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1 Motivations and Applications

With the development of complex and low-cost microelectronics, the number
of sensors used in defense and civilian systems proliferate. The large data
sizes to be processed has pushed the analyzing problem far beyond what can
be handled by a human operator. This motivates an emerging interest in
research of automatic or semi-automatic management of sensor resources for
improving overall performance beyond fusion of data.

Sensor management is the process whereby sensor resources are allocated
to optimize some kind of yield, and is intimately related with optimization
of the information fusion process. Sensor resources can be any features of a
sensor, such as position, direction, area of interest, operation modes, schedul-
ing, etc. The purpose of sensor management is to optimize the data fusion
performance by providing some kind of feedback. This performance index
must be a quantifiable observable, denoted figure of merit in [1]. Its defini-
tion is problem dependent, and a description is limited to a specific technical
system. In our analysis we assume that this function (figure of merit) can
be described in terms of a quadratic function involving an abstraction of
the sensor attributes as the dynamic quantities, and where the specific prob-
lem is encoded as a (static) interaction matrix of the sensor attributes. A
concrete case may be a situation where the sensor attributes are (discrete)
geographical positions, and the interaction matrix encodes some kind of gain
describing the outcome of each possible configuration for placing sensors at
the positions.

This is a combinatorial problem, and an exhaustive search has a com-
puting complexity that raises exponentially with the problem size. A spe-
cific problem, however, may be solvable with a specifically designed non-
exhaustive optimization algorithm. Owur task here is to point to a method
that has a more general applicability, albeit using some assumptions. In
physics terms, the energy function is quadratic, which means that the inter-
action between any two dynamical objects is linear. In situations where this
description is not valid on an actual real world problem, our method can be
seen as a linearization, which may be used as a starting point for a refined
analysis. Another sacrifice is that we assume the state space for each object
(sensor) to be identical.

2 The Model

We will consider the following problem in this paper. Assume that there
are K identical objects to be placed on N different positions, so that a
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certain quantity is optimized. Any object may, of course, only be placed in
a single position at a time, but a single position may contain zero or more
objects. We also assume that N > K. We denote the objects with indices
t,7,... : 1 < 14,7 < K, and positions with a,b,... : 1 < a,b < N. The
dynamic quantities, interpreted as Potts spins, are S;, = 0,1, where S;, = 1
means that object 7 is in position a.

We define an energy function,

E = —% > > DaySiaSip, (1)

ij ab
with 0 < Dy, < 1 being a priori known constants. Pick two objects ¢* and
J*, and two positions a* and b*, then (Dg+p+ + Dprg+)/2, or Dgsp if symmetric
interactions, is precisely the cost (or energy) of this particular configuration.

In comparison with energy functions ordinarily used in Potts models for
computation tasks, this is a peculiar model since the interactions depend on
the spin degree-of-freedom and not on the spin sites. The interactions are
therefore homogeneous, but non-isotropic.

For a description and analysis of ordinary isotropic Potts models used for
clustering and optimization, see for instance [2],[3],[4].

The task is now to minimize the energy function in order to reach a
solution of the problem. In other words, find the configuration of the state
described by {S;,} that corresponds to minimum of E. This is obviously a
combinatorial optimization problem that suffers from the usual combinatorial
explosion of the size of the state space. We therefore seek a dynamic solution
that may find at least an approximate solution in a polynomial amount of
time.

The energy function is nonlinear which complicates things. Furthermore,
it is likely that the energy function is full of local minima if described in
terms of some continuous state space. This is the reason simulated annealing
is used, since it is much better in this respect than many other search meth-
ods. However, Monte Carlo simulations are usually very time consuming.
Therefore a mean field approximation is used that to some extent resembles
a Monte Carlo simulation, but that avoids the excessive time consumption.

We start by rewriting the energy functions by picking out a particular
object i*, and linearizing the energy function with respect to this spin.

E = —%ZDab D SiaSp| = (2)
a,b L 2,7

1 N
=52 Dab [SivaSins + Sia D, Sip+ S ) Sja| + THSY, (3)
a,b L J#* J#*
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where T[{$}] does not depend on the particular spin i*. Define fields

HiS] = Sja, (4)
J#i
which represent the total number of objects, not counting object 7, at position
a. Eq. (3) is then written as

1 N
E=—3 > Doy [SivaSivs + SiraHiwp + SipHiea) + T[{ S} (5)
a,b

A short note: the first term in eq. (5) can be further simplified, from
Za’b Doy Si+aSivp t0 Y, DaaSi+q. But this will not be true in a mean field
representation where the discrete S variables are replaced by continuous val-
ued variables. Although the ground state is kept unchanged by using this
simplification, the dynamics that leads to the ground state will be different.
We therefore keep it in its original form.

Derivation of the mean field equations of motion is straightforward. We
seek the thermal average of S g, (Si+,), expressed directly as:

(Siva) = % Y Siae PP = % D) Siae PP (6)

{S} {8} S

where the partition sum ) (s) 1s over each legal state (fulfilling the con-

straint) of the spin variables. The trick is to introduce a common factor
s, (e7PP1). Eq. (6) then becomes:

7

S (Seae )

1 S,
(Siva) = = (G Je— (7)
Z% 2 S ()

S

Noting that the common T[{S}] term can be canceled in the ratio, we get
for the ratio

>, Siva €XP <§ > e Doe (SipSive + SipHise + Si*cHi*b))
ZSZ-* exp <§ Zb,c Dy (Si=pSie + Siep Hie + Si*cHi*b)>

Sum over each legal state; {S} = {(1000...),(0100...),(0010...),...}. Do
this for both the numerator and denominator, to get the ratio:
exp (=2 [Dga + 3. (Dac + Dea) Hie))
> pexp (—§ [Dyy + > .(Dpe + ch)Hi*c])

(8)

(9)
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Plug this into eq. (7), and we get

<Si*a> _ < exp (_g [Daa + Zc(Dac + Dca)Hi*c]) > (10)

> 5 exp (=5 [Dyy + Y .(Doe + Do) Hyse])

where the definition of stochastic averages have been used.

Mean field theory implies (f[S]) = f((S)) for any stochastic variable S.
Defining V;, = (S;,), noting that everything so far is valid for any object
t, and not only the specifically picked one ¢*, we get the final mean field
equations:

V — eXp (g [Daa + Zc(Dac + Dca)Hic])
“ Zb exp (g [Dbb -+ Zc(DbC -+ ch)Hic]) ’

(11)

but with,

Hi=> Ve (12)

J#

If interactions are symmetric, as they are in any physical system, eq. (12) is
further simplified to

o o (8 [3Dua + X, DacHic))

" e (0 [5Du + 3. DucH]) 13

3 Trivial Example

In a situation where the interaction matrix D, describes metric distances in
a room, the problem has a simple geometric interpretation'. The minimum of
the energy function eq. (1) is identical to the maximum of ZZ i Za,b Do SiaSip,
which is just the sum of all pairwise distances between all objects.
If we define
(a*,b") = arg max Dy, (14)
a7

as the two most extreme positions, these are candidate positions for the ob-
jects. For two objects (N = 2) they are also the optimal positions. For more
than two objects, they are at least populated, but additional positions that
are close to the circumference described by a* and b* may also be populated.

'Tt is not unlikely that it is possible to find an efficient algorithm that solves this special
case.
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4 Linear Term

The flexibility of the Potts model formulation of the problem allows other
cost terms for adapting to a specific optimization task. As an example, a
linear term can be added in order to describe the cost of having an object at

position a
E=>"Y CuSi, (15)

with C, > 0. Having this term alone gives trivial solutions, but combined
with eq. (1) more complex problems can be described.
It is also possible to have a term that describes the cost of a particular

object 7 at position a as
E=>") CiSi (16)

5 High Temperature Expansion

Since this model is described in terms of mean field theory and statistical
mechanics, it also shares phenomena known from physical systems. One such
phenomenon that is also valuable for practical simulations of the system is
the critical temperature of the first phase transition. At a high temperature,
the system is in its completely symmetric state where all positions are equally
populated by all objects. In terms of the mean field state variables, V;, =
1/N V i&a.

For an isotropic Potts spin model, where interactions are indifferent to
the spin direction, this high-temperature fixpoint is a fixpoint for all temper-
atures. However, it is only for temperatures above the critical temperature
it is a stable fixpoint. At temperatures below the critical one, the fixpoint is
unstable.

The behavior of the non-isotropic Potts model is different. If the sym-
metric solution V;, = 1/N is plugged into eq. (13), assuming D,, = 0, we get
H;, = (K —1)/N, and the left hand side of eq. (13) is 1/N, while the right

hand side is K1
exp (B45 3 Dac)
>opexp (BEF Y, D)’

which are clearly different. Only asymptotically 5 — 0 this is a solution.
Thus, the phase transition for the non-isotropic Potts model is different from
the ordinary isotropic Potts model. The transition seems “smoother” without
an abrupt state change at any critical temperature. The situation is similar
to that of a first order phase transition versus a second order phase transition.

(17)
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Assuming that D,, = Dy, and D,, = 0 V a & b, we make a series
expansion of V;, for small § (high temperatures). The equation of motion is

exp (B Z DacHic)

V;a = = ) 18
S, exp (35", DicHy) 1)
with Hyy = ) i Vja. Make the following ansatz:
5 3
V= VO 1+ V0 + SV 1 0(8) (19)

which is just plugged into eq. (18). Expanding the exponential factors sys-
tematically in terms of 3, it is just to identify the factors of each power of 3
to be able to find the Vj, expansion in terms of the interaction matrix. After
some straightforward but tedious algebra we get

1
Vi = 5 (20)

N—1 1
V(l) - - Dao - _Doo 2]'
0 = A5 (P o) (21)
V.(Q):(N;l)2 D,.D +2ZDD 4 D
a N3 aeae act’ ce N ael’ee

N —4
AT Z DcoDco - D00D00> (22)

where

Dae = ) D (23)
Di = > Da, (24)

This enables us to get an analytical expression for V;, to use as a starting
point in the simulation.

6 Dynamics

6.1 Bifurcations

Consider two positions a distance d apart, and two objects. This problem
has a trivial solution, but is anyway useful as it clearly illustrates a very
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naughty dynamic issue, that of bifurcations. The distance matrix is

D:(SBZ), (25)

and the low temperature equations (5 — oo) gives V;, = 1 for

arg, max Z D,. Z Vie, (26)

J#

and V;, = 0 else. If we interpret the variables V;, and D, in terms of
matrices, with first index row index and second index column index as usual,
the update equation is just a simple matrix multiplication M x D, with
M, = Ej 2i Via = Zj Via — Via. This assumes D,, = Dy,. For each row
(that is an object) the column index corresponding to the maximum value
“wins”, and V;, = 1.

If we start out with the correct solution,

m:(é‘j) (27)

it also stays there, as expected. But if we start out with a situation with
both objects in the same position,

= (1 0) 29

w:(ﬁ}) (29)

after a single iteration. After one further iteration, it switches back again.
This is a typical bifurcating dynamics, and is highly undesirable. The cause
of this behavior is due to the batch (parallel) updating scheme. It is possible
to interpret it the following way: both objects repel each other when they are
in the same position, and both therefore want to move to the other position,
simultaneously since parallel updating takes place synchronously. The cure
for this is to update the system serially, that is, one at a time. This removes
the problem completely.

it switches to

6.2 Increasing Energy

There exist a peculiar phenomenon where the energy actually increases dur-
ing the annealing process, despite our previous claims that the task is to find
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Figure 1: Three positions, 1, 2, 3, at coordinates (0,a), (¢,0) (—¢,0), respec-
tively.

the absolute minimum of the energy function. However, this turns out to be
an artifact of the mean field model.

Consider a situation with three positions and two objects, illustrated in
Fig. (1). Position 2 and 3 are very close. This is a degenerate case since one
of the objects may end up in either position 2 or 3 with identical energies
E = —+Va? + €. During the annealing process, one object moves to position
1, while the other takes up an intermediate position, just between 2 and 3,
before it breaks the degeneracy, and moves to either one of them. The energy
for the intermediate state is £ = —v/a? 4+ €2 — ¢/2, actually lower than the
ground state!

7 Simulation Results

Some numerical simulations and benchmarking has been performed. Fig. (2)
shows an annealing process with N = 20 positions and K = 8 objects. Each
object traces out a line as it moves in this 2D space. As can be seen the
extreme positions are the optimal ones, and they may be populated by one
or many objects.

For the identical case, the actual state of one of the mean field spin state
variables V;, is plotted at the top in Fig. (3)

As an illustration of the peculiar phenomenon with increasing energy,
discussed above, Fig. (4) shows this clearly.

A more complex situation with N = 80 positions is shown in Fig. (5).

In order to better verify that the results are truly optimal, an exhaustive
search algorithm is used that tries every combination possible for finding
the true optimum. For large scale problems, where problems, if any, will
show up, it is impossible to verify results with exhaustive search, since cpu
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Figure 2: An annealing process with N = 20 and K = 8, where positions are
small circles and objects are larger circles. Each object traces out a line as
it moves from its original position in the center of gravity of the positions,
to its final position.
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Figure 3: Top: The state of one of the spin variables V;, and all its component
versus the number of sweeps. As a comparison, the temperature markers as
the temperature is decreased are shown at the top. Bottom: Same as top, but
plotted versus the temperature. The top line is, however, the total system
saturation.
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Figure 4: The total energy of the system plotted versus the temperature.

times are excessive. Running many cases with N = 20 and K = 8§, all
results are optimal, but the exhaustive search algorithm (implemented in C)
is about 20 times slower than the Potts model (implemented in Matlab). If
both algorithms were implemented using the same languages, the computing
complexity would be approximately another factor of ten in favor of the Potts
model. About 20 runs were also made with N = 40 and K = 8, where all
results from the Potts model and the exhaustive search algorithm agreed.
The median cpu time for the Potts model was 0.15 seconds. The exhaustive
algorithm takes typically five cpu minutes for the identical problems.

A somewhat more detailed computing complexity analysis is given in
Fig. (6) and Fig. (7). For varying N and fixed K, cpu time raises quadrati-
cally with N, but with fixed N and varying K, the cpu time is close to linear.
This gives a first indication of a complexity of O(N?K).

Acknowledgments: Thanks to Johan Schubert for introducing me to the
problem, and for pointing out a possible Potts solution.
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45

Figure 5: An annealing process with N = 80 and K = 8, where positions are
small circles and objects are larger circles. Each object traces out a line as
it moves from its original position in the center of gravity of the positions,
to its final position.
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Figure 6: Cpu time (for a Matlab implementation) for the case with fixed
K = 8 and varying N. The line is an interpolated second order polynomial.
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Figure 7: Cpu time (for a Matlab implementation) for the case with fixed
N = 256 and varying K. The line is an interpolated second order polynomial.
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