equations.

Another test case for subsonic speeds were made for an oblique wave with 3/R =
1.5x 1074, F = 4 x 1075 and M = 0.8. This case is presented in figure
(4) and shows excellent agreement with PSE data. Another test case models
the flow over a swept flat plate with pressure gradient. The mean flow field is
a Falkner-Skan-Cooke flow [2]. The mean velocity can be approximated U, =
14(x/c — 0.012)°34207 13 /s and W, = 14.15 m/s, where ¢ = 0.5 . The dimen-
sional frequency is f* = 158.17Hz and 3* = 523.78 m~—!. The result is plotted
together with a stationary case in figure (5) and shows a good agreement with PSE
data.

23
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Figure 4. Variation of the spa-
tial growth rates with Reynolds
number at subsonic speeds in
flat plate boundary layer flow of
an oblique wave (M=0.8, F' =
4x107% B8/R=15x10"%and
stagnation temperature T, =
311).

Figure 5. variation of growth rate
of Falkner-Skan-Cooke velocity
profiles ( f= 158.17 Hz and 8 =
523.78 m~1).
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Figure 6. flow ower a sinus
shaped plate (M = 0.8 and
B/R =5.8x 1075).

5.2 Subsonic flow past a curved surface

To validate the implementation of the metric terms, we choose a two-dimensional
subsonic boundary layer on a curved surface. The geometry of sinusoidal shaped
plate, y = sin(z), is used and both 2D and 3D disturbances are studied. The
mean flow is given by self similar profiles.

The data are compared with PSE. The Mach number is M = 0.8, /R = 5.8 x
1075 and F = 1 x 1075, Here, the results for all cases match those from PSE.
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Figure 7. The velocity at the
edge of the boundary layer, Qe,
as a function of the arclength
normal to the leading edge, S
(Moo =0.63)

Figure 8. Variation of the spa-
tial growth rates with Reynolds
number at subsonic speed. Flow
over a wing profile (8 =
5000 m~! and f* = 16000 Hz
)
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5.3 Subsonic flow past a swept wing

For more complicated basic flows we have selected a wing profile as the next test
case. The geometry is an airfoil at 30 degrees sweep angle. The freestream Mach
number is My, = 0.63 and the Reynolds number based on the chord length is
8.5 x 105. The velocity at the edge of the boundary layer, Q., as a function of
the arclength normal to the leading edge, S, is given in figure (7). To validate
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the result, data are compared with PSE. The data are presented in figure (8). Five
different start values for PSE are plotted. The local growth term is also presented
to compare with. In this figure discrepancies from PSE can be detected. Here,
all PSE results after a transient phase collapse to a single curve. The agreement
between the two methods is not as good as in previous cases. The reason of this
discrepancy is not found yet.
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Figure 9. Variation of the spa-
tial growth rates with Reynolds
number at supersonic speeds
(M=1.6, /R = 1.5 x 10% and
F =4x107%).

Figure 10. Variation of the spa-
tial growth rates with Reynolds
number at supersonic speeds
for different start values (M=1.6,
B/R = 15x 10% and F =
3 x 1075).

5.4 Supersonic flow past a flat plate

Tests were made at higher Mach numbers. The Mach number is chosen to be
M=1.6. In figure (9) data are shown for PSE and MSC and data for the first two
terms in equation (45) are also presented. They represents the parallel growth
rate and nonparalle] growth rate without the distortion effect of the eigenfunction,
respectively. 3/R is assumed to be 1.5 x 10~ and the reduced frequency F =
4 x 1073, The PSE calculations have been performed for different initial position.
As is shown in figure (10) all the PSE reult after a interval of transient behaviour
collapse to MSC results. The transient is larger when PSE calculations are started
in the stable region.
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Figure 11. Variation of the spa-
tial growth rates with Reynolds
number at supersonic speeds
and different frequencies (M =
1.6, /R = 1.5 x 10~* and f
= F x 105).
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6 Conclusions

The method of multiple-scales is used to examine the non-parallel instability of
compressible, quasi three-dimensional boundary layer flows. The method is ap-
plied to a flat plate and wing geometry. It models the kinematics and convec-
tive amplification of waves with weakly divergent or curved wave-rays and wave-
fronts, propagating in a weakly non-uniform flow. The stability equations, are
put in a system of ordinary differential equations in a general, orthogonal curvi-
linear coordinates. The zeroth-order equations are homogeneous and govern the
disturbance motion in a parallel flow and the nonlocal effects are calculated from
the inhomogeneous terms of the first-order equations. The equations rewritten as
a system of first order differential equations are discretized using compact finite
difference scheme. Growth rates are calculated using an integral of disturbance
kinetic energy. For validation of the multiple-scales technique, we have com-
pared the growth rates with results from ’parabolized stability equations’(PSE).
Discrepancies were detected for the flow over a airfoil at 30 degrees sweep angle.
In general MSC and PSE results are in good agreement.
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Appendix A

Terms of order ¢°

The ortholgonal curvilinear metric specifies the wave-rays and wave-fronts
extending e.g. along a body contour. The first order problem contains metric
quantities, i.e. the scale factors h;, which yield the arc length along the rays and
fronts,

3

Oy
m= (55 73)

Jj=1

and their derivatives, which yield divergence or curvature along the rays and
fronts,

1 Oh;
= T . 74
msj ik, 927 (74)
Here 17 are the Cartesian coordinates of the reference system.
Some definitions:
1 0 1 0?
¢ h; oz’ v hihj Ox'0xI’
o B
ap = EiH /80 - h_g,
The homogeneous set of equation are written in the form
~ ~ 1 0q 1 9%
Lo = AGo + B¢ > (75)

hs 83 * hZ (923)2 -
The non-zero components of the 5 x 5 matrices A, B and C are

A(1,1) = ipag

A(L,4) = Dgp
A(1,5) —iw + 18V + iU
2 A 2 2
A(2,1) = iﬁaOU—ip_w+2M;;O + O;%O +“§° +ip BV
AaoBo | paobo
A(2,2) =
d? d
A(2 3) _ _DgU%ﬁ%DgT_ éd—“DggU_*—iaO 1 p_
o) = R R ~MP?
- 1dp
—iag=—+= Ds T
A4 = —EL = 4505
. 1
A(2,5) = ZaowT
_ Aapbo | paobo
A(3,1) = = + 7
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Appendix B

Forcing terms in first-order equations

We define first order equations £1q; = F where F = (F, Fy, Fyy, Foy Fe )"

Fe = (po) D1 U+ mizp g + mazp Wo + may (Pp) U +ma1p iy +
(Po) DsW + Dypiip + p Diig + D1po U +ma1 (pp) U +
m31pUp + Dspo W
Fo = — DpoT = (50) maaV2+ p Dy Utio + —— (59) DT —
yM?2 NVE
2pmo1Vug+ pDiup U + pmaswo U + p Dsug W +

(Po) D1UU + (po) DBUW‘i'WleTO"‘WD]PTO

Fy = pmartup V + pmarUtp + pmaztg V + (o) maUV +
(ﬁg) D VU4 pDivgU+ pD;y Vg +
ng/’l}oW-i-(f)\o) Ds VW

F. = —(po) misU* + pma1Up — (pp) masV2+ pDsp U +
ng W wp + ngi’l\lo W — 2pm23V50 — melgUﬂo

~ 1 ~
Fe = —pchD3T0+(fy—I)U;DngT—pcpungT—
1 de, = 1 dc, ~
—— 2 TyWDsT —p—=-LT,UD
o ar Lo WPsT=p o ToUDi T+

(W—I)Ué (Po) D1T+(7—1)U—§D1p7’0+
(W—I)U%PDzToﬂL(’y—I)W%DgﬁgT—k
(V—I)W% (Po) DsT+(7—1)W%D3p7’o+
(7—1)W%pD3fFo+(7—1)M2a0D1P_

(Po) ecoWDsT — (o) cpUD;T —pepUD; T,
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Appendix C

Forcing terms in equations for 2%
1

We define equations Eo%‘f— = G as where G = (G¢, Gz, Gy, G2, Ge)

Ge , N N
o —Dsp o mai + Digpwo +icg (po) D1 U —
. ~ . ~ i~ 1 Oa
iBop Vo ma1 + 180 D1p Vo — ifo (Po) Vmar +ip e Ug +
o~ PN 1 da N
B0 (Po) D1 V —iag (po) Umiq +Zh28 7 (Po) U — p Dstwp ms1 +
D;p Dswy — ip agp mi1 + ImDyp ooty
Gz PN PN . -
h_1 = 1pooUp DU —ipagup Umqq + pDi1sU wp +iDipagup U +
1 da 1 -
P — h23 7 U U+ DipDsU wy — iag NYE (Po) Tmi1 +
1 da 1 1
1 0a 1 o
Zh%&‘zl Ve (Po) +Za07M Dip Ty — icn Mngam11+
1 0a 1 . 1 ~
zsz,BougV+zh28 7 M2 pTo +za07M2 (po) D1 T —
ip Boug Vmar + ip Boip D; V —iDipw g — p D3 U Wy ms
1 da . . ~ . ~ . ~
_C_’g = ip—z—l Vo U+1iDipagvpU —iDjpwvy +iDypPovp V +
P hla
- ) 1 =
Zﬁo >DipTo -I-Zﬁo 272 (Po) DzT—ZﬁofyMngomm%-
pD13Vwo —ip Bovp Vm21 —pDsV uwpma + D1PD3 V wg —
1p aoVp Umay + ip gy Dy U +ip Bovp D; V — 7,,30 (pg) Tmo1
gz 1 o~ . —~ ]. 8
Zz T D -
It Ve pDsTpm3z +1 1/06¥0w0U+’LPh2(9 1w0U
1 1
Dspo Tma1 + ——5 Dyp D3 Ty +iDypBotip V +
M2 yM?

ip Bowp Dy V —ip Potg Vmaoy —iD;pw Wy — ip apwg Umyy —

1 ~ 1
WDgp Tom31 — YE] (Po) DsTmsz1 + —— MQ (Po) D1sT +
1
7M Dspo D; T + —— Ve Disp To +ipaoly Dy U
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Appendix D

Coefficients of disturbance amplitude equation

We define some terms to integrate in the solvability condition.

g2 = g 1U£5 + §Tlp§1 +§T2")/M2 T§5 +€T2PU€1 +§T27M2 p€3 +
1 1
Eh3pUs + EMp Uy +€15(y - 1) U; p&+Els(v—1) U; Té -

EpepUss

ki = i€ ma&sU +i" Dip& +i€1 & D U +i€T5pma Uy +
i&3pUD &y +itTgpmar &V +i€T3p D, V €1 +

i€ 5pmas€aV + il gesma UV + €136 D, VU +
i€'38sDs VW +i€l3p Ds&yW + i€l yp Doty W +

i pDiés+itlopUD &1 + i Dip&s+

1
2'7M2
1
Ve &D T +

TD; & +i€ty&sD, U U —

1
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1
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i€ UD €5+ €116 Ds W + i€t p D1 &1 + €T DatsW —

. . 1 de

iTEscp WD T —ittep c—_d—TB &UD, T —
P

. ) 1 dc )
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14

ilop Dy U & +ig!

. 1 ) 1
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Appendix E

Thermodynamic properties

The fluid is treated as a thermally ideal gas. Hence, the specific heat, the
dynamic viscosity and the heat conductivity are a function of temperature, only.
The following approximations are used, respectively:

1. Dynamic viscosity u: (a) The two part Sutherland law

- 3/2
_ n0-6_* 2
w(T) =1.458 - 10 T+ 1104 [Ns/m?] for T >1104
and
w(T) = 0.0693873 - 107 °T[Ns/m?  for T <1104

(b)A 4" degree polynomial fit to experimental data (see table 2)

2. Heat conductivity &:

(a) Assuming constant Prandtl number and constant specific heat Sutherland’s law
is used to calculate heat conductivity.

(b) Keye’s formula:

(T = 2.648151 - 1073TY2[1 + (245.4/T)107 /T {W/mK] for T > 80K
and
#(T) = 9.335056752 - 10~ >T[W/mK] for T < 80K

(c) A 4*" degree polynomial fit to experimental data (see table 2)

3. Specific heat cp:

(a) Constant specific heat using the value calculated from table 2 for reference
temperature.

(b) A 4" degree polynomial fit to experimental data (see table 2)

value=ag + a1T + aoT? + a3T° + a4T?
a; Cp 7 K
[J/kgK] [Ns/m?] [W/mK]

0 1.058183878 - 10° —1.561632014 - 10~ | —1.305884703 - 103
1 | —4.52457049-10~1 | 7.957989891 -10~% 1.099134492 - 10~*
2 | 1.141345435-10~% | —6.930149679 - 10~11 | —6.84697087 - 108
3 | —7.957390422 - 10~7 | 4.068157752-10"1* | 3.327083322.10~1!
4 | 1.910858151-10~19 | —9182486030 - 10~1® | —5.397866355 - 10~ 1°

Table 2:Values of the coefficients used for the polynomial fit to the experimental
data (from [1])
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