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1. Introduction

1.1 Background

In the project “Jamming of Navigation System” different algorithms for achieving
robustness against intentional jamming are investigated [4]. Here, in particular, an
integrated GNSS (Global Navigation Satellite System)/INS (Inertial Navigation Sys­
tem) system in combination with an electrically steerable antenna array is analysed.
The robustness of navigation systems is crucial and can be achieved in many ways.
One way is to protect the GNSS receiver by using different software and hardware
solutions. Another is to support the GNSS system with external complementary
measurements. Two efficient methods have shown to be:

• Supporting the GNSS receiver with a complementary jamming robust sensor
system, e.g. integrating GNSS and the IMU.

• Protecting the GNSS receiver by using smart antennas (adaptive beamforming
antennas and switched beam antennas), thereby achieving spatial null steering
or spatial beam forming.

Jamming of navigation systems is a current threat since GNSS became a key
component in modern navigation systems. The use of the United States’ Global Pos­
itioning System (GPS) is expanding, and recently the European Union has approved
funding of the Galileo project, which is the European equivalent to GPS.

1.2 Aim of work

In order to construct navigation systems that are robust and insensitive to disturb­
ances (intentional as well as untintentional), multisensor systems are often construc­
ted, in which different sensors are combined together into redundant data fusion
systems. In such a system, one of the main tasks is to calculate (estimate) in real
time the position and/or velocity of a vehicle, based upon all these collected data.
The problem of estimating the state of a dynamical system is also a central one in e g
control theory building on feedback methods where system states are used to determ­
ine control signals. If the dynamical system that models reality is linear, or at least
can be linearized with sufficient accuracy, and in addition has gaussian statistics, it is
a well established fact that the Kalman estimation algorithm solves the optimization
problem of minimizing the expected quadratic estimate error, [2] , [5].

In those applications where the state dynamics are not linear, the method of
linearizing the state dynamics around the current estimate and applying the Kalman
algorithm (“Extended Kalman”) has long been a common way to generalize as far
as possible a method that has shown to be outstanding, given the restrictions of
linearity and gaussianity. However, no general theoretical convergence proofs have
been accomplished for the Extended Kalman method when these restrictions are
violated, except possibly for certain special cases, and it is always uncertain whether
or not it will work for all cases in a given application. This fact will, of course, be
more stressed the more the system deviates from the linear/gaussian requirements.

1



FOI-R--0473--SE

A family of estimators, applicable to a much broader class of dynamical systems,
has recently aroused interest for applications that have strong nonlinearities, such as
hard limitations for the state values. Such limitations are often imposed in navigation
applications if certain prior knowledge restricts the positions and/or velocities to some
given subset of the state space.

These estimators use a great number of step-by-step simulations of a stochastic
state model of the system, where the different simulated states (“particles”) after each
step are compared with measurements from the real system and assigned a quality
number, used for weighing together the different particles to make up for the total
state estimate.

Already in the sixties, similar Monte Carlo-based estimation methods were sug­
gested. However, because of the extensive computational requirements, it was not
practically useful at the time.

During the last years, a stream of papers have been published, starting with [1].
A recent application to navigation problems is found in [4]. The aim of this report
is to give a mathematical derivation of the so called Particle Estimation algorithm
that is based solely on Bayes’ theorem and the system equations. This derivation is
mainly a compilation and elucidation of the two descriptions in [3] and [6].

2
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2. Basic relations

Consider the following discrete time dynamical system:

xt = f (xt−1) + wt, (2.1)
yt = h (xt) + et, (2.2)

where the state trajectory is {xt}∞
t=0 ⊂ Rn, the process noise trajectory {wt}∞

t=1 ⊂
Rn , and the state transition function is f : Rn → Rn. The measurement trajectory is
{yt}∞

t=0 ⊂ Rm, the measurement noise trajectory {et}∞
t=0 ⊂ Rm, and the measurement

function is h : Rn → Rm. The process and measurement noises are white sequences
with probability density functions (pdf:s) pwt

(·) and pet
(·) , respectively.

We define the part of the state and measurement trajectories up to time t as

x0:t , (x0, x1, ..., xt) , (2.3)
y0:t , (y0, y1, ..., yt) . (2.4)

Eq.(2.1) and the whiteness of {wt}∞
t=1 imply the Markov property of the state traject­

ory
p (xt|x0:t−1) = p (xt|xt−1) (2.5)

(see Appendix 1), which in turn gives the following product expression for the state
trajectory ”prior” pdf p (x0:t) , i. e. the distribution of all the states up to time t
without using any knowledge of the measurements:

p (x0:t) = p (x0:t−1) p (xt|x0:t−1)
[eq. (2.5)] = p (x0:t−1) p (xt|xt−1)

= ...

= p (x0)
t∏

k=1

p (xk|xk−1) . (2.6)

Because, according to eq.(2.1) , p (xt|xt−1) = pwt
(xt − f (xt−1)) , which is a known

function, this product can also be written

p (x0:t) = p (x0)
t∏

k=1

pwk
(xk − f (xk−1)) . (2.7)

From eq.(2.2) and the whiteness of {et}∞
t=0 follows that the pdf for the measurement at

time t is uniquely determined by the state at the same point in time. In particular, if
the state trajectory up to time t−1, x0:t−1, is given, then the pdf for the measurements
up to the same point in time, y0:t−1, does not depend on anything else, so that e. g.
p (y0:t−1|yt, x0:t) = p (y0:t−1|x0:t−1). By similar reason, p (yt|x0:t) = p (yt|xt). For an
example of a derivation of a similar formula, see Appendix 1. All this implies the
following product formula for the conditional measurements:

p (y0:t|x0:t) = p (y0:t−1|yt, x0:t) p (yt|x0:t)
[eq. (2.2)] = p (y0:t−1|x0:t−1) p (yt|xt)

3
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= ...

=
t∏

k=0

p (yk|xk) . (2.8)

According to eq.(2.2), p (yt|xt) = pet (yt − h (xt)) , so eq. (2.8) can be written

p (y0:t|x0:t) =
t∏

k=0

pek
(yk − h (xk)) (2.9)

(compare with eq.(2.7) for the a priori state pdf).
For completeness we also state Bayes’ theorem, applied to the state and measure­

ment trajectories. This application of the theorem expresses the required distribution
for the state trajectory at time t , given the observed measurements up to the same
point in time, in terms of the ”prior” state pdf and the conditional measurement
trajectory pdf given the state trajectory, according to

p(x0:t|y0:t) =
p(y0:t|x0:t)p(x0:t)

p(y0:t)
. (2.10)

By means of eqn:s (2.2) and (2.5) we can derive a recursion for the desired pdf in
eq.(2.10):

p(x0:t|y0:t) =

[eq. (2.10)] =
p (yt|y0:t−1, x0:t) p (y0:t−1|x0:t) p (xt|x0:t−1) p (x0:t−1)

p (yt|y0:t−1) p (y0:t−1)

[eqn:s (2.2) , (2.5)] =
p (yt|xt) p (y0:t−1|x0:t−1) p (xt|xt−1) p (x0:t−1)

p (yt|y0:t−1) p (y0:t−1)

=
p(yt|xt)p(xt|xt−1)

p (yt|y0:t−1)
· p(y0:t−1|x0:t−1)p(x0:t−1)

p(y0:t−1)

[eq. (2.10)] =
p(yt|xt)p(xt|xt−1)

p (yt|y0:t−1)
· p (x0:t−1|y0:t−1) . (2.11)

This formula is relevant for t ≥ 1. For t = 0, Bayes can be directly applied to p(x0|y0):

p(x0|y0) =
p(y0|x0)p (x0)

p(y0)
. (2.12)

Observe that p (yt|xt) = pet
(yt − h (xt)) for t > 0 and p (xt|xt−1) = pwt

(xt − f (xt−1))
for t > 1 and are therefore known functions, as is p (x0).

4
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3. Expectation

Because calculating the whole pdf function p(x0:t|y0:t) from the recursion defined
by eqn:s (2.11) and (2.12) is very cumbersome indeed, we may be satisfied with an
estimation of the expected value of some function gt, defined on Rn(t+1) , with regard
to the desired conditional pdf p(x0:t|y0:t). The most common choice for gt is the
identity function, i. e. gt (x0:t) = x0:t , in which case the expected value of gt becomes
the conditional mean of x0:t , which in turn happens to be the minimum variance
estimate of x0:t , given the measurements y0:t.

Now suppose also that q(x0:t|y0:t) is another conditional pdf, whose support con­
tains the support of p(x0:t|y0:t) (for avoiding division by zero in the integrand in
eq.(3.1) below). Then this expected value can be expressed both as a weighted integ­
ral of gt (x0:t) with weight p(x0:t|y0:t) , and as a weighted integral of gt (x0:t)

p(x0:t|y0:t)
q(x0:t|y0:t)

with weight q(x0:t|y0:t) , or

mp , Ep(x0:t|y0:t) [gt (x0:t)]

=
∫

gt (x0:t) p(x0:t|y0:t)dx0:t

=
∫

gt (x0:t)
p(x0:t|y0:t)
q(x0:t|y0:t)

q(x0:t|y0:t)dx0:t

= Eq(x0:t|y0:t) [gt (x0:t) wt (x0:t)] , mq, (3.1)

where
wt (x0:t) ,

p(x0:t|y0:t)
q(x0:t|y0:t)

. (3.2)

(The explicit t dependence in wt is motivated by the y0:t in the p and q functions.)
The covariance matrix of gt (x0:t) with respect to the distribution p(x0:t|y0:t) is

P p , Ep(x0:t|y0:t)

[
(gt (x0:t) − mp) (gt (x0:t) − mp)T

]
, (3.3)

whereas the covariance of gt (x0:t)wt (x0:t) with respect to q(x0:t|y0:t) is

P q , Eq(x0:t|y0:t)

[(
gt (x0:t)

p(x0:t|y0:t)
q(x0:t|y0:t)

− mq

)(
gt (x0:t)

p(x0:t|y0:t)
q(x0:t|y0:t)

− mq

)T
]

.

(3.4)
In general, P q 6= P p.

5
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4. Weights recursion

The conditional pdf q(x0:t|y0:t) that was introduced in eq.(3.1) is called the ”import­
ance sampling distribution”, and will be used later for the sampling of particles to the
estimator. The quotient wt (x0:t) between two conditional pdf:s as defined in eq.(3.2)
is called the ”importance weight”, and will be used when the expectation in eq.(3.1)
is approximated with the arithmetic mean of values sampled from the pdf q(x0:t|y0:t).
In order for a recursion with respect to time for the wt (x0:t) to be derived, we impose
the following requirement on the q function:

q(x0:t−1|y0:t) = q(x0:t−1|y0:t−1). (4.1)

This feature implies that, according to this pdf, no state will have a distribution that
depends on ”future” measurements. Therefore, an observation of a measurement
never changes the probability distribution of ”earlier” states. Such observations thus
never cause the need for resampling of those earlier states in the particles (more
about this later). So, by means of eqn:s (2.11) , (4.1) , and (3.2) , we get a recursion
for wt (x0:t) in the following way:

wt (x0:t) [eq. (3.2)] =
p(x0:t|y0:t)
q(x0:t|y0:t)

[eq. (2.11)] =
p(yt|xt)p(xt|xt−1)p (x0:t−1|y0:t−1)

p (yt|y0:t−1) q (xt|x0:t−1, y0:t) q (x0:t−1|y0:t)

[eq. (4.1)] =
p(yt|xt)p(xt|xt−1)

p (yt|y0:t−1) q (xt|x0:t−1, y0:t)
· p (x0:t−1|y0:t−1)
q (x0:t−1|y0:t−1)

[eq. (3.2)] =
p(yt|xt)p(xt|xt−1)

p (yt|y0:t−1) q (xt|x0:t−1, y0:t)
· wt−1 (x0:t−1) . (4.2)

This formula is relevant for t ≥ 1. t = 0 gives the initial condition for the recursion:

w0 (x0) = [eq. (3.2)] =
p(x0|y0)
q(x0|y0)

= [eq. (2.12)] =
p(y0|x0)p(x0)
p(y0)q(x0|y0)

. (4.3)

7
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5. Particle approximation I

The purpose now is to approximate the integral defined in eq.(3.1). The method
described in this paper does this by means of stochastic sampling. Suppose that we
can make one realization of the random variable (or, rather, the finite random process)
x0:t according to the pdf p(x0:t|y0:t). The random variable transformed by the given
function gt , i.e. gt (x0:t) , then of course has the expected value Ep(x0:t|y0:t) [gt (x0:t)] ,
i.e. the quantity we want to calculate according to eq.(3.1) . By this sampling from
the pdf p(x0:t|y0:t) , we can hope to get numerical values in the neighborhood of
the true expectation, and the variances in the diagonal of P p according to eq.(3.3)
are measures of the expected errors. Of course, the smaller variances, the better
estimation procedure. So, if we could create another random variable with the same
expected value, but with smaller variances, and if we were able to sample from this
new random variable, then we would have a better estimator. One random variable
with these good features is the so called sample average, i.e. the arithmetic mean
of a number of independent random variables that have the same distribution as the
original one. Therefore, let

{
xi

0:t
}N

i=1 be N independent, identically distributed (iid)
random variables, or ”particles”, each one with pdf p(x0:t|y0:t) , which means that xi

0:t
has the same distribution as x0:t , ∀i. Now form the new random variable

sp
N ,

1
N

N∑
i=1

gt

(
xi

0:t
)
, (5.1)

i.e. the sample average of
{
gt

(
xi

0:t
)}N

i=1. This random variable has the same expec­
ted value with respect to

∏N
j=1 p(xj

0:t|y0:t) as gt (x0:t)has with respect to p(x0:t|y0:t) ,
because

mp
N , E∏N

j=1 p(xj
0:t|y0:t) [sp

N ]

[eq. (5.1)] =
1
N

N∑
i=1

Ep(xi
0:t|y0:t)

[
gt

(
xi

0:t
)]

[ident. distr.] =
1
N

N∑
i=1

Ep(x0:t|y0:t) [gt (x0:t)]

= Ep(x0:t|y0:t) [gt (x0:t)]
[eq. (3.1)] = mp. (5.2)

The covariance matix of sp
N with respect to p(x0:t|y0:t) is

P p
N , E∏N

j=1 p(xj
0:t|y0:t)

[
(sp

N − mp
N ) (sp

N − mp
N )T

]
[eq. (5.2)] = E∏N

j=1 p(xj
0:t|y0:t)

[
(sp

N − mp) (sp
N − mp)T

]
[eq. (5.1)] =

1
N2 E∏N

j=1 p(xj
0:t|y0:t)

( N∑
i=1

(
g
(
xi

0:t
)

− mp
))( N∑

i=1

(
g
(
xi

0:t
)

− mp
))T


9
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=
1

N2

N∑
i=1

N∑
j=1

E∏N
j=1 p(xj

0:t|y0:t)

[(
g
(
xi

0:t
)

− mp
) (

g
(
xj

0:t

)
− mp

)T
]

=
1

N2

N∑
i=1

Ep(xi
0:t|y0:t)

[(
g
(
xi

0:t
)

− mp
) (

g
(
xi

0:t
)

− mp
)T
]

[ident. distr.] =
1

N2 N · Ep(x0:t|y0:t)

[
(g (x0:t) − mp) (g (x0:t) − mp)T

]
[eq. (3.3)] =

1
N

P p, (5.3)

i.e., it decreases inversely with the number of sampled random variables. Therefore
sp

N has the desired feature, so there seem to be good reasons to use it as an estimator
of mp. (In Appendix 2, it is is shown, by means of Chebyschev’s inequality, that
a decrease of the variance decreases ”in probability” a sample’s deviation from the
expected value.)

However, though not theoretically impossible, the required sampling from p(x0:t|y0:t)
is intractable to do in practice. A remedy of this is to choose another, known, distri­
bution to sample from, which will be described next.

10
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6. Particle approximation II

The quantity to be estimated, mp , can according to eq.(3.1) be written either as
Ep(x0:t|y0:t) [gt (x0:t)] , i.e. the expected value of gt (x0:t) with respect to the distri­
bution p(x0:t|y0:t) , or as Eq(x0:t|y0:t) [gt (x0:t)wt (x0:t)] , i.e. the expected value of
gt (x0:t)wt (x0:t) with respect to the distribution q(x0:t|y0:t) , which has the property
of eq.(4.1) , and where the random variable wt (x0:t) is defined in eq.(3.2) .

Suppose now that the pdf q(x0:t|y0:t) is chosen such that it is possible to take
independent samples from it. Create the sample average

sq
N ,

1
N

N∑
i=1

gt

(
xi

0:t
)
wt

(
xi

0:t
)
, (6.1)

where
{
xi

0:t
}N

i=1 now are iid random variables with pdf q(x0:t|y0:t). In eq.(3.1) it was
shown that mq = Eq(x0:t|y0:t) [gt (x0:t) wt (x0:t)] = Ep(x0:t|y0:t) [gt (x0:t)] = mp. The
sample average in eq.(6.1) also has this same value as its expected value with respect
to the pdf

∏N
j=1 q(xj

0:t|y0:t) , because

mq
N , E∏N

j=1 q(xj
0:t|y0:t) [sq

N ]

[eq. (6.1)] =
1
N

N∑
i=1

E∏N
j=1 q(xj

0:t|y0:t)

[
gt

(
xi

0:t
)
wt

(
xi

0:t
)]

[ident. distr.] =
1
N

N∑
i=1

∫
gt (x0:t) wt (x0:t) q(x0:t|y0:t)dx0:t

[eq. (3.2)] =
∫

gt (x0:t) p(x0:t|y0:t)dx0:t

[eq. (3.1)] = mp. (6.2)

The covariance P q
N for sq

N decreases with N in the same way as the covariance
P p

N for sp
N (see eq. (5.3)), although the fact that P q 6= P p implies that P q

N 6= P p
N .

Because of the condition imposed upon the importance sampling pdf in eq.(4.1) , the
sampling can be done recursively in time for each particle. Indeed, as pointed out
earlier, this condition implies that a new measurement does not change the conditional
distribution for the states at earlier points in time, i.e. x0:t−1 is independent of
yt , which is exactly what eq.(4.1) tells us (notice that this is in general not the
case with the pdf that we are looking for here, namely p (x0:t|y0:t) , for which a new
measurement, yt , contains information about old states, x0:t−1. This is the reason
why the method described in section 5 cannot be used).

So, suppose that particle number i has been sampled up to and including time
t − 1 and has the realization xi

t−1. The corresponding conditional likelihood value is
q(xi

t−1|y0:t−1). Now draw a sample for the state at time t from the distribution with
pdf q(xt|xi

0:t−1, y0:t) and call it xi
t. Because of the eq.(4.1) condition, the likelihood

for the particle xi
0:t =

(
xi

0, x
i
1, ..., x

i
t−1, x

i
t

)
will be q

(
xi

t|xi
0:t−1, y0:t

)
q
(
xi

0:t−1|y0:t−1
)

=
q
(
xi

0:t|y0:t
)
, which means that the total particle xi

0:t is drawn from the correct distri­
bution. Once we have this realization of the particle xi

0:t , we would like to be able

11
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to use the recursion formula eq.(4.2) (with initial condition eq.(4.3)) with xi
0:t substi­

tuted for x0:t , in order to compute the corresponding importance weight wt

(
xi

0:t
)

to
be used in the estimate sq

N of eq.(6.1).
However, in eq.(4.2) there is a difficulty with the quantity p (yt|y0:t−1) in the

denominator: although independent of the particle number i , it is unknown. It is true
that the importance weights

{
wt

(
xi

0:t
)}N

i=1can be calculated up to a proportionality
constant, common to all particles, but this does not help us in calculating the sample
estimate sq

N . So we have to get rid of this factor.

12
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7. Particle approximation III

In the previous section we tried to estimate the quantity sq = Eq(x0:t|y0:t) [gt (x0:t) wt (x0:t)]
by taking N samples from the distribution with pdf q (x0:t|y0:t) and calculate the arith­
metic mean sq

N according to eq.(6.1). This method failed because of problems with
calculating the importance weights,

{
wt

(
xi

0:t
)}N

i=1. Therefore, after observing that
Eq(x0:t|y0:t) [wt (x0:t)] =

∫
wt (x0:t) q (x0:t|y0:t) dx0:t = [eq. (3.2)] =

∫
p (x0:t|y0:t) dx0:t =

1, we write the desired quantity as

sq =
Eq(x0:t|y0:t) [gt (x0:t) wt (x0:t)]

Eq(x0:t|y0:t) [wt (x0:t)]
, (7.1)

and take samples
{
xi

0:t
}N

i=1 from a distribution with pdf q (x0:t|y0:t) exactly as in the
previous section.

Now, instead of taking the single sample average according to eq.(6.1) , we form
the quotient of the two sample averages corresponding to the nominator and the
denominator of eq.(7.1) , i.e.

s̃q
N ,

1
N

∑N
i=1 gt

(
xi

0:t
)
wt

(
xi

0:t
)

1
N

∑N
i=1 wt

(
xi

0:t
) =

N∑
i=1

gt

(
xi

0:t
)
w̃t

(
xi

0:t
)
, (7.2)

where

w̃t

(
xi

0:t
)

,
wt

(
xi

0:t
)∑N

j=1 wt

(
xj

0:t

) , (7.3)

i.e.
{
w̃t

(
xi

0:t
)}N

i=1 are ”normalized” importance weights with
∑N

i=1 w̃t

(
xi

0:t
)

= 1.

In spite of the fact that E∏N
j=1 q(xj

0:t|y0:t)
[

1
N

∑N
i=1 gt

(
xi

0:t
)
wt

(
xi

0:t
)]

= [eq. (6.2)] =

mp = [eq. (3.1)] = mq and E∏N
j=1 q(xj

0:t|y0:t)
[

1
N

∑N
i=1 wt

(
xi

0:t
)]

=
[

ident.
distr.

]
=

1
N

∑N
i=1
∫

p (x0:t|y0:t) dx0:t = 1, the expected value of the quotient,i.e. E∏N
j=1 q(xj

0:t|y0:t) [s̃q
N ]

is in general 6= mq . However, lim pN→∞s̃q
N = mq according to the strong law of large

numbers. So eq. (7.2) can be used in about the same way as the one we tried with
sq

N . The recursion of eq. (4.2) with x0:t = xi
0:t can now be replaced by

wt

(
xi

0:t
)

=
p(yt|xi

t)p(xi
t|xi

t−1)
q
(
xi

t|xi
0:t−1, y0:t

) · w̃t−1
(
xi

0:t−1
)

(7.4)

for i = 1, ..., N, followed by

w̃t

(
xi

0:t
)

,
wt

(
xi

0:t
)∑N

j=1 wt

(
xj

0:t

) . (7.5)

for i = 1, ..., N . Notice that comparing with eq.(4.2) , the factor p (yt|yo:t−1) in the
denominator of eq. (7.4) is lacking. This is possible because the normalization in eq.
(7.5) cancels all factors that are independent of the particle number. Therefore, the
problem noticed at the end of section 5 has disappeared, and we have now a useful
recursion procedure for estimationg mp.

13
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8. Choice of importance sampling distribution

In the treatment above, the function q (x0:t|y0:t) has been quite general. The require­
ments that have been posed on it hitherto are

• it has to be a (conditional) pdf, i.e.
∫

q (x0:t|y0:t) dx0:t = 1,

• q (x0:t|y0:t) 6= 0 for all x0:t where p (x0:t|y0:t) 6= 0 (because of eq. (3.1)),

• q(x0:t−1|y0:t) = q(x0:t−1|y0:t−1) (see eq. (4.1)), and

• it shall be possible to take independent samples from the pdf q (x0:t|y0:t).

Within these constraints, q (x0:t|y0:t) can be freely chosen.
One distribution that satisfies these requirements (except possibly the second)

is the ”prior” for the state with the pdf p (x0:t) , i.e. the state a priori distribution
that we would have without any observation of measurements. An explicit expression
of this function is given by eq.(2.7) , where the initial state pdf p (x0) is assumed
to be known, and pwt

(·) is a known function. The third requirement, namely that
a measurement should not change the distribution for the old states, is ceartainly
fulfilled, as p (x0:t) does not depend on the measurements at all.

The method for sampling of particles, as required in the last point above, is an
application of the description in section 6 , and will be as follows: suppose that the
trajectory xi

0:t−1 for particle number i , up to and including time t − 1, is known.
The conditional pdf for its state at time t , xi

t , is then pwt

(
xt − f

(
xi

t−1
))

, according
to eq.(2.1) where, as we know, pwt

(·) is a known pdf. So we just sample a value
from this pdf and calculate our value for xi

t by adding f
(
xi

t−1
)
. That the total

trajectory up to and including time t, xi
0:t, is in this way indeed drawn from the pdf

p (x0:t) , can be seen from the fact that pwt (xt − f (xt−1)) p (x0:t−1) = [eq. (2.1)] =
p (xt|xt−1) p (x0:t−1) = [eq. (2.5)] = p (xt|x0:t−1) p (x0:t−1) = p (x0:t). Eq. (7.4) will be
considerably simplified by this choice of importance sampling distribution, because
of the Markov property of eq. (2.5). According to this property, q

(
xi

t|xi
0:t−1, y0:t

)
=

p
(
xi

t|xi
0:t−1

)
= p

(
xi

t|xi
t−1
)
, which reduces eq. (7.4) to

wt

(
xi

0:t
)

= p(yt|xi
t) · w̃t−1

(
xi

0:t−1
)
. (8.1)

This means that the particle weights are only affected by the received measurement
and not of the system dynamics or the state history for the particle in question.

15
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9. Appendix 1

9.1 Derivation of Markov property for {xt}∞
0

System equation: xk = f (xk−1)+wk , where {wk}∞
0 is a white process independent

of x0.
p (xt|x0:t−1) = p(xt,x0:t−1)

p(x0:t−1)
= p(x0,x1,...,xt−1,xt)

p(x0,x1,...,xt−1)
= p(x0,w1,w2,...,wt−1,wt)

p(x0,w1,w2,...,wt−1)

= p(x0)
∏t

k=1 pwk
(xk−f(xk−1))

p(x0)
∏t−1

k=1 pwk
(xk−f(xk−1))

= pwt
(xt − f (xt−1)) = p (xt|xt−1)

9.2 Derivation of features for {yt}∞
0 used on page 4

System equation: yk = h (xk) + ek , where {ek}∞
0 is a white process.

p (yt|y0:t−1, x0:t) = p(yt,y0:t−1,x0:t)
p(y0:t−1,x0:t)

= p(y0,y1,...,yt−1,yt,x0,...,xt)
p(y0,y1,...,yt−1,x0,...,xt)

= p(e0,e1,...,et−1,et)
p(e0,e1,...,et−1,xt) =

∏t
k=0 pek

(yk−h(xk−1))∏t−1
k=0 pek

(yk−h(xk))·p(xt)
= pet (yt−h(xt−1))

p(xt)

= p (yt − h (xt) |xt) = p (yt|xt)

17





FOI-R--0473--SE

10. Appendix 2

10.1 Chebychev’s inequality for probabilities

Suppose X is a random variable with pdf p (·) , E [X] = mX

and E
[
(X − mX)2

]
= σ2

X .

Then

σ2
X =

∫
R

(x − mX)2 p (x) dx ≥
∫

|x−mX |>ε
(x − mX)2 p (x) dx

≥ ε2 ∫
|x−mX |>ε

p (x) dx = ε2P (|X − mX | > ε)

for arbitrary ε > 0.

Thus

P (|X − mX | > ε) ≤ σ2
X

ε2 (useful only for small σ2
X

ε2 !)

Now let {Xi}n
1 be n iid r.v.:s, each with pdf p (·) .

Define Yn = 1
n

∑n
1 Xi. Then E [Yn] = mX and E

[
(Yn − mX)2

]
= 1

nσ2
X .

Apply Chebychev’s inequality to Yn :

P (|Yn − mX | > ε) ≤ 1
n

σ2
X

ε2 .

This motivates sampling from Yn instead of X.
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