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1. Introduction 

Composites with high-modulus fibres (e.g. boron or carbon) have been 
widely used in aerospace applications due to their high strength/weight 
ratios. A major concern in the design of aircraft structures of composite 
laminates, however, is impact damage, since such damage may severely 
reduce the strength and stability of the structure [1]. A typical impact 
damage zone contains matrix cracks within plies and normally multiple 
delaminations between plies through the thickness of the laminate. More 
extensive, high-energy impact damage may also result in fibre fracture, 
which naturally severely reduces the strength of the laminate. An impact 
of some kind may also introduce a dent in the laminate on the impacted 
side, and frequently a geometrical deformation can be observed through 
the thickness in the impact zone, due to permanent deformation of the 
damaged material. Thus, besides the stiffness reductions due to impact 
damage, the geometrical imperfection introduced by the impact is a 
factor that has to be taken into account. It is well known that buckling 
and postbuckling of thin-walled shell structures are sensitive to initial 
imperfections and therefore impact damage can be expected to change 
the postbuckling behaviour of composites considerably. 
 
The behaviour of composites has received considerable attention in 
recent years [2]. The compressive behaviour of composites is of 
particular interest since the largest strength reductions usually are 
observed in compression [1]. These reductions are normally associated 
with delamination buckling and buckling induced delamination growth, 
and this has been the subject of extensive research for decades [3-6]. The 
studies have covered, e.g., one- and two-dimensional studies of 
delamination buckling to simulation of delamination growth due to 
delamination buckling [7-11].  
 
The focus of the present work is to investigate how the presence of initial 
geometrical imperfections affects the structural response of delaminated 
composite panels during compressive loading. The effect of initial 
imperfections is one of the research topics on buckling behaviour of 
composite panels [12,13] that has gained attention lately. In the present 
study, the numerical simulations are made using an in-house finite 
element program, DEBUGS [14], which is developed to simulate 
delamination buckling and growth of single delaminations. However, no 
growth simulations are carried out in this study, the calculations are 
interrupted when the strain energy release rate at the delamination front 
reaches the critical strain energy release rate at which crack growth 
would start.  
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It is expected that the postbuckling effects due to geometrical 
imperfections are necessary to incorporate in a model for impact-
damaged composites. However, an imperfection is not the only part 
required in a model of a damaged composite. A detailed description on 
micro-level of an impact damage is very difficult to achieve, 
consequently attempts to model the damaged area by introducing reduced 
material stiffness in that area, i.e. a soft-inclusion, have been carried out 
[15,16]. These attempts have shown promising results but have not really 
captured the responses seen in experiments on impact-damaged 
composites [17,18]. Combining soft inclusions and geometrical 
imperfections is a possible continuation of the modelling of impact 
damage since, as is seen in this report, imperfections may influence the 
postbuckling response considerably. 
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2. Computational method 

The numerical calculations performed for studying the influence of initial 
geometrical imperfections on the structural response of composites are 
performed using DEBUGS. DEBUGS is a program system developed for 
simulation of buckling and buckling-induced interlaminar crack growth 
in composite panels. The commercial finite element program ADINA, 
provided by ADINA R&D, Inc., USA, is used as the primary solver in 
the structural analysis of the delaminated composite panels. Non-linear 
shell theory is used to model the composite plate. Fracture mechanics 
parameters are calculated within DEBUGS to examine when 
delamination growth will occur, here the energy strain release rate, G, is 
the most important parameter for this purpose. Moreover, a contact 
algorithm is employed to ensure that no inter-penetration of the opposite 
delamination surfaces will appear.  
 
No description of DEBUGS is incorporated in this paper. For a complete 
description of the theoretical model and its finite element 
implementation, the papers [9,10,19] and the references therein should be 
consulted.  
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3. Numerical examples 

In order to investigate the influence of initial imperfections on the 
structural response during compressive loading, several numerical 
computations are evaluated. Different parameters are varied during these 
tests. The main purpose is to explore how different shapes and sizes of 
the imperfections affect the postbuckling response 
 

3.1 Test specimens 
Two different plate geometries are considered. The delamination is in 
both cases circular with a diameter of 60 mm. For the first geometry, a 
plate, 150x150 mm, with a 32 layers quasi-isotropic lay-up,  
[(0/45/-45/90)s/(90/-45/45/0)s]2, is chosen. This geometry was studied 
experimentally in [18]. The 0°-direction is parallel to the x1-direction, i.e. 
in the same direction as the applied load (see Fig. 1). For the other plate 
geometry, the same lay-up is used, but the plate is 230x150 mm in that 
case. The material properties of the HTA/6376C carbon fibre/epoxy 
material used in the analyses are: 
 
 E11=131 GPa,  E22=E33=10.4 GPa,  G12=G13=5.2 GPa, 
 G23=3.9 GPa,  ν12=ν13=0.3,ν23=0.5, Ply thickness=0.13mm. 
 
This material has been thoroughly investigated earlier. The delaminations 
are situated at the 5th ply interface for both of the plate geometries. 
 

3.2 Geometrical imperfections 
The numerical calculations are executed using different types of 
imperfections. In common for all the introduced imperfections, in this 
paper, is that they in different ways are based on the buckling mode 
shapes evaluated by linear buckling analysis, either local or global 
buckling mode shapes. The imperfections are introduced by modifying 
the geometry of the plate, right before the start of the postbuckling 
procedure in the DEBUGS package. The effects of the various shapes of 
the geometrical imperfections are seen in the next paragraphs. 
 

3.3 Numerical examples 
3.3.1 Square plate 
The square 150x150 mm plate with a circular delamination of radius 60 
mm is considered in the examples presented in this subsection. The 
loaded edges are clamped and the unloaded are free in these examples. 
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For this geometry a FE-mesh, which uses ‘double symmetry’, is used, see 
Fig. 1. This is an option, which the DEBUGS tool provides and is used 
here to save computational time, even though the geometry is not 
completely symmetric. The lay-up of the laminate is quasi-isotropic, 
however, the sublaminates are unbalanced and consequently introduce a 
slight asymmetry to the problem. Thus, a small error is introduced, but 
since the same error appears in all the calculations qualitative 
comparisons are still relevant. 
 
The delamination is located at the 5th ply interface in these simulations. 
This implies that the thickness of the upper sublaminate is 0.80 mm 
(5x0.13mm). The imperfection sizes are determined from this value as 
DEBUGS has a built-in function to define the imperfection size in 
relation to the delamination thickness. Thus, an imperfection size of, e.g., 
10% indicates, in this case, that the largest discrepancy from the non-
deformed shape is 0.08 mm. 
 
In Fig. 2, load-deflection relations for various imperfection sizes are 
shown. The numerical calculations are interrupted when the maximum 
strain energy release rate at some point along the delamination front, 
Gmax, reaches the critical strain energy release rate, Gc=450 J/m2, i.e. 
when the delamination growth would start if the simulation would have 
continued. No delamination growth is simulated in this study. However, 
in some of the curves presented later on, especially for the larger 
imperfections, the calculations were interrupted before the critical strain 
energy release rate, Gc, was reached, after a pre-selected maximum 
number of iterations. The point where the deflections are registered is 
located at the centre of the delamination, as it will be in all the other 
 

 
Fig. 1 The mesh for the square plate, using the ‘double symmetry’ option.  
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x1 
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governs how the thinner sublaminate eventually moves due to the 
restoring forces, which appear on the thinner laminate. While the parts on 
the different sides of the delamination still separates for the second 
largest imperfection, the parts almost move as a unit for the largest 
imperfection. 
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Fig. 3 Load-deflection curves at the centre of the
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Fig. 4 Load-deflection curves at the centre of the panel obtained with varying 

sizes of the modified local buckling mode imperfection (lower sublaminate 
imperfection size, 50% of the imperfection of the upper sublaminate).  
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The last type of imperfection that is investigated is, when the initial shape 
has the same form as the lowest order global buckling mode, which has 
the shape indicated in Fig. 5. The load-deflection behaviour of the 
midpoint, for varying sizes of the global mode shape imperfection can be 
seen in Fig. 5. It is seen that the change in postbuckling behaviour occurs 
at a lower level of the imperfection size compared to the other 
imperfection shapes. 

 

3.3.2 Rectangular plate 
The second geometry that is studied is a 230x150 mm panel, where the 
load is applied along the shorter side, which is clamped, while the longer 
side is simply supported. This geometry is of interest because it has been 
investigated earlier at FOI/FFA [18]. The assumed geometry of the 
delamination is the same as for the quadratic plate, i.e. with a diameter of 
60 mm. 
 
The first and second global buckling loads are about the same magnitude 
for this geometry. Thus, it is possible that either of these modes can be 
excited during the loading process. As a consequence of that, the model 
of this plate does not use the ‘double symmetry’ option, provided by 
DEBUGS, that was used in the previous example, since the two lowest 
order buckling modes cannot be captured if this option is used. Thus, the 
‘no symmetry’ option in DEBUGS is used for the rectangular plate, see 
Fig. 6. However, no sign of mode jumping was seen during the loading 
processes, for the cases that were tested. 
 

Simply supported

Simply supported

ClampedClamped

 
Fig. 6 The mesh for the rectangular plate, using the ‘no symmetry’ option.  
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4. Conclusions 

In this report, the effect of geometrical initial imperfections on 
postbuckling behaviour of composite laminates with delaminations is 
studied numerically. For this purpose the ADINA-based program system 
DEBUGS is used, which is well suited for investigations of this kind. 
The imperfections are included as a modified geometry of the composite 
at the beginning of the loading process. The shapes of the imperfections, 
in this study, are all different variations of the global and local buckling 
mode shapes, which can be obtained through DEBUGS by linear 
buckling analysis. Other geometrical imperfections can be included in 
DEBUGS for similar analyses with a minor effort. Thus, analyses of this 
type are not restricted to the imperfections, based on the buckling mode 
shapes that are studied here. 
 
The numerical tests and parameter studies made in this report show that 
initial imperfections may have an influence on the postbuckling response 
and consequently also on the buckling-driven delamination growth, 
which affects the residual strength of composites. In general, initial 
imperfections tend to reduce the opening mode during buckling of the 
two sublaminates. Sufficient local imperfections may cause a reversed 
global buckling direction. The initial imperfections cannot alone 
describe, e.g., the initiation of delamination growth, but it seems that this 
factor cannot be neglected. Consequently, in a model of an impact 
damaged composite laminate, where the damaged zone, e.g., is described 
through a soft-inclusion with reduced stiffness, the initial imperfections 
also need to be included to allow a good representation of the damaged 
composite. 
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