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Abstract 

Mathematical foundation for the new double threshold concept is investigated for the 
analysis of fatigue crack growth. The model consists of two major elements; an intrinsic 
crack growth threshold which corresponds the material resistance to the fatigue crack 
growth due to the reverse yielding at the crack tip, and a maximum stress intensity factor 
threshold which contributes to the possible change of crack growth mode and the crack 
closure mechanism when the tensile plastic deformation ahead of crack tip is very small. 
These two thresholds are proposed as material parameters to determine fatigue threshold 
condition. The mathematical model is developed based on the double threshold concept 
so that only three parameters are required to determine the threshold for various different 
materials. The model is successfully used to characterise the crack growth threshold for 
varieties of materials with significantly different features. The model is also randomised 
to account for the scatter in fatigue crack growth thresholds. The statistical model has 
successfully accounted for and explained the widely observed phenomenon that the 
scatter in the experimentally measured thresholds may increase considerably for low 
stress ratios. 
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Introduction 

Since Paris and Erdogan proposed the range of stress intensity factor for the cyclic load 
as a governing parameter for the analysis of fatigue crack growth rate, the relation has 
been extensively used in the analysis of fatigue crack growth problems even if the load is 
of the random nature. The use of Paris/Erdogan law has the advantage that a similarity 
may be achieved so that material data obtained in the laboratory using small specimens 
may be used to analyse the fatigue crack growth in structures so long as the fracture 
mechanics parameter, the stress intensity factor, can be solved both for the specimens 
and for the structures containing cracks. 

A schematic of Paris/Erdogan type of crack growth rate against stress intensity factor 
range for the constant amplitude loading at different stress ratios is shown in Fig.1. To 
various different extents, the crack growth rate has usually been observed to be higher for 
high stress ratio (R ratio) than for low stress ratio for the same stress intensity factor 
range for various materials. Empirical fittings has been tried to account for the stress 
ratio effect. Such fittings are, however, unsuccessful when being used for variable 
amplitude loading because load interaction has a strong effect on the fatigue crack 
growth behaviour.  

The discovery of the crack closure phenomenon1 2 has successfully solved many 
problems concerning the fatigue crack growth behaviour such as the stress ratio effect, 
load interaction effect, and even part of the small crack effect. The crack closure is 
mainly determined by the mechanically irreversible plastic deformation, the metallurgical 
irregularities (roughness), and the environment chemical reaction (oxidation and 
corrosion etc.). For the intermediate range (Region II, the so-called the Paris region 
shown in Fig.1) where the stress intensity factor can be used as a crack growth driving 
force, the plastic deformation induced crack closure is a major contribution affecting the 
cyclic plastic deformation at the crack tip in many applications. Further increase of stress 
intensity range into Region III shown in Fig.1 will lead to an interaction between the 
fatigue crack growth mechanism and the static crack failure mechanism. The fatigue life 
in the region usually occupies small part of the total fatigue life. For most applications, 
simplification can be accepted by using interpolation between Region II fatigue crack 
growth data and static crack failure data such as R-curve or simply the fracture 
toughness. 

Region I shown in Fig.1 is an important part of the fatigue crack growth analysis since 
the fatigue life within this region may occupy a significant part of the total life. In 
addition, a threshold has been observed for many materials that the fatigue crack growth 
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rate may be significantly reduced from the slope in Region II. When the stress intensity 
factor range is close to the threshold, a rapid decrease of the crack growth rate may occur 
and the crack may stop growing. It is necessary to correctly define the threshold for a 
given material in the analysis of its fatigue crack growth for the constant amplitude 
loading with small stress ranges, or for the variable amplitude loading with large number 
of small cycles close to the threshold. 

Region IIIRegion IIRegion I
log da / dN

log DK

R3R1
R2

R1>R2>R

Kth
 

Fig.1 Schematic of fatigue crack growth rate against stress intensity factor range for 
constant amplitude loading for different stress ratio. 

Although the plasticity induced crack closure mechanism is very effective in accounting 
for the fatigue crack growth behaviour in Region II3 4, it is not very successful in 
accounting for the threshold behaviour based only on the plastic deformation at the crack 
tip since the plastic deformation is now close to the scale of metallurgical irregularities. 
The roughness and environment induced crack closure mechanism play the same or even 
more important roles than the plasticity induced crack closure mechanism in the near the 
threshold region. The roughness and environment induced crack closure are determined 
by the material property and environment. Different material differs significantly. In 
addition, the maximum stress intensity factor may also contribute to the roughness and 
environment induced crack closure since the crack growth mode may change at very low 
stress level5. 
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Recent investigations on the fatigue crack growth threshold showed that a material 
dependent “intrinsic” threshold may exist for high stress ratios. Experimental 
observations also showed an effect of maximum stress intensify factor on the fatigue 
crack growth threshold. It seems that the conventional single threshold definition, which 
accounts only for the effect of stress range, may not be adequate in determining the crack 
growth thresholds. In this paper, a system of simplified mathematical solution is 
proposed based on a new duel threshold concept, the stress range threshold and the 
maximum stress threshold. The solution is extended for statistical aspect to deal with 
scatters usually accompanying the experimental threshold results 

Features of the threshold 

It has been observed that the threshold will increase with the decrease of the stress ratio 
for some metals. A typical example for the experimental threshold value for 2024 T3 
aluminium alloy 6 as function of the stress ratio is shown in Fig.2a. The threshold is 
reduced when the stress ratio is increased. The threshold can then be stabilised at a stress 
ratio larger than about R = 0.7, approaching a constant value. Further increase of the 
stress ratio larger than R = 0.9  may lead to an excessive increase in the maximum stress 
intensity so that the static failure mechanism may be involved, resulting in a further 
reduce of threshold. 
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Fig.2 Comparison of experimental thresholds (symbols) with mathematical model 
(curves) as functions of stress ratio and maximum stress intensity factor for 2024 T3 

alloy. 

When the experimental results are expressed as a function of maximum stress intensity, 
the whole range of threshold seems to be mainly determined by two parameters with 
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different physical interpretations. One parameter is a stabilised threshold corresponding 
to the high stress ratio region within which the threshold keeps approximately constant. 
Another parameter appears to be a barrier of the maximum stress intensity. The threshold 
value will change significantly when the maximum stress intensity approaches to this 
barrier. 

Different experimental methods may affect the experimental threshold results. An 
investigation in ref. 7 compared the results from three experimental methods to determine 
thresholds. Three methods; The ASTM load shedding method8, the crack prepared in 
compressive fatigue loading9, as well as the decrease of ∆K  at constant Kmax  10, have 

been investigated. The results are shown in Fig.3. This investigation showed that the 
experimental methods have basically no effect on the fatigue crack growth thresholds for 
high stress ratios, especially the region where the threshold may be stabilised. 
Discrepancy appears to be at the low stress ratio region where the ASTM loading 
shedding method may result in high threshold, perhaps due to the excessive crack closure 
induced by the method. 
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Fig.3 Comparison of experimental thresholds (symbols) with mathematical model 
(curves) as functions of stress ratio and maximum stress intensity factor for 7020 T5 

alloy. 

When the experiment results for 7020 T5 alloy is expressed as the function of maximum 
stress intensity factor in Fig.3b, they seem to be quite different from those of 2024 T3 
alloy. In the range of small Kmax , the threshold seems to increase with the increase of 
Kmax  before a barrier is crossed. When Kmax  is larger than a certain level, the threshold 
∆Kth  seems to be stabilised. For this case, two parameters can still be observed for the 
whole range of ∆Kth . The same as for 2024 T3 alloy, a barrier of Kmax  and a stabilised 
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∆Kth  are observed. To name the barrier of Kmax  after KT
max  and the stabilised ∆Kth  after 

∆KT , the corresponding values for 2024 T3 and 7020 T5 are shown in the insert of 
Fig.2b and Fig.3b. The comparison between 2024 T3 and 7020 T5 alloy for both KT

max  
and ∆KT  shows that 7020 T5 alloy has generally better threshold than 2024 T3 alloy 
since both KT

max  and ∆KT  are larger for 7020 T5 than for 2024 T3. 
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Fig.4 Schematic of threshold classification as function of stress ratio and maximum stress 
intensity factor. 

Different relation may exist between ∆Kth  and R −  and Kmax  for different materials 

According to the classification proposed in ref.11, five main classes may be identified as 
Fig.4a shows. ∆Kth  can be a constant, independent of ratio  (Class I), ∆  can be 
approximately constant for R − ratio  larger than a low value of 0.5 (Class II). ∆  can 
follow a 45° slope before the stabilised valued is approached (Class III). ∆Kth  can follow 
a much deeper slope than 45° slope (Class IV). ∆Kth  can even increase with the increase 
of  (Class V). Whatever the classification is for ∆Kth , the two parameters can 
still be observed when ∆Kth  is expressed as a function of Kmax  as Fig.4b shows for 
different classes. The increasing publications show that ∆KT  may be used as an 
“intrinsic” material parameter, so as for , which are mainly determined by the 
material instead of load manner. It is therefore possible to determine the ∆K  based on 
parameters of KT

max  and ∆KT  which can be considered to be basic material constants. 

Mathematical formations 

It has been recognised that the threshold may be stabilised for high stress ratio. 
Experiments also showed that the maximum stress intensity level, the Kmax , may have a 
value for which the threshold may change dramatically. It can be rationalised that a  
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barrier can exist so that a schematic of crack growth threshold can be shown in Fig.5 as 
well as Fig.2-4 in the relationship between the threshold ∆Kth  and the maximum stress 
intensity Kmax . 

KT

KT
max

Kth = )

 
Kmax

K th
K T

KTmax

Fig.5 Schematic of the threshold model based on double threshold concept. 

The threshold may follow the solid curves as for the example of 2024 T3 alloy shown in 
Fig.2, or the dashed curves as for example of 7020 T5 alloy shown in Fig.3, depending 
on the material type. When the material follows the solid curves, the threshold may 
gradually reduce with the increase of maximum stress intensity factor in the beginning. 
This behaviour may be difficult to be experimentally demonstrated since the growth of 
crack will increase the maximum stress intensity so that the barrier, the KT

max  will be 
rapidly approached, resulting a high threshold value to stop the crack growth. To 
overcome the barrier, larger load is required. When the maximum stress intensity 
overcomes the barrier KT

max , the threshold will then decrease with the increase of the 
maximum stress intensity. A stabilised threshold, the ∆ , may be approached (see 
Fig.5). 

When the material follows the dashed curves, the threshold will increase with the 
increase of the maximum stress intensity until the barrier  is approached. After the 
barrier, the threshold will rebuild up from a low level to approach the stabilised threshold 
∆KT . In either case, a barrier is existed at KT

max  to arrest the crack growth if the initial 
maximum stress intensity is less than KT

max . This formulation has an interesting feature 
that a crack may be initiated at low load level but stopped when Kmax  is approaching 

KT
max . 

The fatigue crack growth threshold can be generally expressed as a function of Kmax , 
R − ratio , and ∆KT  

        (1) ∆ f Kmax,∆KT , R(

 



  7 

Here, Kmax  and ∆KT  are considered to be intrinsic material parameters. According to the 

schematic of Fig.5, a three-parameter threshold model can be assumed 

 ∆Kth =
A / Kmax − Kmax

T( )+ ∆KT , if  ∆Kth > 0
0 otherwise

 
 
 

   (2) 

In this model,  is a material parameter, represent a rapid rise of ∆Kmax
T Kth  when Kmax  

approaches . This parameter characterises the effect of Kmax
T Kmax  to the threshold ∆Kth . 

When  approaches negative infinite, Kmax
T Kmax  will then have no effect to ∆Kth . This case 

represent Class I in Fig.4. ∆KT  is an approaching line of ∆Kth  when the effect of it is 

diminished. For some materials, this value is measurable. A parameter of  is used in 
eq.(1) to account for the interaction between  and 

A
Kmax

T ∆KT .  

This model can account for different classifications of fatigue crack growth threshold 
behaviour as shown in Fig.4. In this model, the crack growth threshold is determined 
using two parameters, a cyclic crack growth threshold ∆KT , and a static crack growth 
threshold . Here, both the cyclic crack growth threshold and the static crack growth 

threshold are independent of the load ratio. The load ratio effect is accounted for with 

Kmax
T

Kmax  since Kmax  is related to the stress ratio R . The parameter  is determined by the 

material systems and environment.  

A

∆Kth

∆Kth

 can also expressed as a function of stress ratio by taking account for 
 at the threshold condition. Solving eq.(2) by substitution of ∆= Kmax 1 − R( ) Kth  for 

Kmax  gives  

 ∆Kth =
1
2

Kmax
T 1− R( )+ ∆KT + D{ }     (3) 

where 

 D = Kmax
T 1− R( )+ ∆KT[ ]2

− 4 1 − R( ) Kmax
T ∆KT − A( )   (4) 

There is no real solution for  in this solution as Case IV in Fig.4 shows. To keep a 
continuous conservative solution, the real part may be used for 

D < 0
D < 0 as 

 ∆Kth =
1
2

Kmax
T 1− R( )+ ∆KT + Re[D]{ }     (5) 

to approximate ∆Kth  for all the stress ratio range. The solid curve in Fig.3 is an example 

of this approximation. The result seems to be acceptable. 

For a special case when the stress ratio is equal to zero, the crack growth threshold can 
be solved as 
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 ∆Kth R = 0( )= Kmax =
1
2

Kmax
T + ∆KT ± Kmax

T − ∆KT( )2
+ 4A   

 .  (6)   

This value is determined only by material parameters ,  and Kmax
T A ∆KT . 

To verify the present mathematical model, various materials will be analysed in the 
following section for the threshold behaviour. 
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Fig.6 Comparison of experimental thresholds (symbols) with the threshold model 
(curves) for IN 905 alloy and EN 24 alloy. 

Applications 

The advantage of the proposed model is that the basic parameters in this model have 
clearly defined physical interpretation. In this model, ∆KT  corresponds an intrinsic crack 
growth threshold when the effect of maximum stress intensity factor is reduced. ∆KT  is 
usually the stabilised stress intensity factor for high stress ratio for many materials. This 
value can be used as a material constant to feature the resistance of material 
microstructure to the growth of fatigue crack. Here,  is conceived as another crack 

growth threshold, featuring the arrest of fatigue crack growth when the applied maximum 
stress intensity is below this value. The effect of  can also be explained as a 

threshold when the crack growth mode may be changed due to too small tensile plastic 
deformation at the crack tip that leads to increased roughness and oxidation around the 
crack tip. The  can also be used as a material constant since different material has 
different .  in the model is a parameter to determine the interaction between ∆

Kmax
T

Kmax
T

Kmax

A

T

TKmax KT  
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and . In this section, the basic model given in previous section will be used for 

different material to rationalise and demonstrate that the fatigue crack growth threshold 
may be characterised using the intrinsic thresholds of 

Kmax
T

∆KT  and  for different 

materials. 

Kmax

T

K

K
A

K

T

Let us use some materials for which the thresholds can be stabilised at high stress ratio 
(usually for R > 0.6 ). These materials are classified as Class II, II, or IV as shown in 
Fig.4. IN 905 XL Al alloy12 is the first example since the available experimental 
threshold results cover an extensive range of −3 < R <.9. The experimental results are 
shown in Fig.6 for the laboratory air and room temperature. An almost linear relation is 
observed for the thresholds for the stress ratio less than zero while the threshold is nearly 
stabilised for the stress ratio larger than zero. When the threshold results are expressed as 
a function of the maximum stress intensity factor, thresholds of ∆K  and  can be 

clearly observed, see Fig.6. The corresponding parameters are given in Table 1. For this 
material, 

Kmax
T

∆KT  is about 1.95 and  is about 1.8. The interaction parameter  is a 
small value of about 0.1, indicating a weak interaction between 

Kmax
T A

∆KT  and . The solid 

curves in Fig.6 are from the model. A very good agreement can be seen when the 
threshold is expressed as a function of either the stress ratio or the maximum stress 
intensity factor. 

max
T

For the EN 24 alloy13, the experimental results in Fig.6 show that the threshold is a 
decreasing function of the stress ratio. There seems no stabilised threshold for high stress 
ratio. In another word, ∆KT  cannot be observed based on the limited experimental results 
for this alloy. When the experimental results are plotted against the maximum stress 
intensity factor, it can be observed that the experimental results are approaching to a 
stabilised value, the ∆KT . A significant increase of threshold is also observed for the low 
maximum stress intensity range, indicating the existence of  threshold. The fitted max

T

∆KT  is about 2.7 and  is about 5.5 (Table 1). The parameter  is about 0.8, 
indicating a relatively strong interaction between 

Kmax
T

∆KT  and  The model is good 

compared to the experimental results as the solid curves in Fig.6 show. 
max
T

For materials of S55C and SM41B14, the experimental results show that a low threshold 
may exist when the maximum stress intensity factor is below the threshold of  as 

Fig.7 shows when the experimental threshold is expressed as a function of the maximum 
stress intensity factor. Especially, the thresholds are observed to become small with the 
decrease of the maximum stress intensity factor for SM41B. This behaviour can be 
modelled as the schematic in Fig.5 shows. The rapid decrease in the threshold from the 
model is difficult to be verified since the corresponding crack growth will soon increase 
the maximum stress intensity factor until  is approached. The intrinsic thresholds of 

Kmax
T

TKmax
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∆KT

Kmax
T

 and  can still be observed as the experimental results in Fig.7 show except that 

the threshold becomes now smaller for the stress intensity factor approaching and leaving 
. The threshold becomes very large when the maximum stress intensity factor 

crosses . We can clearly see here that  is actually a barrier, perhaps 

characterising some microscopic feature of the material. 
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Fig.7 Comparison of experimental thresholds (symbols) with the threshold model 
(curves) for S55C alloy and SM41B alloy. 

For the material of S55C (ref.13), the fitted ∆K  is about 3.5 and  is about 12.5 

(Table 1). The parameter  is about 1, indicating a relatively strong interaction between 

Kmax
T

A
 and . This model is good compared to the experimental results as the solid 

curves in Fig.7 show. This material seems to have a good threshold feature at a maximum 
stress intensity factor of about 12.5 MPa m . However, when the material is subjected to 
a spectrum loading with large number of cycles away from the maximum stress intensity 
factor of 12.5 MPa m  , the threshold will be significantly small. The present model can 
be used to reasonably represent such a feature in the threshold region as the solid curves 
in Fig.7 show. 

For the material of SM41B, the experimental results show that a linear relation between 
the threshold and the stress ratio may exist for the stress ratio less than 0.5, see symbols 
in Fig.7. The stabilised threshold, the ∆KT  can be experimentally observed when the 
threshold is expressed as a function of both the stress ratio and the maximum stress 
intensity factor. This material differs from other materials in that the threshold increases 
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with the increase of the maximum stress intensity factor when it is less than . This 

feature is characterised by a negative value of the interaction parameter . The threshold 
is rapidly stabilised at ∆

Kmax
T

A
KT  when the maximum stress intensity factor is larger than . 

The fitted ∆
Kmax

T

KT  is about 3 and  is about 10.1 (Table 1). The parameter  is about -
2.5, indicating a strong negative interaction between 

Kmax
T A

∆KT  and . Solid curves in 

Fig.7 represents the results from the model that compare reasonably well to the 
experimental results. 
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Fig.8 Comparison of experimental thresholds (symbols) with the threshold model 
(curves) for polycarbonate and rubber-modified polystyrene. 

The model can even be extended to non-metallic materials for which significantly 
different threshold behaviour may be observed. Fig.8 shows two examples. The symbols 
in the figure represent experimental data for a polycarbonate material 15 and a rubber-
modified polystyrene material16. The experimental results show that thresholds for these 
materials will increase with the increase of the stress ratio. When the test results are 
plotted against the maximum stress intensity factor, the threshold appears to increase 
with the increase of the maximum stress intensity factor. No stabilised ∆KT  and  can 

be experimentally determined. According to the proposed threshold model, it is found 
that ∆KT  is about 1.92.  is about -2.5 for polycarbonate material, see Table 1. The 

interaction parameter for the material is about 

Kmax
T

A = −4.5. There is a very strong 
interaction between ∆KT  and . For this material, low maximum stress intensity 

factors correspond low thresholds. The threshold model is good for such a material as the 
solid curves in Fig.8 show. For the rubber-modified polystyrene material, it is found that 

Kmax
T
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∆KT  is about 1.27 and  is about -2, and  is about -1. This material has less 
interaction between 

Kmax
T A

∆KT  and . The threshold is slightly better. The results from the 

model are shown in Fig.8 as solid curves that fit well to the experimental results. 

Kmax

∆K

Kth

Kth

T

Table 1, Threshold parameters for different materials in MPa m  
Material ∆KT  Kmax

T  A 

IN 905 XL Alloy 1.95 1.8 0.1 
EN 24, σ y =1275 MPa 2.7 5.5 0.8 
S55C, σ y =399 MPa 3.5 12.5 1 

SM41B, σ y =281 MPa 3 10.1 -2.5 
Rubber-Modified Polystyrene 1.27 -1.25 -1 

Polycarbonate 1.95 -2.5 -4.5 

 

Statistical feature 

There is a large scatter in the experimental results of ∆Kth  for different materials17. The 

scatter depends strongly on the stress ratio. The lower the stress ratio is, the larger the 
scatter may be observed. According to the crack closure concept, the low stress ratio will 
cause more crack face contacts to prevent the crack tip reverse yielding. For a very low 

., not only the previously plastically deformed stretches, which is influenced by 
previous loading procedure, but also the irregularities due to microstructure 
inhomogeneity and environment on the crack surface will increase the crack surface 
contacts at low stress ratios. The effect of these random quantities on the fatigue crack 
growth will be magnified at reduced stress ratios. The irregular crack closure will lead to 
a large scatter in experimental threshold results at low stress ratios. 

The significance of ∆  is that it provides a threshold below which the fatigue crack 

will possibly stop growing. However, a large scatter at the low stress ratio makes this 
definition less meaningful. For example, ∆Kth  may be between 6~12Mpa√m for a zero 

stress ratio loading for Fe and Ni alloys. A crack may or may not permanently stop 
growing at the deterministic crack growth threshold. 

A correct material parameter should reveal the physical mechanism behind a 
phenomenon, not just a quantity with a large scatter.  ∆Kth  is not suitable to be used as a 

value to determine the crack growth arrest condition since the effect of random 
irregularities on ∆  may be at the same magnitude of the effect of mechanical 
mechanism that leads to the fatigue crack growth. Besides, ∆Kth  is also of stress ratio 

dependent. It is difficult to determine the scatter in the threshold as a function of the 
stress ratio. 
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The crack closure can be reduced with increasing the stress ratio for many materials. The 
scatter in the experimental ∆Kth  can also be effectively reduced with the increase at the 
stress ratio when ∆Kth  is approaching to ∆KT . Since the parameter ∆KT  represents the 
cyclic feature of the threshold, it is reasonable to account for the scatter in ∆KT  as a 
material property. It is also reasonable to account the scatter in  as another material 
property since  appears to be a material constant.  

Kmax
T

TKmax

These two thresholds, ∆KT  and , can be called "intrinsic" which mainly represent 
the resistance of microstructure to the fatigue crack growth. The 

Kmax
T

∆KT

max
T

 can be assumed to 
be independent of the influence of crack closure. It may represent a cyclic crack growth 
threshold for a crack growing at the high stress ratio while  seems to be a static 

turning point to determine whether a substantial crack growth change may occur for the 
stress level approaching . A randomised expression can be assumed according to the 

threshold model of eq.(2) as  

K

Kmax
T

 ∆Kth =
A / Kmax − Zs Kmax

T( )+ Zc∆KT , if  ∆Kth > 0
0 otherwise

 
 
 

.   (7) 

In this expression, Zc  is a random variable to characterise the cyclic threshold ∆KT , and 
Zs  a random variable to characterise the static threshold. In this relation, the interaction 

parameter  is assumed to be deterministic to simplify the model. The random variable A
Z  can be assumed to have a lognormal distribution with a unit mean value and a 
deviation of σ  so that its probability distribution function can be expressed as 

 PZ ζ < Ζ[ ]=
1

2πσζ
exp{−

ln2 ζ
2σ 2 }dζ

0

Ζ

∫ .     (8) 

A substitute of ζ = uσ  in the above equation yields  

 PZ ζ < Ζ[ ]= PZ u <U σ[ ]=
1
2πu

exp{−
ln2 u

2
}du

0

U σ

∫ .   (9) 

This relation shows that all the log-normal random variables are linear related by a 
variable u  which has a common distribution density in a probability density function 

 f u( ) =
1

2πu
exp − ln2 u / 2( )      (10) 

After the substitution of Zi = uσ i  in eq.(7) where i  stands for s  or c , the randomised 
∆Kth  can be expressed as 
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 ∆Kth =
A / Kmax − uσ s Kmax

T( )+ uσ c ∆KT , if  ∆Kth > 0
0 otherwise

 
 
 

  (11) 

The distribution of ∆Kth  can be solved by 

       (12) P ∆K ≤ ∆Kth[ ]= f [∆Kth u( )]du
0

U ∆Kth( )

∫

where 

f [∆Kth ] = [Aσsu
σ s −1 / Kmax − uσ s Kmax

T( )2
+ σcu

σ c −1∆KT ]f u( ), if  ∆Kth > 0
0 otherwise

 
 
 

 (13) 
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Fig.9 Comparison of experimental thresholds (symbols), the threshold model (curves), 
and the statistical solution of 3σ envelope (dashed curves) for E3A and 7075 T7351. 

The integration end U  in eq.(12) is solved from the relation ∆Kth( )

 A / Kmax −U σ s Kmax
T( )+ Uσ c ∆KT − ∆Kth = 0 for ∆Kth > 0   (14) 

When the stress ratio is used instead of Kmax , f [∆Kth ] can be solved from eq.(12) in a 

form of 

 f (∆Kth ) =
∂∆Kth

∂u
f u( )       (15) 

 



  15 

Now, we can see that the randomise ∆Kth  solution depends only on the scatter in the 
intrinsic threshold ∆KT , the σc , and the scatter in the load level threshold , the Kmax

T σs . 
This solution not only simplifies the statistical evaluation of ∆Kth , but also gives 
involved parameters a clear physical definition. The threshold of ∆KT  and  depends 
on different physical mechanisms. 

Kmax
T

∆KT  is mainly determined by the intrinsic material 
resistance of crack growth for a tensile cyclic loading. It is closely related to the reverse 
yielding ahead of the crack tip. The threshold  on the other hand determines a 

turning point at which the crack growth mode may be changed and the crack closure may 
increase so that the crack growth driving force is significantly reduced. 

Kmax
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Fig.10 Comparison of experimental thresholds (symbols), the threshold model (curves), 
and the statistical solution of 3σ envelope (dashed curves) for IMI 681 and Ti6Al 4V 

or the experimental data of E3A18, the threshold parameters are given in Table 2. This 
material shows clearly the double threshold behaviour in the relation between ∆Kth  and 
Kmax  as Fig.9 shows. The estimated mean ∆KT  is about 2.5, and the mean  is about 

6.5. The interaction parameter  is about 7.5. This material shows a strong interaction 
between 

Kmax
T

A
∆Kth  and Kmax . The standard deviation for ∆KT  is about σ ∆KT = 0.2  and the 

standard deviation for  is about Kmax σ Kmax( )= 0.7. The dashed curves in Fig.9 show the 

3σ  envelope for the threshold. Generally, the solution gives a good description about the 
scatter in the threshold region as a function of both the stress ratio and the maximum 
stress intensity factor. The solution also shows the same tendency that the scatter in the 
threshold value will increase with the decrease of the stress ratio. This tendency is due to 
the magnified variation effect of  at low stress ratios when Kmax

T Kmax  is approaching  Kmax
T

( )
T T
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(see the ∆Kth - Kmax  relation shown in Fig.9). This may be the physical explanation to the 

increased scatter in the experimental results at low stress ratios. 

KT

= 0.3

= 0.1

= 0.7

Fig.9 also shows the data for 7075-T7351 alloy19. According to the experimental results, 
∆KT  is estimated to be 1.1, and  is about 2.5. The interaction parameter  is about 
0.2. This material doesn’t show much interaction between 

Kmax
T A

∆Kth  and Kmax . The estimate 
scatter for ∆  is about σ ∆KT( )= 0.1, and estimated scatter for  is about 

, see Table 2. The dashed curves shown in Fig.9 are the 3
Kmax

T

( )σ KT
max σ  envelope from 

the present solution. They seem to agree with experimental results reasonably well. The 
same tendency is observed in the solution that the scatter in ∆Kth  becomes large when 

the stress ratio is low. 

The statistical model provides different answers compared to the deterministic model 
about the threshold behaviour of different materials as a further comparison in Fig.10 
shows for two Ti based materials. The threshold of Ti6Al 4V (ref.20) is compared to a Ti 
turbine disk material of IMI 685 (ref.19). The thresholds and scatters are given in Table 
2. According to the experimental results, the estimated ∆KT  about 1.6 and  is about 

6.5 for Ti6Al 4V. The interaction parameter A  for Ti6Al 4V is about 2. The estimated 

Kmax
T

∆KT  about 1.9 and  is about 4.5 for IMI 685. The interaction parameter A  for IMI 

685 is about 12, quite different from that of Ti6Al 4V. In the deterministic method, the 
solid mean curves in Fig.10 show that Ti6Al 4V has almost the same threshold over all 
the stress ratios larger than zero. 

Kmax
T

According to the experimental results, the scatter in ∆KT  for Ti6Al 4V is estimated to be 
σ ∆KT , and the scatter in ∆KT  for IMI 685 is about σ ∆KT = 0.14

Kmax
T

. The scatter in 
 for Ti6Al 4V is about , and the scatter in  for IMI 685 is about 

. The scatter in ∆

Kmax
T

σ Kmax
T( )

σ =1Kmax
T(

KT  for Ti6Al 4V is slightly smaller than that of IMI 685 
while the scatter in  for Ti6Al 4V is significantly larger than that of IMI 685. Based 

on these parameters, the 3

Kmax
T

σ  envelope estimated according to the statistical model is 
shown in Fig.10 as dashed curves for both materials. They agree reasonably well with 
experimental results. The statistical solution shows that the low 3σ  envelope of Ti6Al 
4V is significantly less than that of IMI 685, indicating a poorer threshold for Ti6Al 4V 
than for IMI 685. The conclusion may depend on the size of sample as can be seen here 
that the experimental Ti6Al 4V results have a large population. The information can at 
least remind the user of certain caution in using the experimental data in a deterministic 
way since the answer may be different from a statistical consideration as the example 
shows. When the reliability requirement is strict, especially for the application of turbine 
components, the low bound of the envelope from the statistical model should be used so 

( ) ( )
)
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that the deterministically same material may differ significantly due to their difference in 
scatters in the material data. 

Table 2 Threshold parameters and scatters for different materials in MPa m  
Material ∆KT Kmax

T A  σ ∆KT( ) σ Kmax
T( ) 

Ti6Al 4V STA 1.6 6.5 2 0.1 1.0 
Ti-Turbine Disk Material (IMI 685) 1.9 4.5 12 0.14 0.7 
Aluminium 7075 T7351 1.1 2.5 0.2 0.1 0.3 
EN 3A σ y = 303 MPa  2.5 6.5 7.5 0.2 0.7 

 

Concluding remarks 

A new double threshold model is proposed in this investigation for the analysis of fatigue 
crack growth. This model is based on two elements; an intrinsic cyclic threshold which 
corresponds the material resistance to the fatigue crack growth due to the reverse 
yielding at the crack tip, and a maximum stress intensity factor threshold which 
contributes to the possible change of crack growth mode and the crack closure 
mechanism when the tensile plastic deformation ahead of crack tip is small. These two 
thresholds are proposed as material parameters to determine the threshold condition 
though they may not be directly measurable for some materials.  

The benefit of using such parameters as material constants is that they have their physical 
interpretations. The intrinsic crack growth threshold corresponds a condition at which the 
crack closure effect can be eliminated so that the threshold represents a closely micro 
structurally related property; the resistance of material to cyclic crack growth driving 
force. Here, the driving force for a fatigue crack growth can be rationalised by using the 
reverse yielding at the crack tip under the cyclic loading in a stabilised condition (no 
primary plastic deformation at the crack tip21). The maximum stress intensity factor 
threshold on the other hand represents a condition at which the crack closure may be 
changed due to the possible change of crack growth mode and the increasing effect of 
micro irregularities and environment, resulting in a reduce of crack growth driving force. 
Together with the intrinsic crack growth threshold, the maximum stress intensity factor 
threshold determines the crack arresting condition for low stress levels for which the 
crack tip plastic deformation is small. This parameter is also closely related to the 
material property.  

A system of mathematical model is developed based on the double threshold concept so 
that only three parameters are required to determine the threshold for various different 
materials (not limited to metallurgical materials). The model is successfully used to 
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characterise the crack growth threshold for varieties of materials with significantly 
different features. The model is also randomised to account for the effect of scatters in 
both the cyclic and static thresholds on the crack growth arresting condition. The 
statistical model has satisfactorily accounted for and explained the observed phenomenon 
that the scatter in the experimentally measured thresholds may increase considerably for 
low stress ratios. 
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