

Command and Control Systems

SE-581 11 Linköping

FOI-R--0709--SE

December 2000

ISSN 1650-1942

Methodology report

Carl Hedberg, Lars Tydén, Christer Wigren

EwSim - Electronic Warfare Real Time Simulation in the
Visual and Infrared Wavelength Range

SWEDISH DEFENCE RESEARCH AGENCY FOI-R--0709--SE

December 2000

ISSN 1650-1942

Command and Control Systems

P.O. Box 1165

SE-581 11 Linköping
Methodology report

Carl Hedberg, Lars Tydén, Christer Wigren

EwSim - Electronic Warfare Real Time Simulation in the
Visual and Infrared Wavelength Range

2

3

Issuing organization Report number, ISRN Report type
FOI – Swedish Defence Research Agency FOI-R--0709--SE Methodology report

Research area code

6. Electronic Warfare

Month year Project no.

December 2000 E7015

Customers code

5. Commissioned Research

Sub area code

Command and Control Systems

P.O. Box 1165

SE-581 11 Linköping

61 Electronic Warfare including Electromagnetic
Weapons and Protection

Author/s (editor/s) Project manager
Carl Hedberg Peter Klum

Lars Tydén Approved by
Christer Wigren Mikael Sjöman

 Sponsoring agency

 Scientifically and technically responsible

Report title

EwSim - Electronic Warfare Real Time Simulation in the Visual and Infrared Wavelength Range

Abstract (not more than 200 words)

A framework, EwSim, for electronic warfare duel simulations, in the visual/infrared wavelength
range has been developed and is described in the report. EwSim is based on the commercial
product, Vega, with the plug-in for infrared imagery, SensorVision (the plug-in SensorWorks can
also be used for sensor performance). Several in-house modules have been adapted to this
framework in order to get EW-simulation capabilities. EwSim has real time (or close to real
time) simulation capacity which means that it is possible to extend the use of the framework to
include EW training of military personnel. This document gives a technical description of
EwSim.

Keywords

Electronic warfare, simulation, visual, infrared

Further bibliographic information Language English

ISSN 1650-1942 Pages 5 p.

 Price acc. to pricelist

4

Utgivare Rapportnummer, ISRN Klassificering
Totalförsvarets Forskningsinstitut - FOI FOI-R--0709--SE Metodrapport

Forskningsområde

6. Telekrig

Månad, år Projektnummer

December 2000 E7015

Verksamhetsgren

5. Uppdragsfinansierad verksamhet

Delområde

Ledningssystem

Box 1165

581 11 Linköping

61 Telekrigföring med EM-vapen och skydd

Författare/redaktör Projektledare
Carl Hedberg Peter Klum
Lars Tydén Godkänd av
Christer Wigren Mikael Sjöman
 Uppdragsgivare/kundbeteckning

 Tekniskt och/eller vetenskapligt ansvarig

Rapportens titel (i översättning)

EwSim - Telekrigsimulering i realtid inom det visuella och infraröda våglängdsområdet

Sammanfattning (högst 200 ord)

Ett ramverk, EwSim, för telekrigduellsimuleringar, i det visuella/infraröda våglängdsområdet har tagits fram och
beskrivs i rapporten. EwSim baseras på den kommersiella produkten Vega, med en plug-in, SensorVision, för att
skapa infraröda bilder (en plug-in för sensorprestanda, SensorWorks, kan också användas). För att erhålla
kapacitet för telekrigsimulering har flera egenutvecklade moduler tagits fram. EwSim har kapacitet för simuleringar i
realtid (eller nära realtid) vilket gör det möjligt att utöka användningsområdet av modulerna till träningssimulatorer.
Denna rapport är en teknisk beskrivning av EwSim.

Nyckelord

Telekrig, simulering, visuell, infraröd

Övriga bibliografiska uppgifter Språk Engelska

ISSN 1650-1942 Antal sidor: 5 s.

Distribution enligt missiv Pris: Enligt prislista

F
O

I1
00

4
 U

tg
åv

a
11

 2
00

2.
02

 w
w

w
.s

ig
no

n.
se

 S
ig

n
O

n
A

B

FOI-R--0709--SE

5

Contents

1 INTRODUCTION 5

2 VEGA 5

2.1 The Instance List 5

3 FLARE AND SMOKE COUNTERMEASURES 5

3.1 Application Interface 5

3.2 Initializing the EwCM module 5

3.3 The EwCM module 5

3.4 Flare/Cloud 5
3.4.1 Control points 5
3.4.2 Diffusion parts 5
3.4.3 Diffusion size 5
3.4.4 SV or Visual->IR 5
3.4.5 Particle Temperature Function Table 5

3.5 Expendable/Decoy 5
3.5.1 Expendable Aerodynamics 5
3.5.2 Sub-Munitions Table 5

3.6 The Vega LynX EwCM Dispenser Panel 5

3.7 Sequence 5

3.8 Control box 5

4 DIRCM 5

4.1 Application Interface 5

4.2 Initializing the EwCmLaser module 5

4.3 EwCmLaser modules 5

4.4 Laser trigger 5

4.5 Transmitter 5

4.6 Laser 5

5 EXTRACTING IMAGES 5

5.1 Application Interface 5

5.2 Initializing the EwImage Module 5

5.3 The EwImage module 5

FOI-R--0709--SE

6

5.4 EwImage 5

5.5 SmallTarget 5

6 TARGET SEEKERS/TRACKERS 5

6.1 Application Interface 5

6.2 Initializing the EwSeeker Module 5

6.3 EwSeeker 5

7 MISSILE MOTION 5

7.1 Application Interface 5

7.2 Initializing the EwMotion Module 5

7.3 The EwMotion module 5

7.4 EwMotion 5

7.5 EwGraph 5

8 SUMMARY AND CONCLUSIONS 5

9 REFERENCES 5

FOI-R--0709--SE

7

1 Introduction
A missile threat is a reality in many military operations. It is therefore very important that
measures can be taken to counter these threats. A common method to assess countermeasures
and how they are used is by means of simulations. To build the framework for such
simulations is a large undertaking. Therefore it is valuable to create this framework with
many different military platforms in mind; in the air, at sea, and on land. When simulating
visual or infrared (IR) scenarios in a cluttered environment , e.g. ground vehicles in broken
ground, then a full three dimensional description with textures for the targets, background,
and countermeasures have to be used. For simulation of a scenario where background clutter
is negligible, e.g. a missile approaching an aircraft from below on a cloud free day, then
simulations using point like objects for the missile target and countermeasures might be
appropriate. However, even in such cases 3D descriptions of targets and countermeasures are
valuable since hot spots on the target and countermeasures can be obscured by parts of the
target for certain geometrical configurations.

Results from simulations in an electronic warfare (EW) duel simulations can be used for
different purposes. A simulation where the background, targets, and countermeasures have
been modeled in great detail can be used to increase the understanding for certain technical
aspects of the scenario. The simulation package, OPTSIM [1], is an example of a simulation
environment with very detailed models for EW duel simulations. If the simulations are based
on very detailed models this can make the simulations slow and that makes it impossible to do
a large number of simulations in a reasonable amount of time. However, the ability to use the
simulation results as the basis for tactical recommendations often demands a large number of
simulations. When the simulation models are built, the accuracy of the models has to be
weighted against the simulation time. Furthermore, if the simulations can be brought to real
time performances then the models can also be used in realistic training of personnel for
military platforms equipped with countermeasure systems. Traditionally the use of images
from a 3D model in an EW simulation, especially if IR imagery is involved, for other
purposes than to visualize the simulation result, has been in conflict with real time
simulations. In the last few years this has changed and it is now possible to purchase
commercial-off-the-shelf products as a simulation framework [2,3] and add in-house created
modules for countermeasures, missile seekers, missile dynamics, etc.

This document contains a technical description of a real time framework for visual and IR
EW simulations with modules for countermeasures (flare, smoke, and laser), missile seekers,
and missile dynamics. The simulation package or framework is called EwSim (electronic
warfare simulations) and is based on the commercial product, Vega, which is responsible for
generating images and handles interaction between objects, background, users, etc. Infrared
imageries in this framework is created by the use of a plug-in to Vega called SensorVision.
Sensor performance can be added by another plug-in called SensorWorks. However, the
functionality for EW simulations can not be purchased on the comersial market. Therefore,
several in-house modules have been created to extend the functionality of these commercial
products. These in-house modules and the principle for their use in simulations are displayed
in figure 1.

FOI-R--0709--SE

8

Figure 1 The simulation package for EW simulations called EwSim. EwSim is based
on Vega/SensorVision for generating images from 3D models of targets and
background. Several modules have been added for generating countermeasures
triggered manually or by a warning system. To the left are the modules for creating
smoke or flares (ControlBox, Sequenser, Dispenser, Expandable/Decoy, Flare/Cloud).
Other modules exist for a laser jammer. To the right are modules needed for the missile
simulation. An image is extracted (SmallTarget and/or Image) and sent to a target
seeker/tracker (EwSeeker). The estimated target location from the target seeker is sent
to the missile dynamics module (EwMotion) which will control the position of the
missile in the simulation. The position and orientation of the missile will then determine
how the next seeker image is created.

An alternative to Vega, SensorVision, and SensorWorks is to use Mantis and viXsen from CG2
[3]. However, the availability of the former products is better and they are also used at other
projects within FOI.

The purpose of EwSim is to provide a real time simulation environment for visual and IR EW-
simulations. EwSim should be applicable to a wide range of scenarios and for instance effects
from details in the signature of the target and background should be included. This means that
images of 3D scenarios seen from the target tracker/seeker have to be generated and
processed in the target seeker model. The real time property means that the large number of
simulations needed for extraction of tactical recommendations can be made within a
reasonable amount of time. It also means that the models can be used in training simulators
with a human in the loop. The disadvantage is that the real time property in the models
demands approximations that were not needed in for instance the OPTSIM models [1].
Therefore, OPTSIM is a good complement to EwSim and can be used to verify details in
results from EwSim.

EwSim is not an application but rather a set of modules. This means that EwSim can be
tailored for use in different applications and for different users. Applications made for
technical specialists can therefore have a different set of parameters than an application made

FOI-R--0709--SE

9

for military non technical personell. An existing application which has made use of the
modules in EwSim is an application for flare tactics on helicopters.

2 Vega
VegaTM is a software environment for virtual reality and real-time simulation applications. By
combining advanced simulation functionality with easy-to-use tools, Vega provides a means
of constructing sophisticated applications quickly and easily. Vega supports rapid prototyping
of complex visual simulations.

LynXTM is the graphical user interface (GUI) for defining and previewing Vega applications.
These Vega applications are programs that you create using the Vega development
environment or using a basic Vega executable provided with all Vega packages. The
parameters defined in the LynX are saved in an application definition file (ADF) which
contains all the information that is needed for the initialization and some information used
during run-time of the application.

A module consists of a collection of classes each represented in LynX by an icon panel. The
EwCM (Electronic Warfare Counter Measure) module, for instance, currently consists of 5
Classes (panels) Flare/Clouds, Expendable, Dispenser, Sequence and Control box as shown
in figure 2.

Figure 2 Example of an icon panel from the EwCM module

A panel displays the values for a collection of parameters called a class. All widgets in the
panel adjust the values of parameters for instances of the class associated with that panel.

2.1 The Instance List
If it is possible to have more than one instance of a particular class, there is an instance list in
the upper left corner of the panel. The items in this list are the user-supplied names for the
instances of the class. The Observers panel is an example of a panel that contains an instance
list, and the System panel is an example of a panel that can have only one instance and
therefore doesn't have an instance list.

All instances of classes must be named. Instance names must be unique per class and are
limited to 40 characters in length. Spaces are permitted in class names. It is permissible to
have a channel named "left" and a window named "left", but there cannot be two channels
named "left".

FOI-R--0709--SE

10

The widgets, in the panel, display the values of the parameters for the item (class instance)
that is selected in the instance list.

3 Flare and Smoke Countermeasures
The Vega EwCM Module provides an easy to use library of real-time Flares/Clouds suitable
for inclusion in a Vega application. The module includes interfaces for the creation of new
user-defined Flare/Clouds for both Visual and IR images by using Vega and the IR plug-in
SensorVision.

Based on the timing and properties set by the user, the Flares/Clouds can change shape, scale
and color over time. Each Flare/Cloud contains a Vega Display List which describes the
geometry and graphical attributes of the Flare/Cloud. Through the Vega Application
Programmer's Interface (API), users can not only create and manage the Flare/Cloud, but also
make Flare/Clouds of their own that include texture animation.

3.1 Application Interface
The EwCM module includes an API to C/C++ language callable routines for defining EwCM
effects within Vega. In order to build Vega EwCM applications, an application must include
the file EwCM.h, and link with the EwCM library. For Windows users, psEwCMS.lib should
be used for static executables and psEwCM.lib (psEwCM.dll) should be used for dynamic
executables.

3.2 Initializing the EwCM module
If Vega is to recognize the EwCM classes, an application must initialize the module after
calling vgInitSys to initialize Vega. The function InitEWCM initializes module classes and the
Special Effects module for use with Vega. A VG_FAILURE is returned if an error has
occurred, and VG_SUCCESS is returned if not. Once this initialization has been done, an
ADF containing EwCM class instances can be parsed by sending the ADF to vgDefineSys.

FOI-R--0709--SE

11

#include <vg.h>
#include <vgfx.h>
#include "EWCM.h"

main()
{
 vgInitSys();

 InitEWCM(); // vgInitFx(); is included
 vgInitSV();

 vgDefineSys("myfxapp.adf");

 vgConfigSys();

 while(1)
 {
 vgSyncFrame();
 vgFrame();

 /* application specific code */

 }
}

FOI-R--0709--SE

12

3.3 The EwCM module
The LynX EwCM panels contain widgets for setting the parameters that define the
countermeasure. If you are unfamiliar with how to use the LynX interface, consult the Vega
LynX User's Guide before proceeding [4].

The EwCM (Electronic Warfare Countermeasure) module currently consists of 5 Classes
(panels) Flare/Clouds, Expendable, Dispenser, Sequence and Control box. The relationship
between the classes is shown in the following class and object diagrams in figure 3 and 4.

Figure 3 Class diagram of the EwCM module Classes

Figure 4 Object diagram that illustrates the relationship between the different objects.
The figure is a ship with a control unit. This unit triggers different sequences consisting
of dispensers loaded with expendables.

0..n

0..n 0..n

0..n

Trigger

FOI-R--0709--SE

13

3.4 Flare/Cloud

Figure 5 The Flare/Cloud panel.

The motion model for the flare (cloud) is computed by using aerodynamic equations for the
flare. The vertical speed is optionally given as a constant by enabling the deposition speed.
An approximation is that the mass and area are constant during the trajectory. The equations
for the flares motion model are:

ACk dρ
2

1= (1)

m

kt

x eVV
−

= 0 (2)











−+=

−−
m

kt

m

kt

z e
k

mg
eVV 10 (3)

FOI-R--0709--SE

14











−=

−
m

kt
x

x e
k

mV
S 10 (4)





















−++










−=

−−−

110 m

kt

m

kt

m

kt
z

z e
k

m
t

k

mg
ee

k

mV
S (5)

Variable Description Unit

m Mass of the flare. kg
A Cross-sectional area. m2
ρ Density of air (at ground 1.2 kg/ m3) kg/m3
Cd The drag coefficient of the flare which is around 0.75.
Vox The horizontal start velocity. m/s
Voy The horizontal start velocity. m/s
Vx The horizontal velocity. m/s
Vz The vertical velocity. m/s
Sx The horizontal position. m
Sz The vertical position. m

3.4.1 Control points
This variable is the number of points determining the flares trajectory. In-between the points
the flares position is interpolated with a spline-function.

3.4.2 Diffusion parts
The number of parts the flare is divided into.

3.4.3 Diffusion size
The random velocity component of a flare part is computed by scaling a pre-calculated vector.
The vector is calculated when the flare starts so that successive states of a random particle
velocity will differ. A random velocity scale of 5.0 would therefore add a vector with random
direction of random magnitude between 0.0 and 5.0 units/sec to the overall particle velocity
(units is the database unit normally in meters).

3.4.4 SV or Visual->IR
If the checkbox IR scale ColorImage is unchecked the flares radiance are calculated using
SensorVision and in the Particle Temperature Function table the temperature is set as a
function of time on the material set on the flare.

If the “IR scale ColorImage” is checked the intensity of the color image is used to calculate
the radiance. Since the intensity in the color image is limited to 0-255 discreet values (graphic
card limitation) and a large area of the image often contains information in the lower
temperature band and a few small hot spots there is a possibility to set two different
resolutions in radiance. The first resolution is set by the 0 to “breakpoint” grey levels in this
span the lower radiance “Low Rad” to the break radiance “Break Rad” is set and in the same

FOI-R--0709--SE

15

way the break radiance to the high radiance is set in the span breakpoint – 255 grey levels.
Also in the particle temperature function table the total intensity is set instead of temperature.

Figure 6 When the IR scale color image is checked these widgets appear.

3.4.5 Particle Temperature Function Table
This table determines the flares or smoke clouds radiation, size and shape as a function of
time. If the checkbox IR scale ColorImage is unchecked the temperature is in Kelvin in this
table (figure 5) otherwise it is the intensity (figure 7). The radiance is the intensity divided by
the cross-section of the flare. Size is the diameter in meters and the shape of the flare is given
at time T in Seconds. The shape factor is how the flare is scaled relative its motion vector and
1.0 means it is uniformly scaled.

Figure 7 When the IR scale color image is checked the intensity is set instead of
temperature.

FOI-R--0709--SE

16

3.5 Expendable/Decoy

Figure 8 The Expendable panel.

3.5.1 Expendable Aerodynamics
The expendable’s motion model is computed by using the same aerodynamic equations as for
the flare. The only difference is that the parameter Vobj[0-1.0] is the speed ratio from the
carrying platform (Object in the Dispenser panel) that is going to be added to the expendables
speed. For example if the Vobj i set to 0 the expendable will start with Vo as a initial speed
and if the Vobj is set to 1.0 the initial speed of the expendable will be Vo plus the speed of the
carrier at the time the expendable is fired.

3.5.2 Sub-Munitions Table
In this table the expendable is configured with sub-munitions (Flare) and the firing interval
for each flare is given in seconds from the firing of the expendable. The Vexp[0-1.0] is the
speed ratio, initial speed flare/speed of expandable when flare released (see figures 9 and 10).

Figure 9 Vexp[0-1.0] set to 1.0 means that the flares gets the expendables initial speed
when released. Small dots show the trajectory of the expandable and larger dots show
the trajectory of the flare.

FOI-R--0709--SE

17

Figure 10 Vexp[0-1.0] set to 0.0 means that the flares get no initial speed when
released. Small dots show the trajectory of the expandable and larger dots show the
trajectory of the flare.

3.6 The Vega LynX EwCM Dispenser Panel
In this class the dispensers are placed on the 3D model of the object. This is done by naming
the dispenser instance with the same name as the part representing the dispenser on the 3D-
object see figure 11. The direction of the dispenser is given by heading, pitch and roll (all in
degrees).

Figure 11 The dispenser’s locations are given as parts of the 3D-modell. In the figure
the red box called box in the 3D model is instanced as box in the dispenser panel and
thereby given the same position.

FOI-R--0709--SE

18

3.7 Sequence

Figure 12 The Sequence panel.

In the sequence panel, sequences are defined as which dispenser instances and which
expendable instances to be used as a function of time. The Dispenser and Expendables are
both referenced to the instances of their classes.

3.8 Control box

Figure 13 The control box panel.

From this panel the sequences are triggered. The trigger is currently an isector which is a
Vega function, a time, or a key on the keyboard. An isector is a Vega method to perform
intersection tests between a target and the volume implied by the target object given by the
dispenser instance. The intersection test is in the line of sight with a given range specified in
the isector class (the isector can for instance trigger on a distance between the platform
carrying the countermeasure and the missile). The trigger can be any combination of the three

FOI-R--0709--SE

19

methods and they correspond to the warning systems range and time to detect the launch the
missile or a human in the loop (HIL).

4 DIRCM
A model of a DIRCM system has been developed for use in the real time environment
Vega/SensorVision [2]. This model is in part based on a previous OPTSIM model [5].
However, in the OPTSIM model only the laser and the laser control were implemented. In the
Vega/SensorVision model there is also an embryo for a warner, i.e. the laser can be triggered
based on time from simulation start or based on the distance to the missile. The laser can also
be triggered manually. This chapter will describe the Vega/SensorVision DIRCM model.

4.1 Application Interface
The DIRCM module (EwCmLaser) includes an API to C/C++ language callable routines for
defining EwCmLaser effects within Vega. In order to build Vega applications using
EwCmLaser, an application must include EwCmLaserModule.h, and link with the
EwCmLaser library. For Windows users, psEwCmLaserS.lib should be used for static
executables and psEwCmLaser.lib (psEwCmLaser.dll) should be used for dynamic
executables.

4.2 Initializing the EwCmLaser module
If Vega is to recognize the EwCmLaser classes, an application must initialize the module after
calling vgInitSys to initialize Vega. The function InitEwCmLaser initializes module classes
and the Special Effects module for use with Vega. A VG_FAILURE is returned if an error has
occurred, and VG_SUCCESS is returned if not. Once this initialization has been done, an
ADF containing EwCmLaser class instances can be parsed by sending the ADF to
vgDefineSys. If the DIRCM module is to be used together with SensorVision then
SensorVision has to be initialized and the function TransmitterUseSV(ewTransmitter*
pTransmitter, BOOL bUseSV) for the transmitters that use an IR laser has to be called with
bUseSV set to TRUE.

FOI-R--0709--SE

20

#include <vg.h>
#include <vgfx.h>
#include <vgsv.h> //if SensorVision

#include "ewCmLaserModule.h"

main()
{
 //initialize Vega
 vgInitSys();

 //initialize SensorVision (optional)
 vgInitSV();

 //initialize EwCmLaser
 InitEwCmLaser();

 //read ADF

vgDefineSys(“Adf file name”);

 //configure Vega

vgConfigSys();

//if SensorVision

 int nTransmitters = GetNumTransmitters();
 for (

int nTransmitterIndex=0;
nTransmitterIndex<nTransmitters;
nTransmitterIndex++

)
 {
 TransmitterUseSV(

GetTransmitter(nTransmitterIndex), TRUE
);

 }

 //start real-time loop
 while(1)
 {
 vgSyncFrame();
 vgFrame();

 /* application specific code */

 }
}

FOI-R--0709--SE

21

4.3 EwCmLaser modules
The Vega/SensorVision module for modeling DIRCM systems has been divided into three
types of classes (panels): Laser trigger, Transmitter, and Laser. The Laser trigger will
activate the Transmitter according to a criterion (distance, time from simulation start, or a
decision by the user). Each Laser trigger can control one or several Transmitters. The
Transmitter will determine the position of the Laser and where the Laser will be directed.
Each Transmitter can only have one Laser. The different DIRCM classes and how they are
related are displayed in figure 14.

Figure 14 EwCmLaser classes created for use in Vega/SensorVision.

4.4 Laser trigger
A laser creates a very narrow beam and can therefore not be used as a pre-emptive
countermeasure without knowledge about where the threat is located. Hence, a laser jammer
has to be coupled to a warning system that can trigger the laser and give a rough direction to
the threat. A fine tracker then has to track the threat and give a more accurate direction (see
chapter 4.5). The warning can be from a missile approach warner (MAW) that detects the
flame from the jet engine or warm details on the missile body. Warning could also come from
a laser warner. This later type of warner can be triggered when for instance the shooter
measures the distance to the target or when an approaching missile is a beam rider guided by
a laser beam. After the warning system has triggered the DIRCM system there will be some
time before the laser can jam the missile or the shooter. In case of a warning for a missile
launch or for a shooter measuring the distance to the target, the time from system alert to jam
is a parameter that can be used to trigger the DIRCM. If the missile is detected (exhaust
plume, warm parts on the missile, the laser beam of a beam rider) the distance to the missile
could be the critical parameter determining whether the missile is detected or not. Presently
the warning system is modeled by using one of those two parameters (time or distance).

Figure 15 shows the user interface in LynX to the laser trigger class developed for
simulations within the Vega/SensorVision framework.

Laser trigger

Transmitter

Laser

FOI-R--0709--SE

22

Figure 15 User interface for the Laser trigger class in LynX. More than one trigger can
be used if for instance different Transmitters are connected to different triggers or if
DIRCM systems are on different platforms. The Transmitters that are controlled by the
Laser trigger are set in the Transmitters frame. In this case two Transmitters (Vis laser
transmitter and IR laser transmitter) are activated by the Laser trigger “Laser Trigger
1”. The Transmitters can be triggered by a distance (Trigger (Distance)), by a time from
simulation start (Trigger (Time)), or by pressing a key on the computer keyboard
(Trigger (Key)).

When the Transmitter is triggered by a distance, this is controlled by the use of the position of
an observer and of a target, or by the use of an Isector. An Isector is a Vega method to
perform intersection tests between a target and the volume implied by a target object. It can
trigger on the distance to the surface of an object instead of as in the other case to a point on
or in the target. However, the setup of an Isector is more complicated than the other method.

4.5 Transmitter
A DIRCM system can have one or several laser transmitters on fixed positions on its platform
(Object, see figure 17). The Transmitter class determines the position of the laser source and
direction of the laser beam relative the object.

FOI-R--0709--SE

23

Figure 16 Parts of a helicopter (hkp-vis) can be viewed using the Object Property
Editor in LynX.

The position of a laser transmitter is set by selecting the object to which the Transmitter is
attached and it is also possible to select a part (see figure 16) on that object and attach the
Transmitter to that part. The position of the part with respect to the object is calculated as the
average of all vertices of that part. It is also possible to set an offset of the Transmitter from
the calculated position of the object (or part on the object). Besides the location of the laser
the Transmitter also determines the direction of the laser beam. This direction can be
automatically calculated and always point in the direction of a specific target or set manually
(Heading, Pitch, Roll). Figure 17 shows the user interface in LynX to the Transmitter class.

FOI-R--0709--SE

24

Figure 17 User interface for the Transmitter class in LynX. If there is a need for more
than one laser then more than one instance can be used. The direction of the laser beam
can be set automatically or manually (controlled by Heading). The position of the
Transmitter is set by selecting an object, a part on that object, and an offset with respect
to the center of the part. The laser to be used by the Transmitter is selected under Laser.

When the direction of the laser beam is calculated automatically, then the position of the
object and an observer is used. The object, in this case, is the object (platform) carrying the
DIRCM system and the observer is the target of the laser beam. Both the object and the
observer are selected in the user interface to the Transmitter class. The positions of the object
and the observer are also used when a manual heading is used in order to determine how
much, if any, of the laser beam is collected by the observers optical system (this calculated
amount is also affected by the direction of the laser beam, and the orientation of the observer).

4.6 Laser
The Laser class is based on the laser jamming module in the OPTSIM model, MAIS [5]. The
purpose of this class is to calculate the intensity collected by an observer’s optical system and
to determine the size of the laser spot seen by this observer. The collected intensity is
determined by the distance between the DIRCM system and the observer, the direction of the
laser beam, the size of the laser beam and its intensity distribution, turbulence and
transmission in the atmosphere, transmission in the optics of the emitting laser, the size of the
collecting aperture, the wavelength of the laser, orientation of the observer, and wavelength
range of the observer’s sensor.

Figure 18 shows the user interface in LynX for the Laser class.

FOI-R--0709--SE

25

Figure 18 User interface for the Laser class in LynX. More than one laser can be
defined. Laser Data is the data describing the laser which is needed to determine the
intensity, size and beam quality at the receiver side. Observer Data describes the
aperture of the receiver which is needed in order to calculate how much of the laser
beam is collected by the receiver.

The transmission and turbulence for the laser wavelength is defined using two separate
dialogs; one for transmission and one for turbulence. The user interface for defining the
transmission is shown in figure 19.

FOI-R--0709--SE

26

Figure 19 User interface for the input of atmospheric transmission data for a specific
laser.

The transmission through the atmosphere for a laser beam at a given time and location
depends on the wavelength of the laser and the altitude. The transmission can vary
significantly within the wavelength range of a typical sensor and it is therefore not possible to
use the same transmission for the laser and the rest of the scene. The strong wavelength
dependence makes it necessary to define the transmission for every laser used in the
simulation. The transmission is given as extinction coefficients for different heights. When
the transmission for the path of the laser beam from the transmitter to the receiver is
calculated, the transmission is calculated using a linear approximation for the extinction
coefficient, α(height), between the heights used as input to the class. If only one value exists
then the extinction coefficient is assumed to be constant. Without any values for the
extinction coefficient a constant value of zero is assumed. If the height is outside the range of
heights the extinction coefficient which is closest in height is used.

() 







−= ∫

L

sh
0

dexp ατ

The effect of atmospheric turbulence is also height and wavelength dependent. Therefore, the
dialog for input of turbulence data is very similar to the panel for transmission data. Figure 20
shows the user interface for defining the turbulence.

FOI-R--0709--SE

27

Figure 20 User interface for input of atmospheric turbulence data for a specific laser.
The frame labeled Short term MTF is enabled when Beam radius at receiver is set to
Short term turbulence in the EwCmLaser panel.

In the Turbulence dialog, the refractive-index structure constant, 2

nC , is given as input as a

function of height. In the executable code 2
nC might be needed for a different height than the

heights provided and in that case linear or quadratic interpolation will be used. Turbulence,
defined by 2

nC , will affect the beam size and beam quality at the receiver. Both these
properties will depend on the integration time of the receiving sensor. If the integration time is
short with respect to the time constant of the turbulence then the effect of the turbulence is
called short term otherwise it is called long term. Short term turbulence gives a narrower
beam and a smaller image of the laser spot. However, with a short integration time the image
of the laser spot will dance or move around as a function of time. As the integration time
increases, this effect will decrease. In the laser model the effect of an increased integration
time can be simulated by using several blobs with a random center position. For long enough
integration times (many blobs) the effect of turbulence will be the same as for long term
turbulence.

When the effect of the laser jammer is created in the image, this can be made using an
analytical mode or a real time mode. The analytical mode is identical to the calculation
method used in the previous OPTSIM model [5]. In the real time mode the intensity of the
laser spot is calculated using the same equations but the size and intensity distribution within
the created image of the laser spot is created using an approximate method. The real time
method assumes that the MTF

()





















−=

3
5

0

44.3exp
r

f
fMTF

λ
 (long term turbulence)

FOI-R--0709--SE

28

()




































−








−=

3
1

3
5

0

144.3exp
OD

f
b

r

f
fMTF

λλ
 (short term turbulence)

(λ = wavelength [m], f = spatial frequency [rad-1], r0 = Fried’s coherence diameter [m],
b = 1 for near field, and 0.5 for far field, DO is the diameter of the receiver’s aperture
[m])

can be approximated with a Gaussian MTF which means that the MTF is equal to 1/e for

frequencies of
πσ2

1
, where σ is the radius where the point spread function is 1/e times its

peak value. The intensity of the laser in the image is calculated as a radiance and then used
directly (analytical mode) or transformed to a temperature (real-time mode). In a visual image
the radiance is not known and therefore the user has to give a radiance value for white pixels
in the image (Max radiance in image [W/sr/m2]). In analytical mode the laser spot can be
observed even if its size is very small. The image of the laser spot in the real time mode will
be created by using a disk with a size in meter at the transmitter that will result in an image
with the correct size (according to the approximation described above). However, if the
calculated beam size is very small it will be difficult to see the laser spot and it is therefore
possible to set a minimum size for the laser spot in pixels. If the calculated size is smaller than
the minimum size the spot size will be increased and the intensity of the laser spot will be
decreased so that the total intensity in the laser spot is constant. The parameters that control
how the image of the laser spot is created are in the Vega dialog in the Laser panel. The user
interface for these parameters is shown in figure 21.

Figure 21 User interface for input of parameters that control how an image of a laser
transmitter is created.

5 Extracting Images
The Vega EwImage module provides an easy way to use images generated by Vega to do
deeper image processing in in-house modules. The module includes interfaces for both Visual
and IR images by using Vega and the IR plug-in SensorVision.

FOI-R--0709--SE

29

The icon panel of the EwImage (Electronic warfare Image) module currently consists of 2
Classes (panels) Image and SmallTarget as shown in figure 22.

Figure 22 Icon panel from the EwImage module.

5.1 Application Interface
The EwImage module includes an API to C/C++ language callable routines for using
EwImage functions within Vega. In order to build Vega EwImage applications, an application
must include the file EwImage.h, and link with the EwImage library. For Windows users,
psEwImageS.lib should be used for static executables and psEwImage.lib (psEwImage.dll)
should be used for dynamic executables.

5.2 Initializing the EwImage Module
If Vega is to recognize the EwImage classes, an application must initialize the module after
calling vgInitSys to initialize Vega. The function InitEwImage initializes module classes for
use with Vega. Two parameters are to be sent with the initialization, the address of
m_bUseFrame and m_bUseFrameImage. m_bUseFrame is used to specify which frames to
use, and m_bUseFrameImage should be TRUE the frame just before m_bUseFrame. It is the
pipelining of Vega that causes this management of frames. Otherwise the frame that Vega is
about to render and the actual frame seen are separated by one or more frames. This can cause
serious problems if the image processing results is fed to some sort of movement control. A
VG_FAILURE is returned if an error has occurred, and VG_SUCCESS is returned if not.
Once this initialization has been done, an ADF containing EwImage class instances can be
parsed by sending the ADF to vgDefineSys.

FOI-R--0709--SE

30

#include <vg.h>
#include <vgperf.h>
#include <pf.h>
#include <prmath.h>
#include "vgwin.h"

#include "ewImage.h"

/*
 ==
 Main application entry point
 ==
*/
void main(int argc, char *argv[])
{
 vgWindow* window;
 float m_frameRate;
 float m_frameTime;
 float m_frameDelta;
 BOOL m_bUseFrame = FALSE;
 BOOL m_bUseFrameImage = FALSE;
 int m_nSkipFrames;
 int m_nCountFrames,i;

// init, define, and config the system

 vgInitSys(); // initialize Vega
 vgInitSV(); // initialize SensorVision (optional)
 vgInitSW(); // initialize SensorWorks (optional)

// ----- Add init functions for implemented modules -------------------------

 InitEwImage(&m_bUseFrame,&m_bUseFrameImage); //init the image module

// --

 vgDefineSys(argv[1]); // read in the ADF

 vgConfigSys(); // configure Vega

// ---- check if frames must be skipped -------------------------------------
 m_nSkipFrames = (int)vgGetProp(vgGetSys(), VGSYS_NUMSTAGES);
 m_nCountFrames = m_nSkipFrames-1;

 m_frameRate = m_nSkipFrames*vgGetProp(vgGetSys(), VGSYS_FRAMERATE);
 m_frameTime = pfGetFrameTimeStamp();
 m_frameDelta = 1.0f / m_frameRate;

 // -------- run 2 frames to get all systems ready -----------------------
 for (i = 0; i < 2; i++)
 {
 vgSyncFrame ();
 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 vgFrame();
 }

FOI-R--0709--SE

31

// ------- the real-time loop ---

 if (m_nSkipFrames > 1) // Always when using SensorVision
 {
 while (1)
 {

 vgSyncFrame ();

 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 m_bUseFrame = !(m_nCountFrames % m_nSkipFrames);
 m_bUseFrameImage =

((m_nCountFrames++ % m_nSkipFrames) == m_nSkipFrames-1);
 vgFrame();
 }
 }
 else // not possible with sensorvision
 {
 m_bUseFrame = TRUE;
 m_bUseFrameImage = TRUE;
 while (1)
 {
 vgSyncFrame ();

 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 vgFrame();
 /* application specific code */
 }
 }
}

FOI-R--0709--SE

32

5.3 The EwImage module
The LynX EwImage panels contain widgets for setting the parameters that define the image.
If you are unfamiliar with how to use the LynX interface, consult the Vega LynX User's
Guide before proceeding [4].

The EwImage module currently consists of 2 Classes (panels) Image and SmallTarget.

5.4 EwImage

Figure 23 The Image panel.

To use the Image module connect an instance of the class to a channel, SensorVision or
SensorWorks instance.

Figure 24 The Image Source panel.

FOI-R--0709--SE

33

Table 1 Channel Options

Parameter Description Type of array (image)
Colorband
 GL_RGBA All bands COLORREF
 GL_LUMINANCE luminance image float
 GL_RED red band image float
 GL_GREEN green band image float
 GL_BLUE blue band image float
IR scale
(not an option for mode
GL_RGBA)

Converts a colorband to an
intensity image by, level by
level replace the values from
a scale of 1 to 255, with a
user defined scale with two
different slopes. See figure
25. Used when creating an IR
image without SensorVision.

Figure 25 The Image Source panel with IR scale checked.

Figure 26 The Image Source panel. SensorVision and SensorWorks are checked.

When SensorVision or SensorWorks is checked there is only an instance to set. See figure 26.

FOI-R--0709--SE

34

Figure 27 the ROI panel.

In the ROI panel, figure 27, the image size can be limited and specified by the parameters. If
the movie format avi is used, ROI should also be used, because the size is determined before
the sequence is started. (Some compression mode requires the size to be a multiple of 2).

5.5 SmallTarget
The SmallTarget module was created to make it possible to process images with sub-pixel
targets, which would disappear in SensorVision. The module creates an enhanced image of
the target. This image is then used to compute the intensity for the pixels which shall be
replaced. The replacement is done in the array produced in the Image module; it will not be
visible on the screen.

FOI-R--0709--SE

35

Figure 28 The SmallTarget panel.

Table 2 Description of the parameters:

Parameter Description
Image The original image no enhancement.
TargetImage An image which will have the enhanced

image of the target (has to be created and
connected to this module).

Original Observer The observer of the Image.
SmallTarget Observer The observer of the target.
Object The target.
Parameters:
 Replace pixels Specifies the number of pixels replaced in the

Image.
 From average of size The size of the TargetImage which is used to

calculate the average intensities of the
replacement pixels.

 Dist.(Near) and Dist.(Far) VEGA parameters which defines the near and
far plane distances of the viewing frustum.

FOI-R--0709--SE

36

6 Target seekers/trackers
The Vega EwSeeker module provides an easy to use library of real-time seekers suitable for
inclusion in a Vega application. The module includes interfaces for different types of seekers.
It is possible to use both visual and IR images by using Vega and the IR plugin SensorVision.

A module consists of a collection of classes each represented in LynX by an icon panel. The
EwSeeker (Electronic warfare Seeker) module currently consists of 1 class (panel) EwSeeker
as shown in figure 29.

Figure 29 Icon panel from the EwSeeker module.

6.1 Application Interface
The EwSeeker module includes an API to C/C++ language callable routines for using
EwSeeker functions within Vega. In order to build Vega EwSeeker applications, an
application must include the file EwSeeker.h, and link with the EwSeeker library. For
Windows users, psEwSeekerS.lib should be used for static executables and psEwSeeker.lib
(psEwSeeker.dll) should be used for dynamic executables.

6.2 Initializing the EwSeeker Module
If Vega is to recognize the EwSeeker class, an application must initialize the module after
calling vgInitSys to initialize Vega. The function InitEwSeeker initializes the module class for
use with Vega. One parameter is to be sent with the initialization, the address of
m_bUseFrame. m_bUseFrame is used to specify which frames to use. It is the pipelining of
Vega that causes this management of frames. Otherwise the frame that Vega is about to
render and the actual frame seen are separated by one or more frames. This can cause serious
problems if the image processing results is fed to some sort of movement control. A
VG_FAILURE is returned if an error has occurred, and VG_SUCCESS is returned if not. Once
this initialization has been done, an ADF containing EwSeeker class instances can be parsed
by sending the ADF to vgDefineSys.

FOI-R--0709--SE

37

#include <vg.h>
#include <vgperf.h>
#include <pf.h>
#include <prmath.h>
#include "vgwin.h"

#include "ewCm.h"
#include "ewImage.h"
#include "ewSeeker.h"
/*
 ==
 Main application entry point
 ==
*/
void main(int argc, char *argv[])
{
 vgWindow* window;
 float m_frameRate;
 float m_frameTime;
 float m_frameDelta;
 BOOL m_bUseFrame = FALSE;
 BOOL m_bUseFrameImage = FALSE;
 int m_nSkipFrames;
 int m_nCountFrames,i;

// init, define, and config the system

vgInitSys(); // initialize Vega

InitEWCM(); // initialize countermeasure module

vgInitSV(); // initialize SensorVision
vgInitSW(); // initialize SensorWorks

// ----- Add init functions for implemented modules -------------------------

InitEwImage(&m_bUseFrame,&m_bUseFrameImage); //init the image module
InitEwSeeker(&m_bUseFrame); //init the seeker module

// --

vgDefineSys(argv[1]); // read in the ADF

vgConfigSys(); // configure Vega

// ---- check if frames must be skipped -------------------------------------
 m_nSkipFrames = (int)vgGetProp(vgGetSys(), VGSYS_NUMSTAGES);
 m_nCountFrames = m_nSkipFrames-1;

 m_frameRate = m_nSkipFrames*vgGetProp(vgGetSys(), VGSYS_FRAMERATE);
 m_frameTime = pfGetFrameTimeStamp();
 m_frameDelta = 1.0f / m_frameRate;

 // -------- run 2 frames to get all systems ready -----------------------
 for (i = 0; i < 2; i++)
 {
 vgSyncFrame ();
 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 vgFrame();
 }

FOI-R--0709--SE

38

// ------- the real-time loop ---

 if (m_nSkipFrames > 1) // Always when using SensorVision
 {
 while (1)
 {

 vgSyncFrame ();

 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 m_bUseFrame = !(m_nCountFrames % m_nSkipFrames);
 m_bUseFrameImage =

((m_nCountFrames++ % m_nSkipFrames) == m_nSkipFrames-1);
 vgFrame();
 }
 }
 else // not possible with sensorvision
 {
 m_bUseFrame = TRUE;
 m_bUseFrameImage = TRUE;
 while (1)

{
 vgSyncFrame ();

 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 vgFrame();

 /* application specific code */
 }
 }
}

FOI-R--0709--SE

39

6.3 EwSeeker
The seeker module which has been adapted to the VEGA/SensorVision environment contains
several different seeker algorithms. Today these are Correlation [6], Centroid [7] and Reticle
[8]. All of these models has an origin in standalone programs and has been moulded to fit in
the VEGA/SensorVision environment. The missile is armed with the key ’a’ (arm), to lock the
missile point at the target with the mouse and launch the missile by pressing the ’f’ button
(fire).(see figure 30).

 (a) (b)

 (c) (d)

Figure 30 How the missile status is presented to the user (a) shows the seeker image
before the missile is armed, (b) shows the image after the missile has been armed (now
it is possible to point at the target), (c) the target has been pointed out by the user, (d)
the missile has been launched.

FOI-R--0709--SE

40

The GUI for the Correlation seeker is shown in the Figure 31. An instance is created and is
shown in the box beneath EwSeeker. An image from the Image module must be set and the
seeker type must be picked. Each seeker has a set of parameters which can be changed; the
parameters are the most relevant for each seeker and the default values are set at the
beginning.

Figure 31 The Vega panel in the EwSeeker module. This example shows the Correlation
parameters.

FOI-R--0709--SE

41

Table 3 Correlation parameters:

Parameter Description
Correlation mode What correlation algorithm to use (see

reference [6]).
Lambda Specify how the reference image (correlation

kernel) shall be updated by mixing the
reference image from the new target position
and the old reference mage (0 = only the new
image, 1 = only the old image).

Color band (Visual seekers) Specifies the color (red, green or blue) which
shall be used by the correlation on visual
images.

Frame Update Specifies how often the reference image shall
be updated.

Dimensions
 Target pos XY The target position (has no function today but

if the program extends to handling mass
simulations it will).

 Kernel size Specifies the correlation kernel size.
 Region of Interest Specifies the size of the search area in the

image.
Save Original image
Save Correlation image
Save Kernel image

select images that can be saved in an image
sequence. The three images which can be
saved are the unprocessed original image, the
correlation image and the kernel.

FOI-R--0709--SE

42

The GUI for the Centroid seeker is shown in the Figure 32

Figure 32 The Vega panels in the EwSeeker module. This example shows the Centroid
parameters.

FOI-R--0709--SE

43

Table 4 Centroid prameters (for extensive explanations see reference [7])

Parameter Description
Centroid mode Specifies the start mode the seeker has. (It is

possible to force the seeker to start with a
correlation mode but that is not
recommended).

Integration algorithm Specifies how the target position is calculated
after the extension of the target is discovered.
(Area Balance, Center of mass and Intensity).

Seeker mode Specifies how the target area and background
areas are defined (TV, Land or Ship).

Target contrast Specifies the target to be bright on dark
background or dark on bright background.

ECCM A simple Counter-CounterMeasure.
Color band (Visual seekers) specifies the color (red, green or blue) which

shall be used by the correlation on visual
images.

Save Original image
Save Agc image
Save Threshold image

Select images processed in the Centroid
seeker, so that they are saved. The three
images which can be saved are the
unprocessed original image, the agc
(automatic gain control) image and the
threshold image.

FOI-R--0709--SE

44

The GUI for the Reticle seeker is shown in the Figure 33

Figure 33 The Vega panels in the EwSeeker module. This example shows the Reticle
parameters.

FOI-R--0709--SE

45

Table 5 Reticle parameters (for more details see reference [8] and [9]):

Parameter Description
Revolutions per second Number of revolutions per second of the

reticle.
Time constant Many reticle seekers can only give an

estimate of the radial position of a target in an
image (angular position is more exact). To
automatically adjust the sensitivity to radial
position an automatic gain control (AGC) can
be used with a time constant.

Max steer signal A reticle seeker will give the angular position
and an estimate of the radial position of the
target. This means that the estimated radial
position can be to large and this can result in
a loss of track if the estimated radial position
is sent to the missile motion model (see
chapter 7). Therefore, the radial position sent
to the missile motion model can be
constrained to a maximum value.

Number of angles The signal from the reticle in the model is
obtained by image processing, using an
image of the scene in the seeker’s field of
view and an image of the reticle. The reticle
signal as a function of reticle angle is then
read from the processed image. The signal is
a discrete function with a limited number of
angles which is controlled by this parameter.

Offset angle To find the target position from the reticle
signal the signal has to be processed. This
process does not consider how the reticle is
oriented and therefore an offset might have to
be added to the calculated angular position of
the target. Presently, the offset angle should
always be zero since the image of the reticle
is created with the correct orientation. In the
future, and in the original stand-alone
program on which the Reticle seeker model is
based, it is possible to load an image of a
reticle and use that image in the seeker
model.

Rotate
Nutate

A reticle seeker can have a rotating (spin
scan) or nutating (conical scan) reticle. Select
either Rotate or Nutate.

FOI-R--0709--SE

46

Table 5 continued

Parameter Description
Use FFT In the Reticle seeker model two methods to

obtain the reticle signal as a function of angle
exist. One method is to rotate or nutate the
reticle over the background image and for
every angle multiply the intensities of the
pixels in the background image with the
corresponding pixels of the reticle image, sum
the intensities of all pixels in the resulting
image. An alternative method is to use FFT
(fast Fourier transforms) to speed up the
process.

Nutate radius If the seeker is a conical scan reticel then the
image of an object in the center of the seeker’s
field of view will move along a circle with a
radius from the centre of the reticle equal to
this parameter.

Rotated image For a spinning reticle when the FFT method is
not used the rotation of the reticle can use a
nearest neighbour approximation or interpolate.

Center frequency (1st BP filter)
Band width (1st)
Frequency (HP filter)
Frequency (LP filter)
Center frequency (2nd)
Band width (2nd)

Signal processing to obtain the target’s position
is made using a series of band pass (BP), low
pass (LP), and high pass (HP) filters.

Color band (Visual seekers) Specifies the color (red, green or blue) to be
used by the tracker on visual images.

Fixed Image size
 Image size X
 Image size Y

When the FFT method is used in the
calculations, the size of the images has to be a
multiple of two (2, 4, 8, 16, 32, 64, 128, 256,
512, …) in both the horizontal and vertical
direction. If this is not the case the Reticle
seeker model can change the size (by removing
or adding pixels on all sides of the image).

Display in seeker channel
 Draw reticle image An image of the reticle can be displayed in the

seeker channel on top of the background image
after the missile has been armed and locked but
before it has been fired.

 Draw signal before filters The reticle signal can be displayed in the
seeker window after the missile has been
armed and locked.

FOI-R--0709--SE

47

Table 5 continued

Parameter Description
Type of reticle
 Rising sun

 Number of spokes 8 in the images above
 Radius 1 in the image to the left and 0.5 in the image

to the right
 FM1

 Number of spokes 8 in the images above
 Radius 1 in all images above
 Inner radius 0.224 in the first image 0.424 in the last three
 Radius of inner structure 0.069 in the two first images above 0.169 in the

last two
 Distance from centre to
 inner structure

0.138 in the three first images above 0.238 in
the last

 NutAm1

 Number of radial fields 2 in the first image above 3 in the second

image above
 Radius 1 in all image above
 1:Number of spokes 2 in all images above
 2:Number of spokes 4 in all images above
 3:Number of spokes does not exist in the first image above, 8 in the

last image

FOI-R--0709--SE

48

7 Missile motion
The Vega EwMotion module provides an easy to use library for real-time missile motion and
is suitable for inclusion in a Vega application. The module includes interfaces for different
types of motion models, a general motion model and more system specific motion models. A
bridge to use the ACSL (Advanced Continous Simulation Language) [10] models are under
development. The ACSL models are detailed models of specific threat systems and are
developed in another project at FOI (technical threat system analysis). The second class
draws a graph of error angle and distance, between missile and target, over time. It also shows
when countermeasures are launched. The parameters and positions of missile and target can
be logged.

A module consists of a collection of classes each represented in LynX by an icon panel. The
EwMotion (Electronic warfare Motion) module currently consists of 2 classes (panels)
EwMotion and EwGraph as shown in figure 34.

Figure 34 Icon panel from the EwMotion module

7.1 Application Interface

The EwMotion module includes an API to C/C++ language callable routines for using
EwMotion functions within Vega. In order to build Vega EwMotion applications, an
application must include the file EwMotion.h, and link with the EwMotion library. For
Windows users, psEwMotionS.lib should be used for static executables and psEwMotion.lib
(psEwMotion.dll) should be used for dynamic executables.

7.2 Initializing the EwMotion Module
If Vega is to recognize the EwMotion classes, an application must initialize the module after
calling vgInitSys to initialize Vega. The function InitEwMotion initializes module classes for
use with Vega. One parameter is to be sent with the initialization, m_bUseFrame.
m_bUseFrame is used to specify which frames to use. It is the pipelining of Vega that causes
this management of frames. Otherwise the frame that Vega is about to render and the actual
frame seen are separated by one or more frames. This can cause serious problems when the
image processing results in fed to the movement model. A VG_FAILURE is returned if an
error has occurred, and VG_SUCCESS is returned if not. Once this initialization has been
done, an ADF containing EwMotion class instances can be parsed by sending the ADF to
vgDefineSys.

FOI-R--0709--SE

49

#include <vg.h>
#include <vgperf.h>
#include <pf.h>
#include <prmath.h>
#include "vgwin.h"

#include "ewCm.h"
#include "ewImage.h"
#include "ewSeeker.h"
#include "ewMotion.h"
/*
 ==
 Main application entry point
 ==
*/
void main(int argc, char *argv[])
{
 vgWindow* window;
 float m_frameRate;
 float m_frameTime;
 float m_frameDelta;
 BOOL m_bUseFrame = FALSE;
 BOOL m_bUseFrameImage = FALSE;
 int m_nSkipFrames;
 int m_nCountFrames,i;

// init, define, and config the system

 vgInitSys(); // initialize Vega

 InitEWCM(); // vgInitFx(); is included

 vgInitSV(); // initialize sv
 vgInitSW();

// ----- Add init functions for implemented modules -------------------------

 InitEwImage(&m_bUseFrame,&m_bUseFrameImage); //init the image module
 InitEwSeeker(&m_bUseFrame); //init the seeker module
 InitEwMotion(&m_bUseFrame); //init the motion module
// --

 vgDefineSys(argv[1]); // read in the ADF

 vgConfigSys(); // configure Vega

// ---- check if frames must be skipped -------------------------------------
 m_nSkipFrames = (int)vgGetProp(vgGetSys(), VGSYS_NUMSTAGES);
 m_nCountFrames = m_nSkipFrames-1;

 m_frameRate = m_nSkipFrames*vgGetProp(vgGetSys(), VGSYS_FRAMERATE);
 m_frameTime = pfGetFrameTimeStamp();
 m_frameDelta = 1.0f / m_frameRate;

 // -------- run 2 frames to get all systems ready -----------------------
 for (i = 0; i < 2; i++)
 {
 vgSyncFrame ();
 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;

FOI-R--0709--SE

50

 vgFrame();
 }

// ------- the real-time loop ---

 if (m_nSkipFrames > 1) // Always when using SensorVision
 {
 while (1)
 {

 vgSyncFrame ();

 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 m_bUseFrame = !(m_nCountFrames % m_nSkipFrames);
 m_bUseFrameImage =

((m_nCountFrames++ % m_nSkipFrames) == m_nSkipFrames-1);
 vgFrame();
 }
 }
 else // not possible with sensorvision
 {
 m_bUseFrame = TRUE;
 m_bUseFrameImage = TRUE;
 while (1)

{
 vgSyncFrame ();

 pfFrameTimeStamp(m_frameTime);
 m_frameTime += m_frameDelta;
 vgFrame();
 /* application specific code */
 }
 }
}

FOI-R--0709--SE

51

7.3 The EwMotion module

The LynX EwMotion panels contain widgets for setting the parameters that define the
Motion. If you are unfamiliar with how to use the LynX interface, consult the Vega LynX
User's Guide before proceeding.

The EwMotion module currently consists of 2 classes (panels) EwMotion and EwGraph.

FOI-R--0709--SE

52

7.4 EwMotion

Figure 35 The EwMotion panel with motion model Javelin selected.

The EwMotion panel (see Figure 35) specifies the seeker, the observer and the object
connected to the motion. The motion model must also be picked.

FOI-R--0709--SE

53

Table 6 EwMotion Javelin Parameters (see reference [11] for more details)

Parameter Description
Max Change Specifies how much the missile can turn each

frame.
K1 A constant
Speed The missile speed in m/s.
Max g The maximum g-force allowed in m/s2.
Initial Pitch The start pitch for the missile launch.
Peak Altitude The top of the missiles flying path.
Descend Pitch The pitch the missile is descending toward

the target.
Predict Pitch Sometimes the target will move out of the

seekers field of view to fast. In such cases the
missile motion model can predict the pitch
angle based on how the pitch has increased
during the last frames.

Hund Curve Makes the missile always trying to fly
straight at the target.

Flying Mode Specifies if the missile first shall elevate to a
certain altitude (MODE_TOP) or if it shall
begin towards the target almost from the
beginning (MODE_DIRECT).

FOI-R--0709--SE

54

7.5 EwGraph

Figure 36 The EwGraph panel.

The EwGraph panel (see Figure 36) specifies in which channel the graph is drawn and which
objects to use when calculating the values shown in the graph.

Table 7 EwGraph Parameters

Parameter Description
Observer (missile) The observer connected to the missile.
Object (Target) The target
Channel The channel which the graph is drawn in.
EwMotion The motion instance which is connected to

the missile.
EwCM The countermeasure instance connected to

the target.
Save Log file
Save Missile Coords.
Save Target Coords.

To save logs with graph data, the position of
the missile, and the position of the target as a
function of time.

FOI-R--0709--SE

55

8 Summary and conclusions
Simulation is a powerful tool for assessing the electronic warfare duel. This document has
described a new framework for EW duel simulations, in the visual/IR wavelength range,
called EwSim. EwSim is based on the commercial product, Vega, with the plug-in for IR
imagery, SensorVision (the plug-in SensorWorks can be also used for sensor performance).
Several in-house modules have been adapted to this framework in order to get EW-simulation
capabilities. EwSim has real time (or close to real time) simulation capacity which means that
it is possible to extend the use of the framework to include EW training of military personnel.

The EwSim is not an application but rather a set of modules that can easily be tailored to an
application. An existing application which has made use of the modules in EwSim is an
application for flare tactics on helicopters.

Future work with EwSim should include improvements of the models. For instance EwCM
could be extended and include simulation of multispectral waterfog. EwCmLaser could
include the effect of a laser jammer on a realistic imaging sensor, or intensity modulations in
order to jam a reticle seeker. It should also be possible to include a realistic fine tracker in a
DIRCM simulation, either based on IR or retro-reflection. The functionality of EwSeeker
could be improved by developing other types of seekers/trackers. A target seeker based on
rosette scanning is under development. Missile dynamics from ACSL models is a possibility.
However, the connection between ACSL and EwSim has not been fully tested and more work
is needed in order for this connection to work more seamlessly. An improved generic missile
dynamic model is also under development.

A missile might be limited to the wavelength range covered by EwSim (visual/IR). However,
an enemy might have access to more than one type of missile. Furthermore, future missile
seekers might have multi-sensor capability which accentuates the need for a simulation
environment that can handle an extended wavelength range (visual-IR-radar).

The components of EW-suites are expensive and it is not always possible to equip every
platform with every component of the suite. Instead it is likely that future systems on a
battlefield will have the components of the EW-suite distributed on many platforms and rely
on a communication system to share information. To be able to simulate a distributed EW-
suite it is therefore essential to include models of the communication link in the simulation.

FOI-R--0709--SE

56

9 References

[1] C. Hedberg, L. Tydén och C. Wigren, Generell metod för simulering av elektro-optiska telekrigdueller,

FOA rapport FOA-R--99-01160-616--SE (1999)
[2] http://www.multigen.com
[3] http://www.cg2.com
[4] LynX User’s Guide
[5] Christer Wigren och K. Ove S. Gustafsson, Implementering av laserstörmodell, FOI-rapport FOI-R--0249--

SE, November 2001.
[6] Lars Tydén och Lars Berglund, Laborationshandledning Korrelationsmålföljare, FOA-rapport FOA-D--97-

00335-616--SE, Augusti 1997.
[7] Lars Berglund and Carl Hedberg, Laborationshandledning Centroidmålföljare, FOA rapport FOA-D--97-

00335-616--SE, Augusti 1997.
[8] Olsson, Simulering retikelmålsökare Metodbeskrivning, FOA rapport C 30685-8.3, 1992.
[9] Christer Wigren, Realtidssimuleringar av målsökare och motmedel (rök, vattendimma) i en komplex

bakgrundsmiljö, FOI-rapport FOI-R--0694--SE, December 2002.
[10] ACSL Reference Manual Edition 11, 1999: AEgis Simulation, Inc
[11] Christer Wigren, Pansarvärnsrobot mot motmedelsskyddade stridsfordon - en simuleringsstudie, FOI

rapport FOI-R--0261--SE

