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Abstract

An artificial dissipation term for linear and nonlinear hyperbolic Cauchy
problems is determined such that we obtain an energy estimate despite a
conservative formulation of the problems. The differential equations are
solved using second, fourth and sixth order accurate difference operators,
which all satisfy summation-by-parts properties. The dissipation terms are
computed such that there is no loss of accuracy.
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1 Introduction

Conservative difference methods for solving linear and nonlinear hyper-
bolic problems are often used. Mainly because the shock speed is calcu-
lated correctly [1]. However, to obtain an energy estimate for the Cauchy
problems with a conservative method requires artificial dissipation. The
energy estimate is necessary for obtaining strict stability.

Normally, the artificial dissipation is constructed in order to absorb the
energy of unresolved modes in the problem. It can also be added to enable
the calculation of problems involving shocks [6]. In this paper we aim for
a particular kind of artificial dissipation that makes it possible to obtain an
energy estimate despite a basic conservative difference approximation.

The artificial dissipation is constructed by expressing the conservative
formulation as a skew-symmetric formulation with an artificial dissipation
term added to it. The size and form of the artificial dissipation term de-
pends on the specific problem to solve, the size of the mesh and the order
of accuracy of the difference operators we use. Second, fourth and sixth
order of accurate summation-by-parts (SBP) operators [2] with diagonal
norms are used.
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2 The linear problem

2.1 The continuous case

Consider the linear system of equations

u+ (a(z)u); = 0

v+ (b(z)v)s = 0 @

where a(z) > 0, b(z) < 0,z € [0 1] and t > 0. The boundary conditions
are determined by

u(0,t) = av(0,t), v(1,t) = Bu(l,t) ()
and the initial conditions are
u(z,0) = f(z),  v(z,0) = g(z). 3)
The constants « and S in (2) will be determined later.

Multiplication of equation (1) with u, v and integration over the domain
leads to

d 1
Sl + 0l) = = (@ + 07 - [ (@ + b2z, (@
0
In (4) we have introduced the norm ||ul|7, = fol u?dzx. By choosing

o =

_b(0) _ e
A0 PV

in (2), we eliminate the boundary terms in (4) such that the final expression
for the energy rate becomes

d 1
Sl + 101) = = [ (@ + b7, )



FOI-R-0509-SE

10

2.2 The discrete case
2.2.1 Stability

To prevent a discrete solution from contamination of unresolved features
in long time integrations, we aim for a strictly stable method [3]. That
concept is defined below.

Consider the following initial-boundary problem.

ut+H(x,t,a%)u = F, ze, t>0

u flz) z€Q, t=0 (6)
u = g(t) zel, t>0

Il

where 2 = {z;0 <z < 1}andI' = {z;2 = 0}.

Definition 1. (6) is said to be strongly well posed if an unique solution
exists and the estimate

luC, )1 + fo lluC, )| Rdr

< Kot (|, Ol + LUF@IE +lo@Rar)

holds. K. and n, do not depend on F, f or g. || - ||r and || - ||q are suitable
CONtINUOUS NOYMS.

The corresponding semi-discrete problem is

ut+H<:z:j,t, a%j)u = F, z;€Q, t>0
u = f z;€Q, t=0 (8)
u = gt) z;€l, t>0

Definition 2. (8) is said to be strongly stable if, for a sufficiently small Az,
there is an unique solution that satisfies

[ullg + [y [[uli2dr

< Kaerst ([l + JLIFI + ) v

K, and ng do not dependon F £ org. || - ||r and || - ||q are suitable discrete
norms.

Definition 3. We call (8) strictly stable if the growth rates in (7) and (9)
satisfy

Na < 1. + O(Ax) (10)
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2.2.2 Conservative method

A semi-discrete representation of (1), (2) and (3) is
u; + D(AU) = 0

vi+D(Bv) = 0
b
up(t) = awg(t)

un(t) = PBun(t)

where A and B are diagonal matrices

Qo 0 ... b() 0
A= 0 a , B=| 0 &

with the values of a and b injected on the diagonal. The vectors u and v
are the discrete representations of u and v. The system (11) is obviously on
conservation form [3]. D is a spatial difference operator of the summation-
by-parts (SBP) type [2]. A SBP operator D can be written as a product
between two matrices, P~1(Q that satisfy the following properties:

1. The matrix P is symmetric and positive definite, and Axzpl < P <
Axgl, where p > 0 and ¢ > 0, both independent of the number of
node points, N + 1.

2. The matrix () is nearly skew symmetric, ie
Q+ QT = diag(—1 0...0 1) = B.

In addition, P must be a diagonal matrix in our case since we will later
require that AP = PA and BP = PB. Letw = (u,v)T,

(PO _(Q 0 (A0
(5 2) e (8 2) - (14).

and B = Q + Q7. Using the Simultaneuos approximation term (SAT)
method [4], which makes the boundary conditions part of the difference
equation through a ”’penalty”’-term, and the definitions in (12) we can write
(11) as

w,+ DFw =P 'Sw (13)

where D = P~'Q and S is a (2N + 2) * (2N + 2) matrix with nonzero
elements at position 1 and /V 4 2 in the first row and NV 4+ 1 and 2N + 2 in
the last row.

ar, 0 —0LQx 0 \

11
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Multiplying equation (13) with wZP from the left and adding the trans-
posed resulting equation we get

wIiPw, + wiPTw = wl(S+ST)w—wl(QF + (QF)T)w
By using @ + QT = B we get

LIwlp = WI(S+ STy~ wT (B~ @N)F + FQT)w
= BT+ (Dw,Fw)p — (DFw,w)p

where BT, = wT(S + ST — BF)w and (u,v) = u? Pv. Let
GR1 = (Dw,Fw)p — (DFw,w)p. (14)

To obtain strict stability, a first requirement is that BT} has to be less than
or equal to zero, that is (S + ST — BF) has to be negative semi definite. By
choosing o, and o to be

orp = —ay, or = —by, (15)

the eigenvalues of (S + ST — BF) are non-positive.

2.2.3 Skew-symmetric method

Another formulation of (1) is

up + 1a(ac),gu + 1((a(a¢)u)x +a(z)ug) =
(16)

v+ ib(a:)xv + 5((5(37)11)39 +b(z)v,) = 0,
where we have used the relation (au), = vy(au), + (1 — ) (aug + azu). In

this case we choose v = % The semi discrete correspondence to (16) has
the following appearence

u; + %Axu + %(DAu +ADu) = 0
Vi +5B;v+ 5(DBv+BDv) = 0

which is equivalent to
1
w; + i(fo—F’D}—W-!-]:DW) =0 17)

where F, = diag(A, B,) and
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Equation (17) augmented with the SAT term becomes
1
w; + ]—' W+ — (D]-'W + FDw) = P 1Sw, (18)

where the S-matrix is the same as in section 2.2.2. By multiplying (18)
with wI'P from the left and then adding the corresponding transposed
equation, we get

wlPw, + th'PTW WT(S + ST) ('P.7: + (PF, ) Yyw—
: lw
2wV

T(QF + ]—"TQT +PFD+PFD )w
Now since P and F commute we get PFD = PFP1Q = FQ which

leads to
CIwlE = WIS+ ST BF)w - (Fuw)Pw-
%WT(_QT:/—_'_‘_}'TQT —FOT + QT FT)w (19)
= BT2 - (fo, W)p

The boundary term BT, = w? (S + ST — BF)w equals BT} in section
2.2.2 and is therefore negative semi definite if (15) is used. Let

GR2 = —(F,w,W)p. (20)

2.2.4 Energy estimate

To obtain an energy estimate where the growth rate corresponds to the
continuous case, GR1 in (14) for the conservative formulation and G R2
in (20) for skew-symmetric formulation must correspond to — fol(axu2 +
byv?)dz in (5). Otherwise, strict stability will not be obtained.

Using a second order SBP operator, a(z) = 1 +ex and b(z) = —1+ex
imply that

GR2 = —(F,w,w)p = —¢||w||%.

This means that the discrete and continuous energy estimate resemble each
other, i.e we get

d
o wle = —€llwli3, 1)

which mimics (5) perfectly and therefore a correct discrete spectrum is
obtained, see figures 1 and 2 in section 2.2.5. However, since

GR1 = —e[[wil} + B,

the difference between GR1 and the correct discrete energy rate can be
written

Az
E = e|wl} + GRL = =~ Z 21— )’ 4 (vimy — v)?).

13



FOI-R-0509-SE

14

The deviation E does not necessarily vanish with decreasing Az, [5].
Consequently, the spectrum might not be correct, see figures 3 and 4 in
section 2.2.5.

Note that if u and v in (20) are smooth functions, then

1
GR2 ~ —/ (azu® + byv?)dz.
0

This implies that the energy rate (19) for the skew-symmetric method cor-
respond to (5). Note also that (20) can always be estimated as GR2 <
| Fz|maz||W||% which leads to an energy estimate even though strict stabil-
ity cannot be obtained.

2.2.5 Continuous- and discrete spectrum

By Laplace transforming (1) we get

st — f(z) + (at), = 0

st —g(z)+ (b)), = 0, (22)
where
u(s) = / ue”*'dt.
0
The solutions to (22) with f(z) = g(z) = 0, are
. Cy g Cs
U= T2, V=777 55 " (23)
|a[ f51 de |b| ‘/:52 gd.’E

C1 and Cj are constants and §; and J, are arbitrary real numbers. The
solutions # and v in (23) inserted in the boundary conditions (2) leads to

M Cl _ ( &1(0, S) —05171(0,8) ) ( Cl -0
Ca Bui(l,s) —01(1,s) Co ’
where 4; = 4/C) and 7, = ¥/Cs. The spectrum is determined by solving
M| =0

for the s values. For general a(z) and b(x) the spectrum is given by

_ In(ap) + 2nmi
N flo a(z)~ldz + fol b(z)-ldz’

where 7 is the imaginary unit and n € Z. The discrete spectrum is given
by computing the eigenvalues of G

w; = Gw (24)
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Figure 1. Skew-symmetric
spectrum of G, second order
case.q = 140.8z,b = —14+0.8x

Figure 2. Skew-symmetric
spectrum of G, second order
case.a = 140.8z,b = —1+40.8z
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Figure 3. Conservative
spectrum of G, second
order case.a = 1 + 0.8z,
b=-14+0.8z

Figure 4. Conservative
spectrum of G, second
order case.a = 1 + 0.8z,

b=-1+0.82
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Figure 5. Skew-symmetric
spectrum of G, second order
case.a =1+ 0.82%4, b= —1+
0.8z*

Figure 6. Skew-symmetric
spectrum of G, second order
case.a = 1 +0.8z% b= —1+
0.8z
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Figure 7. Skew-symmetric spec-
trum of G, fourth order case.a =
1+ 0.8sin(7.9z), b = -1 +

0.8sin(7.9z).

Figure 8.
case.a =

(real(A))maz
m=20:10:200
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where
G=-DF+ P‘lS,
for the conservative formulation and

1
G= ——;—}'x ~ 3 (DF + FD) + P71,

for the skew-symmetric case.

In figures 1 and 2 all eigenvalues converge towards the continuous
spectrum from the left. This imply strict stability for the skew-symmetric
method in the linear case. The discrete spectrum in figures 3 - 6, for both
methods do converge to the continuous spectrum A2¢ = s when refining
the grid, but ()\f“”)mMC j=1,...,N + 1 increases when Az decreases.
This means that neither of these methods can be said to be strictly stable,
see definition 3, equation (10). In figure 7 some eigenvalues have real
parts greater than zero, which will result in an explosion of the solution as
time increases. However, in this case (/\fe)maw seems to converge to zero
when refining the grid, see figure 8.

We cannot always guarantee strict stability for the skew-symmetric
method. However,

d
%“WHZP = —(fo, W)P S If:clmaz”W%“’ (25)

is always valid, i.e we can obtain an energy estimate. For the conservative
scheme (13) we cannot produce an estimate like (25).

2.2.6 Conservative method with artificial dissipation

Although we now have a numerical method with a bounded energy rate, see
section 2.2.3, it is preferable to numerically solve the problem (1) using
a conservative formulation of the problem, as in (11), especially when the
solution is non-smooth and a correct shock speed (in the non linear case) is
required [1]. Adding and subtracting 3(A;u+ ADu) and (B, v+ BDv)
respectively from the conservative formulation (11) we get

1 1
u; + DAu + -2~(Axu + ADu) — §(Axu +ADu) = 0
(26)
1 1
v; + DBv + i(BwV + BDv) — i(va +BDv) = 0.
After rearranging the terms in (26) and by using (12) the semi-discrete
problem can be written,

1 1
W+ §(fo+wa+}'DW) = 5(_D‘7:W+F$W+‘7:DW)’ @7

which is exactly the skew-symmetric formulation (17), except for the term
on the right hand side in (27) that we denote by R. If R is a non dissipative

19
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term we need to dominate it by suitable artificial dissipation terms, prefer-
ably without affecting the order of accuracy for the numerical problem. If
we accomplish that, we have a conservative formulation of the problem,
that unlike (11) leads to an energy estimate.

For the first equation in (26), R has the form

R; = %(—DAu + Azu + ADu);, 1 = thei:th node point. (28)

The size and form of the artificial dissipation term depends on the spa-
tial difference operator, D. In this paper we use second-, fourth- and sixth
order accurate central difference operators (see Appendix A) for a descrip-
tion of the first derivative operators. Let us start by considering the second
order case, we get,

A 2
DF ~ F, + —( 633) Fopo +0O ((Aw)4) .
This implies that
2
R, = % [-D(au) + aDu + (Da)ul, ~ — (AZ) [(azuz),); - (29)

The contribution to the energy estimate of R; can be estimated by inter-
preting the result in continuous frame and by multiplying (29) by u and
integrate in space. We get

1 A 2 1
/ wRdz = BT + . Z) / azuldz, (30)
0 0

where BT stands for the (neglected) boundary terms. According to (30)

R; is of a dissipative nature if a, < 0. To make sure that our artificial

dissipation (added to the right hand side of equation (13)) is dissipative

and large enough to balance R, we use the dissipation operators developed

in [6] and write this term as

(Az)?
4

DI = — P1DT(| 44| mesC) D1 u. (31)

In (31) D, approximates a first derivative, C' is a diagonal matrix that re-
duces the values of |Az|mqz at the boundaries and P~! = AzP~! is in-
cluded in order to obtain the correct discrete energy estimate, see [6].

The next case to consider is the fourth order operator. Taylor expansion
yields,

A 4
DF ~ F, + %F +0 ((Az)°).

This leads to, see (28)
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The contribution to the energy rate of R; becomes,

1 A 4 1 A 4 1
/ uRdx = BT — (A7) / amxuidﬂv + (A7) / axuixda;. (32)
0 12/, 12 J,

The first integral in (32) is negative for a,,, > 0 and the second one for
a; < 0. The dissipation term we will use becomes

(Az) =1/ p T
12 P (D1 (|Amxz!mazC)D1u + D2 (leImaxC)D2u) .

(33)

DI = -

D, in (33) approximates a second derivative.

Finally we consider the sixth order case. Taylor expansion gives,

6
DF ~ F, + (—%mem + O ((Az)?). (34)

The relation (34) and (28) implies,

Ax)®

The contribution to the energy estimate related to R is

1 A 6 1
/ uRdx = BT+ —( 7) / QroooaliodT —
0 40 Jo
Azx)® 1 Az)8 1
(——QE—)—/O axmuizdw+ ( 43) /0 azuimdx.
The dissipation term is now determined to be
Az)® ~
DI = ——%P‘l (Df(|Amxm|mMC)D1u +

2D5(|szm|maxC)D2u + D§(|Az|ma$0)D3u)

where D3 approximates a third derivative.

In figures 9 and 10, the dissipative term has obviously balanced R
enough, see (28) and compare with figures 5 and 6. Not only do the dis-
crete eigenvalues converge to the continuous ones, but also (/\fe)maw ] =
1,...,N + 1, converges as Az goes to zero. All eigenvalues in figure
9 converge from the left, except for the one with imaginary part equal to
zero. Artificial dissipation decreases the energy rate, but do not guarantee
that )\fe of G in (24) decreases, except for the ones belonging to the sym-
metric part of G.

21
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Figure 9. Spectrum of G, con-
servative method with dissipa-
tion term. Second order case.
a=1+0.8z%b=—-1+0.8z*

Figure 10. Spectrum of G, con-
servative method with dissipa-
tion term. Second order case.
a=1+0.8z%b=—-1+0.8z*
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Figure 11. Spectrum of G, con-
servative method with dissipa-
tion term. Second order case.
a=1+0.8sin(79z),b=—-1+
0.8sin(7.9x)

Figure 12. Spectrum of G, con-
servative method with dissipa-
tion term. Fourth order case.
a=14+0.8sin(7.92),b=—-1+
0.8sin(7.92)
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Figure 13. Spectrum of G, con-
servative method with dissipa-
tion term. Second order case.
a=140.8sin(7.92),b = —1+
0.8sin(7.9z)

Figure 14. Spectrum of G, con-
servative method with dissipa-
tion term. Fourth order case.
a=1+0.8sin(7.92),b= -1+
0.8sin(7.9x)
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Figure 15. Spectrum of G, con-
servative method with dissipa-
tion term. Sixth order case. a =
1+ 0.8sin(7.92), b = —1 +
0.8sin(7.9z)
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As can be seen in figures 11 and 12 a higher order of accuracy does
not mean that all eigenvalues are closer to the continuous ones. But they
do converge faster, which is shown in figures 13, 14 and 15 . Eigenvalues
for a(z) and b(x) beeing polynomials up to fifth degree as well as trigono-
metric functions have been computed. In all these cases ()\fe)mm j =
1,..., N + 1, converges as Az goes to zero for the conservative approx-
imation with the new artificial dissipation, although they sometimes con-
verge from the right.
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3 The nonlinear problem

3.1 The continuous case

In this section we consider the nonlinear Burger’s equation.

1
U + §(u2)gc = €Ugg. (35)

In (35), € is a small positive number. Writing (35) on a skew-symmetric
formulation, we get

1
ug+ (1 — 7/)5(112)3c + YUUy = €Ugy (36)

To obtain an energy estimate for the discrete problem we must use v = %
The energy estimate for (36) becomes

iHuHQ = 2(euu, — 1u?’)ll - 26/1 uldz
' “og 0 -

3.2 The discrete case

The semi-discrete skew-symmetric problem

1 1
u; + §UP—IQu + —gP“lQUu =eP QP 'Qu, (37)

where U = diag(u), yields the following energy rate
d 2 2 r T
a”ullp = —3u BUu + 2eu” BDu — 2¢ (Du,Du),.  (38)

Equation (38) correspond exactly to the continuous energy rate. Leta = &
in (35). We then determine the dissipation terms for the different SBP-
operators, see appendix A, in the same way as in section 2.2.6, omitting
the term on the right in (37) since it is already dissipative. The dissipa-
tion terms turn out be % times the ones calculated in section 2.2.6. The
difference is due to the fact that we use vy = % here and v = % in section
2.2.6.
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4 Numerical experiments

Figure 16. v att = .5 and
t = 1.1. Second order case.
a =1+ 8sin(nz), b = —1+
8sin(nz),f = sin(2nz), g =
—f, N =50and k = .001

Figure 17. v att¢t = .5 and
t = 1.1. Fourth order case.a =
1 + 8sin(mz), b = -1 +

8sin(wz),f = sin(2nz),g
—f, N =50and k = .001

Figure 18. v att¢t = .5 and
t = 1.1. Sixth order case.a =
1 + .8sin(rz), b = -1 +
8sin(mz),f = sin(27rz),g =
—f, N =50and k = .001

We have constructed a strictly stable method using a conservative formu-
lation augmented with suitable artificial dissipation. In this section we test
our scheme and see how it performs on various problems. In addition, we
want to verify that no loss of accuracy occurs.

4.1 The linear case

Consider the problem (11). To integrate in time we use a fourth order ac-
curate Runge-Kutta method. In this paper we have choosen to investigate
a few cases where we are able to determine the solution analytically, see
appendix B. Since a, and b,, used in figures 16, 17 and 18 alternate be-

— anaiytical soldion — anaiytical soldion
~4- sacond order 6} ¢ second order

o ot 02 o3 o4 05 o8 07 08 08 1 o o1 oz 08 o4 05 o068 07 o8 08 1

— analytical soldtion == analytical solution
-6~ fourth order 6| @~ fourth order

— analytical solution — anaiytical solution
8- sixth order 8} -8 sixtn order

tween positive and negative numbers, the amplitude of the solution might
grow in time, see equation (95).
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Figure 19. Error at t=.2 sek.

a = 1+ 8sin(nz),b = -1+
8sin(wz),f = sin(2rzx),g =
—f and k=.0001

Figure 20. vatt = 0.
Sixth order case. a = 1 +
8sin(wzx), b = —1 + .8sin(wx),
f = sin(2rx)g = —f +

some perturbation, N = 101 and
k = .001
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Since SBP-operators with diagonal norms are used, the order of accu-
racy at the boundary is half the one used in the interiour of the domain, see
[7]. This implies that the total order of accuray in space becomes 2, 3 and
4 for the second, fourth and sixth order schemes respectively. The order
of accuary is not altered by the artificial dissipation, which can be seen in
figure 19.
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Figure 21. v att¢ = 0.5. Sixth
order case.a = 1 + .8sin(nz),
b = -1+ 8sin(nz),f =
sin(2wz),g =
—f + some perturbation,
N =101 and k£ = .001

Figure 22. v att = 1.0. Sixth
order case.a = 1 + .8sin(wz),

b = -1+ 8sin(wz), f =
sin(l.57z),g = —f, N = 100
and k£ = .001

— analytical solution
-6~ sixth order

05

-1 I L |

0.3 0.4 0.5 0.6 07

In figures 20 and 21, an initial perturbation in v decreases and finally
vanishes as ¢ increases. The disturbance is removed by the dissipation
terms. In the continuous case, the perturbation propagates along with the
rest of the solution.

6 T T T T T T T

-—= cons. with diss.
— analytical solution

-2

-4

By choosing f = sin(1.57x) and ¢ = —f we get a discontinuity that
travels through the right boundary into the solution of v. In figures 22 and
23 we see that the conservative method with artificial dissipation reduces
the perturbations caused by the discontinuity more than the skew-symetric
method.

31



FOI-R-0509-SE

Figure 23. v at ¢ = 1.0. Sixth 6 ' ' '

order case.a = 1 + .8sin(wz), — analytical solution

b = -1+ 8sin(wz),f =
sin(l.57mz),g = —f, N = 100
and k = .001

-4

4.2 The nonlinear case

We consider Burger’s equation (35). The initial condition is such that the
analytical solution is a shock wave (or sharp gradient) propagating to the
right. The solution is constant on both sides of the shock wave, but with
different values. The steepness of the shock is depending on the value of €.
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Note that figures 24 and 25 show that the artificial dissipation improves the
numerical solution by reducing the oscillations behind the shock. In figures
25 and 26 we see that the elimination of the oscillations is further improved
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Figure 25. u att = 0.9. Second
order case. e = 10~%, N = 100
and k = .0002

Figure 26. u at ¢ = 0.9. Sixth
order case. € = 1078, N = 100
and k = .0002
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Figure 27. u at¢ = 0.9. Sixth or-
der case with local artificial dis-
sipation. € = 1078, N = 100
and k£ = .0002

Figure 28. Error at ¢ = 0.002.
Nonzero derivatives at the left
boundary. € = 0.05, £ = .00001
andz € [-11]
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by using a high order method. Using local artificial dissipation, see figure
27, results in a solution where the oscillations are more scattered. With
local artificial dissipation, we mean that the amount of dissipation applied
in each node depends on derivatives in that specific node, i.e. |Ag|mqz in
(31) is replaced by |A;|. Since SBP-operators with diagonal norms are

T
-+ second
-8- fourth
—~ sixth R

order of accuracy
n
(&) w
T T
1

N
T
Il

-3.2 -3

used, the order of accuracy in space decreases to 2, 3 and 4 respectively
(however, for some reason the order of accuracy becomes 5 for the sixth
order case in figure 28).
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5 Conclusions

We have determined a new type of artificial dissipation that depends on the
variable coefficients (or the solution) and it’s derivatives and the size of the
grid. We have shown that it is possible to make the conservative method
strictly stable by adding an artificial dissipation term without destroying
the accuracy. Strict stability cannot be obtained using the skew-symmetric
method.

Tests have shown that the conservative method combined with our arti-
ficial dissipation terms are capable of eliminating perturbations, due to for
instance shock waves. Presumably it works even better for nonlinear prob-
lems with nonzero gradients. However, the amount of artificial dissipation
is probably not optimal.

In this paper we have used global dissipation, which means that the
same amount of dissipation is added in each node. A possible improvement
of this procedure would be to allow amount of dissipation to vary locally.
This is important since the amount of artificial dissipation needed often
varies over the domain.
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Appendix A

SBP-operators

A SBP-operator with diagonal norm [7] is on the form

d
B

A = A(n,m) is a matrix who takes care of derivatives close to the left
boundary. B = —rot(A, 180) is of the same size as A but deals with
derivatives on the right boundary. The value of n and m depends on the
order of accuracy of the SBP-operator. The derivatives in the inner is taken
care of by the row vector d. d:s wideness depends on what SBP-operator
Wwe use.

A SBP-operator can be written as D = P~1(), where P in our case is

a diagonal matrix.

Second order accurate difference operator:

A=(-11)

d==-(-10 1)

[N

P=Azdag(3 1 ... 1 1)

Fourth order accurate difference operator:

24 59 4
EAE It B
A= £ s 5 s _1
433 80 59 80 %g 4
s 0 e 0
d:i(l -8 0 8 -1)
12
P=Azrdiag( g 2 1 ... 1 £ 4)
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Sixth order accurate difference operator:

21600 43200 . 7624 172800 . | 715489
( 13649 13649 40947 13649 81894
_ 8640 4 7624 0 86400 . _ 57139
12013 180195 12013 12013
17280 ., 715489 43200 57139 0
2711 162660 2711 5422
A1:6,1:3 =
_ 25020, | 187017 86400, 745733 86400 . , 176839
5359 53590 5359 64308 5359 16077
34560 . 147127 129600, , 91715 172800 . 242111
7877 47262 7877 7877 7877 15754
\ 43200, y 89387 172800, _ 240569  _ 259200 , , 182261
43801 131403 43801 87602 43801 43801
250200 , 187017  _ 172800 . , 735635 43200, 89387
( 13649 13649 13649 81894 13649 40947
_ 172800, | 745733 129600, _ 91715  _ 34560 . | 240569
12013 72078 12013 12013 12013 120130
86400, 176839 86400, | 242111 25920 , 182261
2711 8133 2711 10844 2711 27110
A1:6,4:6 =
0 43200 . 165041 17280 , | 710473
5359 32154 5359 321540
86400 165041 8640
— 7877 € 23631 0 7877 €
172800 , __ 710473 _ 43200, 0
43801 262806 43801
( 0 0 0 \
0 0 0
0 0 0
Aver =
72
5359 0 0
1296 144 0
7877 7877
32400  _ 6480 720 /
43801 13801 43801
where ¢ = g‘gigg.
1
d=—(-19 —45 0 45 -9 1)
60
P= Az diag(13649 12013 2711 5359 7877 43801 1
43200 8640 4320 432 640 432
1 43801 7 #8328 5949 1380 13649)
43200 8640 4320 4320 8640 43200
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Appendix B

Analytical solution

Consider following initial value problem
u + (au)e =0,  u(z,0) = f(z) (39)

where a = a(z). We can solve (39) by transforming this partial differential
equation to three ordinary differential equations. This is done by adding
two new variables, y and s, where we define y as & = —q,u and s as

o=
xz = s when t = 0. The three new equations are

ﬁ
dy
d_:z:
d

&
dy

= a (40)

= —auu

This gives the solution
u= f(s)eho =

where a = a(z), z = z(y, s). s can be determined from

X 1 S
/ Ed:n =y+ / %da: (41)
0 0

Using the relation y = ¢ from the first equation in (40) the final expression
becomes

u= fls)els ot

s can be seen as a characteristic line to a point in the analytical solution.
When we express s explicity from (41) we do not always get s = x when
t = 0, for instance for some periodic a(z). For that reason this solution
only holds for some a(z).

In this paper we wish to solve (1), (2), (3). Since a > 0 and b < 0,
points in solution of u move towards the right boundary. And consequently
points in the solution of v move in opposite direction. So when we wish to
find out the value of u in a certain point, after a certain time, we determine
where the point were located at ¢ = 0. This is done by following that
specific characteristic line back in time to the boundary, where we note the
time. Since we now know z and ¢ at the boundary we can track the point
through the solution of v to the other boundary. This procedure is repeated
until £ = 0 The value of « in this specific point, for the case in figure 29 is
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Figure 29. Characteristic lines
for a point p = (zn,tn) inu

then

4.5

35

25

(Xe, Tc)

(Xd, Td)

(Xb, Tb)

0.1

0.2 0.3 0.4

The final expression is
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