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1. Introduction

1.1 Background

As the capability of computer simulation increases, modelling and simulation is used
widely in the investigation of complex physical systems and decision making. The
international defence community is increasingly being asked to accept more evidence
from simulations and less from traditional live testing.

To allow this, the simulation results have to be credible. Credibility is based on
confidence in the correctness of the simulation model and its appropriateness to the
application of interest. The military services need support to assess the credibility of
the models involved in their process of materiel acquisition and integration.

The main purpose of this study is to investigate potential methods based on Sens­
itivity Analysis (SA) to assist modelers throughout the process of model development,
analysis and use.

Sensitivity Analysis (SA) is a body of scientific methods for studying the rela­
tionships between information flowing in and out of a model. Originally, SA was a
method aimed at measuring the impact of changes or uncertainties in the input vari­
ables and parameters on model outputs. The methods have since then been extended
to incorporate model conceptual uncertainty, i.e. uncertainty in model structures,
assumptions and specifications.

As a whole, SA is used to increase the confidence in the model and its predictions
and provide a powerful tool in an integrated approach for model development and
performance evaluation.

SA is close related to Uncertainty Analysis (UA). Although closely related, they
address different problems. Uncertainty Analysis assesses the uncertainty in model
outputs due to input uncertainties while sensitivity analysis assesses the contributions
of the inputs (not uncertainties) to the total uncertainty in the outcomes.

In this report we emphasise methods that have potential to analyse the sensitivity
of dynamical systems, e.g. aircrafts and missiles.

1.2 Computer simulation models

Modelling and simulation is a process of building, analysing and using theoretical
and experimental results in order to summarise a body of knowledge, to make predic­
tions or to understand system dynamics. The stage of building consists of defining
the problem and the system, collecting knowledge (processes, parameters and direct
observations), developing a model concept, translating it to a mathematical model
and converting this into a computer program. A mathematical model is defined by a
series of equations, input factors, parameters, and variables aimed to characterise the
process being investigated. Input is subject to many sources of uncertainty, including
errors of measurement, absence of information and poor or partial understanding of
the driving forces and mechanisms. This imposes a limit on our confidence in the
response or output of the model.

Many of the models are also structured hierarchically, i.e. system of systems. This
means that a model can be decomposed into interacting sub-models, which again
can be decomposed into interacting sub-models, until an atomic level with no further
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decomposition. These sub-models typically contain parameters, and the model output
can be highly sensitive to small changes in the parameter values. Insufficient and
imprecise knowledge about the models inputs, parameters and structures, imposes a
limit on our confidence in the response or output of the model. The usefulness of the
models is critically depended on how accurately it can represent the aspects of the
reality we want to study.

1.3 Model Verification, Validation, and Accreditation (VV&A)

The Department of Defense (DoD) in USA and the military services have prepared
directives and guidelines to provide general instructions on how, when, and under
what circumstances, formal VV&A procedures should be employed to establish the
credibility of the models and simulations. The purpose of VV&A is to assure develop­
ment of correct and valid simulations and to provide simulation users with sufficient
information to determine if the simulation can meet their needs. VV&A incorporates
three distinct processes that gather and evaluate evidence to determine, based on
the simulations intended use, the simulations capabilities, limitations, and perform­
ance relative to the real-world. The formal definitions for these processes are given
below [1]:

• Verification – the process of determining that a model implementation and
its associated data, accurately represent the developer’s conceptual description
and specifications.

• Validation – the process of determining the degree to which a model and its
associated data provide an accurate representation of the real world from the
perspective of the intended use of the model.

• Accreditation – the official certification that a model, simulation, or federation
of models and simulations and its associated data is acceptable for use for a
specific purpose.

SA provides methods for performing validation of a model possibly assessing the
uncertainties associated with the modelling process and with the outcome of the model
itself.

1.4 Modelling problems addressed by SA

Sensitivity analysis is used throughout the development process not just as an analysis
tool but as a development, integration, test, verification and sustainment resource.
In this way, SA also touches on the difficult problem of model quality. Modelers may
conduct SA to perform:

• Model identification: Model identification aims to find out if a model is ap­
propriate for the available data. SA can identify the most appropriate model
structures and specifications competing to describe available evidence.

• Calibration: Calibration can be used to find the best match between the model
and direct system observations. During or subsequent to calibration, the remain­
ing uncertainty in the model outcomes has to be estimated in an uncertainty
analysis.

• Parameter tuning: Evaluating the magnitude of the effects of parameter uncer­
tainty on the model performance and guiding a model refinement process to
assure realistic behavior.

• Model improvement: SA can be used to guide the model refinement in the
regions of the most significant factors or sub-systems and increase their level of
accuracy.
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• Model reduction: Different uncertainties in the input factors or sub-systems
impact differently on the reliability, the robustness and the efficiency of the
model. SA can be used to identify and eliminate those factors or sub-systems
with little or no impact at the model performance. In this way irrelevant parts
of the model can be dropped.

• Validation: SA can be used to provide acceptance criteria to decision-makers by
quantifying the degree of detail that must be present for appropriate results and
the degree of correctness needed in correspondence to the real systems response.

1.5 Developing missile and aircraft models at FOI

Objectives of the project Technical Threat Systems Analysis are to provide our cus­
tomers within armed Forces and other military services with sustainable knowledge
in the field of missiles and military aircrafts. Typically, our knowledge is summarised
in a form of mathematical and computer simulated models aimed to study possible
outcomes in a variety of technical, tactical and electronic warfare scenarios. These
models provide a powerful instrument to explore system performance, make predic­
tions and answer “what if” questions. For instance, simulations of a missile to aircraft
duel scenario can provide valuable information about how electronic countermeasures
are best combined with tactical maneuvers for escape.

The underlying data to the models is often an assembly of many pieces of in­
formation, of varying quality and from disparate sources. Generally the information
available is incomplete, uncertain and at times erroneous. Some of the available in­
formation is explicitly given as aerodynamic tables, physical and mechanical data
and readings from experimental trails. But much of the information is implicitly as­
sumed by the modeler, deduced from physics and as a last resort created by a mental
process of reverse engineering of similar systems. The models must be fit for the pur­
pose for which they are created, and different purposes may require different levels of
complexity. Consequently some parts of a model need to be encoded in greater detail
while others with little influence on the purpose are kept in a summary or omitted.

The uncertainties mentioned above impose a limit on the confidence of the models
and the main questions underlying this work are:

• Can we quantify an overall uncertainty bound to the answers produced a model?
Can we identify those parts of the model that needs to be improved?

• What factors affect model quality the most? How can we be sure that a model
will be valid and fit for its purpose when models in general are a complex
assembly of modelling assumptions and uncertainties?

• How can we be sure that a model is used to answer the right questions? What
kind of questions can we pose on models?

• How can we reduce the complexity to comply with the degree of accuracy re­
quired by the questions being addressed? What factors have only a minor effect
on the reliability, robustness and efficiency of a model?

There is a large body of literature addressing many of the above questions theor­
etically and experimentally, providing knowledge and experience of practicing sensit­
ivity and uncertainty analysis in many fields. A common starting point is the book
by Saltelli [10]. Some key papers describing application of SA on specific topics and
containing many valuable pointers are: performance assessment in radioactive waste
disposal [5] , complex kinetic systems [12] , traffic operation and management [9] and
incompressible aeroelastic systems [3]. SA has also influenced many other scientific
fields to improve their algorithms such as neural networks [4] , and optimization tech­
niques [6].
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1.6 Outlook

The first chapter gives a brief introduction into two commonly used methods in SA.
Next chapter describes a simplified model of a missile to aircraft duel scenario. This
is a much simplified model compared to the regular models and it is used here as an
evaluation case of the SA methods. Then follows a chapter describing the simulation
settings and the obtained results. Finally, the last chapter discusses the ability of SA
to address the posed questions and identifies some directions for future work.
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2. Methods

2.1 Sensitivity analysis methods

The general question that can be answered by sensitivity analysis is: How do changes
in the model parameters affect the output of the system?

We will study systems that can be described by stationary or time dependent
functions that depend on a constant parameter vector

y(t,p), p ∈ P (2.1)

where the vector valued function y(t, p) takes values in Rn and the parameter vector
p belongs to a subset P of Rm. We will study how the function y(t, p) varies when
the parameter vector p is varied.

For our considerations, we will assume that the studied function y(t, p) is defined
through a set of ordinary differential equations, together with an output functional,
depending on the state x

ẋ = f(t,x,p), x(t0,p) = x0

y(t,p) = h(t, x(τ,p)), τ ∈ [t0, t]
(2.2)

Note that the output functional depends on the whole time range from t0 up to the
present time t. Care should be taken when choosing the output functional h , different
choices will measure different aspects of the underlying system. One example of an
output functional is the usual output function for a linear dynamical system

y(t,p) = Cx(t,p) (2.3)

where C is a constant matrix. Another example is a measure of the average difference
between a given trajectory x(τ,p) and a nominal trajectory x̂(τ, p̂)

y(t,p) =
1
t

∫ t

0
‖ x(τ,p) − x̂(τ, p̂) ‖ dτ (2.4)

Sensitivity analysis methods can be divided into local and global analysis meth­
ods, although this division is somewhat arbitrary, see [10]. Local sensitivity analysis
is related to a single point p0 in the parameter set P , and is often based on ap­
proximations of y(t,p) around p0 by Taylor-series expansions. The approximations
are less accurate away from p0. In global analysis, on the other hand, one tries to
capture how the output of the system behaves when the parameters are allowed to
vary in the entire parameter set. Examples of global sensitivity analysis methods are
sampling- and optimization-based methods. In a sampling-based sensitivity analysis
method the model is executed repeatedly for combinations of values sampled from the
parameter set, based upon some sort of probability distribution, and then analysis
is made on the correlation between input and output data. An optimization-based
sensitivity analysis method is one for which maximum and minimum departure from
a nominal output value y(t,p0) is sought, measured in some norm. The parameter
vector p is allowed to vary in the entire parameter set P.

Local analysis methods are usually simpler to carry out and are computationally
less demanding than global analysis methods.

5
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2.2 Local methods

A local sensitivity analysis method is conducted in a small region around the nominal
model where a linear approximation is accurate enough. The analysis reveals the local
behavior of the output signals, subjected to small changes of the model uncertainty
parameters. The local analysis can be conducted both around a local equilibrium
point in the state space or along a nominal trajectory in the state space.

In this study the main focus is on dynamical systems, which can be described as a
set of time dependent first order differential equations with parametric uncertainties,
as in equation (2.2). The aim of local SA is to assess the behavior of the solution
of such a system, subjected to (2.2) which can be expressed by the partial derivative
with respect to p. This derivative can be approximated with:

ti,j =
∂yi(t,p)

∂pj
≈

yi(t, p + Ñpj) − yi(t, p)
Ñpj

(2.5)

where Ñpj is a small disturbance in the j-th direction in the admissible parameter
space. The entries in the sensitivity matrix S were approximated by (2.6) which was
normed compared to (2.5) in order to get the relative sensitivity of the parameters.

si,j =
pj

yi
·
yi(t,p + Ñpj) − yi(t,p)

Ñpj
, yi 6= 0, Ñpj 6= 0 (2.6)

If this is done for all output signals and all uncertainty parameters , the local sensit­
ivity matrix can be defined as:

T (t) =


∂y1
∂p1

... ... ∂y1
∂pm

... ... ... ...

... ... ... ...
∂yn

∂p1
... ... ∂yn

∂pm

 (2.7)

The sensitivity matrix S can depend explicitly on time, if the system (2.2) is also
explicitly time dependent. The local sensitivity matrix can now be used for calculating
the change Ñy from the nominal solution ŷ caused by a disturbance in the parameter
vector Ñp:

y − ŷ = Ñy ≈ T (t) · Ñp (2.8)

2.3 Global methods

The following different global methods are discussed:

• Sampling-based methods

• Optimization-based methods

but the emphasis will be on sampling-based methods.

2.3.1 Sampling-based methods In sampling-based methods, one takes one or
more samples of the parameter vector p , evaluates the function y(t,p) and then
analyses the output. The method usually involve four steps:

1. Defining the parameter distributions.

2. Generating the samples from the parameter distributions.

3. Evaluating y(t,p) for all samples.

4. Analysing the results.

6
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Compare the above list with the list in [10] , they have further divided the fourth point
into two separate points.

The first step in sampling-based methods is to define the distributions for the input
parameters. According to [10]; “Sensitivity analysis results generally depend more
on the selected ranges than on the assigned distributions”. In an exploratory stage
of modelling and analysis of a system, or if the distributions of the input parameters
are not known, a natural choice is independent uniform or normal distributions for
each parameter variation. If available, it could be advantageous to use distributions
based on estimates of the parameter distributions.

The second step in sampling-based methods is to decide how to sample from the
parameter distributions. Sampling can be based on random sampling, structured
sampling, or a combination of both. In random sampling K samples p1, . . . ,pK are
generated from the selected distributions. The samples can be picked in a structured
way, for example the end points of the intervals defining the parameter region for
the uniform distributions. A motivation for this choice is that many functions obtain
their maximum or minimum at the border of a region.

The third step in sampling-based methods is to evaluate the function y(t,pi) for
every sample of the parameter vector p in the set P , i = 1, . . . ,K.

The fourth and final step in sampling-based methods is to analyse the input and
output data. This part involves all kind of analysis of the data e.g. computing the
mean and variance of the output y(t,pi) , or application of other statistical methods.
In reference [10] the fourth point is divided into two parts, the analysis of input and
output data, into two parts, the first part relating to uncertainty analysis, for example
computing mean and variance. The second part relates to sensitivity analysis, for
example relating how sensitive the output is to variations of individual parameters or
a group of parameters.

2.3.2 Optimization-based methods Sampling-based methods can in general
never guarantee the following performance:

∀ p ∈ P y(t,p) ∈ Y (2.9)

Here performance means that the output will belong to a given set if the parameter
vector are allowed to vary within a given set. Optimization-based methods aim at
guaranteeing the above performance and also finding the points p∗ in the parameter
set P that causes y(t,p) to depart the most from the nominal value.

Since optimization methods are designed to find extremum points, the function
under study y(t, p) should not depend explicitly on time, and here we will also assume
it is a scalar function. The function will be denoted by y(p) in the following discus­
sion about optimization-based methods. It should be pointed out that for general
functions y(p) we cannot guarantee performance with optimization-based methods
either. However, it is our opinion that optimization-based methods are better suited
to find extreme points. For a scalar function y(p) optimization-based methods can
be described as follows:

1. Define the parameter set P
2. Find (p∗

min, ymin) such that ymin(p∗
min) = min

p∈P
y(p)

3. Find (p∗
max, ymax) such that ymax(p∗

max) = max
p∈P

y(p)

Thus the subsequent performance is approximated by

∀ p ∈ P y(p) ∈ [ymin, ymax] (2.10)

For a vector valued function y(p) , the above procedure can be carried out for each
element yi(p) of y(p).

7
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Example By an optimization-based method we can find the trajectory that differs
from the nominal trajectory on the interval [0, T ] by some measure. Fix the time t to
T in (2.4) and the measure can be written as

y(p) =
1
T

∫ T

0
‖ x(τ,p) − x̂(τ, p̂) ‖ dτ (2.11)

Note that y(p) is a nonnegative function and that the minimum is obtained at the
nominal parameter value p̂.

ymin(pmin) = y(p̂)
= 0

(2.12)

It remains to find the maximum value of y(p) and the corresponding parameter vector
i.e. ymax(p∗

max) = maxp∈P y(p) which can be done, at least approximately, by an
appropriate optimization algorithm. Finally we have a measure of how much the
trajectories on the time interval [0, T ] can differ from each other

y(p) ∈ [0, ymax], p ∈ P (2.13)

using the measure (2.11).

8
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3. Model

In order to evaluate the proposed SA methods a case study was defined. The chosen
case for this study was a simplified model of a 3-dimensional (3-D) Surface to Air
Missile (SAM).

3.1 Model

In this study a model of a SAM and an aerial target was used. The missile is guided
by a proportional navigation control law. The system is described in more detail
in [11]. The SAM is modeled as a discrete mass point system with geometrical and
turning constraints. The trajectory of the aerial target is parameterised and was
chosen to follow a horisontal line at two different altitudes, see Figure 3.1.

The model was made dynamic by introducing a third order filter which lags the
system and mimic the longitudinal short period and the target seeker dynamic beha­
vior of the missile.

The missile simulation model is generic in the sense that it is able to model and
simulate different guidance laws and also that some missile specific data such as
weight, impulse, burning time etc. can be adjusted to the specific missile modelled.
The output from the simulation of the system is the state trajectories and some
additional output signals such as miss distances, time to target etc.

The original model has been modified in this study. The main modifications are
related to the aerodynamic of the missile, introducing a more complex aerodynamic
model with respect to changes in the Mach number. Some modifications were also
made in order to break the algebraic loops and improve the numerical stability and
efficiency in the original model. The model has been implemented in three different
ways, C-code, MATLAB [7] code and in SIMULINK [8].

3.2 Case study

In order to define the case, or benchmark, to be studied by different SA methods, a
set of model parameters and output signals were selected. The model parameters p
and their corresponding limits, the parameter set P , were selected based on previous
experience with missile systems. The set of selected model parameters and their limits
can be found in Table 3.1. As output signals, y(t,p) , acceleration (atot), missile total
velocity (VT ), time to target (Tfinal) and missile trajectory (xfinal) were selected.
The simulated output signals that have been studied are presented in Table 3.2.

The total acceleration is defined as:

atot =
√

a2
x + a2

y + a2
z (3.1)

and the total velocity of the missile as:

VT =
√

V 2
x + V 2

y + V 2
z (3.2)

plus the Tfinal which is the time the missile needs to intercept the target and xfinal

which is the position of the missile when the fuse is activated by the target. Obviously

9
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Figure 3.1: Trajectories of simulations of the missile to target system.

Parameter Nom. Value Limits Unit Description
CDUnc

1.0 ±0.2 − Drag coeff.
CLUnc

1.0 ±0.2 − Lift coeff.
freq 8.0 ±2.0 rad/s Closed loop frequency
damp 0.7 ±0.2 − Closed loop damping
SpecImp1 2000.0 ±300 Ns/kg Specific impulse for eng. no. 1
TBurn1 1.0 ±0.2 s Burning time for eng. no. 1
SpecImp2 2000.0 ±300 Ns/kg Specific impulse for eng. no. 2
TBurn2 10.0 ±2.0 s Burning time for eng. no. 2

Table 3.1: Studied model uncertainty parameters, p

Result Unit Description
atot m/s2 Total acceleration
VT m/s Total velocity
Tfinal s Time to target
xfinal m Trajectory

Table 3.2: Studied output signals, y(t, p)

the first two output signals are available during the entire simulation, and the latter
two are derived from the final state of the system.

The analysed model, SAM , can be described as a set of time dependent first
order nonlinear differential equations with parametric uncertainties. The original
model was a set of differential-algebraic equations that included switches that made
the model discontinuous. The algebraic loops in the model, were eliminated by adding
additional fast first order lag filters.

3.3 Numerical methods

A model based on ordinary differential equations (ODEs) is often simulated by using
numerical integration methods. As a part of a verification process of the implement­
ation of the model, it is natural to verify the correctness of the computations.

10
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Our intention here is to point out numerical problems that arose in the study of
the model discussed in the case study, but is of general interest. The theory part
is introduced in order to give support for the discussed issues. For introduction
to computer methods for ordinary differential equations and differential algebraic
equations, see for example [2].

Numerical solution of ordinary differential equations We will study numer­
ical solution of ordinary differential equations

ẋ = f(t,x), a < t < b (3.3)

with initial values
x0 = x(t0) = c (3.4)

In order to make an approximation we discretize the interval at N discrete points

a = t0 < t1 < t2 < · · · < tN−1 < tN = b (3.5)

and seek approximations of x at those points

xi ≈ x(ti), i = 0, . . . , N (3.6)

note that equality holds for i = 0. We define the step size as

hn = tn − tn−1 (3.7)

One simple numerical integration method is Euler’s method, which we now will
derive. Expand x(tn) in a Taylor series around tn−1

x(tn−1 + hn) = x(tn−1) + hnẋ(tn−1) + O(h2
n) (3.8)

We define forward Euler’s method by substituting the true values x(tn−1 + h) and
x(tn−1) by the approximations xn and xn−1 and ignoring higher order terms

xn = xn−1 + hnf(tn−1,xn−1) (3.9)

Euler’s method is often used to illustrate basic concepts, but for computations more
advanced methods are often used.

Piecewise continuous function f(t, x) Numerical integration methods are usu­
ally developed with the assumption that f(t,x) and its derivatives are continuous on
the interval [tn−1, tn] up to a certain order. Piecewise continuous functions can be
dealt with by selecting discretisation points at every point of discontinuity, and thus
avoid the problem.

For example, the mass as a function of time in the model of the case study has
a piecewise continuous derivative with discontinuities at the points t = 0s, 1s, 11s ,
and these points should be among the discretisation points in order to avoid problem
caused by the mass function.

Memory block In the SIMULINK model we have an “algebraic loop” of the algeb­
raic variable α. The dependencies are in the following form

...
z = g1(x, α)
α = g2(x, z)
...

(3.10)

11
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where x is a differential variable, z and α are internal algebraic variables
One way to resolve these dependencies of α in the simulink model is to put in a

memory block. The cause of using a memory block for α is that we keep two copies
of α in the numerical solution of the system, one in the current time step αn−1 and
one in the previous time step αn−2

...
zn−1 = g1(xn−1, αn−2)
αn−1 = g2(xn−1, zn−1)

...

(3.11)

If α varies slowly with time this strategy might work well. One problem however is
that the model is mixed with the numerical integration method, and it is hard to
know what is what. The subsequent analysis of numerical methods and modelling
issues becomes more difficult.

However, in this case it’s a rather easy task to rewrite the problem into one of the
following form

0 = g(x, α) (3.12)

To use this model in a numerical integration algorithm is straight forward. Solve for
αn in every time step. For Euler’s method, the overall algorithm becomes

0 = g(xn−1, αn−1), solve for αn−1 (3.13)

xn = xn−1 + hf(t, xn−1, αn−1) (3.14)

12
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4. Simulation

4.1 Local methods results

In order to investigate the sensitivity to variations in parameters of the SAM simu­
lation model, a local sensitivity analysis was conducted.

The model can be formulated mathematically in (2.2) with the parameter vector
defined as:

p =
[

CDUnc
CLUnc

freq damp SpecImp1 TBurn1 SpecImp2 TBurn2

]
(4.1)

and the output signal y(t,p) , from the system, defined as:

y(t,p) =
[

atot VT Tfinal xfinal

]
(4.2)

Obvious the first two output signals are available during the entire simulation,
and the latter two are derived from the final state of the system. The entries in
the sensitivity matrix T were approximated by (2.6) which are normed compared to
(2.5) in order to get the relative sensitivity of the parameters. The calculations where
conducted by simulating the output signals from the system (2.2) with each of the
parameters disturbed individually by a small amount which resulted in n + 1 calls
to the model, where n is the number of uncertainty parameters, in this case 8. The
sensitivity was then approximately calculated using (2.6) in each time step along the
state trajectory in order to get the result for atot and VT . The findings can be seen in
Figure 4.1 to Figure 4.4. The analysis for Tfinal and xfinal was conducted using the
final state of the system. The results of the local sensitivity analysis is summarised
in (4.3) and (4.4) where the max(T (t)) and min(T (t)) are shown.

T max =


0.044 0.372 0.298 1.874 0.555 0.245 0.179 0.788
0 0.021 0.002 0.000 0.998 0 0.380 0
0.019 0 0 0 -0.312 0.312 -0.188 0.188
-0.014 0.014 0.000 0.000 0.182 -0.205 0.074 -0.074

 (4.3)

T min =


-0.041 0 -0.411 -0.461 -0.192 -0.556 -0.784 -0.048

-0.039 0.000 0.000 -0.003 0 -0.988 0 -0.377
0.019 0 0 0 -0.312 0.312 -0.187 0.187
-0.014 0.014 0.001 0.001 0.182 -0.205 0.074 -0.074


(4.4)

A closer examination of the results presented in (4.3) and (4.4) and in Figure 4.1
to Figure 4.4 reveals:

1. The model discontinuity when switching from boost- to sustainphase at 1s is
clearly visible in Figure 4.1 to Figure 4.4.

2. The parameters freq and damp have only a minor impact on the total velocity
of the missile.

3. The parameters CLUnc
, freq and damp have no impact on Tfinal.
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Figure 4.1: Time histories for some elements of the sensitivity matrix, results for atot ,
elements T[1,1] to T[1,4].

4. The relative sensitivity of SpecImp1 has almost twice the impact on Tfinal

compared to SpecImp2.

4.2 Global methods results

In order to assess the global sensitivity of the case study a sample-based SA was con­
ducted. The sample-based SA was made for two different cases, described in chapter
3, where the samples are uniformly distributed in the admissible parameter set P. All
the input parameters were randomly sampled in 10000 simulations. Simulations have
also been done, where one input parameter has been randomly sampled. All com­
binations of the input parameter extreme values, have finally been simulated. The
simulations have been made at two altitudes, 500m and 8000m. The target has a
horisontal trajectory at constant speed, 300m/s. For other model input data, default
values have been used. A selected number of simulated cases are presented in Figure
4.5 to Figure 4.15.

In Figure 4.5 the input parameter TBurn2 is plotted versus the Tfinal. In this case,
the input parameter TBurn2 is randomly sampled and all the others are kept constant
at their nominal values. The input parameter TBurn2 is varied between 8s and 12s and
the resulting time to target (Tfinal) is between 9.4s to 10.1s. It can clearly be noted
that a higher burn time of powder will result in a lower acceleration, which leads to
a higher Tfinal. It can also be seen that there is approximately a linear dependence
between TBurn2 and the Tfinal. In Figure 4.6 , the result from the simulations, where
all input parameters are randomly sampled, is presented. The input parameter TBurn2

is projected and drawn versus the Tfinal. In this data, an upward trend tendency can
be observed as in Figure 4.5. The distribution of approximately 2s in TBurn2 is
caused by the total variation of all parameters in the parameter set P. In the results
presented in Figure 4.7 , the input parameters are sampled by taking all combinations
of the extreme input parameters and nominal values within P , for the case of 500m
altitude. The same distribution of approximately 3s , as can be observed in Figure
4.6 , are presented here.
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Figure 4.2: Time histories for some elements of the sensitivity matrix, results for atot ,
elements T[1,5] to T[1,8].
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Figure 4.3: Time histories for some elements of the sensitivity matrix, results for VT ,
elements T[2,1] to T[2,4].

15



FOI-R--0678--SE

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

time [s]

S
(2

,5
)

Effect of specific impuls
1
 on missil velocity

0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

time [s]

S
(2

,6
)

Effect of burning time
1
 on missil velocity

0 2 4 6 8
0

0.1

0.2

0.3

0.4

time [s]

S
(2

,7
)

Effect of specific impuls
2
 on missil velocity

0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

time [s]

S
(2

,8
)

Effect of burning time
2
 on missil velocity

Figure 4.4: Time histories for some elements of the sensitivity matrix, results for VT ,
elements T[2,5] to T[2,8].
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Figure 4.5: TBurn2 versus time to target, Tfinal where only TBurn2 is randomly
sampled. H = 500m.

In Figure 4.8 the input parameter CDUnc
is plotted versus the Tfinal. In this

simulation, the input parameter CDUnc
is randomly sampled from a rectangular dis­

tribution while the others are kept at their nominal values. CDUnc
is allowed to be

between 0.8 and 1.2 and the resulting Tfinal lies between 9.3s to 10.4s. As in the
previous case, see Figure 4.6 , there is approximately a linear dependence between
CDUnc

and the Tfinal. As shown in Figure 4.8 , an increase in the drag of the missile
will result in a longer flight time, i.e. higher Tfinal. In the simulation presented in
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Figure 4.6: TBurn2 versus time to target, Tfinal where all input parameters are ran­
domly sampled. H = 500m.
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Figure 4.7: TBurn2 versus time to target, Tfinal where the input parameter endpoints
are randomly sampled. H = 500m.

Figure 4.9 , all input parameters are randomly sampled over the admissible parameter
set, P. The input parameter CDUnc

is projected and plotted versus the Tfinal. In
the data presented, an upward trend tendency can be noted. The parameter CDUnc

is sampled between 0.8 and 1.2 and the resulting Tfinal is distributed approximately
2s. In the simulation presented in Figure 4.10 , the input parameters are sampled by
taking all combinations of the extreme input parameters, i.e. the corner points in P ,
and normal values. The input parameter CDUnc

is plotted versus the Tfinal. The
input parameter CDUnc

is sampled between 0.8 and 1.2 and the Tfinal is distributed
approximately 2.5s.
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versus time to target, Tfinal where only CDUnc

is randomly
sampled. H = 500m.
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Figure 4.9: CDUnc
versus time to target, Tfinal where all input parameters are ran­

domly sampled. H = 500m.

In Figure 4.11 and 4.12 , the effect of the closed loop damping damp and frequency
freq of the missile on the Tfinal is shown. The input parameter damp is sampled
between 0.5 and 0.9 and the freq between 6rad/s and 10rad/s. The distribution in
the data caused by the variation of the other parameters are approximately 3s in
both cases. The overall conclusion drawn out of Figure 4.11 and Figure 4.12 , is that
the sensitivity of Tfinal with respect to damp and freq is negligible. An interesting
observation can be made by comparing this result with the result from the local
analysis, see 4.3 and 4.4 , which entries are zero.

In Figure 4.13 the input parameter SpecImp2 is plotted versus the Tfinal. In this
simulation, the input parameter SpecImp2 is randomly sampled and the others are
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Figure 4.10: CDUnc
versus time to target, Tfinal where the input parameter endpoints

are randomly sampled. H = 500m.
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Figure 4.11: damp versus time to target, Tfinal where all input parameters are ran­
domly sampled. H = 500m.

kept constant at their nominal values. The input parameter SpecImp2 is sampled
between 1700Ns/kg and 2300Ns/kg and the Tfinal is simulated between 9.5s to 10.1s.
Also in this case there is approximately a linear dependence between SpecImp2 and
the Tfinal. In the simulation presented in Figure 4.14 , all input parameters are
randomly sampled. The input parameter SpecImp2 is projected and plotted versus
the Tfinal. In the data shown, a downward trend tendency, with a distribution of
approximately 2s , can be noted. The conclusion drawn from the SA is that a higher
SpecImp2 , which means a higher thrust, will result in a shorter time to target, Tfinal ,
a result that is physically reasonable.
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Figure 4.12: freq versus time to target, Tfinal , where all input parameters are ran­
domly sampled. H = 500m.
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Figure 4.13: SpecImp2 versus time to target, Tfinal where only SpecImp2 is randomly
sampled. H = 500m.

In the simulation presented in Figure 4.15 , all input parameters are randomly
sampled. The input parameter SpecImp1 is projected and plotted versus the norm of
the total velocity, VT , in one point. In this data, an upward trend tendency can be
noted. The input parameter SpecImp1 is sampled between 1700Ns/kg and 2300Ns/kg
and VT is distributed approximately 150m/s.

In the simulations the norm of the total accelerations are calculated, which lead to
strange results. This is believed to depend on the fact that the lateral and longitudinal
accelerations in the model are not separated.
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Figure 4.14: SpecImp2 versus time to target, Tfinal where all input parameters are
randomly sampled. H = 500m.
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Figure 4.15: SpecImp1 versus total velocity, VT where all input parameters are ran­
domly sampled. H = 5000m.
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5. Discussion

5.1 Conclusion

This study was conducted within the project Technical Threat Systems Analysis.
The main purpose of this study has been to make a preliminary investigation of the
possiblity of using SA methods for analysing simulation models. The work presented
in this report clearly indicates that the applied methods for SA have some potential
features that will be beneficial for future studies within this project. Some items are
worth highligting:

• Some conclusion regarding the general applicablity of local versus global SA
methods can not be made based upon the results obtained from the analysis
of the SAM system, due to the low complexibility in the model. In the global
analysis made on the case study, the correlation between the input and output
signals were more or less linear, which indicates that a local analysis would
result in similar results as the global analysis.

• Local SA methods used along the state trajectory can be used to analysing
time dependent non-linear systems. Discontinuities in the model, caused by the
switches, did not caused any major obstacles for the analysis.

• In order to trust the results from SA, it is important that the model is verified,
for example with respect to numerical computations.

• The overall conclusion is that SA has a strong potential to be a useful tool in
evaluating a model in terms of how parametric uncertainties affects output of
missile systems.

Due to the quality of the generic model used in the case study, no general con­
clusions can be made on how the chosen parameters affect the performance of other
missile to target systems. Since this study was mainly focused on an initial evalu­
ation of some methods for SA using a simplified model of a SAM, the future research
should be oriented toward the application of the analysis methods on more realistic,
and complex problems using more complete models of aircraft-missile systems as case
studies. It should also be focused on developing and the application on new prom­
ising methods, based on, e.g. optimization and more efficient numerical algorithms
for solving complex SA problems.
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