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1. INTRODUCTION 
Numerical erosion is a technique used in Lagrange codes in order to handle the severely 

distorted zones that appear in, for instance, penetration problems. These zones are deleted 
(eroded) when a suitably defined effective strain exceeds a pre-set value, the erosion strain. In 
the AUTODYN code [1-3] from Century Dynamics there are three such effective strains, 
namely, effective plastic strain, incremental geometrical strain, and instantaneous geometrical 
strain. The incremental geometrical strain is defined by 

 ∫=
t

ijij dt
0

3
2

incr εεε && , (1) 

where ijε&  is the strain rate tensor or rate of deformation tensor (which can be defined even for 
finite deformations, although in that case it may not be considered as the time derivative of a 
strain tensor). The effective plastic strain may be defined by the same formula if we, in that 
case, let ijε&  denote the plastic strain rate tensor instead. Both effective plastic strain and in-
cremental geometrical strain are non-decreasing functions of time and can be large even for a 
quit regular zone, namely, if the zone is subjected to cyclic deformations. If that occurs the 
zone might be eroded without reason. The instantaneous geometrical strain was introduced in 
AUTODYN in order to avoid this drawback. It is defined by  

 )(3)(5)( 2
31

2
23

2
12113333222211

2
33

2
22

2
113

2 εεεεεεεεεεεεε ++−+++++=inst , (2) 

where ijε  is a strain tensor.  

In this note the properties of Eq. (2) will be investigated, especially the surfaces in princi-
ple strain space corresponding to a constant value of that strain ( instε  = const.). Generally it is 
not possible to compare the instantaneous geometrical strain with the other two effective 
strains, but it can be done in special cases. To facilitate that we have included in Appendix B 
some expressions for effective plastic strain and incremental geometrical strain in the special 
case where the strain tensor grows proportionally.  
 
2. QUADRATIC FORM 

From Eqs (A4) and (A5) in Appendix A, it is seen that the instantaneous geometrical 
strain, defined by equation (2), can be written as  

 2
2
13

2 3KKinst +=ε , (3)   

where K1 and K2 are the first and second invariants of the strain tensor, respectively. Since the 
instantaneous geometrical strain is a function of the invariants it is also a function of the prin-
ciple strains ( 1ε , 2ε , 3ε ), and it is expressed as 

g )(5)( 133221
2
3

2
2

2
13

2 εεεεεεεεεε +++++=inst , (4) 
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which is readily obtained from equation (2), by setting the non-diagonal elements of the strain 
tensor to zero. In matrix notation the quadratic form in equation (4) can be written  

 ( )
































3

2

1

321

12/52/5
2/512/5
2/52/51

ε
ε
ε

εεε . (5) 

The eigenvalues of the matrix are 6,  -3/2  and  -3/2. The eigenvector corresponding to the 
first eigenvalue is (1,1,1). Eigenvectors corresponding to the other two can be chosen arbitrar-
ily as vectors orthogonal to each other and to (1,1,1). Let ξ be a coordinate along the (1,1,1) 
line and η be the distance from that line. Then the quadratic form can be written 2

2
326 ηξ −  

and we finally obtain 

g 22
3
222

2
3

3
22

2
32

3
2 466 ξηξηηξε −=−=−=inst . (6) 

From this it can be concluded that the surface .constinst =ε  is a hyperbolic surface that is rota-
tionally symmetric around the (1,1,1)-line through origin. Note that 0=instε  at the double 
cone ξη 2= , which contains states with arbitrarily large deviatoric strains (which are propor-
tional to η ).  

 
3. INVARIANTS 

The results obtained in the preceding section may also be obtained by using invariants. 
The second invariant of the deviatoric part of the strain tensor is [4] 

 2
13

1
22 KKM −= . (7) 

Using that, one can rewrite (3) in the following way 

g 2
2
13

22
13

1
2

2
13

2 32)(3 MKKMKinst +=++=ε . (8) 

When interpreting this formula it is helpful to compare with von Mises theory for stresses. In 
this theory the effective stress is equal to 23J− , where 2J  is the second invariant of the 
stress deviator, cf. Eq. (11.91) in Ref. [1] (where a different sign convention for 2J  is used). 
The effective stress is proportional to the distance from the (1,1,1) line in principle stress 
space and the mean stress is proportional to the projection on that line. From these facts it is 
obvious that K1 and 2M−  are proportional to the volumetric strain and the deviatoric strain, 
respectively, and also proportional to the coordinates ξ and η (introduced in Section 2), re-
spectively. So we may write ξaK =1  and ηbM =− 2 . If these expressions are substituted 
into Eq. (8), we obtain    

 2222
3
2 32 ηξε bainst −= ,  (9) 
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which is consistent with Eq. (6). Even without knowing the values of the proportionality fac-
tors ( 3=a , 21=b ) the hyperbolic nature of the expression under the root sign is appar-
ent.  

 
4. EXAMPLE 

A simulation in planar symmetry (plain strain) was carried out with one Lagrange cell 
filled with 4340 steel in order to show the behaviour of the instantaneous geometrical strain. 
The units were millimetre, milligram and microsecond. The cell, which was quadratic with 
side length L0 = 1 mm at time zero, was elongated in the x-direction and compressed in the y-
direction, see Figure 1. For the left and right sides of the cell we prescribed x-velocities to 
zero and vx = 0.01 km/s, respectively. The y-velocities for the bottom and top sides were zero 
and vy = -0.001347 km/s, respectively. For erosion we used “instantaneous geometrical strain” 
set to 0.20 (20% strain).   

 

  
 
 

As is seen from Figure 2, the instantaneous geometrical strain increases to about 0.12 at 
t = 60 µs and then decreases to almost zero at t = 100 µs. Finally it increases to the erosion 
strain at which point the cell is removed by erosion. This behaviour occurs despite the fact 
that the prescribed boundary velocities do not vary with time. At 100 µs, when the instantane-
ous geometrical strain is almost zero, the engineering strain in the x-direction is 

000.10 =Ltvx  and in the y-direction 135.00 −=Ltvy , i.e. the cell is elongated to its double 
original length and compressed 13.5% in the perpendicular direction.  

By setting 03 =ε  in Eq. (4), it is easily obtained that the instantaneous geometrical strain 
is zero if the quotient  

x 

vx=0.01

vy = - 0.001347 

y 

FIGURE 1. Boundary conditions. 

vy = 0 

vx = 0 

FIGURE 2. Instantaneous geometrical strain vs. time..  
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 ( ) 2087.02152
1

12 −=+−=εε . (10) 

The behaviour of the curve in Figure 2 can be understood if the strain tensor, which is used in 
AUTODYN for calculation of the instantaneous geometrical strain is updated incrementally 
using the strain rates xxx Lv=ε&  and yyy Lv=ε& , where tvLL xx += 0  and tvLL yy += 0  are 
the current lengths of the respective sides of the cell. Because, then the strains 

 ( ) ( )00 1lnln LtvLL xxx +==ε  (11) 

 ( ) ( )00 1lnln LtvLL yyy +==ε  (12) 

are effectively logarithmic strains, and their quotient will vary with time and attain the value 
2087.0−=xy εε , cf. Eq. (10), at 100=t  µs. This explains why the instantaneous geometri-

cal strain in Figure 2 remains comparatively small for times less than 100 µs and turns back 
towards zero at 100 µs.  
 
5. CONCLUSIONS 

One of the strain measures used in the erosion criteria in AUTODYN is called “instanta-
neous geometrical strain”. It can be expressed as a function of the invariants of a strain tensor, 
used for that purpose. In principle strain space the surfaces corresponding to constant instan-
taneous geometrical strains are hyperbolic surfaces, rotationally symmetric around the (1,1,1) 
line through origin. The surface corresponding to the value zero for the instantaneous geomet-
rical strain is a double cone, rotationally symmetric in the same way. This cone contains 
points not only far from origin but also far from the symmetry line. The latter means that de-
formation states with large deviatoric strains may have zero instantaneous geometrical strain. 
This was also demonstrated by a simulation with AUTODYN-2D, where a cell which was 
strained to its double length in one direction and slightly compressed in the perpendicular 
direction, had a value of only a few tenth of a percent for the instantaneous geometrical strain.  
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APPENDIX A. FORMULAS FOR INVARIANTS 
The invariants for the strain tensor ijε  (or for that matter any 3 by 3 matrix) are defined as 

 3211 εεε ++=K  (A1) 

 1332212 εεεεεε ++=K  (A2) 

 3213 εεε=K  (A3) 

where 1ε , 2ε , and 3ε  are the eigenvalues of ijε . From textbooks in the field e.g. [4], it is seen 
that the first and second invariants can be expressed in terms of the tensor elements (utilising 
the symmetry of the strain tensor) as 

 3322111 εεε ++=K   (A4) 

 2
13

2
23

2
121133332222112 εεεεεεεεε −−−++=K , (A5) 

respectively.  The third invariant is equal to the determinant.  
The invariants of the deviatoric strain tensor ojkkijije δεε 3

1−=  are defined by formulas 
analogous to those for the strain tensor. The first invariant is always zero and the second can 
be expressed as    

 2
13

1
22

1
2 KKeeM ijij −=−=  (A6) 

in terms of the elements of the deviator and of the invariants for the strain tensor.  
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APPENDIX B. COMPARISONS WITH THE INCREMENTAL STRAINS 
In order to be able to compare the incrementally defined strains with the instantaneous 

one we look at a case where the incremental strains can be integrated. Let therefore the strain 
tensor increase proportionally from zero to its final value. Then the incremental geometrical 
strain, defined by equation (1) can be integrated to  

 ( )2
13

2
23

2
12

2
33

2
22

2
113

2
3
2 222 εεεεεεεεε +++++== ijijincr , (B1) 

which is also a function of the invariants. In terms of the principle strains it is  

 )( 2
3

2
2

2
13

2 εεεε ++=incr . (B2)   

We also compare with a similar incremental strain based on the deviatoric part, namely,  

 )()( 3132213
42

3
2
2

2
13

2 eeeeeeeee ++−=++=′incrε , (B3) 

which is approximately equal to the effective plastic strain if the plastic strains are much lar-
ger than the elastic ones. The last equal sign in Eq. (B3) depends on the following calculation:  

)(2)(0 313221
2
3

2
2

2
1

2
321 eeeeeeeeeeee +++++=++= . (B4) 

In terms of the invariants we have 

2
2

12
1

3
2

2
2

13
1

3
2

2
2

13
2 3)2()2( MKMKKK −=−=−=incrε  (B5) 

23
2

23
4 3MM −=−=′

incrε  (B6)   

and in terms of the −ξη coordinates 

)()()3 22
3
222

2
3

3
22222

2
1

3
2

incr ηξηξηξε +=+=+= ba  (B7) 

ηηηε 3
22

2
3

3
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3
2

incr 3 ===′ b  (B8)   


