
FOI-R--0500--SE
May 2002

ISSN 1650-1942

Scientific report

Mikael Brännström

An Agent Architecture for an 
Unattended Ground Sensor Network

 

 
Command and Control Systems 

SE-581 11 Linköping 
 



 



 
SWEDISH DEFENCE RESEARCH AGENCY FOI-R--0500--SE

May 2002

ISSN 1650-1942

Command and Control Systems 
P.O. Box 1165 
SE-581 11 Linköping 

Scientific report

Mikael Brännström 

An Agent Architecture for an  
Unattended Ground Sensor Network 

 

 



 



 
Issuing organization Report number, ISRN Report type 
FOI – Swedish Defence Research Agency FOI-R--0500--SE Scientific report 

Research area code 
4. C4ISR 
Month year Project no. 
May 2002 E7036 
Customers code 
5. Commissioned Research 
Sub area code 

Command and Control Systems 
P.O. Box 1165 
SE-581 11 Linköping 

42 Surveillance Sensors 

Author/s (editor/s) Project manager 
Mikael Brännström   
  Approved by 
   
  Sponsoring agency 
   
  Scientifically and technically responsible 
   
Report title 
An Agent Architecture for an Unattended Ground Sensor Network 

Abstract (not more than 200 words) 
The technical evolution the last decade with the outcome of new small sensors has enabled the 
development of unattended ground sensor networks. The missing part is an architecture that 
enables autonomous detection, tracking and classification of targets in the covered area while 
minimizing communication and sensor usage. A sensor network architecture, with mobile track 
agents that moves through the network as the tracked target moves, has been developed and 
implemented. Dispatching of sensor data, fusion and power management are also handled by the 
agents. Simulated sensors produce the sensor data from targets in the simulation environment. 
To support different sensor types to be connected, a general abstraction level of uncertainty areas 
and sensor models has been introduced. The result is a general, robust sensor network system 
that can detect and track multiple targets and scales well when increasing the number of sensors 
and computational nodes in the network. 
 

Keywords 
agents, architecture, unattended ground sensor network, tracking 

Further bibliographic information Language English 

Earlier edition published as Final Thesis report at Linköping University, reg no LiTH-IDA-Ex-02/21 

ISSN 1650-1942 Pages 45 p. 

 Price acc. to pricelist 

 



 
Utgivare Rapportnummer, ISRN Klassificering 
Totalförsvarets Forskningsinstitut - FOI FOI-R--0500--SE Vetenskaplig rapport 

Forskningsområde 
4. Spaning och ledning 
Månad, år Projektnummer 
Maj 2002 E7036 
Verksamhetsgren 
5. Uppdragsfinansierad verksamhet 
Delområde 

Ledningssystem 
Box 1165 
581 11 Linköping 

42 Spaningssensorer 

Författare/redaktör Projektledare 
Mikael Brännström  
  Godkänd av 
  
  Uppdragsgivare/kundbeteckning 
  
  Tekniskt och/eller vetenskapligt ansvarig 
  
Rapportens titel (i översättning) 
En agentarkitektur för ett autonomt marksensornät 

Sammanfattning (högst 200 ord) 
Den tekniska evolutionen det senaste årtiondet som resulterat i nya, små och billiga sensorer har möjliggjort 
utveckling av autonoma marksensornät. Pusselbiten som saknas är en arkitektur som gör det möjligt för autonom 
detektion, spårning och klassning av objekt i det bevakade området samtidigt som nyttjande av sensorer och 
kommunikation minimeras. En arkitektur för ett autonomt marksensornät, med mobila spåragenter som förflyttar sig i 
nätverket alltefter som de spårade objekten rör sig, har utvecklats och implementerats. Transport av sensordata, 
datafusion och strömsparfunktioner hanteras också av agenter. Simulerade sensorer genererar sensordata utifrån 
objekt i simuleringsmiljön. För att stödja flera olika sensortyper har ett generellt abstraktionslager med osäkerhetsytor 
och sensormodeller skapats. Resultatet är ett generellt och robust autonomt marksensornät som kan upptäcka och 
spåra flera objekt samtidigt som nätet skalar upp när man ökar antalet sensorer och beräkningsnoder. 

Nyckelord 
agenter, arkitektur, autonomt marksensornät, målföljning 

Övriga bibliografiska uppgifter Språk Engelska 

Tidigare utgåva publicerad som examensarbete vid Linköpings tekniska högskola, reg nr LiTH-IDA-Ex-02/21 

ISSN 1650-1942 Antal sidor: 45 s. 

Distribution enligt missiv Pris: Enligt prislista 

FO
I1

00
4 

 U
tg

åv
a 

11
  2

00
2.

02
  w

w
w

.s
ig

no
n.

se
  S

ig
n 

O
n 

AB
 

 

 



  FOI-R--0500--SE 

Table of Contents 

Chapter 1 Introduction ................................................................................. 1 
1.1 Problem Definition .................................................................................. 1 
1.2 Aim of this Work..................................................................................... 2 
1.3 Assumptions ............................................................................................ 2 
1.4 Structure of the Report ............................................................................ 2 

Chapter 2 Background.................................................................................. 3 
2.1 Unattended Ground Sensor Network ...................................................... 3 
2.2 Agents ...................................................................................................... 4 

2.2.1 What are Agents?.............................................................................. 4 
2.2.2 Motivation......................................................................................... 5 

2.3 Related Work........................................................................................... 5 

Chapter 3 System Architecture.................................................................... 6 
3.1 Overview ................................................................................................. 6 
3.2 Network Topology................................................................................... 7 

3.2.1 Delaunay Triangulation .................................................................... 7 
3.3 Agent Architecture .................................................................................. 8 

3.3.1 Agent Design .................................................................................... 8 
3.3.2 Agent Types...................................................................................... 9 
3.3.3 Agent Collaboration ....................................................................... 12 

3.4 Tracking Algorithm ............................................................................... 13 
3.4.1 Motivation for the Use of Uncertainty Areas ................................. 13 
3.4.2 Sensor Data Fusion......................................................................... 14 
3.4.3 Target Classification....................................................................... 15 

3.5 Sensor Activation Algorithm................................................................. 15 
3.5.1 Sensor Activation Algorithm for Detection ................................... 15 
3.5.2 Sensor Activation Algorithm for Tracking .................................... 16 

Chapter 4 System Implementation and Simulation Environment ......... 17 
4.1 Overview ............................................................................................... 17 



FOI-R--0500--SE 

4.2 File Formats........................................................................................... 18 
4.2.1 Parameter File................................................................................. 18 
4.2.2 Scene File........................................................................................ 19 
4.2.3 Simulation File................................................................................ 19 

4.3 Simulation.............................................................................................. 21 
4.3.1 Acoustic Data Model ...................................................................... 21 
4.3.2 Acoustic Sensor Model................................................................... 23 

Chapter 5 Evaluation .................................................................................. 24 
5.1 Sensor Activation Algorithm for Tracking ........................................... 24 

5.1.1 Evaluated Strategies ....................................................................... 24 
5.1.2 Scene Configuration ....................................................................... 25 
5.1.3 Results............................................................................................. 25 
5.1.4 Conclusions..................................................................................... 27 

5.2 Multiple Targets .................................................................................... 28 
5.2.1 Scene Configuration ....................................................................... 28 
5.2.2 Results............................................................................................. 28 
5.2.3 Conclusions..................................................................................... 29 

5.3 Multiple Nodes ...................................................................................... 30 
5.3.1 Scene Configuration ....................................................................... 30 
5.3.2 Results............................................................................................. 30 
5.3.3 Conclusions..................................................................................... 31 

Chapter 6 Conclusions ................................................................................ 32 
6.1 Summary................................................................................................ 32 
6.2 Future Work........................................................................................... 33 

References .......................................................................................................... 35 

Appendix A User’s guide................................................................................ 37 
A.1 System Requirements ............................................................................ 37 
A.2 Scene Editor........................................................................................... 37 
A.3 Graphical Simulator............................................................................... 40 
A.4 Simulation Server .................................................................................. 42 
A.5 Communication Link............................................................................. 42 
A.6 Node....................................................................................................... 43 
A.7 Batch Simulator ..................................................................................... 43 



  FOI-R--0500--SE 

Chapter 1 Introduction 

The interest in unattended ground sensor networks (UGS) has increased the last 
few years. The reason for this is the technical evolution that has taken place the 
last decade resulting in new small, inexpensive and low-powered sensors. The 
Bluetooth concept for communication has also influenced the design of this type 
of network. Moreover, research on sensors and data fusion [1] has resulted in 
new algorithms and methods to this area. Other interesting aspects of unattended 
ground sensor networks are the various techniques that can be used to deploy the 
sensors and computational nodes, e.g. from different types of flying platforms, 
by grenades fired from various pieces of ordnance, or through manual 
deployment.  

A UGS network must be robust to environmental noise as well as failure of 
sensors and computational nodes to be considered truly functional. An efficient 
activation/deactivation scheme for the sensors must be developed to increase the 
lifetime of the network. Furthermore, the UGS network must support different 
types of sensors and be scalable so that new sensors and nodes can be connected 
without reducing the performance of the network. Traditional architectures do 
not fulfil all these requirements and may be too cumbersome to maintain. New 
system architectures must thus be developed. 

1.1 Problem Definition 
A major problem when developing this kind of new large-scale systems is that 
the underlying hardware does not yet exist, at least not in a large number. The 
exact suite of sensors that will need to be used in an unattended ground sensor 
network is not known, and the current configuration might change rapidly. The 
system architecture for this sensor network should be general enough to handle 
different kinds of sensors, even future ones. The sensor network should be able 
to detect and track multiple targets in the covered area. These requirements and 
the fact that large-scale testing of the sensor network is required during the 
method development make simulation of these hardware components necessary.  

The system architecture should function in distributed environments and scale 
well with an increasing number of sensors and tracks. The complexity of the 
problem points out the necessity for new models and techniques. The system 
architecture should be based on agents. 

  1 



FOI-R--0500--SE 

1.2 Aim of this Work 
The aim of this work is to design an agent-based architecture for a UGS network 
as discussed in the problem definition. The focus is on the higher level of a UGS 
network, i.e. sensor-near fusion and network communication etc. are excluded. 

A second objective is to implement a system and simulation environment that 
functions adequately using the proposed architecture, and as a sub-goal to look a 
little further into multiple targets and sensor activation/deactivation. Since no 
sensors are available these will be simulated.  

1.3 Assumptions 
Since this is a very open problem, some assumptions were made. Assumptions 
about the sensors as listed below: 

1. they can determine their own location with some known accuracy; 
2. an uncertainty area can be computed from any reported observation; 
3. a signature, used for classification, can be computed from a reported 

observation. 

The first assumption concerning the sensors also applies to the nodes, i.e. the 
nodes must also be able to determine their own locations. Some assumptions 
about the network that simplify the problem to some degree have also been 
made: 

1. each node can communicate with any other node in the network; 
2. there are no delays in the network. 

1.4 Structure of the Report 
This report is organized as follows: chapter 2 contains the background material 
needed for this report. This includes the concept of unattended ground sensor 
network, agents and related work. In chapter 3 the system architecture is 
described in detail starting with an overview, continuing with the network 
topology and the agent architecture. In chapter 4 the system implementation and 
the simulation environment are covered. In chapter 5 the tracking of multiple 
targets and the sensor activation algorithm for tracking are discussed. The last 
chapter of the report, chapter 6, contains some concluding remarks including a 
summary and a discussion about future work. Finally there is an appendix with a 
short user’s manual. 

2 



  FOI-R--0500--SE 

Chapter 2 Background 

2.1 Unattended Ground Sensor Network 
Unattended ground sensor networks generally consist of many small, spatially 
dispersed sensors. A network between the sensors is established, with short-
range (ten to hundreds of metres) wireless communication. Often taken into 
account is that the sensors can fail or new sensors are added, and that 
communication links are not reliable. Robustness is thus often a keyword when 
talking about sensor networks. Unattended means that the network is not being 
looked after regularly. When the sensors have been deployed they are on their 
own. In order for the sensors to cooperate, fusion of sensor data must be 
available, thus cooperatively they accomplish tasks and provide capabilities 
greater than the sum of the individual parts. [2][3][4][5] 

When talking about unattended ground sensor networks in the military context, 
the main objective of the network is to detect, track and classify targets in the 
covered area. Although research began with the aim of military applications, 
civilian applications also exist. Sensor networks can be used in case of chemical 
or radiation accidents or to observe the spreading of forest fire. In this report the 
focus is, however, on military applications where the goal is to detect, track and 
classify targets. [3][5] 

The sensor network consists mainly of its sensors. A sensor is defined as: 

“anything, such as a photoelectric cell, that receives a signal or stimulus and 
responds to it”1 

A categorization often used is to divide the sensors into active and passive 
sensors. Passive sensors do not reveal their location by radiation when receiving 
information. These sensors are therefore more attractive for use in a sensor 
network, since sensors that have revealed their presence become targets to 
countermeasures such as jamming of communication or information gathering, 
annihilation and tampering. Active sensors have generally higher energy 
consumption, which in turn requires larger batteries or more complex sleep-
states and wake-up logic. 

1 William Collins Sons & Co. Ltd., Collins English Dictionary, 1986, ISBN 0-00-433134-x 

  3 



FOI-R--0500--SE 

Some sensors suitable for sensor networks [6] are:  

Passive sensors: 
 Acoustic: microphone, geophone, pressure, strain 
 Optical: image sensors, PIR-sensors 
 Field sensors: magnetic, field strength receivers, GPS, mm-wave 
 Radiation detectors:  neutron radiation, gamma radiation 
 Chemical: gas sensors 

Active sensors: 
 Optical:  laser radar, image sensors (illuminating), IR-sensor 
 Microwave: radar 
 Magnetic field sensor: magnetometers 
 Multi-point sensors:  mechanical, optical 

2.2 Agents 
Increasingly many computer systems are being viewed in terms of agents. Not 
only the AI community is talking about agents, but also researchers in 
mainstream computer science, as well as those working in data communication 
and concurrent system research, discuss this. [7] 

2.2.1 What are Agents?   
Although agents are widely discussed, there does not exist an agreement of what 
agents are. The definition depends on the area that agents are applied to. 
Wooldridge and Jennings [7] point out some properties of an agent: 

• Autonomy: agents operate without the direct intervention of humans or 
others, and have some kind of control over their actions and internal state; 

• Social ability: agents interact with other agents (and possibly humans) via 
some kind of agent-communication language; 

• Reactivity: agents perceive their environment and respond in timely fashion 
to changes that occur in it; 

• Pro-activeness: agents do not simply act in response to their environment; 
they are able to exhibit goal-directed behaviour by taking the initiative. 

Wooldridge also presents a definition of an agent [8]:  

“An agent is a computer system that is situated in some environment, and that is 
capable of autonomous action in this environment in order to meet its design 
objectives.”  

This is the definition that will be used in this report. 

4 



  FOI-R--0500--SE 

2.2.2 Motivation 
Building high quality software for complex real-world applications is difficult. 
This also applies to an unattended ground sensor network. Although object-
oriented programming helps us to model and design a system, the building 
blocks of today are too finely grained. Jennings argues that: “agent-oriented 
approaches can significantly enhance our ability to model, design and build 
complex (distributed) software systems” [9]. 

2.3 Related Work 
The research in this area is extensive and many projects about unattended sensor 
networks exist. A few are listed below. 

The Sensor Information Technology program (SensIT) [5], sponsored by the 
Information Technology Office (ITO) at the Defence Advanced Research 
Projects Agency (DARPA), is developing software for networks of distributed 
microsensors. A microsensor device will have multiple onboard sensors, such as 
acoustic, seismic, infrared and magnetic sensors, embedded processing and 
storage, short-range wireless links and positioning capabilities. They also 
mention the “smart dust” concept, with microsensors on the order of square 
millimetres or square centimetres in size. SensIT researchers are also testing 
their software in the field with the assistance of the US Marine Corps. 

At the department of Computer Science and Engineering at the Auburn 
University, research is ongoing on highly mobile sensors [2]. They are working 
with a sensor network that offers mainly three distributed services; lookup 
service, composition service and dynamic adaptation service. These services 
provide support for dynamic information dissemination and fusion that adapts to 
incremental addition and removal of sensor nodes, device failures and 
degradation, etc.  

Hardware system architecture for networked sensors has been developed at the 
department of Electrical Engineering and Computer Sciences at the University 
of California, Berkeley [4]. A small device with a tiny operating system, which 
fits into only 178 bytes of memory, has been created to lay the groundwork for 
future architectural advances.  

At the department of Electrical and Computer Engineering at the University of 
Wisconsin, Madison, research is being done about a framework for collaborative 
signal processing in distributed sensor networks [10]. There people look into 
tracking of multiple targets, where classification of targets is done with the help 
of neural networks. 

  5 



FOI-R--0500--SE 

Chapter 3 System Architecture 

This chapter describes the architecture of the system. It also discusses the design 
considerations made.  

3.1 Overview 
The design goal is to create a system architecture that is general enough to 
support many different kinds of sensors, while being distributed and scalable. To 
deal with this complexity, the system architecture is based on agents, see section 
2.2. 

The sensor network being simulated consists of computational nodes, sensors 
and a communication link on which observations to an external user or system 
are sent. The nodes and sensors are aware of their (at least relative) positions. 
More than one node may have the capability of communicating with external 
users or systems. The communication link is the logical description of this 
capability. The computational nodes, or just nodes for short, have computational 
power for fusion and hold an environment for the agents. The sensors are 
connected to the nodes that are interconnected via a network. Figure 1 shows an 
example of what the sensor network may look like. 

 

Figure 1 Sensor network. 

6 



  FOI-R--0500--SE 

3.2 Network Topology 
To make it possible for agents to collaborate there must exist an environment in 
which they can find each other. The hardware environment consists of the 
nodes. These nodes are connected via a network, where each node can 
communicate with any other node, directly or indirectly. 

To make the network scale up when increasing the number of nodes, each node 
only has direct contact with its closest neighbouring nodes. This means that, on 
the average, each node is connected to about six other nodes, if the nodes are 
evenly distributed. This number rarely exceeds 16 in practice [11]. To calculate 
which nodes that should be connected to each other, Delaunay triangulation 
(described below) is used. Each sensor is connected to the geographically closest 
node, determined through Delaunay triangulation. An example of the network 
topology is shown in Figure 2. 

 

Figure 2 Topology of the network. 

3.2.1 Delaunay Triangulation 
Delaunay triangulation is best described by its dual, the Voronoi diagram. The 
Voronoi diagram of a set  of points in the plane, called sites, is a 
partitioning of n convex polygons, one per site. Each Voronoi region V

{ npppS ,...,, 21= }
i contains 

all points in the plane closer to pi than to any other site. The Delaunay 
triangulation is obtained by adding a line segment between each pair of sites in 
S, whose Voronoi regions share an edge. An example of a Delaunay 
triangulation and a Voronoi diagram is shown in Figure 3. 

  7 



FOI-R--0500--SE 

 

Figure 3 Delaunay triangulation (dashed) and its dual, the Voronoi diagram 
(solid). 

A commonly used algorithm for this problem is the Guibas-Stolfi algorithm 
[12]. Both the Delaunay triangulation and the Voronoi diagram are represented 
by the data structure used in the algorithm. The time complexity of the algorithm 
is  for a diagram of n sites, and  for each additional site to be 
inserted. Although the standard triangulation algorithms, including Guibas-
Stolfi, do not support deletion of sites there exist methods for doing so [11]. The 
algorithm used here is an incremental version of the Guibas-Stolfi algorithm. 
This algorithm has been chosen because of its simplicity and because it is only 
slightly slower than the fastest algorithm, the Fortune algorithm [13]. 

( nnO log ) ( )nO

3.3 Agent Architecture 
This system is based on a number of different agents that all have different 
tasks, and the same interface for activation and communication. The common 
interface is described, followed by a more detailed description of the different 
agents and their tasks. Finally the collaboration between the agents is discussed. 

3.3.1 Agent Design 
All agents have a common interface. This interface contains methods for 
communication, notification of new cycle from the framework and a method 
telling whether the agent is dead or not, see Table 1. When an agent has marked 
itself as dead, it is removed by the agent environment. 

 

 

8 



  FOI-R--0500--SE 

Table 1 The agent interface. 
Method name Return type Description 
communicate(message) Response Sends a message to the agent. The 

agent replies with a response. 
isDead() boolean Checks if the agent is dead. 
newCycle(cycle) void Informs the agent about the new 

cycle. 
 

The agents can send messages to each other using the communicate method. A 
message consists of a message type, see Table 2, and an optional payload. The 
called agent replies with a response containing a response type and an optional 
payload. The response type can be one of the following: 

• OK – The message was accepted. 

• Negative – The message was rejected. 

• Reply – The message will be replied to with another message. 

• Unknown message – The message was not understood. 

Table 2 The message types that are communicated between agents. 
Message type Description 
MSG_GET_NEIGHBOURS Get a vector of the neighbouring nodes. 
MSG_GET_DETECTABLE_AREA Get the detectable area of a sensor. 
MSG_GET_COVERAGE Get the sensor coverage at a position. 
MSG_GET_REFERENCE Get a sensor reference from a sensor agent. 
MSG_GET_SENSORS Get a vector of sensors that are connected to 

the local node. 
MSG_SENSOR_DATA Inform about new sensor data. 
MSG_CHECK_SENSOR_DATA Check the sensor data match. 
MSG_SPAWN_TRACK_AGENT Spawn a new track agent from a track agent 

state. Used for track agent mobility. 
MSG_CLAIM_USAGE Claim usage of a sensor. 
MSG_SENSOR_DATA_COLLISION Inform that sensor data collision has occurred. 
MSG_CONNECT_NODE Connect a neighbouring node to this node. 
MSG_CONNECT_SENSOR Connect a sensor to this node. 

 

3.3.2 Agent Types 
To solve the task of detecting and tracking targets, a number of agent types have 
been designed. Different tasks have been assigned to the different types. One 
goal that they all have in common is to minimize the amount of power used. 

  9 



FOI-R--0500--SE 

This means that they should minimize communication, both between nodes and 
between sensors and nodes, and minimize the usage of the sensors. This goal 
often contradicts other agent tasks. For example the track agent’s goal to track a 
target with high accuracy implies that many sensors should be used, which 
contradicts the goal of minimizing sensor usage. 

Node Agent 
Each node is equipped with a node agent. The responsibility of the node agent is 
to keep track of the neighbouring nodes, i.e. the nodes that are geographically 
closest to the current node. The node agent also keeps track of the node 
coverage area, which is the combined detectable area of all local (directly 
connected) sensors’ detectable areas. The node agent is therefore able to answer 
how many sensors that can be used to detect an object at a given position. 

Another responsibility of the node agent is to support track agent movement 
between nodes. When a track agent needs to move from a node to another, it 
asks the node agent at the target node to create a new track agent using a 
supplied track agent state. This track agent state contains all necessary 
information to create a new copy of the track agent. 

Dispatch Agent 
A dispatch agent exists at each node and it handles sensor data messages 
received from a sensor agent. When receiving sensor data from the sensor agent, 
the dispatch agent will do the following (in the specified order): 

1. Check local (at the same node) track agents to see if the sensor data matches 
any of the track agents’ tracks. If more than one track agent is interested in 
the particular sensor data, then all the interested track agents will get a sensor 
data conflict message containing references to all the other agents and the 
sensor data id.  

2. If no interested track agent was found in the previous step, the dispatch agent 
asks the neighbouring dispatch agents to check their local track agents. This 
is done in the same manner as in step 1. 

3. If no neighbouring dispatch agent could find an interested track agent, then 
this sensor data corresponds to a new target and a new track agent is created. 

Sensor Agent 
When a sensor is connected to a node, a new sensor agent is created. This sensor 
agent will, from that point on, handle all communication with that particular 
sensor. The sensor agent handles activation and deactivation of the sensor. 

Activation of a sensor is made either upon request by another agent or fired by a 
timeout (caused by a timer) in the sensor agent to check if there are any targets 

10 



  FOI-R--0500--SE 

in the area. When the sensor is activated it will listen and send sensor data as 
soon as it detects something. If no agent wants to use the sensor it will be 
deactivated and the timer will be restarted. The timer thus makes sure that the 
sensor is activated regularly in order to be able to detect new targets. 

When the sensor agent receives sensor data from the sensor it will compute an 
uncertainty area of the observation based upon the sensor model and the position 
of the sensor. Here the accuracy of the sensor position is also considered. Then 
this uncertainty area is attached to the sensor data, and the sensor data is passed 
on to the dispatch agent that makes sure that the sensor data is handled in a 
correct way. 

Track Agent 
For each known target, a track agent exists, whose task is to track that target. 
The track agent should also try to minimize inter-node communication. This 
means that the track agent should reside at the node nearest to the sensors it 
intends to use.  

Whenever a new target is detected, a new track agent is created. The track agent 
is from that point dependent on the arrival of new sensor data. If a track agent 
does not receive new sensor data within a certain number of cycles, the target is 
considered lost and the agent marks itself as dead. The node framework will 
then remove the agent at the end of the cycle. 

This means that the track agent has to ensure that it will receive new sensor data 
in each cycle by claiming the use of the sensors that can detect the target. When 
there is only one sensor that can detect the target, the choice is easy. When there 
are several sensors that can detect the target, the choice of which sensor or 
sensors that should be used is more difficult. Solutions to this problem are 
discussed further in section 3.5.2. 

When the track agent tracks a target it keeps an uncertainty area of the target 
position, the target position and a set of possible target types. The actual 
tracking algorithm is described in section 3.4. 

When many nodes exist the track agent also has the option to move to another 
node. The scheme for movement of the agent is quite simple. The track agent 
will move from the current node if, and only if it finds a neighbouring node that 
has better sensor coverage at the target position. This information is retrieved 
from the node agent in this node, and from the node agents in the neighbouring 
nodes. It is important not to move between nodes too often because the 
movement in itself also introduces a communication cost. 

  11 



FOI-R--0500--SE 

3.3.3 Agent Collaboration 
In order for the agents to find each other, each agent has a reference to the node 
where it resides. At each node there is a reference to each agent in that node. 
This way all agents can at least find any other agent in the current node. Since 
the node agent has references to the neighbouring nodes, it is also possible for 
an agent to find and communicate with any agent in the entire network of nodes. 

The agent collaboration chain begins when a sensor agent receives new sensor 
data from a sensor. The sensor agent then processes the sensor data and passes it 
over to the local dispatch agent, see Figure 4. The dispatch agent will then ask 
the local track agents if they are interested in that particular sensor data, and if 
this is not the case the neighbouring dispatch agents will be asked the same 
question. Assume that the sensor data eventually is sent to an interested track 
agent. This track agent will then consume that sensor data, and as a result it will 
have a somewhat better perception of the track. If no track agent is interested in 
the sensor data, the dispatch agent creates a new track agent. 

 

Figure 4 Agent collaboration when receiving sensor data from sensors 
connected to different nodes. 

To keep track of the target, the track agent must receive new sensor data in the 
next cycle. After choosing the sensors to use, the track agent sends a “claim 
sensor” message to the corresponding sensor agent, which makes sure that the 
sensor is active in the next cycle. 

12 



  FOI-R--0500--SE 

The scheme for movement of the track agent is a result of collaboration between 
the node agent, the sensor agent and the track agent. The node agent gathers the 
detectable areas of the sensors from the local sensor agents. Then the track agent 
asks the node agent about the number of sensors that have coverage at a certain 
position. This way the track agent can easily check which node that has the best 
coverage at the target position, i.e. the node that has the most sensors with 
coverage at the target position. The probability that the majority of the sensor 
usage is local is maximized, by choosing a node with the highest sensor 
coverage at the target position.  

3.4 Tracking Algorithm 
The track agent keeps track of the uncertainty area of the target position, a set of 
target types and the target position. Currently the target position is computed as 
the mass centre of the uncertainty area, but one can easily imagine an algorithm 
that tries to fit a spline curve to the previous uncertainty areas and positions. 
This curve combined with an estimate of the target speed could then be used to 
predict the next position of the target. 

The track agent regularly receives refined sensor data. Before the track agent 
receives the sensor data the sensor agent refines the sensor data by taking the 
uncertainty of the sensor position and the observation uncertainty into account. 
The refined sensor data contains an uncertainty area of the observation. The 
uncertainty area of the observation is then combined with the current knowledge 
of the target uncertainty area. The motivation for using uncertainty areas will be 
discussed before the area fusion algorithm is explained further. 

3.4.1 Motivation for the Use of Uncertainty Areas 
Since many different types of sensors should be supported, either fusion 
algorithms that can be applied to all the different combinations of observation 
types must be developed, or a common abstraction level (at which fusion is 
done) of an observation must be introduced.  

The first method requires a great deal of development and introduces 
unnecessary complexity. The choice fell on the second method, i.e. introduction 
of a common abstraction level of an observation. This method requires 
implementation of only one fusion algorithm. This algorithm may not be as 
efficient as using specialized algorithms for different combinations of 
observation types, but the simplicity and the reduction of development time 
makes this method far more attractive. Using a simple algorithm without a lot of 
special cases should also make a positive impact when considering bugs and 
robustness.  

Since the simulated world is two-dimensional, the set of positions of a target is 
always an area, possibly consisting of multiple sub-areas. Most observations can 

  13 



FOI-R--0500--SE 

easily be transformed into an uncertainty area. For example, a direction will 
become a pie-shaped area with, in practice, a finite radius. 

3.4.2 Sensor Data Fusion 
When the track agent receives sensor data it checks that the sensor data matches 
the target it tracks. First of all, the uncertainty area of the observation must 
overlap the current perception of the target uncertainty area. Secondly, the 
classification set of the target is compared to the classification set of the 
observation. Finally, the sensor model of the source of the observation is 
checked to see if it is theoretically possible that the source could detect this 
target type anywhere in the target uncertainty area. If all these conditions are 
met, the sensor data is accepted. 

Collisions of matched sensor data will occur if there are multiple targets that are 
being tracked. There are two types of collisions: sensor collisions and track 
collisions. A sensor will send at most one observation of every target, i.e. it will 
never send two observations of the same target during the same cycle. There is 
thus a sensor collision if a track agent receives multiple matching sensor data 
from a single sensor. There is a track collision if more than one track agent 
accepts a single sensor data. These two collision types will often occur 
simultaneously and they indicate that an erroneous match is likely. Many of 
these collisions can be avoided by simply applying sensor data in the right order. 
If sensor data without collisions are applied first, the perception of the target is 
improved and some of the sensor data that was accepted earlier may now be 
rejected. This way some of the collisions can easily be resolved. No further 
collision resolving techniques are used in the current implementation. Sensor 
data with collisions are not used because of the risk of making an erroneous 
match. 

Using this restrictive method, when accepting sensor data, can cause the track 
agent to starve. Therefore, the sensor activation algorithm used to reduce the 
number of sensors that are activated is not used when a collision has been 
detected. This means that all sensors that can detect the target will be activated 
to minimize the risk for starvation. 

When using sensor data that has been accepted, the new target uncertainty area 
is the intersection of the old target uncertainty area and the sensor data 
uncertainty area. The same is done for the target classification set. The new 
target classification set is the intersection of the old classification set and the 
classification set of the sensor data. Note that to accept the sensor data both the 
uncertainty areas and classification sets must overlap. 

The target uncertainty area is expanded in each cycle. This expansion is caused 
by the mobility of the target. The amount of expansion is the maximum distance 

14 



  FOI-R--0500--SE 

the target type or types can move during one cycle. This means that in order to 
keep the uncertainty area size at a somewhat constant level, new sensor data 
must arrive regularly. 

3.4.3 Target Classification 
In order to separate two (or more) nearby tracks from each other, other measures 
than position are needed. Classification of detected targets into one or more 
possible target types is often a wanted function of a UGS network and is also 
such a measure.  

In this implementation a very simple target classification technique is used, that 
gives a measure of how likely a particular classification is. The most likely 
target types forms a set, which is called the target classification set. This set can 
then be used to separate sensor data from each other if the sensor data signature 
differs enough.  

3.5 Sensor Activation Algorithm 
There are two aspects of sensor activation in this system. One aspect is detection 
of new targets, and is controlled by the sensor agents. The other is the tracking 
of known targets, and is thus controlled by the track agents. 

3.5.1 Sensor Activation Algorithm for Detection 
The goal of the sensor activation algorithm for target detection is to minimize 
the total number of activation cycles while guaranteeing that a detectable target 
will be detected within a specified number of cycles. This means that the sensors 
should periodically be activated to check if there are any targets within their 
detectable range.  

A concept of “edge sensors” has been proposed [14] to solve this problem. It is 
here assumed that the detectable areas of the sensors overlap and the outer edge 
sensors can be found. Then only these edge sensors are active and are thus 
forming a “trip wire” that alerts the other sensors when a target has entered the 
sensor network. Since the edge sensors will be active more often than the other 
sensors, they will lose power faster and the area covered by the sensor network 
will shrink as the former edge sensors die.  

The major drawback of this interesting concept is the lack of robustness. If a 
target sneaks through an edge sensor, it is safe from detection while inside the 
“fence”. An edge sensor might be located in a “shadow” in which it will never 
get any observations, or be broken without knowing it. When dealing with 
different types of sensors and targets, it can be difficult to find these edge 
sensors. A candidate edge sensor that can detect one target type may not be able 
to detect another target type. All this can of course be accounted for, with 
multiple layers of edge sensors. This concept comes best in use when dealing 

  15 



FOI-R--0500--SE 

with many sensors (a couple of hundreds) because of its good scaling property. 
The number of edge sensors is proportional to the square root of the number of 
sensors in the optimal case when the sensors are evenly spread out in a circle.  

The method implemented has a reasonable degree of efficiency and is simple 
and robust. The method is simply to activate each sensor regularly. If a sensor 
has not been used during a number of cycles it is activated to check if there are 
any targets to be detected. This means that areas with high sensor coverage will 
be observed more frequently than really needed. It is at this point that the 
method can be made more efficient. 

3.5.2 Sensor Activation Algorithm for Tracking 
The purpose of the sensor activation algorithm for tracking is to minimize the 
use of the sensors, i.e. minimize the energy consumption, while tracking a 
target. The exact meaning of this is not clear. Nevertheless there are ways to 
measure the quality of a track perception. The size of the uncertainty area of the 
target could be used for this purpose. There does not either exist a given goal for 
an efficient algorithm. One could say that the goal is to minimize the use of 
sensors while keeping the uncertainty area of a target below a certain level. 
Since a certain level of accuracy cannot be guaranteed, this definition cannot be 
used without modification. Another possibility is to look at the relative gain: 
How much is the expected uncertainty area reduced with respect to the number 
of sensors used? This approach is used here and described further below. 

Each track agent activates the sensors it needs without considering other track 
agents. It starts with a set of sensors that can detect the target in focus. The best 
sensor combinations, which reduce the target uncertainty area the most, are 
computed for 1, 2, … N sensors, where N is the number of sensors in the 
starting set. For each sensor that is added, the expected target uncertainty area 
must shrink a certain percentage. The largest sensor combination that fulfils this 
requirement is chosen. If no combination fulfils the requirement then the best 
single sensor is chosen. This way, at least one sensor is chosen and more sensors 
are added if they improve the result significantly.  

 

16 



  FOI-R--0500--SE 

Chapter 4 System Implementation and 
Simulation Environment 

This chapter describes the simulation environment and the implemented system. 
A limited user's guide of the system can be found in Appendix A. 

4.1 Overview 
The system and the simulation environment are implemented in Java and consist 
of three programs: the simulation server, the communication link and the node. 
Each of these communicates via RMI (Remote Method Invocation) and can 
therefore be distributed over a number of interconnected computers. In a running 
simulation there is one instance of the simulation server, one instance of the 
communication link and one or more instances of the node program, see Figure 
5. There also exist tools for creating scenario descriptions and for visualization 
of the simulations. These tools are described in Appendix A. 

 

Figure 5 Overview of the system. 

  17 



FOI-R--0500--SE 

The input to the simulation consists of two XML files: the parameter file and the 
scene file. The parameter file contains the sensor models, target models and 
environment parameters such as temperature, humidity etc. The scene file 
describes a specific scene and contains sensors, nodes and tracks. Since the 
scene file contains the number of nodes, it affects how many instances of the 
node program needed. 

The output of the simulation is stored in the simulation file, also in XML. It 
contains both observed and real tracks, and information of the sensors and the 
nodes in the simulation. These files are described further in section 4.2. 

4.2 File Formats 
As already stated, the environment requires two input files: the parameter file 
and the scene file. Furthermore the output of the system is stored in the 
simulation file. The format and content of these files are described below. 

4.2.1 Parameter File 
The parameter file is taken as input to the simulation server and the node. It 
contains information about all known sensor and target models, as well as 
environmental information. The parameter file has the following structure: 

<parameters 
cycle_time="time in seconds"  
sound_frequences="frequences, f1 f2 ... fN, in Hertz" 
temperature="temperature in degrees Celsius"  
relative_humidity="humidity in percent"  
max_acoustic_noise="intensity in W/m"> 
 
  <sensormodels> 
    <sensormodel  
    type="unique name" 
    class="Java class name" 
    self_localisation_accuracy="accuracy in meters"> 
      <acoustic_args 
      min_frequency = "minimum frequency in Hertz" 
      max_frequency = "maximum frequency in Hertz" 
      intensity_threshold = "intensity in Watt" 
      low_frequency_angle = "error angle in degrees" 
      high_frequency_angle = "error angle in degrees"/> 
    </sensormodel> 
    ... 
  </sensormodels> 
 
  <targetmodels> 
    <targetmodel 
    type="unique name" 
    max_speed="maximum speed in m/s" 
    acoustic_signature="power, I1 I2 ... IN, in W"/> 
    ... 
  </targetmodels> 
</parameters> 

18 



  FOI-R--0500--SE 

 

4.2.2 Scene File 
The scene file describes a particular scene to be simulated and is only provided 
to the simulation server. It contains information about tracks, such as position of 
the target at each cycle, and the type of the target. The scene file also contains 
information about all the nodes and sensors in the scene. The scene file has the 
following structure: 

<scene 
start_cycle="start cycle" 
duration="number of cycles"> 
 
  <nodes> 
    <node  
    x="x-coordinate in meters" 
    y="y-coordinate in meters"/> 
    ... 
  </nodes> 
 
  <sensors> 
    <sensor 
    type="sensor type, specified in the parameter file" 
    class="Java class name" 
    x="x-coordinate in meters" 
    y="y-coordinate in meters"/> 
    ... 
  </sensors> 
 
  <tracks> 
    <track 
    id="unique name" 
    type="target type, specified in the parameter file" 
    interpolation="interpolation between the points"> 
      <point 
      x="x-coordinate in meters" 
      y="y-coordinate in meters" 
      cycle="timestamp for the point"/> 
      ... 
    </track> 
    ... 
  </tracks> 
</scene> 
 

4.2.3 Simulation File 
The output of a simulation is stored in the simulation file. It is produced by the 
communication link, which receives information from the nodes and the 
simulation server. The simulation file contains information about the real and 
observed tracks. The file also contains information about the nodes and sensors 
used in the simulation. The simulation file has the following structure: 

  19 



FOI-R--0500--SE 

<simulation 
start_cycle="start cycle" 
duration="number of cycles"> 
 
  <nodes> 
    <node 
    id="unique name" 
    x="x-coordinate in meters" 
    y="y-coordinate in meters"/> 
    ... 
  </nodes> 
 
  <sensors> 
    <sensor 
    id="unique name" 
    type="sensor type, specified in the parameter file" 
    x="known x-coordinate in meters" 
    y="known y-coordinate in meters" 
    real_x="real x-coordinate in meters" 
    real_y="real y-coordinate in meters" 
    active_cycles="cycles when the sensor was active" 
    /> 
    ... 
  </sensors> 
 
  <tracks> 
    <track 
    id="unique name"> 
      <obs 
      x="x-coordinate in meters" 
      y="y-coordinate in meters" 
      cycle="timestamp for the observation"> 
        <polygon> 
          <point 
          x="x-coordinate in meters" 
          y="y-coordinate in meters"/> 
          ... 
        </polygon> 
      </obs> 
      ... 
    </track> 
    ... 
    <real_track 
    id="unique name" 
    type="target type, specified in the parameter file"> 
      <fact 
      x="x-coordinate in meters" 
      y="y-coordinate in meters" 
      cycle="timestamp of the fact"/> 
      ... 
    </real_track> 
    ... 
  </tracks> 
</simulation> 
 

20 



  FOI-R--0500--SE 

4.3 Simulation 
The simulator consists of the framework that drives the simulation, the tracks 
and the sensors that simulate the observations of the tracks. The simulated time 
is discrete; each cycle is 100 ms long. The coordinate system is two-
dimensional. The framework starts reading the input files, sets up the scene and 
waits for the communication link and a number of nodes to connect. During the 
connection phase the sensors are spread out among the nodes, where each sensor 
is connected to the nearest node. The nodes are given a reference to the 
communication link and are informed about other nodes. Simulation begins 
when all necessary programs have been connected.  

The simulation is actually an iteration of all the cycles. To facilitate 
synchronization, each cycle is divided into a number of phases see Figure 6. 
Each node is notified when a new cycle or phase is started. A new phase or 
cycle is started only when all nodes are finished with the current phase. This 
way, the phases function as synchronization barriers. 

 

Figure 6 The phases of a cycle. 

During the sense phase, each target is moved one step and then each sensor is 
given a chance to sense the targets. Whether a sensor reports a track observation 
by sending sensor data to the sensor listener or not, depends on the particular 
sensor implementation. Generally the sensor will report an observation if the 
sensor is activated and the sensor can detect the track according to the sensor 
model. Nothing is done on the server side of the other phases, except for 
notifying the nodes. 

A sensor suite consists of implementations of a sensor model, a sensor, sensor 
data and a signature. The sensor model contains a model of sensor type and can 
compute various information such as detectable area, uncertainty area of a piece 
of sensor data and so on. The sensor itself creates sensor data from a target, 
using its position and type, and checking the constraints in the sensor model. 
The sensor data contains the actual observation, such as an angle or distance to 
the target, while the signature can be used for classification of the target. At 
present only an acoustic sensor suite is implemented.  

4.3.1 Acoustic Data Model 
Simulation of acoustic data is based on the fact that each periodic signal can be 
separated into a number (maybe infinite) of sinus-shaped signals with different 

  21 



FOI-R--0500--SE 

frequencies. Since all machines emit more or less periodic sounds, one can say 
that they in fact emit a spectrum of intensities at a number of frequencies. 

This spectrum is here called the acoustic signature. This signature has operations 
for checking equality between different signatures, transforming and filtering the 
signature. The acoustic sensor is a triplet of microphones that detects the 
direction to the sound source. The acoustic sensor data contains an angle and an 
acoustic signature. 

Outdoor Sound Propagation 
Outdoor sound propagation [15] is affected by many mechanisms, including: 

• source geometry and type (point, line, coherent, incoherent); 

• meteorological conditions (wind and temperature variations, atmospheric 
turbulence); 

• atmospheric absorption of sound; 

• terrain type and contour (ground absorption of sound, reflection); 

• obstructions (buildings, barriers, vegetation, etc.). 

The targets are treated as point sources and only the atmospheric absorption of 
sound is considered. To consider other effects, knowledge of the terrain would 
be required. The terrain is thus considered to be flat. 

The mechanisms behind atmospheric absorption have been extensively studied, 
empirically quantified and codified into an international standard for calculation: 
ANSI Standard S1-26:1995 or ISO 9613-1:1996. 

For a standard pressure of one atmosphere, the absorption Aabs (dB/m) can be 
calculated as a function of frequency f (Hz), temperature T (degrees Kelvin) and 
relative humidity h (%) by: 


























+
+

+
+⋅

⋅⋅=
−−

−−

NrNr

T

OrOr

T

relrel

abs

FfF
e

FfF
eTT

fA

,
2

,

/3352

,
2

,

/1.2239
2/52/111

2

/
1068.0

/
01275.01084.1

69.8

 

h
hhF Or +

+⋅+=
391.0
02.01004.424 4

,  Oxygen relaxation frequency (Hz) 

( )117.42/1
,

3/1

2809 −−− −

+= relT
relNr heTF  Nitrogen relaxation frequency (Hz) 

22 



  FOI-R--0500--SE 

15.293
TTrel =  Relative temperature 

The absorption coefficients need only be calculated once for each frequency 
under the assumption that the temperature and the relative humidity remain 
constant. The intensity I (watts/m2) received from a sound source can be 
calculated as a function of the sound power W (watts), atmospheric absorption 
Aabs (dB/m) and the distance d (m) to the source by: 

dAabs

d
WI 1.0

2 10
4

−⋅=
π  

4.3.2 Acoustic Sensor Model 
The acoustic sensor is, as mentioned, a combination of three microphones that 
can detect the direction to the sound source. To model when a sensor can detect 
a sound or a signature, it is assumed that the sensor has a lower and an upper 
boundary of which frequencies that can be sensed. Furthermore, the intensity of 
the sound must be higher than a certain threshold to filter out background noise.  

The accuracy of the measured direction depends on the frequency since the 
number of periods that the sound differs at the different microphones is used to 
calculate the direction. This means that the direction to a sound source with high 
frequency has better accuracy than if the sound had low frequency. To take this 
effect into account, two error angles can be specified: one for high frequencies 
and one for low frequencies. These two frequencies refer to the minimum and 
maximum frequency that the sensor can detect. In between, linear interpolation 
is used to compute the error angle. 

The detectable area of the sensor is computed by determining the maximum 
detection distance of all target models. The maximum detection distance of a 
target is simply the maximum distance when the intensity of its transformed and 
filtered acoustic signature is above the intensity threshold of the sensor. This is 
solved using the Newton-Raphson method. This detectable area is the union of 
the individual detectable areas for each target type, and is thus only used as an 
upper bound, i.e. the area where the sensor might detect targets.   

  23 



FOI-R--0500--SE 

Chapter 5 Evaluation 

In the evaluation of the system the sensor activation algorithm for tracking was 
evaluated and compared to some other strategies. The overall behaviour was 
tested when tracking multiple targets. Finally the performance was tested when 
adding more nodes to the sensor network. 

5.1 Sensor Activation Algorithm for Tracking 
During the development of this unattended ground sensor system, a more 
thorough evaluation of the sensor activation algorithm for tracking (section 
3.5.2) has been done. Three different configurations of this algorithm have been 
compared with three other strategies. The aspects that have been examined are 
the size of the target uncertainty area and the sensor usage of each strategy. 

5.1.1 Evaluated Strategies 
The sensor activation algorithm for tracking, fully described in section 3.5.2, 
uses area decrement as basis for choosing how many sensors that are going to be 
used. To add a sensor, to the chosen set of sensors, the expected uncertainty area 
size must be decreased by a certain percentage. This strategy is therefore here 
called the area decrement strategy. This algorithm is run in three different 
configurations since it is not clear which parameter values to choose. 

The different strategies that were compared are: 

• Area decrement 30% – add an extra sensor if it will reduce the area by at 
least 30 percent; 

• Area decrement 20% – add an extra sensor if it will reduce the area by at 
least 20 percent; 

• Area decrement 10% – add an extra sensor if it will reduce the area by at 
least 10 percent; 

• Best-combo-2 – choose the best combination of two sensors; 

• Random-2 – choose two sensors at random; 

• All sensors – choose all sensors. 

In all of these strategies, sensors are selected from the set of sensors that can 
detect the target. When there is only one sensor that can detect the target, there 
need be no choice made and all strategies will choose that particular sensor.  

24 



  FOI-R--0500--SE 

5.1.2 Scene Configuration 
Three different scenes have been used in evaluating the algorithms. The scenes 
consist of one node, one track and 20, 30 respectively 40 sensors that are 
randomly distributed within an ellipse, see Figure 7. All scenes are 200 cycles 
long and the track motion is the same in each scene. The distribution of the 
sensors was fixed during the comparison between the algorithms, thus 
minimizing random factors. 

 

Figure 7 The scene configuration. 

Since the number of sensors in the different scenes varies, the average 
overlapping detectable area of the sensors also varies. This value is called the 
average coverage and is calculated as the fraction between the sum of all 
detectable areas of all sensors and the area covered by all sensors. The 
theoretical average coverage for each scene, calculated as the sum of all sensor 
detectable areas through the theoretical maximum possible covered area, is 1.9 
for 20 sensors, 2.9 for 30 sensors and 3.8 for 40 sensors. This value does not tell 
that much about the actual average coverage, calculated as the sum of all sensor 
detectable areas through the actual covered area, which is 2.5, 3.7 and 5.1 for 20, 
30 respectively 40 sensors.  

5.1.3 Results 
The outcome of each simulation has been summarized with two values, the 
average sensor usage and the average target uncertainty area size. The average 
sensor usage has been adjusted for the sensor activation costs that are caused by 
the sensor activation algorithm for detection.  

In the simulation using only 20 sensors, shown in Figure 8, only the all sensors 
algorithm stands out among the algorithms. Although the average coverage is 
2.5, the all sensors algorithm has an average usage of 3.4 sensors in each cycle. 
This is explained by the fact that the sensor coverage is higher in the centre of 
the ellipse and this is where the track is located. The all sensors algorithm can 
thus be seen as an upper boundary of sensors usage and a lower boundary of the 
target uncertainty area size.  

  25 



FOI-R--0500--SE 

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4

Average sensor usage

U
nc

er
ta

in
ty

 a
re

a 
si

ze
Area decr 30%
Area decr 20%
Area decr 10%
Best-combo-2
Random-2
All sensors

 

Figure 8 Comparison between different sensor activation algorithms when 
running a simulation with 20 sensors. 

The result of the simulation using 30 sensors, with an average coverage of 3.8, is 
shown in Figure 9. Also here all but one algorithm are clustered together. 

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Average sensor usage

U
nc

er
ta

in
ty

 a
re

a 
si

ze

Area decr 30%
Area decr 20%
Area decr 10%
Best-combo-2
Random-2
All sensors

 

Figure 9 Comparison between different sensor activation algorithms when 
running a simulation with 30 sensors. 

The result of the last simulation using 40 sensors, with an average coverage of 
5.1, differs slightly from the other simulation results. As shown in Figure 10 the 
random-2 algorithm has an average uncertainty area that is about 25% larger 
than the others. The reason why this phenomenon occurs in this simulation and 

26 



  FOI-R--0500--SE 

not in the other two is that now there are more sensors to choose from which 
results in that the optimal solution is harder to pick at random.  

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8

Average sensor usage

U
nc

er
ta

in
ty

 a
re

a 
si

ze

Area decr 30%
Area decr 20%
Area decr 10%
Best-combo-2
Random-2
All sensors

 

Figure 10 Comparison between different sensor activation algorithms 
when running a simulation with 40 sensors. 

5.1.4 Conclusions 
The best-combo-2 and the random-2 strategies both choose two sensors 
whenever they can. The fact that these strategies do not choose the number of 
sensors to use dynamically makes them less usable when different types of 
sensors, with different uncertainty area shapes, are used. When the sensor 
coverage is increased, the random-2 strategy shows a poor result compared to all 
the other strategies. Since neither the random-2 strategy nor the best-combo-2 
strategy show significantly better results than the area decrement strategies, 
none of these two strategies are chosen as candidates for the sensor activation 
algorithm for tracking.  

The computation power needed for these strategies are in the same order, except 
for the all sensors and the random-2 strategies that do not calculate the expected 
uncertainty area of the target. 

The average uncertainty area of the decrement strategy is about 30-70% larger 
than when using the all sensors algorithm. Depending on what the priorities are, 
track quality or low power consumption, either the area decrement or the all 
sensors strategy should be used. The use of planning for choosing sensors could 
reduce the gap in quality between these strategies.  

  27 



FOI-R--0500--SE 

5.2 Multiple Targets 
The system was tested with multiple targets. Here a particular test case is 
presented. 

5.2.1 Scene Configuration 
A scene containing two crossing targets, see Figure 11, was created and were 
run in two configurations: One in which the signatures of the targets were 
identical, and one in which the signatures distinctly differed from each other. 
Both scenes were 400 cycles long, where the first track (left to right) entered at 
cycle 0 and left at cycle 399, and the second track (bottom to up) entered at 
cycle 102 and left at cycle 399.  

 

Figure 11 Scene containing two targets, one from left to right and one 
from bottom to top. 

5.2.2 Results 
In the first test run the two targets had the same acoustic signatures. Since one of 
the sensor data matching mechanisms is classification of target signatures, this 
particular scene configuration introduces sensor data conflicts when the targets 
come too close to each other (see section 3.4.2).  

In the second test run the first and the second targets differed very much in the 
acoustic signature and there was no problem in matching sensor data correctly. 
Figure 12 shows the result of the different scene configurations. 

28 



  FOI-R--0500--SE 

  

Figure 12 Simulation result of crossing tracks, with identical signatures 
(left) and different signatures (right).  

Apart from the crossing point of the targets, both targets were tracked 
successfully in both scene configurations. Figure 13 shows the difference 
between the real tracks and the perception of the tracks in the second scene 
configuration (with different target types). 

 

Figure 13 Simulation result of crossing tracks with different signatures. 
The real tracks (dark) are overlaid on the perceived tracks (white).  

5.2.3 Conclusions 
Tracking of multiple targets is handled in a predicable way. When targets come 
close to each other, instantaneously decision of which target an observation 
belongs to might not be possible. Using multiple hypotheses where this decision 
is postponed could help solving this problem. Tracking of similar targets close 
to each other is a hard problem that is not always solvable by the sensors at 
hand.  

  29 



FOI-R--0500--SE 

5.3 Multiple Nodes 
An evaluation of how the ratio between the number of nodes and the number of 
sensors affects the performance has been made. When the system was designed 
an even distribution of about 5 sensors per node was in mind.  

5.3.1 Scene Configuration 
Six different scene configurations, where the number of nodes varied, have been 
used in the evaluation. The scenes consist of 20 sensors, 1 track and 1, 2, 4, 5, 
10 respectively 20 nodes. The sensors and the nodes were randomly distributed 
within an ellipse (400 x 200 m). The track was placed as in the evaluation of the 
sensor activation algorithm for tracking, se Figure 7 on page 25. The simulations 
were repeated 10 times for each scene configuration. 

5.3.2 Results 
The value measured was the number of tracks that was detected. The motivation 
to measure this value is that when adding more nodes, there is a possibility that 
sensor data doesn’t reach the corresponding track agent. In this case a new track 
agent is created in the node closest to the source of the sensor data. The previous 
and the newly created track agent then compete with one another about sensor 
data, and eventually these two agents will starve each other to death (see sensor 
data collision in paragraph 3.4.2). The track agents can thus loose track of the 
target if there are more than one track agent that is tracking the target or if there 
is a gap in the sensor coverage on the path of the target. The first reason is the 
most frequent as shown in the figures below. 

The average number of tracks in each scene configuration has been calculated 
and is summarized in Figure 14.  

0

2

4

6

8

10

12

14

1 2 4 5 10 20

Number of nodes

N
um

be
r o

f t
ra

ck
s

Average

 

Figure 14 Average number of tracks against the number of nodes. 

30 



  FOI-R--0500--SE 

Figure 15 shows the variations in each group. The variations are great, 
especially in the scene containing 5 nodes. This diagram still shows the same 
overall result: Adding more nodes will increase the number of tracks (i.e. more 
frequent loss of tracks).  

0

5

10

15

20

25

30

35

1 2 4 5 10 20

Number of nodes

N
um

be
r o

f t
ra

ck
s

Maximum
75th percentile
Median
25th percentile

 

Figure 15 Number of tracks against the number of nodes. 

5.3.3 Conclusions 
The dispatch protocol for sensor data is not satisfactory. The reason is the fact 
that the dispatch agents don’t look in neighbouring nodes for track agents when 
a local matched track agent has been found. Thus, if two track agents are created 
at the same cycle in different nodes, they will stop the each other from receiving 
sensor data from their nodes respectively. The main problem is however: How 
far should the dispatch agent look for interested track agents? The problem is 
trivial if the dispatch agent has knowledge of all track agents in the network, but 
this is not the case. 

  31 



FOI-R--0500--SE 

Chapter 6 Conclusions 

6.1 Summary 
This report discusses an agent-based architecture for an unattended ground 
sensor network where agents are used to track, detect and classify targets. This 
system is designed to be general enough to handle different kinds of sensors. 
Although only acoustic sensors are simulated in the current stage, other types 
can be easily added since a common layer of uncertainty areas and signatures is 
used.  

Scalability of the sensor network has been accomplished by removing 
knowledge of the entire network from the nodes. A node has only knowledge of 
the neighbouring nodes and its sensors. This way each node has rarely 
knowledge of more than 16 other nodes, no matter how many nodes there are in 
the entire network. This means that the network can grow, without increasing 
requirements on the individual nodes and sensors. Evaluations have however 
shown that the dispatching protocol is unsatisfactory when adding more nodes. 

Sensor activation algorithms for detection and tracking affect the network 
lifetime to a great extent. Since detection time/probability and track quality is 
more or less an opposite goal to minimizing sensor power consumption, several 
tradeoffs have to be made. This subject is discussed further in section 6.2. 

The implemented system, which adequately solves the detection and tracking 
problem (in the case of few nodes), is just in its starting phase. Further 
development and tests with both real and simulated sensor data are necessary for 
the system to become a reality.  

Applying sensor data to the correct target is a hard problem. Target 
classification and determination of small target uncertainty areas can 
significantly help solving this task. Target classification can however not always 
separate different targets from each other, i.e. when the targets are of (more or 
less) the same types. When these two techniques fail to match sensor data to the 
correct target (see section 5.1), other techniques are needed to solve this 
problem. 

32 



  FOI-R--0500--SE 

6.2 Future Work 
There are a vast number of things that might improve this architecture. The 
following paragraphs each discuss specific areas where improvements are 
possible. 

External Communication 
External communication has so far not been concerned. In this work a reference 
to the “Communication Link” is made available for the agents in all nodes. To 
facilitate robust external communication more than one node with this capability 
must exist. There might even be a need for different types of external 
communication, such as various types of radio communication and satellite 
communication. Issues as efficient use of energy, transparency of which 
communication device to use, reliability and robustness should be considered 
when designing the external communication. From an agent point of view this 
could lead to new agent types to keep track of the information that should be 
sent out from the network and how. 

Information Dissemination 
Information of various types needs to reach many nodes and agents. Examples 
of this could be various settings, sensor network missions, single commands etc. 
Often this piece of information or command comes from an external operator via 
the external communication. This creates the need for some services that can 
disseminate information to perhaps all nodes, find the mobile agents in the 
network etc. This should be implemented in an efficient way without 
unnecessary broadcasts etc., perhaps by keeping track of agents that need to be 
found for various purposes. 

Producer-Consumer Agent Architecture 
In the current design, the track agent deals with the task of determining which 
sensor combination to use. When adding more sensor types this task will grow 
too big and should therefore be split up into several minor tasks. This could lead 
to some new specialized agent types that groups sensors together and computes 
the expected quality of the fused sensor data and the cost in terms of 
computation, communication and sensor usage. The track agent chooses among 
the propositions made by these agents. This can be seen as a producer and 
consumer chain, where track agents buy information from these “fusion agents” 
that produces information from sensor data. The sensor agents in turn supply the 
sensor data to the fusion agents.  

Node-Sensor Hierarchy 
The network could be made less dependent of the nodes if all the sensors had the 
same capabilities as the nodes. Since the sensors already need computational 
power for communication, the additional computational power to facilitate 

  33 



FOI-R--0500--SE 

fusion should be easily added at reasonable low cost. The gain is robustness. 
The current design does however not deal with this kind of flat network 
topology. The dispatch agents that handle internode communication between 
sensor agents and track agents only communicate one node away. Their dispatch 
protocol needs to be revised.  

34 



  FOI-R--0500--SE 

References 

[1] Lawrence A. Klein, Sensor and Data Fusion Concepts and Applications, 
Bellingham, WA, SPIE, 1999. 

[2] A. Lim, Architecture for Dynamic Information Dissemination and Fusion 
in Distributed Sensor Networks, Proceedings of Fusion 2001 Conference, 
Montreal, Canada, August 7-10 2001. 

[3] J. Agre and L. Clare, An Integrated Architecture for Cooperative Sensing 
Networks, IEEE Comput. Soc, pp 106-108, May 2000. 

[4] Jason Hill et al, System Architecture Directions for Networked Sensors, 
Berkeley, CA, 2000. 

[5] S. Kumar and D. Shepherd, SensIT: Sensor Information Technology For 
the Warfighter, Proceedings of Fusion 2001 Conference, Montreal, Canada, 
August 7-10 2001. 

[6] E. Jungert, Decision Making and Data Fusion in an Interactive Adaptive 
UGS Network, Proceedings of the 5th Int. Command and Control Research 
and Technology Symposium, Canberra, Australia, October 24-26 2000. 

[7] M. Wooldridge and N. R. Jennings, Intelligent Agents: Theory and 
Practice, The Engineering Review, 1995. 

[8] M. Wooldridge, Multiagent Systems: A Modern Approach to Distributed 
Artificial Intelligence, Intelligent Agents, G. Weiss (Ed.), The MIT Press, 
London, England, 1999. 

[9] N. R. Jennings, Agent-Oriented Software Engineering, University of 
London, 1999. 

[10] D. Li, K. Wong, Y. H. Hu and A. Sayeed, Detection, Classification and 
Tracking in Distributed Sensor Networks, Proceedings in Fusion 2001 
conference, Montreal, Canada, August 7-10 2001. 

[11] T. Kao, D. Mount and A. Saalfeld, Dynamic Maintenance of Delaunay 
Triangulations, Technical Papers 1991 ACSM-ASPRS Annual 
Convention, pp 219-233, 1991. 

  35 



FOI-R--0500--SE 

[12] L. Guibas and J. Stolfi, Primitives for the Manipulation of General 
Subdivisions and Computation of Voronoi Diagrams, ACM Transactions 
on Graphics 4, pp 74-123, April 1985. 

[13] G. Leach, Improving Worst-Case Optimal Delaunay Triangulation 
Algorithms, Royal Melbourne Institute of Technology, June 1992. 

[14] E. Jungert and J. Walter, Ground sensor nets and intelligent agent system 
architecture for a network based sensor system, FOI-R-0317-SE, 
September 2001. 

[15] J. S. Lamancusa, Engineering Noise Control, Pennsylvania State 
University, http://www.me.psu.edu/lamancusa/me458/10_osd.pdf 
(April 2002), 2000. 

 

 

 

36 



  FOI-R--0500--SE 

Appendix A User’s guide 

The system consists of three simulation programs: simulation server, 
communication link and node. There is a tool for creating scene files and 
viewing simulation files called the scene editor (since it was originally designed 
for scene editing). There are also simulation tools, a combined graphical user 
interface for the simulation programs, and a batch simulation tool.  

A.1 System Requirements 
The system requires jdk1.3.1 or later with the Java API for XML Processing 
(JAXP) installed. This is what is needed for the system and the tools to compile. 
If the Jimi SDK is installed, some export features are enabled in the scene editor.  

A.2 Scene Editor 
The scene editor creates scene XML files and can view simulation XML files, 
which it can generate and export data from. The scene editor is started by: 

java se.foi.sensornet.gui.SceneEditor –p <parameters URI> 
 

The parameters URI is the location where the parameter file is, for example: 
file:M:/project/parameters/parameters.xml. 

  37 



FOI-R--0500--SE 

 

Figure 16 The scene editor. 

The graphical user interface of the scene editor is shown in Figure 16. The 
numbers in the figure are described below: 

1. Mode – can either be Scene or Simulation. 
2. Scene or simulation file name. 
3. Selection button.  
4. Add node button. 
5. Add sensor button. 
6. Add target button. 
7. Edit track button – only activated when a target is selected. 
8. Current cycle field. 
9. Current cycle slider. 
10. The target or sensor type. 
11. The speed to run a scene or simulation. 
12. Toggle play/pause scene or simulation. 
13. Sensor. 
14. Node.  

38 



  FOI-R--0500--SE 

15. Track control point, also referred to as target. 
16. Target track. 
17. Track control point cycle. 
18. Target speed between two track control points. 
19. Selected track control point (target). 
20. Current target position – depends on current cycle. 
21. Sensor detectable area. 
22. Node connection. 
23. Sensor connection. 

The menus in the scene editor graphical user interface are shown in Figure 17. 

  

Figure 17 The file menu (left) and the view menu (right). 

In the File menu, the New, Open, Save and Save As menu options handle the 
creation, opening and saving of scene files. Open simulation opens a simulation 
XML file and makes the program go into simulation mode, where all editing 
tools are disabled. Export frames exports a screen dump of the current scene or 
simulation for each cycle in the scene or simulation. The screen dump files are 
named pic_0001, pic_0002 and so on with the corresponding extension. This 
option is only enabled if the Jimi SDK is installed. Export statistics exports 
statistics of a simulation in a tab separated text file. Exit exits the scene editor. 

In the View menu there are controls that affect the appearance of the drawing 
area. Setting of the zoom factor and enabling/disabling of different kinds of 
objects in the drawing area is done here as well. 

  39 



FOI-R--0500--SE 

A.3 Graphical Simulator 
The graphical simulator is simply a graphical interface for the simulation server, 
the communication link, and the node. The simulation server is started by: 

java se.foi.sensornet.gui.Simulator  
 [-p <default parameter URI>] 
 [-s <default scene URI>] 
 [-o <default output file>] 
 [-h <default host>[:<port>]] 
 

The graphical simulator has no required parameters. The specified values are 
just used as default values in the input fields. When the program starts, the 
Simulation Server tab is selected, see Figure 18. 

 

Figure 18 The Simulation Server tab of the Simulator program. 

Since the simulation server is always started at localhost, the Host field contains 
localhost and is disabled. Only one instance of the simulation server may be run 
on each host and port, which is specified in the Port field. In the Parameters 
URI and the Scene URI fields the location of these files are specified. In the text 
area below the input fields and the Start button, the output of the simulation 
server is written. At the bottom of the window there is a status bar with a status 
message and a progress bar that shows how far the simulation has proceeded. 

40 



  FOI-R--0500--SE 

When the simulation server has been started, either on this host or another host, 
the communication link should be started. When the Communication Link tab is 
selected the window should look like Figure 19. 

 

Figure 19 The Communication Link tab of the Simulator program. 

The host and port of the simulation server are specified in the Host and Port 
fields, and the location of the output file is specified in the Output file field or 
browsed with the Browse file button. Also here, there is a text area for output 
and a status bar. 

When the simulation server has been started and the communication link is 
connected, a number of nodes need to be started and connected. The number of 
nodes to be started depends on the scene file, i.e. how many nodes it contains. 
The appearance of the Node(s) tab is shown in Figure 20. 

  41 



FOI-R--0500--SE 

 

Figure 20 The Node(s) tab of the Simulator program. 

The host and port of the simulation server are specified in the Host and Port 
fields, and the parameters URI is specified in the Parameters URI field. The 
number of nodes to be started is specified in the node(s) field. The simulation 
begins when the required number of nodes is started. 

A.4 Simulation Server 
The non-graphical version of the simulation server is started by:  

java se.foi.sensornet.SimulationServerImpl  
 -p <parameter URI> 
 -s <scene URI> 
 

A.5 Communication Link 
The non-graphical version of the communication link is started by:  

java se.foi.sensornet.ComLinkImpl  
 -o <output file> 
 [-h <host>[:<port>]] 

 

42 



  FOI-R--0500--SE 

A.6 Node 
The non-graphical version of the node is started by:  

java se.foi.sensornet.NodeImpl  
 -p <parameter URI> 
 [-h <host>[:<port>]] 
 

A.7 Batch Simulator 
The batch simulator is a non-graphical tool that starts one instance of the 
simulation server, one instance of the communication link and one or more 
instances of the node. The batch simulator is started by: 

java se.foi.sensornet.BatchSimulator  
 -p <parameter URI> 
 -s <scene URI> 
 -o <output file> 
 -n <number of nodes> 
 

The batch simulator exits as soon the simulation is complete and the output file 
has been written. 

  43 




	Blanksida.pdf
	


