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Chapter 1

Introduction

The work presented here is a master’s thesis in engineering, done at the Swedish Defence
Research Agency (FOI), Division of Systems Technology. Supervisor at FOI was Anders
Lennartsson and at the Royal Institute of Technology (KTH), Xiaoming Hu.

1.1 Project Background

The rationale behind the project under which this work has been conducted is to examine how
autonomous vehicles can co-operate with each other. The vehicles do not necessarily need to
be of the same kind, there can be some ground vehicles which are going to co-operate with
aerial vehicles or maybe some underwater or surface vehicles.

The vehicles are equipped to communicate with each other and a basestation. Commercial
Of The Shelf, COTS, products, are going to be used as much as possible.

For different missions the vehicles might need different equipment, such as digital cam-
era(s) or other sensors. To obtain this, each vehicle’s equipment is planned to be easily
exchanged. The vehicles in a group may not need the same equipment, they will be able
to co-operate and exchange information with each other to complete the mission. All the
vehicles will most likely have a GPS-receiver, since this is the positioning system used in this
project.

An immediate problem with autonomous vehicles is the ability to navigate to a predeter-
mined target. Groups of autonomous vehicles have the additional difficulty of being able to
travel in a formation well suited to the circumstances, e.g. terrain. Avoiding collision between
members of the group is also important.

Some events that must be considered are:

• What happens if the base loses contact with a vehicle?

• What happens if a vehicle is taken out, for example by an enemy? And in that case,
can the other vehicles still communicate with each other?

Of course there are other things that need to be addressed as well.

1.2 This Thesis

In this thesis the problem of controlling a wheel-based mobile platform is investigated, which
is a well studied topic, see for example [4, 11, 1, 3]. The main task is to develop an autopilot
for a single vehicle, for the particular navigation task of moving the shortest distance to
the predetermined target, given the conditions imposed by its kinematical and dynamical
properties. The vehicle used in this case is a radio-controlled car, which can be read about in
section 2.2.

A model was first developed in Simulink, MATLAB, to see how the vehicle behaved on
certain signals, and if it found its way to the predefined target. The algorithms of this model
were then coded in C++, to be executed on a real vehicle. The program can also be used in
computer simulations to see if and how it works. The intention was to use the program on the
vehicle itself, this was not performed because of lack of time. The RC-car was supposed to
be moving on an open relatively flat field with no obstacles.
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1.3 Overview

The disposition of this report is as follows.

Chapter 2 Contains basic information about how the problem was formulated, how the sys-
tem of co-ordinates for the world and the vehicle was defined. The vehicle model, both
kinematic and dynamical, is described as well as the vehicle platform.

Chapter 3 Describes how simulation and analysis of the problem was done in Simulink, a
simulation-package of MATLAB.

Chapter 4 Includes a description of the implementation. How it all worked out when tests
were performed.

Chapter 5 Describes the conclusions that has been drawn from this work.

Chapter 6 Explains some problems that can and probably will be taken care of in the near
future. It also contains a bit about the future development of partly the radio-controlled
car, partly the system of co-operative robots.

Appendix A Focuses on how this implementation is coded in C++. How the program is built
up, and the parts it has been split up in.

Appendix B Gives a short description about the satellite positioning system used in the pro-
ject, the GNSS Global Navigation Satellite Systems, commonly called GPS, Global
Positioning System.
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Chapter 2

Modelling

The world is defined as a fixed system of co-ordinates, where the x-axis is headed north, and
the y-axis is headed east. This is a very common way of explaining the co-ordinates of the
world. The vehicles system of co-ordinates is fixed in the middle of its rear axle. The system
is illustrated in figure 2.1.

δ

θ

ϕ

x

y
Y

X

TP

Figure 2.1: The system of co-ordinates

The figure also explains some angles defined as follows:

θ : The direction to the target, TP.

ϕ : The direction of the vehicle.

The difference between these angles, i.e.ϕ − θ, is calculated to make decisions about the
steering angle,δ. If the difference in directions are greater than the maximum steering angle,
the car turn around with maximum steering angle toward the target with a small velocity.
Then the steering angle decreases and when it is relatively small the car increase the speed.
The speed is then decreased when the vehicle are within a certain range of the target, this is
made to find the target and get as close as possible.

2.1 Vehicle Model

A kinematic model is used in this thesis, and it is described in more detail in section 2.1.1. A
dynamical model can be more precise and useful. Such a model is described in section 2.1.2,
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but it is not implemented in this thesis, it is left for future developers.
Figure 2.2 shows the vehicle approximated as a single track model, [6, 1]. The model is

obtained by grouping the front and the rear wheels together as two single wheels, whereδ is
the steering angle,v the longitudinal velocity,L the distance between the front and the rear
axle andR is the driving radius aroundICR, Instantaneous Center of Rotation, [2, page 50].

δ

δ

v

R

L

ICR

Figure 2.2: The Single Track Model

2.1.1 Kinematic Model Figure 2.1 shows that the position of the vehicle is defined by
the co-ordinates(x, y) of the rear axle midpoint, and the angleϕ specifying its orientation
relative to the north-axis. We defineξ describing the robot placement, [2, page 48]

ξ ,

 x
y
ϕ

 . (2.1)

Then the kinematic model that we are going to exploit is, [5, page 237]

ξ̇ =

 v cos ϕ
v sin ϕ

ω

 , (2.2)

whereω is the angular velocity.
Now since we have a controlled steering angle,δ, we get the front-wheeled car model that

looks like, [4, page 14]

ẋ = v cos ϕ

ẏ = v sin ϕ (2.3)

ϕ̇ =
v

L
tan δ,

whereL is the length of the vehicle.
Decisions about velocity and steering has to be made continuously when the vehicle is

moving. To make these decisions some calculations has to be done.
First of all we need to know the direction to the target, denotedθ. And since the position

of the vehicle,(xv, yv), and the target,(xT , yT ), are known, we getθ as

θ = atan2(Ñy, Ñx), (2.4)

whereÑx = xT − xv andÑy = yT − yv. Now the difference between the orientation of the
vehicle and the direction to the target gives us the necessary information about where to go.
The direction in which the vehicle is moving is observed from the information collected with
the GPS-receiver and is denotedϕ. Therefore we get the differenceÒ as

Ò = ϕ − θ. (2.5)
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If the difference is greater thanπ turn right, see equation 2.7, otherwise turn left, equation 2.6.

0 ≤Ò ≤ π (2.6)

π <Ò ≤ 2π. (2.7)

So, now we know which direction to go in, but we do not know the steering angle. The
steering angle sent to the car is actually the difference in directions,Ò. But since the vehicle
has a limitation of steering range, this has to be considered. This is however quite easily done.
If the difference in directions exceeds the maximum steering angle,δmax, then the maximum
steering angle is sent to the car, the difference in angles is otherwise sent to the car as steering
signal.

In this model we use two velocities that are decided due to the steering angle and the
distance to the targetD, equation 2.8. If the steering angle exceedsδmin, we go slow, else we
go a bit faster. The slower velocity is also used when we are relatively close to the target.

D =
√

Ñx2 + Ñy2 (2.8)

To avoid rolling we need to control the velocity and acceleration. Denote the critical
acceleration asκ, and the perpendicular acceleration asa. Now κ needs to be greater thana,
(κ > a), and therefore, since

a =
v2

R
(2.9)

tan δ =
L

R
, (2.10)

the condition forv is

v <

√
Lκ

tan δ
. (2.11)

If we now put the maximum steering angle in to equation 2.11(δ = δmax), we get the
maximum speed to avoid rolling. Since we need a safety margin this velocity is multiplied by
a factor less than one, and this new velocity is used as the lower velocity in this thesis.

If the steering angle are within certain limits, say±δnarrow, we would like to increase the
speed. The speed used in this case is computed by puttingδnarrow into equation 2.11. And of
course this velocity also need to be multiplied by the factor mentioned above.

2.1.2 Dynamical Model As pointed out above, the dynamical model is much more ac-
curate than the kinematic. To analyze the control algorithm, we use the so called single track
dynamical model, [5, 1]. There are some slight changes from figure 2.2, these are illustrated
in figure 2.3. This model is based both on the balanced forces and the torque conditions.

v

β

f r ff

CM

lfrl

β
δ

Figure 2.3: The Single Track Dynamical Model
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As seen in figure 2.3, the side forces acting on the wheels areff andfr. Furthermore, if
we letfx andfy be the forces acting on the center of mass,CM , andmz be the torque, the
force-torque balance for three degrees of freedom in the horizontal plane gives us that, [6] −mv(β̇ + r) sin β + mv̇ cos β

mv(β̇ + r) cosβ + mv̇ sin β
Jṙ

 =

 fx

fy

mz

 , (2.12)

wherer is the yaw rate,v the longitudinal velocity andβ the side slip angle between the
vehicle center line and the velocity vector~v at the center of gravity. The mass ism andJ the
moment of inertia around the vertical axis.

The tire characteristics can be approximated by, [4, page 100]

ff = c∗
fµ

(
δf − β − lfr

v

)
fr = c∗

rµ

(
−β +

lrr

v

)
,

(2.13)

wherec∗
f andc∗

r are the front and rear cornering stiffness of the car, andµ is the adhesion
constant, depending on the surface of the road. Typical values ofµ are, [1]

µ = 1 dry road
µ = 0.5 wet road
µ = 0.15 ice.

In the equations above we uself andlr, these are the distances between the center of mass
and the front and rear wheels respectively, shown in figure 2.3. Letc∗

fµ = cf andc∗
rµ = cr

for easier calculations.
A projection of the wheel forces onto the center of gravity gives the forces inx- and

y-direction as

fx = −ff sin δf

fy = ff cos δf + fr,
(2.14)

and the torque can be computed as

mz = ff lf cos δf − frlr. (2.15)

The motion of the center of mass(x, y) of the vehicle is defined as

ẋ = v cos(ϕ + β)
ẏ = v sin(ϕ + β).

(2.16)

Under the assumptions that the velocity is constant and that the side slip angle is small,
we get a model that can be written as, [10]

ẋ = v cos(ϕ + β) (2.17)

ẏ = v sin(ϕ + β) (2.18)

β̇ + r =
ff + fr

mv
= a11β + a12r + b11δf (2.19)

ϕ̇ = r (2.20)

ṙ =
ff lf − frlr

J
= a21β + a22r + b21δf , (2.21)

where

a11 =
−(cr + cf )

mv

a21 =
(crlr − cf lf )

J

b11 =
cf

mv

a12 =
(crlr − cf lf )

mv2

a22 =
−(crl

2
r + cf l2f )
Jv

b21 =
cf lf
J

.

(2.22)
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This is a simplified model of the vehicle, since we have the assumptions about the constant ve-
locity and the small side slip angle. But this model is satisfying enough to the radio-controlled
car. To operate at moderately high speeds, the dynamical model is better used than the kin-
ematic. This model can be improved to include various velocities. This improved model is
then better to use if the terrain is an open field with obstacles. The model is more accurate in
the maneuvers.

2.1.3 Stability Analysis An appropriate dynamical model, 2.1.2, has been set up and we
can now proceed by showing that the algorithm is stable. If we write the control algorithm as
δf = −k(ϕ− θ), wherek should be chosen to reflect the constraint of the maximum steering
angle (sinceϕ − θ ∈ [−π, π]), we can calculate the errors in orientationÒ and yaw ratee by
letting, [4, Paper C]

Ò = ϕ − θ (2.23)

e = −a22

b21
r − δf , (2.24)

we can now use equation 2.20 to obtain

Ò̇ = ϕ̇ − θ̇ = k
b21

a22
Ò − b21

a22
e − θ̇,

sincer = (kÑϕ − e)b21/a22. Equation 2.21 can be used to compute

ė = −a21a22

b21
β +

(
a22 − k

b21

a22

)
e + k2 b21

a22
Ò − kθ̇.

Finally we calculateβ̇ using equation 2.19,

β̇ = a11β − (a12 − 1)
b21

a22
e +

(
(a12 − 1)

b21

a22
− b11

)
kÒ.

From this we get the error model
χ̇ = Aχ + bθ̇, (2.25)

whereχT = (β, Ò, e), and

A =

 a11 k(a12 − 1)b21/a22 − kb11 −(a12 − 1)b21a22
0 kb21/a22 −b21a22

−a21a22/b21 k2b21/a22 a22 − kb21a22

 , b =

 0
−1
−k

 .

To show that matrix A has eigenvalues with negative real part, MATLAB was used. Different
values ofv andk was tried and as long asv andk is greater than zero, the eigenvalues has a
negative real part.

2.2 Platform

The platform that was supposed to be used in the project was as mentioned before a ra-
dio-controlled car. It is a relatively cheap platform to try out som basic algorithms with, and
it is quite easy to use and it still fulfills its tasks.

The vehicle basically consists of:

• Four wheels, two steerable at the front axle and two fixed wheels at the rear axle.

• One engine to drive the vehicle forward and backward, controlled by a servo.

• One servo to control the steering of the two frontwheels.

• A batterypack, consisting of two 7.2[V], 3000[mAh] NiMH accumulators.
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Beside this the vehicle consists of the following equipment that are being used in this
thesis:

• One small computer, Pentium-class PC-104 size, used for control and information pro-
cessing.

• One GPS-receiver to collect the position and velocity of the vehicle.

• Wireless Local Area Network, WLAN 802.11b for short and medium range commu-
nication with the base and other vehicles.

• A Bluetooth device for short range communication.

• One digital camera.

• Two USB-ports for extra sensors and other equipment.

• Accumulators for the computer and sensor equipment.
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Chapter 3

Simulation

To determine how the vehicle behaves when control signals are transmitted to it, a simulation
in Simulink, MATLAB, has been developed. The model is built up on block diagrams where
the steering angle and the velocity are controlled.

3.1 Basics About the Simulation

Figure 3.1 is an overview of the whole system developed in Simulink. The subsystems can
be viewed and will be explained in the following sections.

Initiation of some values are needed in the simulation, these values are the position and
direction of the vehicle and the position of the target. These are set to some reasonable values,
see MATLAB-code 3.1.

MATLAB-code 3.1 Vehicle Information
% Declaration of constants% Declaration of constants% Declaration of constants
LowVelocity = 2; %[m/s]
HighVelocity = 5; %[m/s]
TargetPosition = [100 200]; %[m]
TargetPosition2 = [250 150]; %[m]
MaximumSteeringAngle = pi/6; %[rad]
SmallMaximumSteeringAngle = pi/8; %[rad]
DistanceBetweenAxles = 0.4; %[m]
RangeLimit = 5; %[m]
DomainDegree = 2;

% Define initial conditions% Define initial conditions% Define initial conditions
InitialVehiclePosition = [0 0]; %[m]
InitialVehicleDirection = 0; %[rad]
InitialSteeringAngle = 0; %[rad]

3.1.1 Vehicle –Target Separation The subsystemVehicle–Target Separationis illustrated
in figure 3.2. The block simply transforms from cartesian to polar co-ordinates, that gives the
direction and the distance from the vehicle to the target.

The vehicles position and the targets position can be used to compute the directionθ to
the target

θ = atan2(u[2], u[1]), (3.1)

whereu[1] = Ñx andu[2] = Ñy, see also equation (2.4). All this is measured in the above
mentioned fixed co-ordinate system, figure 2.1. As the vehicle moves, new directions are
being computed. These computations are being made to decide about the steering angle. This
block also computes

D = hypot(u[1], u[2]), (3.2)
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Figure 3.1: Vehicle Control
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Figure 3.2: Vehicle–Target Separation

which simply is the Pythagoras’ theorem to calculate the distanceD to the target, this is also
shown in equation (2.8). The distance is used to decide the velocity of the car and when to
enable the subsystem that decides when to stop the simulation, this subsystem will be further
explained in section 3.1.5.

3.1.2 Turning Left or Right? A decision is about to be made: Are we going to turn left or
right to reach the target? This decision can be made by computing the difference in directions,
equation (2.5). The difference are supposed to vary between0 and2π. To be sure about this,
the difference in directionsÒ are sent to a function in MATLAB, see MATLAB-code 3.2.
The function adds or subtracts2π until the domain is reached and outputs the steering angleδ.

MATLAB-code 3.2 Angle Domain
functionfunctionfunction delta=AngleDomain(Theta)
delta=Theta;
whilewhilewhile( (delta<0) | (delta>2*pi) ),

ififif delta>2*pi,
delta=delta-2*pi;

elseifelseifelseif delta<0,
delta=delta+2*pi;

endendend
endendend

This angle is then sent to the block calledSteering Anglefigure 3.3, that computes the steering
angle to send.

Figure 3.3: Steering Angle

Since the vehicle has a limitation of possible steering angles, there must be some kind
of control that the steering angle sent to the vehicle is within these limits. This is done by a
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switch as shown in figure 3.3. When the difference in directions exceeds the maximum steer-
ing angle,δmax, the maximum steering angle are sent to the vehicle, otherwise the difference
in directions are sent as steering angle.

Then the decision is about to be made about whether to turn left or right. If the difference
in directions are less thanπ, then the signal is multiplied by−1, and therefore a left turn is
made, otherwise we will go right, this is what the second switch in the figure does.

3.1.3 The Vehicles Position and Direction The subsystemVehicle Position, figure 3.4
computes the new position of the vehicle and also the new direction.

The vehicles position is denoted(x, y), wherex is the south-northposition andy is the
west-eastposition, as showed in figure 2.1. The vehicles orientation in this fixed co-ordinate
system is denotedϕ.

By integration of equation 2.3 the vehicles position and direction is calculated. This is
in Simulink easily done by the blockIntegrator that is a predefined block in Simulink. The
position of the vehicle is printed with the block calledXY Graph, then we can see the route
of the vehicle during the simulation.

To compute the direction of the vehicle, the distance between the axles and the velocity
are needed. The distance between the axles are measured and set as an initial value. There are
two different velocities used in this thesis, one for large steering angles and one for smaller
steering angles. The lower velocity is used when the target is being located and when we
are close to the target. The high velocity is used otherwise. These velocities were in the
simulation set to 2 and 5 respectively.

3.1.4 Animation of the Vehicle The system is animated in a final block, figure 3.5Anim-
ation of Vehicle, that is predefined in Simulink. This animation concists of a missile, as the
vehicle, and a target that has been put out.

This block requires three inputs, the position of the target, the position of the vehicle and
the orientation of the vehicle.

Then for each calculation the model is updated and redrawn. By this we are able to see
how the vehicle behaves in the system.

3.1.5 Guidance When are we going to stop the simulation? This is done by the block
Guidance, see figure 3.6. First the block is enabled when we are within a certain predefined
range of the target. Then if the distance to the target starts to grow, the simulation stops.
When this is done the distance by which we missed the target is calculated.

3.2 Two Examples of Simulation

Two different kind of simulations has been developed. The first one describes how the vehicle
is taking the closest way to a point A, and the second one the closest way to point B via point
A. There are some minor changes between the simulations but these will be explained in the
sections below.

3.2.1 Closest Way To Point A To take the vehicle the closest way to point A, the target,
is the main task of this thesis. The simulation is based on the system described above. To
find the closest way we first need to know the initial orientation of the vehicle. This and the
known current vehicleposition and the targets placement is used as initial conditions in the
system above.

In figure 3.7(a) we see the initial conditions in the simulation, the vehicles position and
direction and the targets position. Further, figure 3.7(b) shows how the vehicle steers toward
the target with maximum steering angle, and in figure 3.7(c) we go straight toward the target.
In figure 3.7(d) we have reached the target.
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Figure 3.4: Vehicle Position
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Figure 3.5: Animation of Vehicle

Figure 3.6: Guidance

(a) (b)

(c) (d)

Figure 3.7: Simulation sequences

3.2.2 Closest Way To Point B via Point A In this second simulation, the vehicle is sup-
posed to go from its initial position to point B. But before it goes to point B, it has to go
via point A. This is quite easily fixed since the basics is already done as above (3.2.1). The
difference is that when the first point is reached, a new targetposition has to be defined. The
whole system can be viewed in figure 3.8.

There are some slight changes that has to be done with the blockGuidancefrom sec-
tion 3.1.5 above. All changes are about the targetposition and when to stop the simulation.
We go toward the first target as in the previous section (3.2.1). When we are within limit of
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Figure 3.8: Vehicle Control for B via A-mission
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the first target we send another target position to the system. So when we reach the first target
we look for the second one and turn towards that one. The simulation then stops for the same
reason as in 3.2.1 when we reach the second target

The simulation can be viewed in figure 3.9. As in the previous case the first figure shows
the vehicles position and orientation, it also shows the first target point to be reached. Fig-
ure 3.9(b) pictures when the vehicle is moving toward the target. Further, in figure 3.9(c) we
can see how the first target is reached. Then a second target position is sent to the system.
This is in Simulink solved by putting a switch into the system.

After reaching the first target a subsystem is enabled. The reason for this system is to
know when to stop the simulation. The simulation stops for the same reason as in the first
simulation, that is when the distance to the target starts to grow.

The vehicle continues its journey toward the second target. Finally, in figure 3.9(d) we
can see how the second and final target is reached.

(a) (b)

(c) (d)

Figure 3.9: Simulation sequences
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Chapter 4

Implementation

The program that has been developed in C++ has been implemented both for use in simu-
lations and real runs on the vehicle. Since the model does not contain any dynamics of the
vehicle, the tests on the RC-car are going to be performed in an open flat field and in the
simulation they were performed in open terrain.

In appendix A there is a short description about how the program was developed in C++.

4.1 Implementation on the Computer

The implementation on the computer was done as an extension to software developed by Emil
Salling at FOI. This program was used to see if the vehicle behaved as it should.

When the implementation was done on the computer, three different simulations were
performed. The first one found the closest way to point A with no consideration to the final
orientation of the vehicle. The second one however found the closest way to point A and
placed itself in a predetermined direction at that position. The third simulation chased another
vehicle or moving target around until they ended up on the same place.

4.1.1 Closest Way to Point A With No Consideration to Final Orientation The first
mission is to take the vehicle from its current position to a predetermined fixed position with
no consideration to the final orientation of the vehicle. This is done due to the model presented
in appendix A.1. The vehicle got to the decided position where it stopped.

4.1.2 Closest Way to Point A With Consideration to Final Orientation The previous
model does not take into consideration the final orientation of the vehicle. Suppose we would
like to go to a point and from that place look in a predetermined direction and the camera is
rigidly attached to the vehicle. We then need to make some minor changes to the model. This
part has also been coded in C++, and this can be viewed in appendix A.2.

Let R denote the minimum turning radius for the vehicle. Then make two circles with
radiusR around the final position of the vehicle as in figure 4.1. To find the center of the
circles, we need to express the final orientation as a vector. The perpendicular vector to this
points toward the center of the circle. Now the vector from the final position to the center
of the circle can be obtained by multiply the perpendicular vector by the radius of the circle.
This vector is added or subtracted to the target vector, to receive the two circles. To decide
which one of these to aim for, the distances from the vehicle to the circles are obtained, the
circle with the shortest distance is the one to aim for.

When the decision about the circle has been made, we should find the tangent(xp, yp) to
this circle from the vehicles current position(xv, yv) (see equation 4.1–4.2 and figure 4.2).
The two equations (4.1–4.2) are solved by Mathematica and the result is given by equa-
tion 4.3–4.4. Now the car will go toward that point instead of the target position(xT , yT ).

vpc · vpc = R2 (4.1)

vvp · vpc = 0, (4.2)

wherevpc is the vector between the tangent point and the center of the circle andvvp the
vector from the vehicle to the tangent point.
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Figure 4.1: Control of Final Orientation
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whereR is the radius of the circle with centre at(xc, yc), Ñxvc = xv − xc, Ñyvc = yv − yc,
Ñxpc = xp − xc andÑypc = xp − xc.
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Figure 4.2: Explanation of Variables

As can be seen in equation 4.3 and 4.4 there is a±- or ∓-sign, this is because there
is two tangent points to each circle, we need to find out which one of these points to aim
for. We should aim for the tangent point that coincide with the direction of the circle. Let
vT c be the vector from the final target position to the center of the circle andvT denote the
final orientation of the vehicle. In equation 4.5 it can be seen that the vector products are
compared. If they have the same sign the equation will return a positive value which implies
that the vector products coincide and the correct tangent point was choosen, if they have
different signs the equation will return a negative value and the other tangent point is the
correct one to aim for.

vpc × vpv

vT c × vT
(4.5)

When this tangent point is reached we send the true final position to the system, the vehicle
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now goes toward this point with more or less the maximum steering angle. Then the car end
up in the correct position with the predetermined final orientation of the vehicle.

The path computed above are made of circular arcs tangentially connected by line seg-
ments, [8], but this is only locally optimal. The curvature profile of this path is not continuous.
To follow the path precisely, the vehicle must stop and reorient at each curvature discontinu-
ity.

For this project the model are good enough, but it can be improved by doing the curve
continuous, [9, 7]. Optimal paths are proved to be made of line segments, circular arcs and
pieces of clothoid1.

4.1.3 Chasing a Moving Target The algorithms does not only work with fixed targets,
without modification it can also be applied to the case of following or chasing a moving target.

A moving target (in this case an armoured car) was controlled via the keyboard, and the
other vehicle was controlled by the developed model. Then our vehicle chased the armoured
car until they ended up on the same place, then they stopped at that position. This case was
solved by the fact that the targets position is continuously updated, and by that the direction
to the target is updated. There is however a limitation to this problem that the chasing vehicle
has to have a greater velocity than the chased one. Otherwise the chasing vehicle will not be
able to catch up, but will still follow the target.

4.2 Implementation on the Radio-controlled Car

The intention was to implement the program on a radio-controlled car, but there was no time
for that. The program is supposed to work on the RC-car without any major changes since
simulations has been performed. The schematic view of the car can be seen in figure 4.3.
The computer (PC104 in the figure) is going to be programmed with the code presented in
appendix A. The car will then be able to perform different tasks such as those presented in
the previous section (4.1) that was simulated.

1A clothoid is a curve whose curvature is a linear function of the arc length.
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Figure 4.3: Schematic view of the car
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Chapter 5

Conclusions

During this project an autopilot for unmanned ground vehicles was developed. The model
was first simulated in Simulink, MATLAB and then coded in C++. A radio-controlled car
were supposed to be used as platform to try out the model, but there was no time for that. The
implementation was performed on the computer to see how it worked out. The RC-car that
was going to be used is equipped with a computer to handle the program and information.

GPS was used as a navigation sensor from which position, velocity and course can be
observed after some processing of the received data to control the vehicle. The vehicle was
also equipped with some USB-ports to add other sensors to the system. A digital camera was
mounted on the vehicle to reconnoitre the terrain and in future development this will be used
to avoid obstacles.

The model was implemented on the computer and a simple algorithm was tried out. This
algorithm was done to see how the vehicle behaved on certain signals, and the mission for
the vehicle was to transport from its current position to a predetermined target. This im-
plementation was split in two parts, one were the vehicle went to the final position with no
consideration to the final orientation and one were the final orientation was taken into con-
sideration. This latter implementation is done to make it easier to reconnoitre the terrain with
the digital camera, and “look” in different directions.

A stability analysis was made, see section 2.1.3. This analysis was based on the dynamical
model ( 2.1.2), and it showed that the model is stable for all velocities greater than zero as
long as there is a limited maximum steering angle.
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Chapter 6

Continued Work

This work includes the basics of an autopilot for autonomous ground vehicles. There are a lot
of work that can be done to improve the model. First of all the model should be implemented
on the RC-car. Second the dynamical model that was presented in section 2.1.2 should be
implemented on the platform. Only the steering is controlled in this work, but it should
probably not be a major problem to implement a model with speed control as well. The
speed of the vehicle can be calculated with respect to the critical acceleration mentioned in
section 2.1.1. To improve the model even more the length, steering signal, cornering stiffness,
moment of inertia etc. for the platform can be more accurate.

At this time the model is built to take the closest way to a predetermined target point.
This was done on a flat field with no obstacles. The model are also constructed to take the
closest way to the target with a predetermined final orientation of the vehicle. Next step is
to implement the problem presented in section 3.2.2, to take the closest way to point B via
point A. Even in this case the vehicle should be able to have a controlled final orientation.
Furthermore, the model will be improved to follow a path and finally be intelligent enough to
take the best way to the target without hitting any obstacles in open terrain.

A model for computer vision will be developed for the platform. This will be used to
obtain obstacles that need to be avoided during transportation.

The model will then be implemented, not just on ground vehicles as in this case, but also
on aerial vehicles as well as underwater or surface vehicles. Different kind of vehicles will
then perform commissions together as a group.

GPS was used in this work to guide the vehicle, this system can also be improved. The
GPS delivers the position, orientation and speed of the vehicle, but it contains some errors
that need to be minimized. This can partly be done by using DGPS (see appendix B.1). The
accuracy of the GPS is continuously worked on. In a few years time the european system
called GALILEO, see appendix B.3, can be used to increase the accuracy.
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Appendix A

Coding in C++

The autopilot has been coded in C++. There were two algorithms that were implemented. The
first one can guide the vehicle the closest way to a predetermined target with no consideration
to final orientation of the vehicle. The second one can relocate the vehicle while considering
the additional constraint of a certain predetermined orientation as the vehicle stops near the
target. These two algorithms are further explained in the following sections.

A.1 Coding of Closest Way to Target

The algorithm in this case was split in two parts, theVehicleSteeringControllerandVehicle-
ThrustController. These two parts decides what signals are going to be sent to the vehicle.

A.1.1 Calculation of Steering Signal The calculation about the steering angle follows
from section 2.1.1, that describes what decisions has to be made due to the position and
orientation of the vehicle and the target. These calculations has been translated to C++-code,
which can be viewed in C++-code A.1.

C++-code A.1calcSteerAngle
floatfloatfloat
VehicleSteeringController::calcSteerAngle()VehicleSteeringController::calcSteerAngle()VehicleSteeringController::calcSteerAngle() {

angleDiff = mCar->getAttitBV().getAzimuth( (mTarget->
getPositionE()-mCar->getPositionE()) );

ififif( absabsabs(angleDiff)>MAXIMUMSTEERINGANGLE ) {
steerAngle = signsignsign(angleDiff)*MAXIMUMSTEERINGANGLE;

}
elseelseelse {

steerAngle = angleDiff;
}

returnreturnreturn steerAngle/MAXIMUMSTEERINGANGLE;
}

As can be seen in C++-code A.1, the difference in angles are being calculated. Then the
decision about turning right or left is being made. Before the steering signal is sent, it is
divided by the maximum steering angle. The steering signal must be within the range[−1, 1],
that is why it is divided by the maximum steering signal.

A.1.2 Calculation of Velocity Signal In this algorithm we use two velocities, a lower one
and a higher one, and of course zero when we stop. To make a decision about the velocity
we need to know about the distance to the target as mentioned in section 2.1.1. We also need
to take into account about the steering angle. The distance is being calculated as shown in
C++-code A.2.
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C++-code A.2calcVehicleTargetSeparation
voidvoidvoid
VehicleThrustController::calcVehicleTargetSeparation()VehicleThrustController::calcVehicleTargetSeparation()VehicleThrustController::calcVehicleTargetSeparation() {

currentDistanceToTarget = Magnitude(
(mTarget->getPositionE()-

mCar->getPositionE()) );
}

TheVehicleThrustControllernow calculates the velocity signal that are going to be sent
to the vehicle, see C++-code A.3.

C++-code A.3calcVelocity
floatfloatfloat
VehicleThrustController::calcVelocity()VehicleThrustController::calcVelocity()VehicleThrustController::calcVelocity() {

ififif( absabsabs( steerAngle )>SMALLMAXIMUMSTEERINGANGLE ) {
velocity = LOW_VELOCITY;

}
elseelseelse {

ififif( currentDistanceToTarget>RANGE_LIMIT*ADOMAIN ) {
velocity = HIGH_VELOCITY;

}
elseelseelse {

velocity = LOW_VELOCITY;
}

}
ififif( currentDistanceToTarget<RADIUS/2.0f ) {

velocity = 0.0f;
}
returnreturnreturn velocity;

}

First of all it finds out if the steering angle is greater than±δnarrow, see section 2.1.1. If
this is true, then the lower velocity is sent to the car. Then it takes into account about the
distance to the target. If the distance is greater than a predefined range of the target, then the
higher velocity is sent, else the lower one if we are within this range of the target.

The velocity signal must as the steering signal be within the range[−1, 1], so the lower
and the higher velocities are set to 1.0 respective 0.5.

A.2 Coding of Closest Way to Target with Final Orientation Control

This algorithm consists of two parts,VehicleThrustControllerandFinalOrientationControl-
ler. The first part is the same as above, appendix A.1.2 and the latter part is further explained
in the following section.

A.2.1 Calculation of Steering Signal with Final Orientation Control Section 4.1.2 ex-
plains the theory about how to go to the final position with a predefined final orientation. This
theory has been translated to C++-code as follows.

First of all we need to find the center of the circle mentioned in section 4.1.2, this is done
by the code presented in C++-code A.4. As mentioned there are two circles, one at each side
as can be seen in figure 4.1. There is now a decision that has to be made, which one of these
circles to aim for. This decision is based on the distance from the current vehicle position
and the center of the circles, the car should aim for the circle with the shortest distance.
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The tangent to this circle can then be obtained by using C++-code A.5. Since there are two

C++-code A.4centerOfCircle
Vector3fVector3fVector3f
FinalOrientationController::centerOfCircle()FinalOrientationController::centerOfCircle()FinalOrientationController::centerOfCircle() {

Vector3fVector3fVector3f targetYaxisInE = RADIUS*mTarget->
getAttitBV().getEfromB( Vector3fVector3fVector3f::yAxis );

floatfloatfloat distanceToCircle1 = Magnitude( (mTarget->getPositionE()
+targetYaxisInE)-mCar->getPositionE() );

floatfloatfloat distanceToCircle2 = Magnitude( (mTarget->getPositionE()
-targetYaxisInE)-mCar->getPositionE() );

ififif( distanceToCircle1 < distanceToCircle2 ) {
returnreturnreturn mTarget->getPositionE()+targetYaxisInE;

}
elseelseelse {

returnreturnreturn mTarget->getPositionE()-targetYaxisInE;
}

}

tangent points on each circle we need to make a decision about which one of these points we
would like to go towards. This decision is made due to the theory presented in section 4.1.2,
equation 4.5. The car are now supposed to go toward the tangent point. To calculate the
steering angle, this point is sent as an argument to C++-code A.6, which returns the angle to
send to the car. When the car has reached the tangent point it is supposed to go toward the
final position, this is done by sending the final position instead of the target point to the part
that calculates the steering angle (C++-code A.6).



C++-code A.5tangentToCircle
Vector3fVector3fVector3f
FinalOrientationController::tangentToCircle()FinalOrientationController::tangentToCircle()FinalOrientationController::tangentToCircle() {

Vector3fVector3fVector3f circleCenter = centerOfCircle();
Vector3fVector3fVector3f carToCircleVec = circleCenter-mCar->getPositionE();
Vector3fVector3fVector3f targetXaxisInE = mTarget->getAttitBV().getEfromB(

Vector3fVector3fVector3f::xAxis );

floatfloatfloat VPx = mCar->getPositionE().x();
floatfloatfloat VPy = mCar->getPositionE().y();
floatfloatfloat CCx = circleCenter.x();
floatfloatfloat CCy = circleCenter.y();
floatfloatfloat vX = VPx-CCx;
floatfloatfloat vY = VPy-CCy;

floatfloatfloat slask = (-pow powpow(RADIUS,2)+powpowpow(vX,2)+powpowpow(vY,2));
ififif( slask<0.0f ) {

slask = 0.0f;
}

floatfloatfloat XPart = vY*sqrt sqrtsqrt(powpowpow(RADIUS,2)*powpowpow(vX,2)*slask);
floatfloatfloat YPart = sqrtsqrtsqrt(powpowpow(RADIUS,2)*powpowpow(vX,2)*slask);

floatfloatfloat tX1 = (powpowpow(RADIUS,2)*powpowpow(vX,2)-XPart)/
(vX*(powpowpow(vX,2)+powpowpow(vY,2)));

floatfloatfloat tY1 = (powpowpow(RADIUS,2)*vY+YPart)/(pow powpow(vX,2)+powpowpow(vY,2));

floatfloatfloat tX2 = (powpowpow(RADIUS,2)*powpowpow(vX,2)+XPart)/
(vX*(powpowpow(vX,2)+powpowpow(vY,2)));

floatfloatfloat tY2 = (powpowpow(RADIUS,2)*vY-YPart)/(pow powpow(vX,2)+powpowpow(vY,2));

mTargetPosition.x() = circleCenter.x()+tX1;
mTargetPosition.y() = circleCenter.y()+tY1;
mTargetPosition.z() = mTarget->getPositionE().z();

floatfloatfloat tangent = ( (mTargetPosition.x()-circleCenter.x())
*(mCar->getPositionE().y()-mTargetPosition.y())
-(mTargetPosition.y()-circleCenter.y())
*(mCar->getPositionE().x()-mTargetPosition.x()) );

floatfloatfloat target = ( (mTarget->getPositionE().x()-circleCenter.x())
*targetXaxisInE.y()
-(mTarget->getPositionE().y()-circleCenter.y())
*targetXaxisInE.x() );

ififif( tangent/target > 0.0f ) {
returnreturnreturn mTargetPosition;

}
elseelseelse {

mTargetPosition.x() = circleCenter.x()+tX2;
mTargetPosition.y() = circleCenter.y()+tY2;
mTargetPosition.z() = mTarget->getPositionE().z();
returnreturnreturn mTargetPosition;

}
}



C++-code A.6calcSteerAngle
floatfloatfloat
FinalOrientationController::calcSteerAngle( const Vector3f&FinalOrientationController::calcSteerAngle( const Vector3f&FinalOrientationController::calcSteerAngle( const Vector3f&

targetPosition ) )) {
angleDiff = mCar->getAttitBV().getAzimuth( (targetPosition-

mCar->getPositionE()) );

ififif( absabsabs(angleDiff)>MAXIMUMSTEERINGANGLE ) {
steerAngle = signsignsign(angleDiff)*MAXIMUMSTEERINGANGLE;

}
elseelseelse {

steerAngle = angleDiff;
}

returnreturnreturn steerAngle/MAXIMUMSTEERINGANGLE;
}
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Appendix B

Basics About the Navigation System

In this work we use the Global Navigation Satellite System, GNSS, to obtain position and
velocity of the vehicles. GNSS is a generic term for global navigation systems based on
satellites. Global Positioning System, GPS is a part of the GNSS and GPS is in this work
used to find out about the vehicles position, direction and speed.

B.1 Global Positioning System

GPS is funded by and controlled by the U.S. Department of Defense, DoD. The system are
being used by thousands of civilians, but it was designed for and is operated by the U.S.
military.

GPS consists of 24 satellites in 6 planes that orbit the Earth in 12 hours and on an altitude
of approximately 20 200 kilometers, see figure B.11.

Figure B.1: The satellites that orbit the earth

Signals from four satellites are required to compute a receivers position in space and time.
The height is not needed in this research why only three satellites are required, of course the
time is needed as well, therefore the third satellite. The aim is that the satellites should be as
far away from each other as possible due to minimization of the error.

Some stations with very accurate positions on the Earth are placed on the ground to re-
ceive data from the satellites. The satellites and the stations are equipped with atomic clocks
that are extremely exact, the error growth rate is about one second in 300 000 years. Each
satellite has four clocks, one that is used and three spare.

Since the speed of light is known, and the time it takes for the signal to be sent can be
measured, the distance to the satellite can be calculated by multiplying the time with the

1http://www.colorado.Edu/geography/gcraft/notes/gps/gps_f.html
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speed of light. For example, if the satellite is straight above the receiver, it takes approx-
imately 0.067 seconds for the signal to reach the receiver. Now, since the speed of light is
approximately 300 000 kilometers per second this results in an altitude of 20 100 kilometers
for the satellite. Of course these calculations are done with greater numerical accuracy, to
obtain more precise information.

Positions can be gathered from a map and then stored in a computer. These positions can
then be put together to maintain a route to follow. When this route is followed, new positions
are obtained from the GPS, and if they diverge from each other, corrections are being made.

There are two kinds of services available, the Standard Positioning Service, SPS, used
by the civilians, and the Precise Positioning Service, PPS, used by the U.S. military. The
difference between these systems is the precision and disturbances from other parts. The
radiosignals that are sent slow down in the atmosphere, this delay effects the accuracy since
it depends on the thickness of the atmosphere, which varies over time and with the weather.
Another thing that affects the result is the receiver’s electronics. A lot of other things affects
the accuracy but these are the main ones.

Civilians can use a method to increase the accuracy, this is called Differential GPS, DGPS,
figure B.22.

Figure B.2: Differential Global Positioning System

This system works in a way where you have a fixed reference station with known posi-
tion. This station is equipped with a GPS-receiver and gets the position from this, but since it
already knows its position, the error can be calculated. This error is sent by another commu-
nication to GPS-receivers nearby, where it can be as a correction to the computed position.

B.2 The RT90 System

The GPS-receiver used in this project has a precision of less than 10 meters. To increase
this precision some fixed receivers with known positions can be used, the DGPS above, then
the accuracy can be as good as about one meter, or even better. For the car, the position is
converted to RT90, or SWEREF99, figure B.33.

2http://www.colorado.Edu/geography/gcraft/notes/gps/gps_f.html
3http://www.lm.se/geodesi/
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Figure B.3: The RT90-system used in this thesis

B.3 GALILEO

GPS is as mentioned above a system developed for the U.S. military. It has been decided that
Europe is going to develop a similar system called GALILEO, an initiative launched by the
European Union and the European Space Agency. This satellite radio navigation system is
supposed to have an accuracy of about a metre.

GALILEO is based on a constellation of 30 satellites and ground stations providing in-
formation about the position.

Advantages over GPS:

• GALILEO has been designed and developed as a non-military application.

• It provides a similar - and possibly higher - degree of precision, due to the constellation
of satellites and the ground based control and management systems planned.

• GALILEO is more reliable as it informs the user of any errors.

• It guarantees continuity of service. GPS signals can become unavailable, sometimes
without prior warning.

GALILEO and GPS complement each other by the fact that they are independent. The
users will be able to receive both GALILEO and GPS signals with the same receiver.
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