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Preface

The work presented in this report has been performed as part of Precision Engagement,
a project within FOI, aiming at improving the technologies used for underwater systems,
e.g. submarines, torpedoes or autonomous underwater vehicles (AUV). At the department of
Autonomous Systems, the work within this project is focused on guidance, navigation and
control of such vehicles, making use of the department’s long experience with aerial missile
systems.

Specific problems studied by Precision Engagement, are the ability to strike at a particular
part of a target, controlled impact, where specific damage is to be inflicted upon a target,
and the possibility to make intelligent use the depth dimension for maneouvering. These
abilities may also be important for cooperative behaviour although this is not studied within
the project. It is obvious that good control and navigation systems are important elements in
high performance underwater systems.

Navigation is the art of keeping track of one’s location. It is common to generalize this
task to the estimation of both position and orientation, quantities defined relative to some
reference state or placement. A common reference is useful when several different systems
are used together. However, a single torpedo may only need to home in on its target, and need
not necessarily know its absolute position.

Guidance is path planning, given navigation input, target data and perhaps other know-
ledge of the surroundings.

Control is the actual exercise of moving a vehicle along a path determined by the guid-
ance system, taking into account the particular properties of the vehicle at hand. There is a
large potential for increased performance of control systems applied to underwater systems.
For example, torpedoes have long been controlled without considering the inertia of the sur-
rounding medium, nor with the explicit intent of making them fully utilize all three spatial
dimensions. This latter aspect is of course crucial for aerial missile systems. However, the
dynamic models of missiles operating in low-density media are not well suited to described
the dynamics of an underwater vehicle.

An important step in order to create well performing control systems for underwater
vehicle is to understand the dynamics of a generic vehicle moving in a medium with sim-
ilar density as the vehicle itself. This is the main rationale behind the work presented in this
report.

In this report Jacobsson has made significant progress towards a better understanding of
the motion of underwater vehicles. The results show in particular that controlled motion is
possible for sealed systems with internal actuators only. In addition it is demonstrated that the
use of the Modelica language is well suited for structured modeling of compound underwater
vehicles and a concrete implementation of such Modelica objects is given.

Johan Hamberg
Anders Lennartsson
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1. Introduction

This report is a master’s thesis in automatic control performed at the Swedish Defence Re-
search Agency (FOI), Systems Technology Division. The thesis is the final part of a mas-
ter’s degree in vehicle engineering at the Royal Institute of Technology (KTH), Stockholm,
Sweden. Supervisor at the FOI is Johan Hamberg and supervisor at the KTH is Karl Henrik
Johansson who is also the examiner.

1.1 Objective

Modeling is an important element of the research at the Department of Autonomous Systems
at the Swedish Defence Research Agency. Several different modeling languages for differ-
ent purposes are used. Modelica is a relatively new object-oriented modeling language that
uses an acausal approach instead of the causal approach traditionally used. In order to learn
more about Modelica it was decided to initiate a master thesis project that models a gen-
eric underwater vehicle with MathModelica; a software that provides a Modelica simulation
environment.

1.2 What the report is about

The work in this report is a study in how to describe a body+fluid system as one dynamical
system and implement the result in the object-oriented acausal modeling language Modelica.
As the title of the report reveals the final purpose of the report is tomodel a generic under-
water vehicle. This means that the focus is not on a certain vehicle and the mathematical
generality is retained throughout the report. It is hence the general principles that are invest-
igated in the simulations and the numerical quantities are uninteresting as far as they fulfill
necessary constraints so that solutions not become invalid. The fact that computing inertial
properties of the body+fluid system is numerically advanced and not investigated further is
another reason why the values used are just assumptions. Though, by studying mirror and
discrete rotational symmetries considerable information about the properties are extracted.

The mathematical derivations result in a tool that models an arbitrary rigid body immersed
in a fluid. The implementation in Modelica allows different kinds of inner dynamics which
may be used for propulsion and control.

In the FOI’s perspective the report is also a study in Modelica and the chapter briefing the
Modelica language and the used simulation environment MathModelica is quite detailed.

1.3 How to read the report

The mathematical derivation and representation of the body+fluid system is given in chapter 2.
Necessary assumptions are given and consequences of symmetries of the body are investig-
ated. The derivation is not complete but references are given to cover the gaps.

The used modeling language Modelica and the modeling environment MathModelica is
described in chapter 3. This chapter is not necessary for the understanding of the core of the
report.

Chapter 4 describes how the implementation of the compact mathematical form derived
in chapter 2 is done. The implementation of the code is not treated, it is the ideas that are
focused on.
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Some basic linear control is discussed in chapter 5. This part of the report is separate
from the rest and is just an introduction to the topic of control. However, knowledge about
the mathematical representation developed in chapter 2 is needed before reading this chapter.

A model of an underwater vehicle with internal propulsion and actuation is simulated in
chapter 6, giving insight in how the body+fluid system behaves.

Conclusions about the work and suggestions to continued work is treated in chapter 7.
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2. Dynamics of the fluid+body system

The mathematical formulation and derivation of Kirchhoff’s equations for a rigid body in a
fluid is discussed in this chapter. Kirchhoff’s key simplification was to treat the combined
body+fluid system as a single dynamical system so that the fluid force acting on the body
surface need not be computed.

Lamb (1963) is still a leading treatise on classical hydrodynamics. Other important
sources are Kelly (1998), Leonard (1996) and Woolsey (2001).

2.1 The Lie Group SE(3)

The set of orientation preserving isometries of Euclidean spaceR3 constitutes a Lie group
SE(3), Abraham and Marsden (1985). An elementκ of SE(3) has the form

κ : x 7→ Rx + b (2.1)

whereR is an orthogonal 3×3 matrix withdetR = +1 andb ∈ R3.
With the identification

x←→
(
x 1

)T ∈ R4

κ is represented by multiplication by (
R b
0 1

)
andSE(3) may be defined as the set of such matrices with group operation equal to matrix
multiplication. The corresponding Lie algebrase(3) is then identified with the set of 4×4
matrices of the form

Ú =
(

ω× u
0 0

)
whereω× is the skewsymmetric matrix

ω× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


associated to the vectorω = (ω1, ω2, ω3).

In se(3), the Lie bracket is given by the matrix commutator

[ÚA,ÚB ] = ÚAÚB −ÚBÚA =
(

ωC× uC

0 0

)
where

ωC = ωA × ωB

uC = ωA × uB − ωB × uA.
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2.1.1 The adjoint and coadjoint representation A representationρ of se(3) on a vector
spaceV maps each elementÚ ∈ se(3) to a linear transformationρ (Ú) of V, such that

ρ ([ÚA,ÚB ]) = ρ (ÚA) ρ (ÚB)− ρ (ÚB) ρ (ÚA) .

Theadjoint representation, ad, of se(3) on itself (i.e.V = se(3)) is simply given by the

Lie bracket itself. If the elements ofV = se(3) are represented by sixtuplesÚ =
(
ω u

)T
,

then the adjoint representation is given by the matrix formula

adÚ =
(

ω× 0
u× ω×

)
. (2.2)

The coadjoint representation, ad?, of se(3) on the dual spaceV = se(3)? is given by
minus the transpose of this formula, so

ad?
Ú =

(
ω× u×
0 ω×

)
.

For the most part in this report, the above concepts serve only a notational purpose, the
ad?

Ú -notation being of central importance for the Kirchhoff’s equations.

2.1.2 Motions Consider a motion

t 7→
(
R(t) b(t)

0 1

)
.

The linear velocitỹv0 of the body fixed originO and the angular velocitỹω of this motion
are given in the fixed frame by(

Ṙ(t) ḃ(t)
0 1

)
=

(
ω̃(t)× ṽ0(t)

0 0

) (
R(t) b(t)

0 1

)
(2.3)

and in the comoving body frame by(
Ṙ(t) ḃ(t)

0 1

)
=

(
R(t) b(t)

0 1

) (
ω(t)× v0(t)

0 0

)
. (2.4)

From this and (2.1) it follows that the velocity of a general comoving pointA momentarily at
the positionrA(t) is given by

ṽ0(t) = ṽ0(t) + ω̃(t)× rA(t). (2.5)

From (2.3) and (2.4) also follows that(
ω̃× ṽ0
0 0

)
=

(
R b
0 1

) (
ω× v0
0 0

) (
R b
0 1

)−1

which may be rewritten as (
ω̃
ṽ0

)
=

(
R 0

(b×)R R

) (
ω
v0

)
. (2.6)

The formula (2.6) is the integrated form of (2.2) and gives the adjoint representationAd of
thegroupSE(3) onse(3)

Ad(R,b) =
(

R 0
(b×)R R

)
.
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2.1.3 Change of body origin The arguments leading to formula (2.6) also give the for-
mula for changing reference point (origin) in the body(

ω
vA

)
= Ad(1,rA)

(
ω
v0

)
. (2.7)

i.e. vA = v0 + ω × rA.

2.2 Fluid Dynamics

2.2.1 The boundary value problem Euler’s equations for a homogeneous ideal incom-
pressible fluid of densityρ are

ρ (∂tv + (v · ∇)v) = −∇ (p + ρU) (2.8)

∇ · v = 0 (2.9)

whereU is a potential for the gravity field. The pressurep is a priori undetermined, but
gets defined by solving (2.8) under the kinematic constraint (2.9) together with appropriate
boundary conditions.

The equation (2.8) can be written as

∂tv +∇
(

v · v
2

+
p

ρ
+ U

)
− v× (∇× v) = 0. (2.10)

By taking the curl of (2.10), the evolution equation for the vorticity fieldw = ∇ × v is
obtained

∂tw + 0−∇× (v×w) = 0. (2.11)

For any solutionv of Euler’s equations, the vorticity equation (2.11) is a linear first order
partial differential equation for the vorticity fieldw, so if the fieldw vanishes at some time
t = t0, it vanishes for all timest. In the sequel we will only consider such vorticity-free
solutions. In this case of identically vanishing vorticity, the velocity field may be expressed
by means of a potential function

v =∇φ (2.12)

and (2.10) takes the form

∂tφ +
∇φ · ∇φ

2
+

p

ρ
+ U = 0 (2.13)

which is Bernoulli’s equation. The velocity potentialφ satisfies Laplace’s equation

4φ = 0 (2.14)

as this follows from (2.12) and (2.9).
The appropriate boundary conditions for the velocity field in contact with a moving (solid,

say) boundary is the perfect slipping condition

(v− ṽsolid) · n = 0 (2.15)

wherev andṽsolid are the velocities of the fluid and solid at the point of contact andn is the
normal unit vector of the boundary surface between the fluid and the solid.

Summing up:

• the velocity potential is obtained by solving a Neumann boundary value problem:
4φ = 0 within the container and∂φ

dn = ṽsolid · n at the boundary∂B of the con-
tainer.

• the pressure at the container’s boundary may be reconstructed via (2.13).

In the sequel gravity is ignored,U ≡ 0. This also covers the case when gravity is present
but the center of body mass and displaced fluid mass coincide (neutral buoyancy).
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2.2.2 The total kinetic energy In the case considered in this report, the container is the
exterior of a finite rigid bodyB, and the boundary conditions|φ| → 0 at |r| → ∞ and
∂φ
dn (r) = (ṽ0 + ω̃ × r) · n (r) at r ∈ ∂B are linear expressions in the rigid body velocity
parameters̃v0 andω̃.

From this follows that the fluid velocity field depends linearly onÚ̃ =
(
ω̃ ṽ0

)T
, or –

equivalently – that it depends linearly on thebody framevelocity parametersÚ =
(
ω v0

)T

where (
ω
v0

)
=

(
R 0

(b×)R R

)−1 (
ω̃
ṽ0

)
using the notation of the previous section.

Hence, the total kinetic energyT of the fluid and body system is a quadratic expression
in Ú

T =
1
2
ÚT JÚ =

1
2

(
ω
v0

)T (
J D

DT M

) (
ω
v0

)
(2.16)

where the constantJ, D andM may be computed from the form and inertial properties ofB
if the fluid densityρ is known.

According to the formula (2.7), the transformation formulas forJ when changing origin
in B are given by

JA=
(
Ad(1,rA)

)T JOAd(1,rA)

or explicitly

JA = JO + DO (rA×)− (rA×)DT
O − (rA×)MO (rA×) (2.17)

DA = DO − (rA×)MO

MA = MO.

Consider a linear orthogonal operationr 7→ Qr. This operation will map the bodyB onto
a another positionBQ and the spatial velocity field̃v(r) to ṽQ(r) = Qṽ(QT r) (both for the
solid and for the fluid). Since the formulas for the body’s interior inertial matrices as well
as the Laplace operator and the form of the fluid boundary condition all are invariant under
orthogonal transformations,̃vQ(r) will be a possible velocity configuration,with the same
kinetic energyasṽ(r).

Now assume thatQ is a symmetry operation of the fluid body system in the sense that it
leaves invariant both the interior mass distribution ofB and the exterior contour∂B. It then
follows that

Ú =
(

ω
v0

)
and

ÚQ =
(

(detQ)Qω
Qv0

)
give the same total kinetic energy for the bodyB. It holds that

ÚQ = Ad(Q,0)Ú

in the full orthogonal groupO(3) ⊆ E(3) ⊇ SE(3):

Ad(Q,0) =
(

(detQ)Q 0
0 Q

)
(2.18)

and hence it follows that
JO =

(
Ad(Q,0)

)T JOAd(Q,0) (2.19)

for a body+fluid system with the linear symmetryQ. This will be used to deduce simplifying
properties of bodies with reflectional or (discrete) rotational symmetry groups.
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2.3 Lagrange’s and Kirchhoff’s equations

The rigid body, the ideal fluid and the system consisting of a rigid body submersed in an ideal
fluid are all examples of ideal systems – all forces are forces of interactions and the power
PAB of the interaction forces from one subbody,A, on another,B, satisfies

PAB + PBA = 0

identically for for every pair of subbodies in every admissible motion+force system. From
this follows that the system is Lagrangian with the total kinetic energyT as the Lagrangian
function. In those cases where the system has a finite dimensional configuration manifold,
with coordinatesq1, ..qn, the equations of motion take the familiar Lagrangian form

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= 0 (2.20)

i = 1...n.

The i:th component of (2.20) may be considered as the result of acting on thei:th co-
ordinate vector field,∂i = ∂

∂qi , by a covector valued quantity,E (T ). Coordinate vector fields
commute:[∂i, ∂j ] = 0. When projecting the abstract equationE (T ) = 0 instead on a basis
of non-commutingvector fields (amoving frame), Xi, the resulting (Poincaré-)Lagrange’s
equations take a more general form with a term correcting for the non-commutativity. In the
case when the configuration manifold is a Lie group and theXi are the left invariant vector
fields (i.e. elements of the Lie algebra), they are given by

d

dt

(
∂T

∂vi

)
+ ad?

v

(
∂T

∂vi

)
= 0 (2.21)

whereT = T
(
v1, ..vn

)
is left invariant and the quasivelocitiesvi satisfyviXi = q̇i∂i.

In the case of the fluid+body system, the configuration manifold has a principal fibre
bundle structure overSE (3)  B

↓
SE (3)


with structure group given byDiff0

(
R3 \ B

)
, the volume preserving diffeomorphisms of the

fluid at a given position of the bodyB. This system is invariant both under the action ofDiff0

(material homogeneity) and under the action ofSE (3) (spatial euclidean symmetry).
As shown by Kelly (1998) the general theory for reduction of Lagrangian systems with

symmetry according to Marsden (1993) applies and gives a remarkably simple set of equa-
tions for the combined fluid body system if we restrict attention to the vorticity free case.

The equations of motion are given by (2.21) forSE (3) with T given by (2.16), or expli-
citly the famous Kirchhoff’s equations

d

dt
(JÚ) + ad?

Ú (JÚ) = 0 (2.22)

whereJ =
(

J D
DT M

)
andÚ =

(
ω
v0

)
.

Similarly, the system dynamics is given by

d

dt
(JÚ) + ad?

Ú (JÚ) = M (2.23)

M =
(
M0
F

)
when the body is acted upon by additional forces and torques having the force sumF and
the moment sumM0 w.r.t. O. Note that Kelly (1998) uses the notationad? for the coadjoint
corepresentationand thereby gets a minus sign where we have a plus sign in (2.23).
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2.4 Body properties

It is a huge effort to calculate correct fluid properties for an arbitrary body. The equations
are complicated and advanced numerical mathematics is needed for the task. However if the
body obeys different kinds of symmetry the equations become much more manageable. Lamb
have done this for e.g. an ellipsoid, Lamb (1963). Symmetries also gives constraints on the
structure of the property matrices. This is something that we make use of here to simplify the
study of such systems.

2.4.1 Mirror symmetry The kinetic energy of a body-fluid system which is also the Lag-
rangian of the system is given by equation (2.16). Assume the body is symmetric with respect

Figure 2.1: Mirror symmetry.

to reflection in a plane andS is the matrix that reflects a coordinate system in that plane. Ac-
cording to (2.19) it holds that

T =
1
2

(
ω v

) (
−ST 0
0 ST

) (
J D

DT M

) (
−S 0
0 S

) (
ω
v

)
= (2.24)

=
1
2

(
ω v

) (
ST JS −ST DS
−ST DT S ST MS

) (
ω
v

)
. (2.25)

Combining (2.16) with (2.24) yields(
J D

DT M

)
=

(
ST JS −ST DS
−ST DT S ST MS

)
(2.26)

which is something that withholds information. From (2.26) one get

J = ST JS (2.27)

D = −ST DS (2.28)

M = ST MS. (2.29)

A vector,n, normal to the symmetry plane is reflected on itself but will change direction; i.e.
Sn = −n. Letn = (1, 0, 0) which corresponds to symmetry w.r.t. the yz-plane. Multiplying
(2.27) from right byn

Jn = −ST Jn (2.30)

one concludes thatJn is an eigenvector toST corresponding to the eigenvalue−1. Hence
Jn is proportional ton which means thatn is an eigenvector toJ corresponding to some
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eigenvalueλ. This shows that the symmetric matrixJ must have following structure

J =

λ 0 0
0 J22 J23
0 J23 J33


whereλ is given byJn = λn. Following this procedure examining reflection in the xy-plane,
i.e. n = (0, 0, 1), we get that

J =

J11 J12 0
J12 J22 0
0 0 λ


and reflection in the xz-plane,n = (0, 1, 0)

J =

J11 0 J13
0 λ 0

J13 0 J33

 .

This discussion also holds for the mass tensor,M, but is slightly different for the fluid
cross terms,D.

From (2.28) we getSD = −DS by multiplying byS. Multiply with the normal

SDn = −DSn = Dn

that gives thatDn ⊥ n and the conclusion is thatDn lies in the mirror plane. Let the
reflection be in the xy-plane,n = (0, 0, 1)T ,D11 D12 D13

D21 D22 D23
D31 D32 D33

 0
0
1

 =

D13
D23
D33

 ⊥
0

0
1

 ⇒

∴ D33 = 0.

Take a vector,m, that lie in this plane; i.e.m ⊥ n.

SDm = −DSm = −Dm

sinceSm = m. This yields thatDm ‖ n and thatD11 D12 D13
D21 D22 D23
D31 D32 D33

 m1
m2
0

 =

D11m1 + D12m2
D21m1 + D22m2
D31m1 + D32m2

 ‖

0
0
1

 ⇒

∴ D11 = D12 = D21 = D22 = 0

and

D =

 0 0 D13
0 0 D23

D31 D32 0


in this case. The analysis of the xz- and the yx-plane are similar.

Consider the case of an ellipsoid which is symmetric with respect to three mutually per-
pendicular symmetry planes. The matricesJ andM are then diagonal andD is just a zero
matrix. The problem is then to determine 6 unknown properties instead of 21

J =


J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J3 0 0 0
0 0 0 M1 0 0
0 0 0 0 M2 0
0 0 0 0 0 M3

 .
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In the ellipsoidal case, these six coefficients may be computed analytically. LetV = 4
3πl1l2l3

be the volume of the vehicle andρ0 the density of the fluid. Define

α0 = l1l2l3

∫ ∞

0

dλ

(l21 + λ)Ñ
, β0 = l1l2l3

∫ ∞

0

dλ

(l22 + λ)Ñ
,

γ0 = l1l2l3

∫ ∞

0

dλ

(l23 + λ)Ñ
, Ñ =

√
(l21 + λ)(l22 + λ)(l23 + λ),

whereli is the length of the semiaxis of the ellipsoidal body along the axisbi, i = 1, 2, 3.
Then

M1 =
α0

2− α0
ρ0V, M2 =

β0

2− β0
ρ0V, M3 =

γ0

2− γ0
ρ0V,

J1 =
1
5

(l22 − l23)2(γ0 − β0)
2(l22 − l23) + (l22 + l23)(β0 − γ0)

ρ0V,

J2 =
1
5

(l23 − l21)2(α0 − γ0)
2(l23 − l21) + (l23 + l21)(γ0 − α0)

ρ0V,

J3 =
1
5

(l21 − l22)2(β0 − α0)
2(l21 − l22) + (l21 + l22)(α0 − β0)

ρ0V.

These formulas originally originates from Lamb, Lamb (1963), but can be found in a sum-
marized version in Leonard (1996).

2.4.2 Discrete rotational symmetry The procedure in the analysis of discrete rotational
symmetry are analogous to the case of mirror symmetry in the previous subsection. LetR
denote rotation an angle2π/k, k ≥ 3, around an axis(0,n). Invariance of the problem gives

Figure 2.2: Discrete rotational symmetry around the axis(0,n).

J = RT JR (2.31)

D = RT DR (2.32)

M = RT MR (2.33)

which corresponds to (2.27), (2.28) and (2.29) in the case of mirror symmetry.
It holds thatRn = n and thatn (up to a scalar factor) is the unique vector with this

property. Multiply (2.31) byR on both sides,RJ = JR and multiply this byn,

RJn = JRn = Jn

this shows thatJn ‖ n. The spectral theorem for symmetric matrices is used when taking
an arbitrary eigenvector,e 6= n, corresponding toJ with the eigenvalueλ.

Je = λe
RJe = JRe

⇒ λRe = JRe (2.34)
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As we can see isRe an eigenvector ofJ with the same eigenvalueλ as well. So is also
R2e which is realized in the same way. Using the three eigenvectors some different cases are
analyzed.

• e, Re, R2e are independent. This is the case when the eigenvectors span an orthonor-
mal basis inR3. ThenJ is proportional to the identity matrix, i.e.J = λ1.

• e, Re, R2e are all dependent but perpendicular ton.

– e andRe dependent. That happens if the rotation angle isπ radians. This is a
contradiction to the assumption that the angle of rotation is≤ 2π/3 radians.

– e andRe independent. Then ise, n × e together withn an orthonormal base
with

J =

J1 0 0
0 J1 0
0 0 J3


if n points in the z-direction.

The structure ofM is identical withJ since both are symmetric. This is not the case with
the D matrix, D 6= DT . However one can always split a matrix into its symmetric and
antisymmetric parts,

D =
D + DT

2
+

D−DT

2
= Ds + δ× (2.35)

where subscripts denotes symmetry andδ = (δ1, δ2, δ3)T is the antisymmetric part ofD.
The structure of the symmetric part ofD follows the study ofJ andM.

Substituteδ× for D in (2.32)

δ× = RT (δ×)R. (2.36)

Equation (2.36) yields that
δ = RT δ (2.37)

which can be shown algebraically but is left out. Instead it is geometrically realized that this
is true. Let (2.36) act on an arbitrary vectora; δ × a = RT δ × Ra. On the right hand
side of the equation vectora is rotated before the vector product is taken and the resulting
vector is rotated back and the result equals the left hand side. A vector product is invariant
to rotations and so mustδ be if (2.36) is going to be fulfilled, hence is (2.37) true. Equation
(2.37) then yields thatδ is parallel withn. If the body is rotational symmetric around the
x-axis,δ = (δ1, 0, 0)T , the structure ofD turn out to be

D =

D1 −δ 0
δ D1 0
0 0 D3

 (2.38)

after adding the symmetric and antisymmetric parts.
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3. Modeling and simulation tool

When modeling the underwater vehicle the multi-domain modeling language Modelica is
used as modeling tool. A brief introduction to the Modelica language is given in this chapter.
The used simulation environment MathModelica and its software components are also intro-
duced.

3.1 Modelica background

The history of Modelica starts in 1978. That year Hilding Elmqvist pioneered a new ap-
proach to modeling physical systems by designing and implementing the Dymola modeling
language. This was part of his Ph.D thesis Elmqvist (1978) at Lund Institute of Technology,
Sweden. Numerous other modeling tools where developed in the spirit of Dymola to further
explore this new modeling approach; e.g. Omola1, NMF2 and ObjectMath3 to mention a few.
However, no great impact of the object-oriented equation based modeling language occurred
before 1996. At that time numerous new tools for this, no longer new, modeling approach
had been developed and computers where so much faster than 1978 that Elmqvist decided to
make a new try. He initiated an effort to unify the different related modeling languages and
dialects and the development of the Modelica modeling language started. As a result of that
the first version of Modelica, Modelica Version 1.0, was released in September 1997. The
development is continuing and the current version Modelica Version 2.0 was released January
30, 2002.

3.2 Modelica

Modelica is anobject-orientedmodeling language standardized bythe Modelica Association.
The basic idea behind Modelica is to use general equations, objects and connectors so that
the model developers can concentrate on the physical modeling without manipulating the
describing equations.

Modelica is amulti-domainmodeling tool. This feature is characterized by the abil-
ity to model systems containing components belonging to a wide range of engineering do-
mains. Thus, Modelica is both a modeling language and a model exchange specification Tiller
(2001).

Modelica supports two different approaches to modeling in engineering; i.e.block dia-
grammodeling andacausalmodeling. In block diagram modelinga priori assumption has
to be made, i.e. what is known and what is unknown in a model, and inputs and outputs
are specified. In the acausal formalism this specification is unnecessary. Instead, thecon-
stitutive equationsof components are combined withconservation equationsto determine
the complete system of equations to be solved.

Most of the common modeling tools today as e.g. Simulink use the block diagram ap-
proach. That Modelica supports both types of modeling and also allows both of them to be
used together is very useful.

A benefit of an object-oriented modeling language like Modelica is that the reusability of
the code is high. By extension of super-classes new models heritage properties from already

1http://www.control.lth.se/ ∼cace/omsim.html
2The Neutral Model Format;http://urd.ce.kth.se/
3Object Oriented Mathematical Modeling Language;http://www.ida.liu.se/labs/pelab/omath/
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developed code. This makes the code more robust with respect to simple typing errors and
minimizes repetition. The models become easy to modify and are therefore more dynamic
and the model development turns out to be less error-prone.

The component based structure of the Modelica language makes it suitable to build lib-
raries with simple elements that are possible to combine into more sophisticated models.
Libraries covering a wide range of domains have already been developed and are available at
the Modelica Association web site.

3.3 Causal vs. acausal modeling

At present time there are several analysis tools that express systems behavior in terms of block
diagrams but only a few that use the acausal approach. What is this imbalance due to? This
section discuss the causal and acausal approach to modeling.

3.3.1 Block diagram modeling Most of the available causal analysis tools in the market
today, e.g. Simulink, express system behavior in terms of block diagrams that are connected
together to larger systems. An example of a graphical Simulink model is shown in Fig-
ure 3.1. These systems are representing and simulating the particular differential equations
that describes the system that are investigated. A block in the block diagram has the block
general form

ẋ = f(t, x, u)
y = g(t, x, u)

wherex represents the internal states,u the input signals andy the output signals.
Block diagrams have the advantage that it is easy to understand the mathematical repres-

entation behind a model. Poles, zeros and the linearized system are easily extracted.
When modeling with block diagrams we have to know which quantities that are known

and not before the block general form is derived. To put a system manually in the block
general form is often hard work and time consuming and it tends to be an error prone process.
If the system behavior is described by differential algebraic equations, DAEs, this work also
could be very difficult.

As a model grows and becomes larger the complexity of the block representation increases
rapidly and the derivation gets rather complicated. A block diagram is good for understanding
the mathematical structure of a model. Though, the physical intuition for the system is lost.
Of course, poles etc. are still available, but it might be hard to actually understand what
physical system the model represents by just visual inspection. A system can have many
different block representations.

Modifying an existing model could be problematic with the causal approach. Using parts
of the already done derivations is not always possible. A new derivation of the block general
form may be demanded. The reusability of a causal model is often low.

3.3.2 Acausal modeling In acausal modeling there is no requirement to specify what is
input and what is output in the model. There exist no ”direction” of the equations in the
acausal approach, e.g. a model of an electric motor could be run backwards and function as
an electric generator.

In the acausal approach there is no a priory assumption and no input/output form is
needed. The equations are written exactly as they appear in the physical model and are
thereafter left for the solver. No manually derivation is needed. No information is ”lost” in
the problem formulation as all the original equations are maintained. This feature makes it
possible to compute consistent sets of initial conditions.

To change the physical configuration of a model is often very smooth due to the com-
ponent based approach. No new problem formulation have to be derived. In an graphical
programming environment this is done by just dropping components onto a schematic and
connecting them. The graphical models are often relative intuitive. Figure 3.2 is an example
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of that. Compare this with the correspondent Simulink model in Figure 3.1. They both model
the same electrical circuit.

As mentioned in the previous subsection the block general form and hence block diagrams
contain useful information about a problem. Much of this information is possible to extract
from an acausal Modelica model as well. The commercial Modelica translator Dymola is
capable of linearizing a Modelica model around a particular solution and generate relevant
matrices in the canonical form

ẋ = Ax + Bu

y = Cx + Du.

This form requires a specification of what is input and output why this must be specified
before the linearization. From these matrices; A,B,C and D, is it possible to calculate e.g.
poles, zeros and natural frequencies.

3.3.3 Time saving approach Using a modeling tool that uses the acausal approach will
obviously save the user a lot of time. The key is to avoid doing things manually when they
can be done automatically. The reason to the uneven distribution between causal and acausal
modeling tools today is that acausal modeling tools are easier to develop. The difficult task of
translating the acausal formulation into a manageable mathematical form is done by the user.
It is in the recent decade algorithms and computers have become sufficient effective for doing
this translation automatically. We will probably see more acausal modeling tools as Modelica
in the future.

Apart from using the acausal approach Modelica supports causal modeling. This integra-
tion and the fact that it is object-oriented makes it very useful.

3.4 Briefing parts of the Modelica language

As Modelica is a relative young modeling language the literature about it is limited. When
learning programming with Modelica theModelica Tutorialand theModelica Specifica-
tion are useful. These two documents are found on the Modelica Association web site:
http://www.modelica.org/ where also other relevant information can be found. This
web site also contain a number of other documents and publications that could be of use.
The first and today only existing book on Modelica isIntroduction to Physical Modeling with
Modelicawritten by Michael M. Tiller, Tiller (2001). These documents are recommended for
the novice Modelica user and much of the information about Modelica in this report is found
there. The intention here is just to point out a few characterizing features.

3.4.1 Features of the object-orientation As Modelica is object-oriented, models are con-
structed out of atomic elements, i.e. classes in Modelica. This hierarchical structure is very
useful considering reusability and thus minimizing repeatability. The main concept is that one
only once declare a class that describes a particular behavior. Then by creating instances of
this class it is available to other classes. This is more convenient than making a new definition
of the same class again and again.

It is also possible for a class to inherit another class, a so-called superclass. The class that
inherits is just an extension of the superclass and the new definitions and equations just adds
up with the already defined just as explicit written inside the new class.

3.4.2 Special classes and keywordsA class declaration contains a list of component de-
clarations and a list of equations. An example of a simple class is shown in Example 3.1. To
make the Modelica language more readable and understandable there exists special classes
with certain restrictions. These aremodelmodelmodel , connectorconnectorconnector , recordrecordrecord , blockblockblock , functionfunctionfunction , typetypetype

andpackagepackagepackage . Replacing these keywords withclassclassclass would give identical model behavior.
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�

�

�

�

classclassclass Simple2ndOrderSystem,
RealRealReal x(startstartstart=0);
RealRealReal xdot(startstartstart=0);
parameterparameterparameter Real k=1;

equationequationequation
xdot=derderder(x);

derderder(xdot)+2*k*der derder(x)+3*x=1;
endendend Simple2ndOrderSystem;

Example 3.1: Simple2ndOrderSystem

3.4.3 Theconnector The specific classconnectorconnectorconnector is of particular interest in the Mod-
elica language; it is a convenient characteristic of the acausal approach.

A connectorconnectorconnector defines a physical connection. This is done by defining the shared inform-
ation between two components. The default rule is that these common variables are set equal;
they areacrossvariables. In an electric circuit voltage is such a variable. The potential in a
particular node is equal in all the connected components.

However, the current does not show the same behavior. Remember Kichhoff’s current
law, i.e. that the currents of all wires connected at a node are summed to zero. Forces and
torques in a mechanical system and flows in a piping network have the similar behavior and
such variables are calledthroughvariables.

To tell the model translator that a variable in a connector is a through variable it is declared
with the prefixflowflowflow . With this in mind an electrical connector could have the appearance as
in Example 3.2. These conservative equations are set when two models are connected with
theconnectconnectconnect command. The keywordtypetypetype defines a new class that is derived from one

�
�

�
�

connectorconnectorconnector Pin
Voltage v;
flowflowflow Current i;

endendend Pin;

Example 3.2: Electrical Pin

of the built-in data types such asRealRealReal . Current andVoltage are modifications ofRealRealReal

with the unit attributeA (Ampere) andV (Voltage). Using these modified classes improves
the generation of diagnostics compared to just usingRealRealReal .

3.5 Graphical model development

Modelica supports graphics which makes ”graphical programming” possible. New models
are developed by ”dragging and dropping” objects onto a graphical schematic and connected
visually. This is dynamic, fast and less error-prone than just writing it down manually.

3.5.1 Annotations The graphical layout of a model is achieved using theannotationannotationannotation

keyword. The annotations provides the model with additional information that is not actually
a part of the simulated physical model like documentation and graphical representation. The
annotation code is interactively hidden in the editor since it tends to be complicated and
therefore makes the actual model hard to read. It is still accessible though. Annotations can
be generated manually by writing code or automatically with a graphical tool. The latter is
preferable.
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3.6 MathModelica

MathModelica is a software developed by MathCore4 in Linköping, Sweden. It integrates the
Modelica language with the powerful mathematical software Mathematica5 from Wolfram
Research.

TheMathModelica environmentis based on Mathematica. The interface consists of Math-
ematica notebooks and the graphical Model Editor. The Model Editor is integrated into Mi-
crosoft Visio and it is a tool that simplifies model developing and constructing of packages.
MathModelica is powered by Dymola from Dynasim6. The Dymola kernel is the engine that
is used for compiling and simulation of the Modelica code. At a simulation call MathModel-
ica transmits Modelica code to Dymola that generates C-code for compilation and simulation.
As a consequence of the use of Microsoft Visio MathModelica is only available on Windows
platforms today.

3.6.1 Mathematica Mathematica is a fully integrated environment for technical comput-
ing with millions of users worldwide. It handles sophisticated symbolic as well as numerical
computations and it provides the user with advanced scripting facilities.

Input and output is given in the notebook environment and may be 2-dimensional as
Mathematica support this. Apart from being a combined editor/terminal the notebook is a
fully developed WYSIWYG (What You See Is What You Get) word processor. This makes it
possible to perform computations, programming and documentation at the same time and the
result becomes an interactive document. That is a main concept of Mathematica; to decrease
the time from computation to readable report.

3.6.2 The notebook in MathModelica mode The Mathematica notebook is a powerful
interactive document. A notebook may contain computations as well as text and graphics.
This is realized by segmenting the document into cells with certain flags. In MathModel-
ica the notebook is also used as a tool for simulating and building text based models using
Modelica.

The Mathematica language provides the user with a powerful scripting tool that could be
used for e.g. automatic generating of models. The scripting language makes MathModelica
extensible and flexible considering the functionality.

As the simulations are performed in the notebook all the resulting data is instantly avail-
able. Manipulating and visualizing input and output data is hence an easy task with all the
built in Mathematica features for plotting etc.. This also means fewer steps when importing
and exporting data to other systems.

In a MathModelica notebook it is possible to do computations parallel with simulations.
Checking the validity and correctness of a Modelica model with Mathematica computations
is then comfortable. Comparing the data is very simple as they appear in the same notebook.

Providing a reader with an interactive document as a notebook where parameters can be
modified and computations and simulations might be performed during reading is an advant-
age.

Modelica syntax in MathModelica; MathModelica syntax The MathModelica environ-
ment has its own internal representation of the Modelica code that extends and follow the
same grammar as the standard Mathematica representation. Example 3.3 shows how a simple
model of a second order differential equation look in Modelica input. The same model in
MathModelica notation is seen in Example 3.4. Conversions between the two representations
are done by just clicking on the MathModelica palette provided.

In MathModelica notation all reserved words, predefined functions and types start with
an upper-case letter as in Mathematica syntax.

4http://www.mathcore.com/
5http://www.wolfram.com/products/mathematica/
6http://www.dynasim.se/
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�

�

�

�

modelmodelmodel Simple2ndOrderSystem,
RealRealReal x(startstartstart=0);
RealRealReal xdot(startstartstart=0);
parameterparameterparameter Real k=1;

equationequationequation
xdot=derderder(x);
derderder(xdot)+2*k*der derder(x)+3*x=1;

endendend Simple2ndOrderSystem;

Example 3.3: Simple2ndOrderSystem in Modelica syntax�

�

�

�

Model[Simple2ndOrderSystem,
Real x[{Start==0}];
Real xdot[{Start==0}];
Parameter Real k==1;

Equation[
xdot==x’;
xdot’+2 k x’+3 x’==1

]
]

Example 3.4: Simple2ndOrderSystem in MathModelica syntax

Equality is represented by the== operator since the ordinary equality sign= represents
assignment in Mathematica. The Modelica derivative operatorder()der()der() is in MathModelica
representation substituted with mathematical apostrophe (′).

Another benefit with MathModelica input form is that it supports 2D-syntax and Greek
letters. An equation written in 2D-syntax, i.e. mathematical textbook form, is often more
comfortable to read and understand than ordinary input. However, the facility of using Greek
letters in MathModelica should not be overrated. For example the variableÚdot written in
MathModelica syntax becomestoMma_CapitalOmega_dot when internally translated
to Modelica representation of the model. Suppose you have an extensive amount of Greek
letters in your MathModelica model and that you for some reason want to translate it into
Modelica form. The translated model is then probably unnecessarily confusing. As using
Greek letters is far from essential it might be a good idea to name things with care.

3.6.3 The model editor To make model developing fast and effective a graphical model
editor is provided. By the use of supplied libraries or your own developed packages more ad-
vanced models are built out of these components. The procedure is similar to object-oriented
graphical programming.

The model editor is Microsoft Visio based and packages are loaded as stencils and classes
are visualized as icons. Classes are dragged to the worksheet and dropped there. They are
visually connected with the connector tool and the connection is illustrated as a line between
the connected classes.

Apart from model construction the graphical environment is a useful tool when creating
your own graphical representation of a class. This is done by just using the drawing facilities
of Visio to draw a picture. This icon is then saved as a graphical annotation within your class
by MathModelica.

Building your own packages, i.e. hierarchies of classes, is also simplified with the model
editor. This is done by straightforward dragging and dropping in an hierarchical three.

The simulation window Inside the model editor there is a simulation environment; the
simulation window. In the simulation window is it possible to compile and simulate the
models that are loaded into the model editor. Parameters are displayed and changing their
values is uncomplicated. Accuracy and integration methods are also choosable.
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When a model is simulated the result can immediately be inspected by plotting in the
simulation window. For more advanced plotting the notebook environment is to be preferred.
The variables are viewed as a tree structure following the hierarchical class structure. Data
from the last performed simulation in the simulation window is accessible in the current
notebook as well.

3.6.4 MathModelica experiences When using MathModelica one should be aware of
that it is a young software that is still under development. This subsection is not a claim that
MathModelica malfunctions. It is just a description of some experience when working with
the software. There have been a few problems worth mentioning, one located to the notebook
and three in the Model Editor.

Sometimes MathModelica refuses to plot a simulation in the notebook using the command
PlotSimulation[] . The error message announce that the particular variable that is plotted
does not exist (of course that could be true sometimes). The error seems to depend on the
particular cell that the command is given in. The cell is ”blocked” somehow. Giving the
identical command in another cell will solve this puzzling but minor problem. Copying a
documented workingPlotSimulation[] command into the ”sick” cell does not make any
difference, the cell refuses.

Models are loaded into the Model Editor via the notebook. When updating an already
loaded model, the window displaying the model parameters sometimes disappears and it is
not possible to open it again. This problem is avoided by closing the model in the Model
Editor before updating.

When constructing packages graphically in the Model Editor using the ”drag and drop”
technique in the hierarchical class tree a problem might occur. Classes that are put into a
certain place in the hierarchy do not actually end up where they supposed to. This is circum-
vented by copying them to the certain location instead.

Packages are easily built in the Model Editor. To save a package, one orders MathModel-
ica to create a notebook of the specific package and then uses the”SavePackage” option on
the MathModelica Palette. However, classes that are visually parts of the package tree may
be missing in the created package notebook. Renaming the package in the Model Editor will
help in this case.

3.7 Example

An electrical circuit modeled both with a causal and acausal approach is described in this
section. It is intended to illustrate the structure and simplicity of the component based Mod-
elica language. The differences between the two approaches are pointed out and the physical
intuition in Modelica is realized.

3.7.1 A simple electrical circuit An electrical circuit consists of a sine voltage source
V , three resistorsR50, R75, R100, a capacitorC and an inductorL. The voltage source is
connected in series to the largest resistor and in parallel with the inductor that is connected
in parallel with a series connection between the smallest resistor, the capacitor and the me-
dium resistor. The circuit is shown in Figure 3.2 which is the graphical representation of the
Modelica model that describes this physical circuit. Obviously the Modelica schematic of the
circuit has the same appearance as the real physical model.

3.7.2 Causal modeling with Simulink To model the electrical circuit with Simulink we
first have to derive the describing equations manually. From Kirchhoff’s current- and voltage
law we get

iC + iL − iV = 0
V − uL − uR100 = 0

uL − uR50 − uC − uR75 = 0.
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The equations that associates voltage with current in the capacitor and the inductor are well-known,

iC = C
duC

dt
, uL = L

diL

dt
.

Ohm’s famous law describes the relations between current and voltage in a resistor,

uR50 = R50iC , uR75 = R75iC , uR100 = R100iV .

The derivations are realized in a Simulink model that is shown in Figure 3.1. The block

Figure 3.1: Simulink model of the example circuit.

structure reveals how and in which order the computations are performed. A direction of the
data flow is demanded by Simulink and is an effect of the causal characteristic.

3.7.3 Acausal modeling with Modelica The electrical circuit modeled in Modelica has
the graphical representation shown in Figure 3.2. There exists no predetermined directions of

Figure 3.2: Modelica model of the example circuit.

the signals and the topology is the same as in reality. The model is much more intuitive than
the Simulink model in Figure 3.1.
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�

�

�

�

modelmodelmodel Circuit
Ground G;
Inductor L(L=0.1);
Capacitor C(C=1/10000);
Resistor R50(R=50);
Resistor R75(R=75);
Resistor R100(R=100);
SineVoltage V(V=100,phase=0,freqHz=5,offset=0,startTime=0);

equationequationequation
connectconnectconnect(R50.n, C.p);
connectconnectconnect(C.n, R75.p);
connectconnectconnect(L.n, R75.n);
connectconnectconnect(R100.p, R75.n);
connectconnectconnect(L.p, V.p);
connectconnectconnect(V.p, R50.p);
connectconnectconnect(R100.n, V.n);
connectconnectconnect(G.p, V.n);

endendend Circuit;

Example 3.5: Circuit

The Modelica code that models the circuit is shown in Example 3.5. As a real circuit
the Modelica model consists of the included components. In the instantiation of the class that
describes a particular component parameters are set. For example the three different resistor
components are created by instantiating the sameResistor class but with dissimilar values
on the resistance parameter.

The components are connected together with the connector classPin that models the
behavior of an electrical node.

Hierarchical structure To illustrate how the circuit is built out of hierarchical elements we
take a deeper look into theCapacitor model class. The other components are in principle
modeled in the same way.

TheCapacitor model is displayed in Example 3.6. In theequationequationequation part of the model�

�

�

�

modelmodelmodel Capacitor
extendsextendsextends OnePort;
parameterparameterparameter Capacitance C=1;

equationequationequation
i = C*derderder(v);

endendend Capacitor;

Example 3.6: Capacitor

the relation between current and potential in a capacitor is given, the constitutive equation
for a capacitor. The model also inherits the property of theOnePort class. The keyword
extendsextendsextends denotes inheritance. The keywordparameterparameterparameter specify that a quantity is constant
during a simulation but can change values between runs. In this case the default value is set
to be equal to one. Theder()der()der() operator represent time derivative.

To fully understand how theCapacitor class functions, consider theOnePort model
class that is further down in the hierarchy. This model is shown in Example 3.7. The model
have two pins; a positive pinp and a negative pinn. It also consists of a quantity,v , that
defines the voltage drop across the component and a quantity,i , that defines the current flow
into pinp through the component and out from pinn. TheOnePort model defines the generic
equations that characterize a simple electrical circuit and are used by all the components in
Circuit . It is incomplete and is not meant to be used by itself and is therefore marked with
the optional keywordpartialpartialpartial which blocks instantiation. The typesVoltage andCurrent
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�

�

�

�

partial modelpartial modelpartial model OnePort
Voltage v;
Current i;
Pin p;
Pin n;

equationequationequation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

endendend OnePort;

Example 3.7: OnePort

are just modifications of theRealRealReal type with units included.
In the Pin connector class shown in Example 3.2 are the conservative relations in an

electrical node defined. ThePin connector describes how the component is connected to
other electrical components. The potential in a node is the same in the connected components
and the current has to fulfillKirchhoff ’s current lawwhich is denoted by theflowflowflow prefix.

The careful reader may have noticed that identical names are used numerous times for
different purposes in this example, e.g. isC both used as capacitance parameter in the
Capacitor model and as component name in the instantiation of theCapacitor model
in the Circuit model. This is allowed as the hiearchichal structure name things in differ-
ent levels. A dot ’.’ access another level in the hierarchy. In ourCircuit example the
capacitance in the instantiatedCapacitor modelC becomesC.C in the compiled model.

3.7.4 Simulation There are two ways to simulate theCircuit model in MathModelica;
i.e. using the simulation window or using the notebook. Below is the notebook command for
simulating the model during one second.

res = Simulate[Circuit,{t,0,1}];

When the simulation is finished the result is available in the notebook and may be plotted. To
plot the current and the voltage in the capacitor the first 0.5 seconds we evaluate the following
line in the notebook.

PlotSimulation[{L.i[t],L.v[t]},{t,0,0.5}];

This plot is exposed in Figure 3.3(a). Imagine that we now want to change the inductance to
half of its default value. To do this we do not have to manipulate the model code. Instead we
modify the inductance parameter in the simulation call.

Simulate[Circuit,{t,0,1},ParameterValues -> {L.L == 0.05}];

The relevant values from this simulation is shown in Figure 3.3(b).
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Figure 3.3: Plots of current and voltage in the inductor for different values on the inductance.
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4. Modeling an underwater vehicle

4.1 The Modelica Additions MultiBody library

The current version of the Modelica MultiBody library is so far not a part of theModelica
Standardlibrary. Instead it is an element in the unofficialModelica Additionslibrary. The
reason to that is that a ”truly object-oriented” 3D-mechanical library is under development.
In the existing version kinematic loops has to be handled in a different way which will not be
the case when the package is fully developed, Mod (2002). Still, the 3D-mechanical library
is a now working tool when modeling 3D-bodies. However it is not possible to model the
interaction between a body and a fluid as is the task with this master thesis. Therefore such a
model had to be developed.

4.2 Approaching the modeling problem

Some different strategies were suggested when discussing how to model a rigid body im-
mersed in a fluid. Should a new three dimensionalunderwaterlibrary be developed from
”scratch”? Should some specific different underwater vehicles be modeled ”directly”? Or, is
it possible to write an ”underwater object” that is integrated with the existing 3D-mechanical
library?

Modeling some specific underwater vehicles ”directly” would in this case be a waste of
the potential of Modelica. The interpretation of ”direct” modeling in this case is to consider a
specific system, set all the dynamic equations and then solve. As Modelica is object-oriented
and hence very flexible, constraining the modeling to just a few specific body setups should
be unnecessary. This solution does not make use of the capacity of the Modelica language.

The other option, to develop from scratch a new 3D-mechanical library that supports
underwater bodies, would with the latter discussion in mind be more motivated. However
to build a fully functional 3D library with similar features as the already existing one would
most likely be a project beyond the scope of this master thesis project. As this new library
probably would be pretty much the same as the existing 3D-mechanical library it would also
be an ineffective spending of time and money if no major modeling breakthroughs were
reached with the new library.

Creating an underwater object with an interface towards theModelica Additions
3D-mechanical library was hence the most motivated path to follow. With this underwater
object as a hull optional inner dynamics would be possible to model with the already available
libraries.

4.3 The MultiBody connector

In the MultiBody library all the mechanical components are connected together at frames.
A frame is a coordinate system in the mechanical cut-plane of the connection point. The
variables of the cut-plane are defined with respect to the corresponding frame. The defini-
tion of the MultiBody connector class, Mod (2002), is shown in Example 4.1. The variables
are resolved in the particular frame, if nothing else is stated, and have the following meaning:
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�

�

�

�

connectorconnectorconnector Frame_a "Frame a of a mechanical element"
inputinputinput SIunits.Position r0[3]

"Position vector from inertial system to frame origin,
resolved in inertial system";

Real S[3, 3]
"Transformation matrix from frame_a to inertial system";

SIunits.Velocity v[3]
"Absolute velocity of frame origin, resolved in frame_a";

SIunits.AngularVelocity w[3]
"Absolute angular velocity of frame_a, resolved in frame_a";

SIunits.Acceleration a[3]
"Absolute acceleration of frame origin, resolved in frame_a";

SIunits.AngularAcceleration z[3]
"Absolute angular acceleration of frame_a, resolved in frame_a";

flowflowflow SIunits.Force f[3];
flowflowflow SIunits.Torque t[3];

endendend Frame_a;

Example 4.1: TheModelica.Additions.MultiBodyconnector

S Rotation matrix resolved in the inertial frame.
r0 Position vector resolved in the inertial frame, [m].
v Absolute translational velocity vector of the frame, [m/s].
w Absolute angular velocity vector of the frame, [rad/s].
a Absolute translational acceleration vector of the frame, [m/s2].
z Absolute angular acceleration vector of the frame, [rad/s2].
f Resultant force vector acting at the origin of the frame, [N].
t Resultant torque vector with respect to the origin of the frame, [Nm].

This mechanical frame has much in common with the mathematical representation de-
rived in section 2.1. Actually, this mathematical representation is just a special-case of the
more general mathematical representation that was previously derived. Yet, by letting the
new underwater object be based on this connector class it integrates with the 3D-mechanical
library.

4.4 The equations of motion

In the MultiBody library the equations of motion for a rigid body are set in theBodyBase

superclass,

f = m (a + z× rcm + w× (w× rcm))
t = Iz + w× Iw + rcm × f

(4.1)

whereI is the inertia tensor of the body with respect to the center of mass and resolved in
the frame andrcm [m] is a position vector from the origin of the frame to the center of mass
resolved in the frame.

Consider equation (2.23) withJ = Jbody + Jfluid, D = D + mrcm× andM = m1 +
Mfluid, (

M0
F

)
=

(
J D

DT M

) (
ω̇
v̇0

)
+

(
ω× v0×
0 ω×

) (
J D

DT M

) (
ω
v0

)
. (4.2)

The solution of this differential equation describes the motion of a specific body in a fluid. To
be compatible with the MultiBody library the variables of equation (4.2) have to use the same
variables as the connectorFrame_a . Hence, the relationship between the different quantities
have to be investigated.
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4.5 Fluid equation with MultiBody connector

4.5.1 Variable relations The different variables that are investigated further are the velo-
cities, the accelerations and the torque and force.

The velocities The velocities and the angular velocities are the same in the two different
cases, i.e.v0 = v andω = w. They are both defined as the velocities resolved in the body
frame and are hence identical by definition.

The accelerations The angular acceleration,z, and the acceleration,a, are defined asthe
absolute accelerations of the frame origin with respect to the particular frame. The corres-
pondent property in equation (4.2) are the time derivatives of the velocities,ω̇ and v̇0, the
latter have no simple physical interpretation.

Let ∗ define the inertial frame that is absolute andB the frame that follows the body.
Consider the transformation of a time derivative

d

dt∗
b =

d

dtB
b + ω × b

whereω is the absolute angular velocity resolved in the body frame. This is a well known
relation, Meriam and Craig (1997). Now letb = ω ∀ t, this yields

d

dt∗
ω =

d

dtB
ω + ω × ω, ω × ω = 0 ⇒

z = ω̇

i.e. the derivative of the angular velocity equals the absolute angular acceleration and the
physical interpretation is of course the same.

If b = v0 ∀ t we get

d

dt∗
v0 =

d

dtB
v + v0 × v0 ⇒

a = v̇0 + ω × v0

which is the other relation we seek.

Torque and force Remember that the MultiBody inertia tensorI always is given with re-
spect to the center of mass and resolved in the body frame. ConsiderJ in equation (2.23),J
is given with respect to any point rigidly connected with the body. From now on we abandon
this generality and define that the body and fluid properties in (2.23) have to be given with
respect to the center of mass and denote that with superscriptc; J → Jc When the frame
origin coincide with the center of mass the MultiBody compatible fluid equation becomes(

t
f

)
=

(
Jc Dc

DT
c Mc

) (
z

a− w× v

)
+

(
w× v×
0 w×

) (
Jc Dc

DT
c Mc

) (
w
v

)
. (4.3)

However, in the MultiBody library the frame do not have to be constraint to any point and
the origin and the center of mass may not coincide. The equation must be adjusted for that.
Calculations give that the torque have to be adjusted so that the fluid equation turn out to be(

t− rcm × f + mrcm × a
f

)
=

=
(

Jc Dc

DT
c Mc

) (
z

a− w× v

)
+

(
w× v×
0 w×

) (
Jc Dc

DT
c Mc

) (
w
v

)
(4.4)

which is compatible with the particular MultiBody library definitions.
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The applied MultiBody fluid equation The fluid equation is now put on a form that is
using the same variables as the MultiBody library. Using the notation in section 2.1 with

Ú :=
(
wT vT

)T
equation (4.4) is written even more compact

(1− Rcm)
(
t
f

)
= (Jc −mRcm)

(
z
a

)
+ (ad?

ÚJb − Jcad?
Ú)

(
w
v

)
(4.5)

with

Rcm =
(
0 rcm×
0 0

)
.

4.5.2 The fluid class (4.5) is the differential equation that is implemented in the
KirchhoffBodyBase superclass which models a rigid body immersed in a fluid. If the fluid
input data is set to zero theKirchhoffBodyBase and the MultiBodyBodyBase corresponds
to each other and simulates the same dynamic equations. Hence theKirchhoffBodyBase

class is an extension of theBodyBase super class and is capable of simulatingbothfluid and
non-fluid cases.

TheKirchhoffBodyBase class should normally not be used directly in simulations, i.e.
because the mass properties have to be given as terminal variables and not as parameters. This
allows the computation of the mass properties from other data, as well as the modification of
the mass properties at event points Mod (2002).

In general it is the subclassKirchhoffBody that is used when modeling. The
KirchhoffBody class calculates the mass and inertia properties and creates an instance
of the KirchhoffBodyBase class. This is as well the programming structure used in the
MultiBody library.

4.6 An alternative solution; a ”Kirchhoff regulator”

Another way of simulating a rigid body in a fluid with the MultiBody library is discussed in
this subsection

The fact that, during a simulation, it actually is possible to extract torques and forces
acting on an object in a simulated model invites to an alternative solution. This is used to
create a sort of regulator that calculates the virtual fluid torque and force that acts on the
body. When these are applied to the body it behaves in the same way as it would have been
immersed in a fluid.

In the MultiBody library absolute velocities and accelerations of a frame are easily ac-
cessed during runtime by creating a sensor class that is connected to the connector that is
measured. Still this is not that simple with the contact torque and force. Instead these quant-
ities have to be logged inside the class and given as output signals. Therefore the MultiBody
classBody is slightly modified to create a newBodyWithSensor class that have torque and
force as outputs but except from that remain unchanged.

By now it is well-known that the motion of a rigid body in a fluid is described with
equation (4.6) that originates from section 2.1,

JcÚ̇ + ad?
ÚJcÚ = Ma (4.6)

JbÚ̇ + ad?
ÚJbÚ = Ma + Mf . (4.7)

The forces due to the fluid is included in (4.6) and on the right hand side is only the
outer torques and forces applied to the body. LetJb represent the particular body quantities
in the non-fluid case given with respect to the center of mass. (4.7) consists of the ordinary
equations of motion on the left hand and the applied force on the right hand side. By including
the torque and force,Mf , that a fluid would have practise on the body at a certain velocity and
acceleration with the outer force, the rigid body would act as it would have been immersed in
a fluid. (4.6) and (4.7) are then equivalent equations that simulates same behavior.

The left hand side of (4.7) is in principle the same expression that is used by the MultiBody
library when simulating rigid bodies (remember the variable conversions). So, if if we knew
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the torque and force that occurring from the fluid the hard work could be left for MultiBody
library.

The fluid torque and force are time varying and unknown and depends on the accelera-
tions, velocities and the properties of the body.

4.6.1 Mathematical derivation of the regulator IsolatingÚ̇ in (4.6) and (4.7) gives

Ú̇ + J−1
c ad?

ÚJcÚ = J−1
c Ma (4.8)

Ú̇ + J−1
b ad?

ÚJbÚ = J−1
b (Ma + Mf ) . (4.9)

Subtracting (4.8) from (4.9) and multiplying withJ−1
b everywhere together with some re-

arrangement isolates the fluid force

Mf =
(
ad?

ÚJb − JbJ−1
c ad?

ÚJc

)
Ú +

(
JbJ−1

c − 1
)

Ma (4.10)

which is identical to

Mf =
(
ad?

ÚJbJ−1
c − JbJ−1

c ad?
Ú

)
JcÚ +

(
JbJ−1

c − 1
)

Ma. (4.11)

DefineS = JbJ−1
c and use[., .]-notation for matrix commutators; i.e.[A,B] = AB −BA,

then (4.11) becomes
Mf = [ad?

Ú,S] JcÚ + (S− 1) Ma. (4.12)

Let S0 = S− 1

S0Jc = Jb − Jc (4.13)

Mf = [ad?
Ú,S0] JcÚ + S0Ma. (4.14)

By using the velocities and the forces as control signals the output signal is calculated in the
regulator according to the equations (4.13) and (4.14). This is illustrated in the schematic in
Figure 4.1.

Figure 4.1: Block Schematic

Ma is defined to be the torque and force applied to the body disregarding the fluid.Mf

is calculated from that. But sinceMf is applied to the body as well, theBodyWithSensor

class will sense that to. Therefore, before implementing this regulator model,Ma have to
be substituted withMa −Mf in equation (4.16). Below is the implemented equations that
applies the virtual fluid forces.

S0Jc = Jb − Jc (4.15)

Mf = [ad?
Ú,S0] JcÚ + S0 (Ma −Mf ) . (4.16)

Subsequently the regulator loop becomes as in Figure 4.2. A final rewriting gives



32 FOI-R--0537--SE

Figure 4.2: Corrected Block Schematic

S0Jc = Jb − Jc (4.17)

(1 + S0) Mf = [ad?
Ú,S0] JcÚ + S0Ma. (4.18)

This ”regulator” approach avoids the puzzling problem with the different definitions of the
used variables in the MultiBody connector and the derived model. It only uses the velocities
and the real contact torque and force during the calculations. However it is dependent on that
torques and forces are accessible during runtime which is a quite odd and not a very ”clean”
solution of the problem.

The two approaches is two solutions to the same problem and gives exactly the same
result. The solution with the new fluidal superclass is here preferred before the regulator
solution. Mainly because it is simpler to handle and understand as implemented model. It
also follows the hierarchical class structure of the MultiBody library and therefore feels more
integrated with that library.

Imagine that the existing MultiBody library today allowed easy access to all the contact
torques and forces. Then maybe the ”Kirchhoff regulator” solution would have been the
better solution. Any MultiBody body would have been virtually lowered into any medium
by just connecting it to the Kirchhoff regulator. In the present, some minor practical pro-
gramming problems have to be circumvented first and the result is messy compared with the
KirchhoffBody super class.
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5. Control

The topic of control is treated in this chapter. As modeling an underwater vehicle is now
possible it is of interest how to control such a vessel. This is a subject of great importance
and extent. Considering future applications this topic invites to much more advanced studies
than this fairly brief discussion.

5.1 Linear control

If the underwater vehicle is to be maneuvered; position, speed and accelerations are paramet-
ers to control. In this first attempt a simple linear model of controlling the velocities of the
vehicle is described.

Imagine that the vehicle has full actuation in the 3-dimensional space. That might be put
into practice in several ways; propellers, internal rotors or sliding masses are a few examples
of actuators that could apply a specific torque and/or force to the vehicle. Nevertheless this
task is not taken into consideration at the moment. It is assumed that any torque and force
could be applied, how this is done is left out.

5.1.1 Linearization Linearize equation (2.23) around some arbitrary velocity trajectory,
i.e. Ú is constant,

JδÚ̇ + ad?
δÚJÚ + ad?

ÚJδÚ = δM. (5.1)

This expression is linear inδÚ but it is expressed in an inconvenient form. Transforming
(5.1) into traditional state space form is to prefer. Stabilizing by pole placement is then more
straightforward. The desired form is

JδÚ̇ + KδÚ = δM (5.2)

and the difficulty is to determineK in the equation

KδÚ = ad?
δÚJÚ + ad?

ÚJδÚ. (5.3)

As the the second term of the right hand side of (5.3) already has the desired form the true
problem is reduced to decideK0 in

K0δÚ = ad?
δÚJÚ (5.4)

then
K = K0 + ad?

ÚJ (5.5)

which is the solution to (5.3).
After some calculations performed with Mathematica it is discovered thatK0 can be

explicitly written as

K0 = −
(

(Dv0 + Jω)×
(
Mv0 + DT ω

)
×(

Mv0 + DT ω
)
× 0

)
(5.6)

hence

K = −
(

(Dv0 + Jω)×
(
Mv0 + DT ω

)
×(

Mv0 + DT ω
)
× 0

)
+ ad?

ÚJ. (5.7)

Putting (5.7) into equation (5.2) completes the linearization.
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5.1.2 Pole placement Equation (5.3) have the desired state space form,ẋ = Ax, andK
is known. It is of interest to find a regulator that stabilizes the system.

The property of full actuation gives the opportunity to construct a regulator that places
the poles of the linear system arbitrary, the system is both fully controllable and observable.
In fact, full actuation allows a considerably more detailed eigenstructure assignment. The
following equation is achieved after multiplying (5.2) withJ−1

δÚ̇ = −J−1KδÚ + J−1δM. (5.8)

The control signal in (5.2) is manipulated so that

δM = LδÚ + δM1 ⇒ (5.9)

δÚ̇ =
(
−J−1K + J−1L

)
δÚ + J−1δM1. (5.10)

ChoosingL = K + JP will place the poles of the system according to the eigenvalues ofP.
This linearization will realize stable constant velocities whenP is chosen appropriately.

5.1.3 Linear control in practice When simulating a model the angular and translational
velocity is accessible during runtime and using these signals for control purposes is uncom-
plicated. However, measuring the translational velocity ”on board” is not an easy task in
reality. The angular velocity and the absolute translational acceleration is determined with
gyros and accelerometers but no such corresponding sensor exist for the velocity. Instead the
velocity and the rotation may be estimated withInertial Navigation, IN. This is realized by
solving the differential equations in (5.11) and (5.12).

Q̇ = Qω× (5.11)

˙̂v0 = a − ω × v̂0 (5.12)

Q is the rotation matrix and̂ symbolizes the estimates.
Further, adding noise to the accelerations in this calculation may also be done to model

the real case.
One thing to remember is that the model is linearized around a velocity trajectory and that

the received velocities are not the deviations but the actual velocities. When calculating the
torque and force applied to the body according to (5.9) it is the deviations of the velocities that
is the variable. Therefore the quantity of the chosen constant trajectory has to be subtracted
first.

The attained control-loop is illustrated in Figure 5.1.

Figure 5.1: Linear control loop.
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6. Modeling and simulation of an ”underwater screw” with
internal actuation

The fact that a body with no visible moving parts can move through a fluid by just rotating
itself invites to the construction of a different kind of underwater vehicle that is driven and
controlled by rotating and/or moving inertial masses. An underwater vehicle with all its
moving parts inside the uniform hull is very robust towards corrosion and other attacks from
the outer environment.

6.1 Principle of drive and control of the underwater vehicle

Consider two bodies that are connected to each other through a frictionless axle. Imagine an
ideal motor that drives the axle without taking any kind of motor dynamics into consideration.
This motor will apply a positive torque to one body and a torque of the same absolute quantity,
but negative, to the other. This is illustrated in Figure 6.1. The applied torque will make

Figure 6.1: Connection of two masses with an ideal motor.

the bodies spin in different directions around the axis of rotation of the axle. The angular
velocities will only depend of the quantity of the torque and the inertia of the bodies if no
external torques are applied. This is the principle of how the underwater vehicle is driven. The
hull is put into rotation by connecting it to an internal mass as ”counter-inertia”. Immersed
into a fluid, this rotational motion will give the underwater vehicle translational motion if the
shape allows that behavior, see Figure 6.2.

Figure 6.2: The principle of how the underwater vehicle generates translational motion.
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Using several internal spinning bodies with different axes of rotation (or bodies that can
move along an axis) will increase the number of possible motions and hence the control
authority of the vehicle.

6.2 Body configuration

It is common that underwater vehicles uses propellers to generate a driving force. The pro-
peller is connected to a hull by an axle. If the hull has continuous rotational symmetry with
respect to the vehicle axis, we can extend the propeller to virtually envelope the hull, as shown
in Figure 6.3. This is possible due to the fact that the tangential forces are zero as the liquid

Figure 6.3: Virtual hull.

is assumed to be inviscid.

Instead of modeling a rotational symmetric hull we separate this body into two; one axial
symmetric hull, that have ordinary mass and inertia properties, and one rotational symmetric
propeller that only have body properties due to the fluid, i.e. internal body mass and inertia
equals zero. The propeller is driven by a ”motor”, described in the previous section, that
is connected to the hull. Along the propeller axle another mass is attached to the hull in
the same way. This mass will prevent the hull from rolling by a proportional regulator that
applies necessary torque, of course this rotor could be used as roll control as well. Finally,
two rotational masses are placed along the two remaining principal axes of the hull for control
of pitch and yaw. A 3D-sketch of the modeled underwater vehicle is provided in Figure 6.4.

Figure 6.4: 3D-sketch of the underwater vehicle; The masses are illustrated as cylinders that
rotates along their axes but their mass and inertia properties are arbitrary. Center of mass and
center of buoyancy coincide.
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6.3 Body properties

The lack of good methods for computing mass and inertia properties due to the fluid effects
induces that such values are just arbitrary chosen. Though, the rotational symmetry constraint
Jfluid, Mfluid andDfluid to have certain symmetries as discussed in subsection 2.4.2. An-
other restriction is thatJfluid has to be at least positive semi definite. With this in mind we
pick

Jfluid =

2.4 0 0
0 2.4 0
0 0 1.3

 , Mfluid =

15 0 0
0 15 0
0 0 10

 ,

Dfluid =

 1 −0.8 0
0.8 1 0
0 0 0.9

 ,

as fluid matrices. The properties of the hull is assumed to be

Jhull =

10 0 0
0 10 0
0 0 5

 , Mhull =

5 0 0
0 5 0
0 0 5

 .

The roll, pitch and yaw rotational masses are all assumed to have the same properties, i.e.

Jrotor =

2 0 0
0 2 0
0 0 2

 , Mrotor =

10 0 0
0 10 0
0 0 10

 .

Note that the shapes in Figure 6.4 need not correspond to these values.

6.4 Simulation

In the simulation the propeller is brought into rotation by a torque. Since there is no friction
in the water or in the ”motor” this rotation will withhold without decaying. The yaw and pitch
rotors are used to change direction of the underwater vehicle. Their input signals are shown
in Figure 6.5. The underwater vehicle spins during the forward translation. The motion of
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(a) Yaw rotor.
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(b) Pitch rotor.

Figure 6.5: Input signals to the yaw and pitch rotors.

the center of mass is plotted in Figure 6.6(a). This motion is further illustrated in Figure 6.7.
The data is taken from the same simulation but observe that the coordinate system is tilted.

6.5 Investigating the physical meaning ofD

Now that we have a generic model of an underwater vehicle that is driven by a propeller we
can explore how the performance of the propeller changes withD. The physical realization
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Figure 6.6: Center of mass motion of the generic underwater vehicle for differentδ:s.

Figure 6.7: Illustration of the motion of the simulated underwater vehicle.

of theD matrix is interesting but left out in this report. It is just the mathematical structure
that is analyzed.

Consider the matrix equation that describes the motion of a body immersed in a fluid,
(2.23). The intuition about how the motion is influenced byD is low. In the simulation in
the previous section theδ component ofD equals0.8. If we let δ = 0 the motion of the
center of mass becomes as in Figure 6.6(b); i.e. no rotational motion at all, just translational.
The change of sign ofδ gives rotation in the opposite direction. Investigating howD1 and
D3 affects the performance in a similar way yields that increasingD1 increases the gearing
of the propeller; the vehicle will travel further for every strike.D3 has no influence on the
motion at all. Due to the formula (2.17), a non-zeroδ may be adjusted for by means of an
additional point on the symmetry axis.



FOI-R--0537--SE 39

7. Conclusion and continued work

7.1 Conclusion

The problem of modeling an underwater vehicle with MathModelica is solved, hence one
conclusion is that MathModelica may be used for nonstandard applications. The Modelica
language seems to be very flexible, and extending an already existing model library is a time
saving way of developing a model that fulfills specified requirements. For the developed
underwater class, the object-oriented and acausal features of the Modelica language makes it
straightforward to make changes in the body configuration (e.g. internal rotors and sliding
masses). Therefore, the main result of this report is a tool for modeling underwater vehicles
with different types of inner dynamics that can be used for e.g. propulsion, control and
stabilization. Furthermore, motor dynamics and control are also easily included in the models
and libraries supporting these domains exist which simplifies this contingency.

Simulations show that the principle of propulsion of the underwater vehicle is possible
without visible moving parts on the outside. Stabilization and control are realized in the same
way and are shown to work.

The problem of finding added body properties due to the fluid is complicated and ad-
vanced numerics is needed. Using the result from the symmetry discussion the knowledge
about the structure of the property tensors may be used for reducing the problem and check-
ing the validity of the numerical result. The result how a body immersed in a fluid behaves
depending on the mathematical structure of the property tensor may be used in the design of
a motion generating body as a propeller.

7.2 Continued work

The control discussed in this report is very brief and future work on this topic is desirable.
The mathematical structure of the problem invites to a design of structure specific nonlinear
controllers, in particular by the controlled Lagrangian method.

Numerical methods for determining the inertial coefficients of the body+fluid system are
needed and are therefore areas of interest. Preferably these methods are based on BEM tech-
niques.

To physically build an underwater vehicle with internal propulsion and actuation would
give more knowledge in how such a system behaves. The validity of the idealized assumptions
on the fluid is then evaluated. The lack on information how the theory used in this report
applies in practice yields that this topic is worth investigating further.
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