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1 Introduction 
A missile threat is a reality in many military operations. It is therefore very important that 
measures can be taken to counter these threats. A common method to assess countermeasures 
and how they are used is by means of simulations. To build the framework for such 
simulations is a large undertaking. Therefore it is valuable to create this framework with 
many different military platforms in mind; in the air, at sea, and on land. When simulating 
visual or infrared (IR) scenarios in a cluttered environment , e.g. ground vehicles in broken 
ground, then a full three dimensional description with textures for the targets, background, 
and countermeasures have to be used. For simulation of a scenario where background clutter 
is negligible, e.g. a missile approaching an aircraft from below on a cloud free day, then 
simulations using point like objects for the missile target and countermeasures might be 
appropriate. However, even in such cases 3D descriptions of targets and countermeasures are 
valuable since hot spots on the target and countermeasures can be obscured by parts of the 
target for certain geometrical configurations. 
 
Results from simulations in an electronic warfare (EW) duel simulations can be used for 
different purposes. A simulation where the background, targets, and countermeasures have 
been modeled in great detail can be used to increase the understanding for certain technical 
aspects of the scenario. The simulation package, OPTSIM [1], is an example of a simulation 
environment with very detailed models for EW duel simulations. If the simulations are based 
on very detailed models this can make the simulations slow and that makes it impossible to do 
a large number of simulations in a reasonable amount of time. However, the ability to use the 
simulation results as the basis for tactical recommendations often demands a large number of 
simulations. When the simulation models are built, the accuracy of the models has to be 
weighted against the simulation time. Furthermore, if the simulations can be brought to real 
time performances then the models can also be used in realistic training of personnel for 
military platforms equipped with countermeasure systems. Traditionally the use of images 
from a 3D model in an EW simulation, especially if IR imagery is involved, for other 
purposes than to visualize the simulation result, has been in conflict with real time 
simulations. In the last few years this has changed and it is now possible to purchase 
commercial-off-the-shelf products as a simulation framework [2,3] and add in-house created 
modules for countermeasures, missile seekers, missile dynamics, etc. 
 
This document contains a technical description of a real time framework for visual and IR 
EW simulations with modules for countermeasures (flare, smoke, and laser), missile seekers, 
and missile dynamics. The simulation package or framework is called EwSim (electronic 
warfare simulations) and is based on the commercial product, Vega, which is responsible for 
generating images and handles interaction between objects, background, users, etc. Infrared 
imageries in this framework is created by the use of a plug-in to Vega called SensorVision. 
Sensor performance can be added by another plug-in called SensorWorks. However, the 
functionality for EW simulations can not be purchased on the comersial market. Therefore, 
several in-house modules have been created to extend the functionality of these commercial 
products. These in-house modules and the principle for their use in simulations are displayed 
in figure 1. 
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Figure 1 The simulation package for EW simulations called EwSim. EwSim is based 
on Vega/SensorVision for generating images from 3D models of targets and 
background. Several modules have been added for generating countermeasures 
triggered manually or by a warning system. To the left are the modules for creating 
smoke or flares (ControlBox, Sequenser, Dispenser, Expandable/Decoy, Flare/Cloud). 
Other modules exist for a laser jammer. To the right are modules needed for the missile 
simulation. An image is extracted (SmallTarget and/or Image) and sent to a target 
seeker/tracker (EwSeeker). The estimated target location from the target seeker is sent 
to the missile dynamics module (EwMotion) which will control the position of the 
missile in the simulation. The position and orientation of the missile will then determine 
how the next seeker image is created. 

 
An alternative to Vega, SensorVision, and SensorWorks is to use Mantis and viXsen from CG2 
[3]. However, the availability of the former products is better and they are also used at other 
projects within FOI. 
 
The purpose of EwSim is to provide a real time simulation environment for visual and IR EW-
simulations. EwSim should be applicable to a wide range of scenarios and for instance effects 
from details in the signature of the target and background should be included. This means that 
images of 3D scenarios seen from the target tracker/seeker have to be generated and 
processed in the target seeker model. The real time property means that the large number of 
simulations needed for extraction of tactical recommendations can be made within a 
reasonable amount of time. It also means that the models can be used in training simulators 
with a human in the loop. The disadvantage is that the real time property in the models 
demands approximations that were not needed in for instance the OPTSIM models [1]. 
Therefore, OPTSIM is a good complement to EwSim and can be used to verify details in 
results from EwSim. 
 
EwSim is not an application but rather a set of modules. This means that EwSim can be 
tailored for use in different applications and for different users. Applications made for 
technical specialists can therefore have a different set of parameters than an application made 
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for military non technical personell. An existing application which has made use of the 
modules in EwSim is an application for flare tactics on helicopters. 
 

2 Vega 
VegaTM is a software environment for virtual reality and real-time simulation applications. By 
combining advanced simulation functionality with easy-to-use tools, Vega provides a means 
of constructing sophisticated applications quickly and easily. Vega supports rapid prototyping 
of complex visual simulations. 
 
LynXTM is the graphical user interface (GUI) for defining and previewing Vega applications. 
These Vega applications are programs that you create using the Vega development 
environment or using a basic Vega executable provided with all Vega packages. The 
parameters defined in the LynX are saved in an application definition file (ADF) which 
contains all the information that is needed for the initialization and some information used 
during run-time of the application. 
 
A module consists of a collection of classes each represented in LynX by an icon panel. The 
EwCM (Electronic Warfare Counter Measure) module, for instance, currently consists of 5 
Classes (panels) Flare/Clouds, Expendable, Dispenser, Sequence and Control box as shown 
in figure 2. 
 

 

Figure 2 Example of an icon panel from the EwCM module 

 
A panel displays the values for a collection of parameters called a class. All widgets in the 
panel adjust the values of parameters for instances of the class associated with that panel. 
 

2.1 The Instance List 
If it is possible to have more than one instance of a particular class, there is an instance list in 
the upper left corner of the panel. The items in this list are the user-supplied names for the 
instances of the class. The Observers panel is an example of a panel that contains an instance 
list, and the System panel is an example of a panel that can have only one instance and 
therefore doesn't have an instance list.  
 
All instances of classes must be named. Instance names must be unique per class and are 
limited to 40 characters in length. Spaces are permitted in class names. It is permissible to 
have a channel named "left" and a window named "left", but there cannot be two channels 
named "left".  
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The widgets, in the panel, display the values of the parameters for the item (class instance) 
that is selected in the instance list.  
 

3 Flare and Smoke Countermeasures 
The Vega EwCM Module provides an easy to use library of real-time Flares/Clouds suitable 
for inclusion in a Vega application. The module includes interfaces for the creation of new 
user-defined Flare/Clouds for both Visual and IR images by using Vega and the IR plug-in 
SensorVision. 
 
Based on the timing and properties set by the user, the Flares/Clouds can change shape, scale 
and color over time. Each Flare/Cloud contains a Vega Display List which describes the 
geometry and graphical attributes of the Flare/Cloud. Through the Vega Application 
Programmer's Interface (API), users can not only create and manage the Flare/Cloud, but also 
make Flare/Clouds of their own that include texture animation. 
 

3.1 Application Interface 
The EwCM module includes an API to C/C++ language callable routines for defining EwCM 
effects within Vega. In order to build Vega EwCM applications, an application must include 
the file EwCM.h, and link with the EwCM library. For Windows users, psEwCMS.lib should 
be used for static executables and psEwCM.lib (psEwCM.dll) should be used for dynamic 
executables. 
 

3.2 Initializing the EwCM module  
If Vega is to recognize the EwCM classes, an application must initialize the module after 
calling vgInitSys to initialize Vega. The function InitEWCM initializes module classes and the 
Special Effects module for use with Vega. A VG_FAILURE is returned if an error has 
occurred, and VG_SUCCESS is returned if not. Once this initialization has been done, an 
ADF containing EwCM class instances can be parsed by sending the ADF to vgDefineSys.  
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#include <vg.h> 
#include <vgfx.h> 
#include "EWCM.h" 
  
main() 
{ 
 vgInitSys(); 
 
 InitEWCM(); // vgInitFx(); is included 
 vgInitSV(); 
 
 vgDefineSys( "myfxapp.adf" ); 
 
 vgConfigSys(); 
  
 while( 1 ) 
 { 
  vgSyncFrame(); 
  vgFrame(); 
 
  /* application specific code */ 
 
 } 
} 
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3.3 The EwCM module  
The LynX EwCM panels contain widgets for setting the parameters that define the 
countermeasure. If you are unfamiliar with how to use the LynX interface, consult the Vega 
LynX User's Guide before proceeding [4]. 
 
The EwCM (Electronic Warfare Countermeasure) module currently consists of 5 Classes 
(panels) Flare/Clouds, Expendable, Dispenser, Sequence and Control box. The relationship 
between the classes is shown in the following class and object diagrams in figure 3 and 4. 
 

 

Figure 3 Class diagram of the EwCM module Classes 

 

 

Figure 4 Object diagram that illustrates the relationship between the different objects. 
The figure is a ship with a control unit. This unit triggers different sequences consisting 
of dispensers loaded with expendables. 

0..n 

0..n 0..n 

0..n 

Trigger 
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3.4 Flare/Cloud 
 

 

Figure 5 The Flare/Cloud panel. 

 
The motion model for the flare (cloud) is computed by using aerodynamic equations for the 
flare. The vertical speed is optionally given as a constant by enabling the deposition speed. 
An approximation is that the mass and area are constant during the trajectory. The equations 
for the flares motion model are: 
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Variable Description Unit 

m Mass of the flare. kg 
A Cross-sectional area. m2 
ρ Density of air (at ground 1.2 kg/ m3) kg/m3 
Cd The drag coefficient of the flare which is around 0.75.  
Vox The horizontal start velocity. m/s 
Voy The horizontal start velocity. m/s 
Vx The horizontal velocity. m/s 
Vz The vertical velocity. m/s 
Sx The horizontal position. m 
Sz The vertical position. m 
 

3.4.1 Control points 
This variable is the number of points determining the flares trajectory. In-between the points 
the flares position is interpolated with a spline-function. 
 

3.4.2 Diffusion parts 
The number of parts the flare is divided into.  
 

3.4.3 Diffusion size 
The random velocity component of a flare part is computed by scaling a pre-calculated vector. 
The vector is calculated when the flare starts so that successive states of a random particle 
velocity will differ. A random velocity scale of 5.0 would therefore add a vector with random 
direction of random magnitude between 0.0 and 5.0 units/sec to the overall particle velocity 
(units is the database unit normally in meters). 
 

3.4.4 SV or Visual->IR 
If the checkbox IR scale ColorImage is unchecked the flares radiance are calculated using 
SensorVision and in the Particle Temperature Function table the temperature is set as a 
function of time on the material set on the flare. 
 
If the “IR scale ColorImage” is checked the intensity of the color image is used to calculate 
the radiance. Since the intensity in the color image is limited to 0-255 discreet values (graphic 
card limitation) and a large area of the image often contains information in the lower 
temperature band and a few small hot spots there is a possibility to set two different 
resolutions in radiance. The first resolution is set by the 0 to “breakpoint” grey levels in this 
span the lower radiance “Low Rad” to the break radiance “Break Rad” is set and in the same 
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way the break radiance to the high radiance is set in the span breakpoint – 255 grey levels. 
Also in the particle temperature function table the total intensity is set instead of temperature. 

 

 

Figure 6 When the IR scale color image is checked these widgets appear. 

 

3.4.5 Particle Temperature Function Table 
This table determines the flares or smoke clouds radiation, size and shape as a function of 
time. If the checkbox IR scale ColorImage is unchecked the temperature is in Kelvin in this 
table (figure 5) otherwise it is the intensity (figure 7). The radiance is the intensity divided by 
the cross-section of the flare. Size is the diameter in meters and the shape of the flare is given 
at time T in Seconds. The shape factor is how the flare is scaled relative its motion vector and 
1.0 means it is uniformly scaled. 
  

 
Figure 7 When the IR scale color image is checked the intensity is set instead of 
temperature. 
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3.5 Expendable/Decoy 
 

 

Figure 8 The Expendable panel. 

3.5.1 Expendable Aerodynamics 
The expendable’s motion model is computed by using the same aerodynamic equations as for 
the flare. The only difference is that the parameter Vobj[0-1.0] is the speed ratio from the 
carrying platform (Object in the Dispenser panel) that is going to be added to the expendables 
speed. For example if the Vobj i set to 0 the expendable will start with Vo as a initial speed 
and if the Vobj is set to 1.0 the initial speed of the expendable will be Vo plus the speed of the 
carrier at the time the expendable is fired. 
 

3.5.2 Sub-Munitions Table 
In this table the expendable is configured with sub-munitions (Flare) and the firing interval 
for each flare is given in seconds from the firing of the expendable. The Vexp[0-1.0] is the 
speed ratio, initial speed flare/speed of expandable when flare released (see figures 9 and 10). 
 

 
Figure 9 Vexp[0-1.0] set to 1.0 means that the flares gets the expendables initial speed 
when released. Small dots show the trajectory of the expandable and larger dots show 
the trajectory of the flare. 
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Figure 10 Vexp[0-1.0] set to 0.0 means that the flares get no initial speed when 
released. Small dots show the trajectory of the expandable and larger dots show the 
trajectory of the flare. 

 

3.6 The Vega LynX EwCM Dispenser Panel 
In this class the dispensers are placed on the 3D model of the object. This is done by naming 
the dispenser instance with the same name as the part representing the dispenser on the 3D-
object see figure 11. The direction of the dispenser is given by heading, pitch and roll (all in 
degrees). 
 

 
 

 
Figure 11 The dispenser’s locations are given as parts of the 3D-modell. In the figure 
the red box called box in the 3D model is instanced as box in the dispenser panel and 
thereby given the same position. 
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3.7 Sequence 

 

Figure 12 The Sequence panel. 

 
In the sequence panel, sequences are defined as which dispenser instances and which 
expendable instances to be used as a function of time. The Dispenser and Expendables are 
both referenced to the instances of their classes. 
 

3.8 Control box 
 

 

Figure 13 The control box panel. 

 
From this panel the sequences are triggered. The trigger is currently an isector which is a 
Vega function, a time, or a key on the keyboard. An isector is a Vega method to perform 
intersection tests between a target and the volume implied by the target object given by the 
dispenser instance. The intersection test is in the line of sight with a given range specified in 
the isector class (the isector can for instance trigger on a distance between the platform 
carrying the countermeasure and the missile). The trigger can be any combination of the three 
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methods and they correspond to the warning systems range and time to detect the launch the 
missile or a human in the loop (HIL).  
 

4 DIRCM 
A model of a DIRCM system has been developed for use in the real time environment 
Vega/SensorVision [2]. This model is in part based on a previous OPTSIM model [5]. 
However, in the OPTSIM model only the laser and the laser control were implemented. In the 
Vega/SensorVision model there is also an embryo for a warner, i.e. the laser can be triggered 
based on time from simulation start or based on the distance to the missile. The laser can also 
be triggered manually. This chapter will describe the Vega/SensorVision DIRCM model. 
 

4.1 Application Interface 
The DIRCM module (EwCmLaser) includes an API to C/C++ language callable routines for 
defining EwCmLaser effects within Vega. In order to build Vega applications using 
EwCmLaser, an application must include EwCmLaserModule.h, and link with the 
EwCmLaser library. For Windows users, psEwCmLaserS.lib should be used for static 
executables and psEwCmLaser.lib (psEwCmLaser.dll) should be used for dynamic 
executables. 
 

4.2 Initializing the EwCmLaser module  
If Vega is to recognize the EwCmLaser classes, an application must initialize the module after 
calling vgInitSys to initialize Vega. The function InitEwCmLaser initializes module classes 
and the Special Effects module for use with Vega. A VG_FAILURE is returned if an error has 
occurred, and VG_SUCCESS is returned if not. Once this initialization has been done, an 
ADF containing EwCmLaser class instances can be parsed by sending the ADF to 
vgDefineSys. If the DIRCM module is to be used together with SensorVision then 
SensorVision has to be initialized and the function TransmitterUseSV(ewTransmitter* 
pTransmitter, BOOL bUseSV) for the transmitters that use an IR laser has to be called with 
bUseSV set to TRUE. 
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#include <vg.h> 
#include <vgfx.h> 
#include <vgsv.h> //if SensorVision 
 
#include "ewCmLaserModule.h" 
 
main() 
{ 
 //initialize Vega 
 vgInitSys(); 
 
 //initialize SensorVision (optional) 
 vgInitSV(); 
 
 //initialize EwCmLaser 
 InitEwCmLaser(); 
  
 //read ADF 

vgDefineSys( “Adf file name” ); 
 
 //configure Vega 

vgConfigSys(); 
 
//if SensorVision 

 int nTransmitters = GetNumTransmitters(); 
 for ( 

int nTransmitterIndex=0; 
nTransmitterIndex<nTransmitters; 
nTransmitterIndex++ 

) 
 { 
  TransmitterUseSV( 

GetTransmitter(nTransmitterIndex), TRUE 
); 

 } 
 
 //start real-time loop 
 while( 1 ) 
 { 
  vgSyncFrame(); 
  vgFrame(); 
 
  /* application specific code */ 
 
 } 
} 
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4.3 EwCmLaser modules 
The Vega/SensorVision module for modeling DIRCM systems has been divided into three 
types of classes (panels): Laser trigger, Transmitter, and Laser. The Laser trigger will 
activate the Transmitter according to a criterion (distance, time from simulation start, or a 
decision by the user). Each Laser trigger can control one or several Transmitters. The 
Transmitter will determine the position of the Laser and where the Laser will be directed. 
Each Transmitter can only have one Laser. The different DIRCM classes and how they are 
related are displayed in figure 14. 
 

 

Figure 14 EwCmLaser classes created for use in Vega/SensorVision. 

 

4.4 Laser trigger 
A laser creates a very narrow beam and can therefore not be used as a pre-emptive 
countermeasure without knowledge about where the threat is located. Hence, a laser jammer 
has to be coupled to a warning system that can trigger the laser and give a rough direction to 
the threat. A fine tracker then has to track the threat and give a more accurate direction (see 
chapter 4.5). The warning can be from a missile approach warner (MAW) that detects the 
flame from the jet engine or warm details on the missile body. Warning could also come from 
a laser warner. This later type of warner can be triggered when for instance the shooter 
measures the distance to the target or when an approaching missile is a beam rider guided by 
a laser beam. After the warning system has triggered the DIRCM system there will be some 
time before the laser can jam the missile or the shooter. In case of a warning for a missile 
launch or for a shooter measuring the distance to the target, the time from system alert to jam 
is a parameter that can be used to trigger the DIRCM. If the missile is detected (exhaust 
plume, warm parts on the missile, the laser beam of a beam rider) the distance to the missile 
could be the critical parameter determining whether the missile is detected or not. Presently 
the warning system is modeled by using one of those two parameters (time or distance). 

Figure 15 shows the user interface in LynX to the laser trigger class developed for 
simulations within the Vega/SensorVision framework. 

 

Laser trigger 

Transmitter 

Laser 
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Figure 15 User interface for the Laser trigger class in LynX. More than one trigger can 
be used if for instance different Transmitters are connected to different triggers or if 
DIRCM systems are on different platforms. The Transmitters that are controlled by the 
Laser trigger are set in the Transmitters frame. In this case two Transmitters (Vis laser 
transmitter and IR laser transmitter) are activated by the Laser trigger “Laser Trigger 
1”. The Transmitters can be triggered by a distance (Trigger (Distance)), by a time from 
simulation start (Trigger (Time)), or by pressing a key on the computer keyboard 
(Trigger (Key)). 

 
When the Transmitter is triggered by a distance, this is controlled by the use of the position of 
an observer and of a target, or by the use of an Isector. An Isector is a Vega method to 
perform intersection tests between a target and the volume implied by a target object. It can 
trigger on the distance to the surface of an object instead of as in the other case to a point on 
or in the target. However, the setup of an Isector is more complicated than the other method. 
 

4.5 Transmitter 
A DIRCM system can have one or several laser transmitters on fixed positions on its platform 
(Object, see figure 17). The Transmitter class determines the position of the laser source and 
direction of the laser beam relative the object. 
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Figure 16 Parts of a helicopter (hkp-vis) can be viewed using the Object Property 
Editor in LynX. 

 
The position of a laser transmitter is set by selecting the object to which the Transmitter is 
attached and it is also possible to select a part (see figure 16) on that object and attach the 
Transmitter to that part. The position of the part with respect to the object is calculated as the 
average of all vertices of that part. It is also possible to set an offset of the Transmitter from 
the calculated position of the object (or part on the object). Besides the location of the laser 
the Transmitter also determines the direction of the laser beam. This direction can be 
automatically calculated and always point in the direction of a specific target or set manually 
(Heading, Pitch, Roll). Figure 17 shows the user interface in LynX to the Transmitter class. 
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Figure 17 User interface for the Transmitter class in LynX. If there is a need for more 
than one laser then more than one instance can be used. The direction of the laser beam 
can be set automatically or manually (controlled by Heading). The position of the 
Transmitter is set by selecting an object, a part on that object, and an offset with respect 
to the center of the part. The laser to be used by the Transmitter is selected under Laser. 

 
When the direction of the laser beam is calculated automatically, then the position of the 
object and an observer is used. The object, in this case, is the object (platform) carrying the 
DIRCM system and the observer is the target of the laser beam. Both the object and the 
observer are selected in the user interface to the Transmitter class. The positions of the object 
and the observer are also used when a manual heading is used in order to determine how 
much, if any, of the laser beam is collected by the observers optical system (this calculated 
amount is also affected by the direction of the laser beam, and the orientation of the observer). 
 

4.6 Laser 
The Laser class is based on the laser jamming module in the OPTSIM model, MAIS [5]. The 
purpose of this class is to calculate the intensity collected by an observer’s optical system and 
to determine the size of the laser spot seen by this observer. The collected intensity is 
determined by the distance between the DIRCM system and the observer, the direction of the 
laser beam, the size of the laser beam and its intensity distribution, turbulence and 
transmission in the atmosphere, transmission in the optics of the emitting laser, the size of the 
collecting aperture, the wavelength of the laser, orientation of the observer, and wavelength 
range of the observer’s sensor. 

Figure 18 shows the user interface in LynX for the Laser class. 
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Figure 18 User interface for the Laser class in LynX. More than one laser can be 
defined. Laser Data is the data describing the laser which is needed to determine the 
intensity, size and beam quality at the receiver side. Observer Data describes the 
aperture of the receiver which is needed in order to calculate how much of the laser 
beam is collected by the receiver.  

 
The transmission and turbulence for the laser wavelength is defined using two separate 
dialogs; one for transmission and one for turbulence. The user interface for defining the 
transmission is shown in figure 19. 
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Figure 19 User interface for the input of atmospheric transmission data for a specific 
laser. 

 
The transmission through the atmosphere for a laser beam at a given time and location 
depends on the wavelength of the laser and the altitude. The transmission can vary 
significantly within the wavelength range of a typical sensor and it is therefore not possible to 
use the same transmission for the laser and the rest of the scene. The strong wavelength 
dependence makes it necessary to define the transmission for every laser used in the 
simulation. The transmission is given as extinction coefficients for different heights. When 
the transmission for the path of the laser beam from the transmitter to the receiver is 
calculated, the transmission is calculated using a linear approximation for the extinction 
coefficient, α(height), between the heights used as input to the class. If only one value exists 
then the extinction coefficient is assumed to be constant. Without any values for the 
extinction coefficient a constant value of zero is assumed. If the height is outside the range of 
heights the extinction coefficient which is closest in height is used. 
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The effect of atmospheric turbulence is also height and wavelength dependent. Therefore, the 
dialog for input of turbulence data is very similar to the panel for transmission data. Figure 20 
shows the user interface for defining the turbulence. 
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Figure 20 User interface for input of atmospheric turbulence data for a specific laser. 
The frame labeled Short term MTF is enabled when Beam radius at receiver is set to 
Short term turbulence in the EwCmLaser panel. 

 
In the Turbulence dialog, the refractive-index structure constant, 2

nC , is given as input as a 

function of height. In the executable code 2
nC  might be needed for a different height than the 

heights provided and in that case linear or quadratic interpolation will be used. Turbulence, 
defined by 2

nC , will affect the beam size and beam quality at the receiver. Both these 
properties will depend on the integration time of the receiving sensor. If the integration time is 
short with respect to the time constant of the turbulence then the effect of the turbulence is 
called short term otherwise it is called long term. Short term turbulence gives a narrower 
beam and a smaller image of the laser spot. However, with a short integration time the image 
of the laser spot will dance or move around as a function of time. As the integration time 
increases, this effect will decrease. In the laser model the effect of an increased integration 
time can be simulated by using several blobs with a random center position. For long enough 
integration times (many blobs) the effect of turbulence will be the same as for long term 
turbulence. 
 
When the effect of the laser jammer is created in the image, this can be made using an 
analytical mode or a real time mode. The analytical mode is identical to the calculation 
method used in the previous OPTSIM model [5]. In the real time mode the intensity of the 
laser spot is calculated using the same equations but the size and intensity distribution within 
the created image of the laser spot is created using an approximate method. The real time 
method assumes that the MTF 
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(λ = wavelength [m], f = spatial frequency [rad-1], r0 = Fried’s coherence diameter [m], 
b = 1 for near field, and 0.5 for far field, DO is the diameter of the receiver’s aperture 
[m]) 
 

can be approximated with a Gaussian MTF which means that the MTF is equal to 1/e for 

frequencies of 
πσ2

1
, where σ is the radius where the point spread function is 1/e times its 

peak value. The intensity of the laser in the image is calculated as a radiance and then used 
directly (analytical mode) or transformed to a temperature (real-time mode). In a visual image 
the radiance is not known and therefore the user has to give a radiance value for white pixels 
in the image (Max radiance in image [W/sr/m2]). In analytical mode the laser spot can be 
observed even if its size is very small. The image of the laser spot in the real time mode will 
be created by using a disk with a size in meter at the transmitter that will result in an image 
with the correct size (according to the approximation described above). However, if the 
calculated beam size is very small it will be difficult to see the laser spot and it is therefore 
possible to set a minimum size for the laser spot in pixels. If the calculated size is smaller than 
the minimum size the spot size will be increased and the intensity of the laser spot will be 
decreased so that the total intensity in the laser spot is constant. The parameters that control 
how the image of the laser spot is created are in the Vega dialog in the Laser panel. The user 
interface for these parameters is shown in figure 21. 
 

 
Figure 21 User interface for input of parameters that control how an image of a laser 
transmitter is created. 

 

5 Extracting Images 
The Vega EwImage module provides an easy way to use images generated by Vega to do 
deeper image processing in in-house modules. The module includes interfaces for both Visual 
and IR images by using Vega and the IR plug-in SensorVision. 
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The icon panel of the EwImage (Electronic warfare Image) module currently consists of 2 
Classes (panels) Image and SmallTarget as shown in figure 22. 
 

 

Figure 22 Icon panel from the EwImage module. 

 

5.1 Application Interface 
The EwImage module includes an API to C/C++ language callable routines for using 
EwImage functions within Vega. In order to build Vega EwImage applications, an application 
must include the file EwImage.h, and link with the EwImage library. For Windows users, 
psEwImageS.lib should be used for static executables and psEwImage.lib (psEwImage.dll) 
should be used for dynamic executables. 
 

5.2 Initializing the EwImage Module  
If Vega is to recognize the EwImage classes, an application must initialize the module after 
calling vgInitSys to initialize Vega. The function InitEwImage initializes module classes for 
use with Vega. Two parameters are to be sent with the initialization, the address of 
m_bUseFrame and m_bUseFrameImage. m_bUseFrame is used to specify which frames to 
use, and m_bUseFrameImage should be TRUE the frame just before m_bUseFrame. It is the 
pipelining of Vega that causes this management of frames. Otherwise the frame that Vega is 
about to render and the actual frame seen are separated by one or more frames. This can cause 
serious problems if the image processing results is fed to some sort of movement control. A 
VG_FAILURE is returned if an error has occurred, and VG_SUCCESS is returned if not. 
Once this initialization has been done, an ADF containing EwImage class instances can be 
parsed by sending the ADF to vgDefineSys. 
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#include <vg.h> 
#include <vgperf.h> 
#include <pf.h> 
#include <prmath.h> 
#include "vgwin.h" 
 
#include "ewImage.h" 
 
/* 
 ============================================================================ 
    Main application entry point 
 ============================================================================ 
*/ 
void main( int argc, char *argv[] ) 
{ 
 vgWindow* window; 
 float     m_frameRate; 
 float    m_frameTime; 
 float    m_frameDelta; 
 BOOL  m_bUseFrame = FALSE; 
 BOOL  m_bUseFrameImage = FALSE; 
 int  m_nSkipFrames; 
 int  m_nCountFrames,i; 
 
     
// init, define, and config the system 
 
    vgInitSys();   // initialize Vega 
    vgInitSV();   // initialize SensorVision (optional) 
    vgInitSW();   // initialize SensorWorks (optional) 
 
// ----- Add init functions for implemented modules ------------------------- 
 
    InitEwImage(&m_bUseFrame,&m_bUseFrameImage); //init the image module 
 
// -------------------------------------------------------------------------- 
     
    vgDefineSys( argv[1] ); // read in the ADF 
  
    vgConfigSys();  // configure Vega 
  
// ---- check if frames must be skipped ------------------------------------- 
 m_nSkipFrames = (int)vgGetProp(vgGetSys(), VGSYS_NUMSTAGES); 
 m_nCountFrames = m_nSkipFrames-1; 
 
 m_frameRate = m_nSkipFrames*vgGetProp(vgGetSys(), VGSYS_FRAMERATE); 
 m_frameTime = pfGetFrameTimeStamp(); 
 m_frameDelta = 1.0f / m_frameRate; 
 
 // -------- run 2 frames to get all systems ready ----------------------- 
 for (i = 0; i < 2; i++) 
 { 
  vgSyncFrame (); 
  pfFrameTimeStamp( m_frameTime ); 
  m_frameTime += m_frameDelta; 
  vgFrame(); 
 }  
 
 
 
 



FOI-R--0709--SE 

31 

 
// ------- the real-time loop ----------------------------------------------- 
 
 if (m_nSkipFrames > 1) // Always when using SensorVision 
 { 
  while ( 1 ) 
  { 
   
   vgSyncFrame (); 
 
   pfFrameTimeStamp( m_frameTime ); 
   m_frameTime += m_frameDelta; 
   m_bUseFrame = !(m_nCountFrames % m_nSkipFrames); 
   m_bUseFrameImage =  

((m_nCountFrames++ % m_nSkipFrames) == m_nSkipFrames-1); 
   vgFrame(); 
  } 
 } 
 else  // not possible with sensorvision 
 { 
  m_bUseFrame = TRUE; 
  m_bUseFrameImage = TRUE; 
  while ( 1 ) 
  { 
   vgSyncFrame (); 
 
   pfFrameTimeStamp( m_frameTime ); 
   m_frameTime += m_frameDelta; 
   vgFrame(); 
     /* application specific code */ 
  }  
 } 
} 
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5.3 The EwImage module  
The LynX EwImage panels contain widgets for setting the parameters that define the image. 
If you are unfamiliar with how to use the LynX interface, consult the Vega LynX User's 
Guide before proceeding [4]. 
 
The EwImage module currently consists of 2 Classes (panels) Image and SmallTarget. 

5.4 EwImage 
 

 

Figure 23 The Image panel. 

 
To use the Image module connect an instance of the class to a channel, SensorVision or 
SensorWorks instance. 
 

 

Figure 24 The Image Source panel. 
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Table 1 Channel Options 

Parameter Description Type of array (image) 
Colorband   
 GL_RGBA All bands COLORREF 
 GL_LUMINANCE luminance image float 
 GL_RED red band image float 
 GL_GREEN green band image float 
 GL_BLUE blue band image float 
IR scale 
(not an option for mode 
GL_RGBA) 

Converts a colorband to an 
intensity image by, level by 
level replace the values from 
a scale of 1 to 255, with a 
user defined scale with two 
different slopes. See figure 
25. Used when creating an IR 
image without SensorVision. 

 

 
 

 

Figure 25 The Image Source panel with IR scale checked. 

 

 

Figure 26 The Image Source panel. SensorVision and SensorWorks are checked. 

 
When SensorVision or SensorWorks is checked there is only an instance to set. See figure 26. 
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Figure 27 the ROI panel. 

 
In the ROI panel, figure 27, the image size can be limited and specified by the parameters. If 
the movie format avi is used, ROI should also be used, because the size is determined before 
the sequence is started. (Some compression mode requires the size to be a multiple of 2). 
 

5.5 SmallTarget 
The SmallTarget module was created to make it possible to process images with sub-pixel 
targets, which would disappear in SensorVision. The module creates an enhanced image of 
the target. This image is then used to compute the intensity for the pixels which shall be 
replaced. The replacement is done in the array produced in the Image module; it will not be 
visible on the screen. 
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Figure 28 The SmallTarget panel. 

 

Table 2 Description of the parameters: 

Parameter Description 
Image The original image no enhancement. 
TargetImage An image which will have the enhanced 

image of the target (has to be created and 
connected to this module). 

Original Observer The observer of the Image. 
SmallTarget Observer The observer of the target. 
Object The target. 
Parameters:  
 Replace pixels Specifies the number of pixels replaced in the 

Image. 
 From average of size The size of the TargetImage which is used to 

calculate the average intensities of the 
replacement pixels. 

 Dist.(Near) and Dist.(Far) VEGA parameters which defines the near and 
far plane distances of the viewing frustum. 
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6 Target seekers/trackers 
The Vega EwSeeker module provides an easy to use library of real-time seekers suitable for 
inclusion in a Vega application. The module includes interfaces for different types of seekers. 
It is possible to use both visual and IR images by using Vega and the IR plugin SensorVision. 
 
A module consists of a collection of classes each represented in LynX by an icon panel. The 
EwSeeker (Electronic warfare Seeker) module currently consists of 1 class (panel) EwSeeker 
as shown in figure 29. 
 

 

Figure 29 Icon panel from the EwSeeker module. 

 

6.1 Application Interface 
The EwSeeker module includes an API to C/C++ language callable routines for using 
EwSeeker functions within Vega. In order to build Vega EwSeeker applications, an 
application must include the file EwSeeker.h, and link with the EwSeeker library. For 
Windows users, psEwSeekerS.lib should be used for static executables and psEwSeeker.lib 
(psEwSeeker.dll) should be used for dynamic executables. 
 

6.2 Initializing the EwSeeker Module  
If Vega is to recognize the EwSeeker class, an application must initialize the module after 
calling vgInitSys to initialize Vega. The function InitEwSeeker initializes the module class for 
use with Vega. One parameter is to be sent with the initialization, the address of 
m_bUseFrame. m_bUseFrame is used to specify which frames to use. It is the pipelining of 
Vega that causes this management of frames. Otherwise the frame that Vega is about to 
render and the actual frame seen are separated by one or more frames. This can cause serious 
problems if the image processing results is fed to some sort of movement control. A 
VG_FAILURE is returned if an error has occurred, and VG_SUCCESS is returned if not. Once 
this initialization has been done, an ADF containing EwSeeker class instances can be parsed 
by sending the ADF to vgDefineSys. 
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#include <vg.h> 
#include <vgperf.h> 
#include <pf.h> 
#include <prmath.h> 
#include "vgwin.h" 
 
#include "ewCm.h" 
#include "ewImage.h" 
#include "ewSeeker.h" 
/* 
 ============================================================================ 
    Main application entry point 
 ============================================================================ 
*/ 
void main( int argc, char *argv[] ) 
{ 
 vgWindow* window; 
 float     m_frameRate; 
 float    m_frameTime; 
 float    m_frameDelta; 
 BOOL  m_bUseFrame = FALSE; 
 BOOL  m_bUseFrameImage = FALSE; 
 int  m_nSkipFrames; 
 int  m_nCountFrames,i; 
 
     
// init, define, and config the system 
 

vgInitSys();  // initialize Vega 
 

InitEWCM();  // initialize countermeasure module 
 

vgInitSV();   // initialize SensorVision 
vgInitSW();   // initialize SensorWorks 

 
// ----- Add init functions for implemented modules ------------------------- 
 

InitEwImage(&m_bUseFrame,&m_bUseFrameImage);  //init the image module 
InitEwSeeker(&m_bUseFrame);      //init the seeker module 

// -------------------------------------------------------------------------- 
     

vgDefineSys( argv[1] ); // read in the ADF 
  

vgConfigSys();  // configure Vega 
  
// ---- check if frames must be skipped ------------------------------------- 
 m_nSkipFrames = (int)vgGetProp(vgGetSys(), VGSYS_NUMSTAGES); 
 m_nCountFrames = m_nSkipFrames-1; 
 
 m_frameRate = m_nSkipFrames*vgGetProp(vgGetSys(), VGSYS_FRAMERATE); 
 m_frameTime = pfGetFrameTimeStamp(); 
 m_frameDelta = 1.0f / m_frameRate; 
 
 // -------- run 2 frames to get all systems ready ----------------------- 
 for (i = 0; i < 2; i++) 
 { 
  vgSyncFrame (); 
  pfFrameTimeStamp( m_frameTime ); 
  m_frameTime += m_frameDelta; 
  vgFrame(); 
 }  
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// ------- the real-time loop ----------------------------------------------- 
 
 if (m_nSkipFrames > 1) // Always when using SensorVision 
 { 
  while ( 1 ) 
  { 
   
   vgSyncFrame (); 
 
   pfFrameTimeStamp( m_frameTime ); 
   m_frameTime += m_frameDelta; 
   m_bUseFrame = !(m_nCountFrames % m_nSkipFrames); 
   m_bUseFrameImage =  

((m_nCountFrames++ % m_nSkipFrames) == m_nSkipFrames-1); 
   vgFrame(); 
  } 
 } 
 else  // not possible with sensorvision 
 { 
  m_bUseFrame = TRUE; 
  m_bUseFrameImage = TRUE; 
  while ( 1 ) 

{ 
   vgSyncFrame (); 
 
   pfFrameTimeStamp( m_frameTime ); 
   m_frameTime += m_frameDelta; 
   vgFrame(); 

     /* application specific code */ 
  }  
 } 
} 
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6.3 EwSeeker  
The seeker module which has been adapted to the VEGA/SensorVision environment contains 
several different seeker algorithms. Today these are Correlation [6], Centroid [7] and Reticle 
[8]. All of these models has an origin in standalone programs and has been moulded to fit in 
the VEGA/SensorVision environment. The missile is armed with the key ’a’ (arm), to lock the 
missile point at the target with the mouse and launch the missile by pressing the ’f’ button 
(fire).(see figure 30). 
 

   
 (a) (b) 

   
 (c) (d) 

Figure 30 How the missile status is presented to the user (a) shows the seeker image 
before the missile is armed, (b) shows the image after the missile has been armed (now 
it is possible to point at the target), (c) the target has been pointed out by the user, (d) 
the missile has been launched. 
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The GUI for the Correlation seeker is shown in the Figure 31. An instance is created and is 
shown in the box beneath EwSeeker. An image from the Image module must be set and the 
seeker type must be picked. Each seeker has a set of parameters which can be changed; the 
parameters are the most relevant for each seeker and the default values are set at the 
beginning. 
 

 
Figure 31 The Vega panel in the EwSeeker module. This example shows the Correlation 
parameters. 
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Table 3 Correlation parameters: 

Parameter Description 
Correlation mode What correlation algorithm to use (see 

reference [6]). 
Lambda Specify how the reference image (correlation 

kernel) shall be updated by mixing the 
reference image from the new target position 
and the old reference mage (0 = only the new 
image, 1 = only the old image). 

Color band (Visual seekers) Specifies the color (red, green or blue) which 
shall be used by the correlation on visual 
images. 

Frame Update Specifies how often the reference image shall 
be updated. 

Dimensions  
 Target pos XY The target position (has no function today but 

if the program extends to handling mass 
simulations it will). 

 Kernel size Specifies the correlation kernel size. 
 Region of Interest Specifies the size of the search area in the 

image. 
Save Original image 
Save Correlation image 
Save Kernel image 

select images that can be saved in an image 
sequence. The three images which can be 
saved are the unprocessed original image, the 
correlation image and the kernel. 
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The GUI for the Centroid seeker is shown in the Figure 32 
 

 
Figure 32 The Vega panels in the EwSeeker module. This example shows the Centroid 
parameters. 
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Table 4 Centroid prameters (for extensive explanations see reference [7]) 

Parameter Description 
Centroid mode Specifies the start mode the seeker has. (It is 

possible to force the seeker to start with a 
correlation mode but that is not 
recommended). 

Integration algorithm Specifies how the target position is calculated 
after the extension of the target is discovered. 
(Area Balance, Center of mass and Intensity). 

Seeker mode Specifies how the target area and background 
areas are defined (TV, Land or Ship). 

Target contrast Specifies the target to be bright on dark 
background or dark on bright background. 

ECCM A simple Counter-CounterMeasure. 
Color band (Visual seekers) specifies the color (red, green or blue) which 

shall be used by the correlation on visual 
images. 

Save Original image 
Save Agc image 
Save Threshold image 

Select images processed in the Centroid 
seeker, so that they are saved. The three 
images which can be saved are the 
unprocessed original image, the agc 
(automatic gain control) image and the 
threshold image. 
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The GUI for the Reticle seeker is shown in the Figure 33 
 

 

Figure 33 The Vega panels in the EwSeeker module. This example shows the Reticle 
parameters. 
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Table 5 Reticle parameters (for more details see reference [8] and [9]): 

Parameter Description 
Revolutions per second Number of revolutions per second of the 

reticle. 
Time constant  Many reticle seekers can only give an 

estimate of the radial position of a target in an 
image (angular position is more exact). To 
automatically adjust the sensitivity to radial 
position an automatic gain control (AGC) can 
be used with a time constant. 

Max steer signal A reticle seeker will give the angular position 
and an estimate of the radial position of the 
target. This means that the estimated radial 
position can be to large and this can result in 
a loss of track if the estimated radial position 
is sent to the missile motion model (see 
chapter 7). Therefore, the radial position sent 
to the missile motion model can be 
constrained to a maximum value. 

Number of angles The signal from the reticle in the model is 
obtained by image processing, using an 
image of the scene in the seeker’s field of 
view and an image of the reticle. The reticle 
signal as a function of reticle angle is then 
read from the processed image. The signal is 
a discrete function with a limited number of 
angles which is controlled by this parameter. 

Offset angle To find the target position from the reticle 
signal the signal has to be processed. This 
process does not consider how the reticle is 
oriented and therefore an offset might have to 
be added to the calculated angular position of 
the target. Presently, the offset angle should 
always be zero since the image of the reticle 
is created with the correct orientation. In the 
future, and in the original stand-alone 
program on which the Reticle seeker model is 
based, it is possible to load an image of a 
reticle and use that image in the seeker 
model. 

Rotate 
Nutate 

A reticle seeker can have a rotating (spin 
scan) or nutating (conical scan) reticle. Select 
either Rotate or Nutate. 
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Table 5 continued 

Parameter Description 
Use FFT In the Reticle seeker model two methods to 

obtain the reticle signal as a function of angle 
exist. One method is to rotate or nutate the 
reticle over the background image and for 
every angle multiply the intensities of the 
pixels in the background image with the 
corresponding pixels of the reticle image, sum 
the intensities of all pixels in the resulting 
image. An alternative method is to use FFT 
(fast Fourier transforms) to speed up the 
process. 

Nutate radius If the seeker is a conical scan reticel then the 
image of an object in the center of the seeker’s 
field of view will move along a circle with a 
radius from the centre of the reticle equal to 
this parameter. 

Rotated image For a spinning reticle when the FFT method is 
not used the rotation of the reticle can use a 
nearest neighbour approximation or interpolate. 

Center frequency (1st BP filter) 
Band width (1st) 
Frequency (HP filter) 
Frequency (LP filter) 
Center frequency (2nd) 
Band width (2nd) 

Signal processing to obtain the target’s position 
is made using a series of band pass (BP), low 
pass (LP), and high pass (HP) filters. 

Color band (Visual seekers) Specifies the color (red, green or blue) to be 
used by the tracker on visual images. 

Fixed Image size 
 Image size X 
 Image size Y 

When the FFT method is used in the 
calculations, the size of the images has to be a 
multiple of two (2, 4, 8, 16, 32, 64, 128, 256, 
512, …) in both the horizontal and vertical 
direction. If this is not the case the Reticle 
seeker model can change the size (by removing 
or adding pixels on all sides of the image). 

Display in seeker channel  
 Draw reticle image An image of the reticle can be displayed in the 

seeker channel on top of the background image 
after the missile has been armed and locked but 
before it has been fired. 

 Draw signal before filters The reticle signal can be displayed in the 
seeker window after the missile has been 
armed and locked. 
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Table 5 continued 

Parameter Description 
Type of reticle  
 Rising sun 

 
  Number of spokes 8 in the images above 
  Radius 1 in the image to the left and 0.5 in the image 

to the right 
 FM1 

 
  Number of spokes 8 in the images above 
  Radius 1 in all images above 
  Inner radius 0.224 in the first image 0.424 in the last three 
  Radius of inner structure 0.069 in the two first images above 0.169 in the 

last two 
  Distance from centre to 
  inner structure 

0.138 in the three first images above 0.238 in 
the last 

 NutAm1 

 
  Number of radial fields 2 in the first image above 3 in the second 

image above 
  Radius 1 in all image above 
  1:Number of spokes 2 in all images above 
  2:Number of spokes 4 in all images above 
  3:Number of spokes does not exist in the first image above, 8 in the 

last image 
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7 Missile motion 
The Vega EwMotion module provides an easy to use library for real-time missile motion and 
is suitable for inclusion in a Vega application. The module includes interfaces for different 
types of motion models, a general motion model and more system specific motion models. A 
bridge to use the ACSL (Advanced Continous Simulation Language) [10] models are under 
development. The ACSL models are detailed models of specific threat systems and are 
developed in another project at FOI (technical threat system analysis). The second class 
draws a graph of error angle and distance, between missile and target, over time. It also shows 
when countermeasures are launched. The parameters and positions of missile and target can 
be logged. 
 
A module consists of a collection of classes each represented in LynX by an icon panel. The 
EwMotion (Electronic warfare Motion) module currently consists of 2 classes (panels) 
EwMotion and EwGraph as shown in figure 34. 
 

 

Figure 34 Icon panel from the EwMotion module 

 

7.1 Application Interface 
 
The EwMotion module includes an API to C/C++ language callable routines for using 
EwMotion functions within Vega. In order to build Vega EwMotion applications, an 
application must include the file EwMotion.h, and link with the EwMotion library. For 
Windows users, psEwMotionS.lib should be used for static executables and psEwMotion.lib 
(psEwMotion.dll) should be used for dynamic executables. 
 

7.2 Initializing the EwMotion Module  
If Vega is to recognize the EwMotion classes, an application must initialize the module after 
calling vgInitSys to initialize Vega. The function InitEwMotion initializes module classes for 
use with Vega. One parameter is to be sent with the initialization, m_bUseFrame. 
m_bUseFrame is used to specify which frames to use. It is the pipelining of Vega that causes 
this management of frames. Otherwise the frame that Vega is about to render and the actual 
frame seen are separated by one or more frames. This can cause serious problems when the 
image processing results in fed to the movement model. A VG_FAILURE is returned if an 
error has occurred, and VG_SUCCESS is returned if not. Once this initialization has been 
done, an ADF containing EwMotion class instances can be parsed by sending the ADF to 
vgDefineSys. 
 



FOI-R--0709--SE 

49 

#include <vg.h> 
#include <vgperf.h> 
#include <pf.h> 
#include <prmath.h> 
#include "vgwin.h" 
 
#include "ewCm.h" 
#include "ewImage.h" 
#include "ewSeeker.h" 
#include "ewMotion.h" 
/* 
 ============================================================================ 
    Main application entry point 
 ============================================================================ 
*/ 
void main( int argc, char *argv[] ) 
{ 
 vgWindow* window; 
 float     m_frameRate; 
 float    m_frameTime; 
 float    m_frameDelta; 
 BOOL  m_bUseFrame = FALSE; 
 BOOL  m_bUseFrameImage = FALSE; 
 int  m_nSkipFrames; 
 int  m_nCountFrames,i; 
 
     
// init, define, and config the system 
 
    vgInitSys();   // initialize Vega 
 
   InitEWCM(); // vgInitFx(); is included 
 
    vgInitSV();   // initialize sv 
    vgInitSW(); 
 
// ----- Add init functions for implemented modules ------------------------- 
 
    InitEwImage(&m_bUseFrame,&m_bUseFrameImage); //init the image module 
    InitEwSeeker(&m_bUseFrame);    //init the seeker module 
    InitEwMotion(&m_bUseFrame);    //init the motion module 
// -------------------------------------------------------------------------- 
     
    vgDefineSys( argv[1] ); // read in the ADF 
  
    vgConfigSys();  // configure Vega 
  
// ---- check if frames must be skipped ------------------------------------- 
 m_nSkipFrames = (int)vgGetProp(vgGetSys(), VGSYS_NUMSTAGES); 
 m_nCountFrames = m_nSkipFrames-1; 
 
 m_frameRate = m_nSkipFrames*vgGetProp(vgGetSys(), VGSYS_FRAMERATE); 
 m_frameTime = pfGetFrameTimeStamp(); 
 m_frameDelta = 1.0f / m_frameRate; 
 
 // -------- run 2 frames to get all systems ready ----------------------- 
 for (i = 0; i < 2; i++) 
 { 
  vgSyncFrame (); 
  pfFrameTimeStamp( m_frameTime ); 
  m_frameTime += m_frameDelta; 
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  vgFrame(); 
 }  
 
 
 
// ------- the real-time loop ----------------------------------------------- 
 
 if (m_nSkipFrames > 1) // Always when using SensorVision 
 { 
  while ( 1 ) 
   { 
   
   vgSyncFrame (); 
 
   pfFrameTimeStamp( m_frameTime ); 
   m_frameTime += m_frameDelta; 
   m_bUseFrame = !(m_nCountFrames % m_nSkipFrames); 
   m_bUseFrameImage =  

((m_nCountFrames++ % m_nSkipFrames) == m_nSkipFrames-1); 
   vgFrame(); 
  } 
 } 
 else  // not possible with sensorvision 
 { 
  m_bUseFrame = TRUE; 
  m_bUseFrameImage = TRUE; 
  while ( 1 ) 

{ 
   vgSyncFrame (); 
 
   pfFrameTimeStamp( m_frameTime ); 
   m_frameTime += m_frameDelta; 
   vgFrame(); 
     /* application specific code */ 
  }  
 } 
} 
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7.3 The EwMotion module  
 
The LynX EwMotion panels contain widgets for setting the parameters that define the 
Motion. If you are unfamiliar with how to use the LynX interface, consult the Vega LynX 
User's Guide before proceeding. 
 
The EwMotion module currently consists of 2 classes (panels) EwMotion and EwGraph. 
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7.4 EwMotion 
 

 
Figure 35 The EwMotion panel with motion model Javelin selected. 

The EwMotion panel (see Figure 35) specifies the seeker, the observer and the object 
connected to the motion. The motion model must also be picked. 
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Table 6 EwMotion Javelin Parameters (see reference [11] for more details) 

Parameter Description 
Max Change Specifies how much the missile can turn each 

frame. 
K1 A constant 
Speed The missile speed in m/s. 
Max g The maximum g-force allowed in m/s2. 
Initial Pitch The start pitch for the missile launch. 
Peak Altitude The top of the missiles flying path. 
Descend Pitch The pitch the missile is descending toward 

the target. 
Predict Pitch Sometimes the target will move out of the 

seekers field of view to fast. In such cases the 
missile motion model can predict the pitch 
angle based on how the pitch has increased 
during the last frames. 

Hund Curve Makes the missile always trying to fly 
straight at the target. 

Flying Mode Specifies if the missile first shall elevate to a 
certain altitude (MODE_TOP) or if it shall 
begin towards the target almost from the 
beginning (MODE_DIRECT). 
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7.5 EwGraph 
 

 
Figure 36 The EwGraph panel. 

The EwGraph panel (see Figure 36) specifies in which channel the graph is drawn and which 
objects to use when calculating the values shown in the graph. 
 

Table 7 EwGraph Parameters 

Parameter Description 
Observer (missile) The observer connected to the missile. 
Object (Target) The target 
Channel The channel which the graph is drawn in. 
EwMotion The motion instance which is connected to 

the missile. 
EwCM The countermeasure instance connected to 

the target. 
Save Log file 
Save Missile Coords. 
Save Target Coords. 

To save logs with graph data, the position of 
the missile, and the position of the target as a 
function of time. 

 



FOI-R--0709--SE 

55 

8 Summary and conclusions 
Simulation is a powerful tool for assessing the electronic warfare duel. This document has 
described a new framework for EW duel simulations, in the visual/IR wavelength range, 
called EwSim. EwSim is based on the commercial product, Vega, with the plug-in for IR 
imagery, SensorVision (the plug-in SensorWorks can be also used for sensor performance). 
Several in-house modules have been adapted to this framework in order to get EW-simulation 
capabilities. EwSim has real time (or close to real time) simulation capacity which means that 
it is possible to extend the use of the framework to include EW training of military personnel. 
 
The EwSim is not an application but rather a set of modules that can easily be tailored to an 
application. An existing application which has made use of the modules in EwSim is an 
application for flare tactics on helicopters. 
 
Future work with EwSim should include improvements of the models. For instance EwCM 
could be extended and include simulation of multispectral waterfog. EwCmLaser could 
include the effect of a laser jammer on a realistic imaging sensor, or intensity modulations in 
order to jam a reticle seeker. It should also be possible to include a realistic fine tracker in a 
DIRCM simulation, either based on IR or retro-reflection. The functionality of EwSeeker 
could be improved by developing other types of seekers/trackers. A target seeker based on 
rosette scanning is under development. Missile dynamics from ACSL models is a possibility. 
However, the connection between ACSL and EwSim has not been fully tested and more work 
is needed in order for this connection to work more seamlessly. An improved generic missile 
dynamic model is also under development. 
 
A missile might be limited to the wavelength range covered by EwSim (visual/IR). However, 
an enemy might have access to more than one type of missile. Furthermore, future missile 
seekers might have multi-sensor capability which accentuates the need for a simulation 
environment that can handle an extended wavelength range (visual-IR-radar). 
 
The components of EW-suites are expensive and it is not always possible to equip every 
platform with every component of the suite. Instead it is likely that future systems on a 
battlefield will have the components of the EW-suite distributed on many platforms and rely 
on a communication system to share information. To be able to simulate a distributed EW-
suite it is therefore essential to include models of the communication link in the simulation. 
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