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1 Introduction

AASR - Associative Aperture Synthesis Radar, is a proposed system for air surveil-
lance. It consists of a network of homogeneously distributed ground radar stations
which can detect, position and track air targets. One proposed design is to have the
stations distributed some 20-50 km apart and let the stations perform both monos-
tatic and (for nearby stations) bistatic measurements. Tentative frequencies will lie
in the lower UHF band, and the system will use a band width of, say, 40 MHz. By
communicating and combining data from nearby stations, the system will produce
a scene where air targets are located in position space and also given velocities. For
a full account of the system as a whole, we refer to [1],[2].

Since any neighbouring radar facilities can form a pair for bistatic measurements,
there are obviously more bistatic facilities available than monostatic. (This is pro-
vided, of course, that the separation between the radar stations is not too large.) The
geometry of bistatic measurements is essentially the geometry of ellipsoids, while the
geometry of monostatic measurements are connected to spheres. Since intersections
of ellipsoids are described through equations of fourth order, the explicit algebra of
bistatic measurements can be awkward, compared to the simpler equations related
to spheres/monostatic measurements.

On the other hand, apart from being more numerous, the bistatic measurement
have another advantage over the monostatic ditto. Namely, in the situation of
stealth targets, it may be that the monostatic measurements are to weak to be
detectable, while scattering from the target may be suÆciently strong for bistatic
con�gurations. Therefore, eÆcient trilateration methods are of interest.

In this report, we study the problem of eÆciently resolving (i.e., determine posi-
tion and velocity) many targets over a scene, where we have bistatic measurements
(only). It will turn out that the calculations can carried out easily and fast if we
are given a certain redundancy. Below, we will describe the method when applied
to one target, and then extend the situation to many targets. First, however, we
will look at the formulation of the problem and, for future reference, look at the
monostatic case.

2 The association problem

In this report, the relevant situation is the following. We imagine Ns radar stations
(in R3). The stations are denoted by sj; j = 1; : : :Ns and their radii vectors with
rj; j = 1; : : : Ns. Each radar station transmits pulses which are scattered against
targets and then received by the transmitting station (monostatic measurements)
but also by the neighbouring radar stations (bistatic measurements). Each measure-
ment gives a distance and a Doppler estimate, i.e., if there is a target located at the
time dependent position � = �(t), with velocity v = _� = d

dt
� and if the transmitter

5
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and receiver are located at rtx and rrx respectively, the measurements are

d = j�� rtxj; v =
d

dt
j�� rtxj (monostatic case; rtx = rrx)

and

d = j�� rtxj+ j�� rrxj; v =
d

dt
(j�� rtxj+ j�� rrxj) (bistatic case)

If we know the distance to a target from several (at least three) measurement fa-
cilities, then the position of the target can be determined up to possibly a trivial
ambiguity. Given the Doppler information, the velocity can also be determined. In
practice, however, we have several targets located at �i, i = 1; 2; 3 : : : . This means
that to a given measurement con�guration, monostatic or bistatic, where we have
several targets, i.e., several measurements, it is not a priori known which measure-
ment from one measurement con�guration that corresponds to a given measurement
from another measurement con�guration. The problem of correctly matching mea-
surements from one con�guration with the measurements from the other con�gura-
tions is called the association problem. In this report one method for solving this
problem is described; other methods are presented or investigated in [1],[2],[3],[4],[5].
The method presented here, which gives both position and velocity of the targets
uses, only bistatic measurements.

2.1 Formulation of the problem

We thus have the stations sj; j = 1; : : :Ns at rj; j = 1; : : : Ns. We also have Nt

moving targets ti, i = 1; : : : Nt which are to be detected, and they are located at
�i = �i(t), i = 1; : : : Nt. Each station has the capability that to each target (up to
a certain maximum distance) measure distance and radial speed. Thus, station sj,
1 � j � Ns will, at a certain time, register

dj(k) = j�k � rjj; k = 1; 2; : : :Ndj � Nt

vj(k) =
d

dt
j�k � rjj; k = 1; 2; : : :Ndj � Nt

For stations nearby enough, we also get bistatic information, i.e., one transmits from
one station and receives at another. For the station pair (si; sj), this means that
one register, for 1 � i; j � Ns,

dij(k) = j�k � rij+ j�k � rjj = di(k) + dj(k); k = 1; 2; : : :Ndij � Nt

vij(k) = d
dt
j�k � rij+

d
dt
j�k � rjj = vi(k) + vj(k); k = 1; 2; : : :Ndij � Nt

(1)

6
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Note that with these notations, dii(k) = 2 di(k); vii(k) = 2 vi(k), i = 1; 2; : : : ; k =
1; 2; : : : .

As mentioned above, it is a priori not possible to know which measurement
from one sensor that is related to a measurement from another sensor, i.e., if the
measurements stem from the same target. If measurements from di�erent sensors
are paired wrongly, we get false targets, or ghosts. The association problem is to
match data correctly so that among all possible combinations or candidates, we
discriminate between correct pairings (targets) and incorrect pairings (ghosts). The
targets are to be located both with respect to position and velocity, i.e., the targets
can be considered as points in the state space S = R6. The problem is thus the
following.

Given indata of the form (1), determine targets ti, i = 1; 2; 3; : : : in S
compatible with indata.

Note that monostatic measurements may be included in (1) if i = j.

3 Position and velocity of one target from mono-

static measurements.

In this section, we will, for future reference, look at the following problem. Suppose
that we are given three points r1; r2; r3 in R3, which we for convenience place in
the xy-plane. Given three (compatible) distances, �1; �2; �3 from these points, these
distances determine, up to a trivial re
ection symmetry in the xy-plane, a point
r 2 R3. We will here show how this point can be determined. It turns out that
we may as well consider more than three distances from given points, but we will
at present assume that the distances are compatible, i.e., that there exits a point r
giving the distances (see section 3.1 below). Note also that unless all points lie in
the same plane, the re
ection symmetry is lost.

3.1 Position of one target from monostatic measurements

Thus we study the following problem:

Problem 1.

Suppose that we are given N points r1; r2; : : : ; rN in R3, N � 3. Suppose also that
to a given, but unknown point r, we know the distances �i = jr� rij, i = 1; 2; : : :N .
The problem is then, given ri and �i, i = 1; 2; : : :N , to recover r.

One solution to this problem is to do as follows. We start by choosing the ori-

7
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gin point so that

NX
i=1

ri = 0: (2)

If we write r = rbr, ri = ribri, etc.,. we have that
r2 � 2r � ri + r2i = �2i ; i = 1; 2; : : : ; N (3)

By summing over i, and using (2), we �nd that

r2 =
1

N

NX
i=1

(�2i � r2i ) (4)

Thus r is known. Knowing r, we can rewrite (3) as

br � ri = 1

2

�
r +

1

r
(r2i � �2i )

�
i = 1; 2; : : : ; N (5)

By putting the vectors ri as rows in a matrix A, and by putting the numbers
1=2(r + 1=r(r2i � �2i )) in a vector b, equation (5) becomes

Abr = b (6)

where A is N � 3 and b is N � 1. We note that the rank of A is 3, unless all ri lie in
the same plane, in which case the rank of A is 2. We now use SVD-decomposition of
A, so that A = U�V t, where U and V are orthogonal matrices of order N �N and
3 � 3, and where � contains the singular values on its 'broken diagonal'. We also
note that the decomposition of A into U;� and V is independent of the measured
distances �i, so that it can be done once and for all, as soon as all ri are known.
With � = U tb, b� = V tbr, (6) becomes

�b� = � (7)

The structure of (7) is �
�I

�II

�b� = � �I

�II

�
(8)

where �I and �I consist of the �rst three rows/elements of � and � respectively.
Thus �II is the zero-matrix of size (N � 3)� 3, and the 'equation' �IIb� = 0 = �II

is a measurement of the compatibility of data. As for the remaining equation,
�Ib� = 0 = �I , two situations may occur. First, if �I is invertible, which is the case
if not all ri lie in the same plane, we simply have

b� = ��1
I �1 (9)

8
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Ideally, this should give b� the correct length directly, but due to inconsistencies
and/or measurement errors, one may in practice have to normalize b�;

b� = ��1
I �1

j��1
I �1j

(10)

The second case is when �I has rank two, i.e., when the singular values are �1; �2; �3,
with �3 = 0. This occurs when we have only three measurements, i.e. N = 3, or
N � 4 but all radar stations lie in the same plane, �. This is also the case when
we expect a re
ection symmetry in � for the solution. With b� = (�1; �2; �3)

t and
� = (�1; �2; �3)

t we simply have

�1 =
�1

�1
; �2 =

�2

�2
; �3 = �

q
1� �21 � �22 (11)

The re
ection symmetry shows up in the sign ambiguity of �3, and we also remark
that a complex �3 means that we have incompatible indata.

If, in addition to range measurements, we also have (monostatic) Doppler mea-
surements, we are of course also interested in the full three-dimensional velocity v
of the target.

3.2 Velocity of one target from monostatic Doppler mea-

surements

In this subsection we study the problem of determining the velocity v, when we know
the radial (Doppler) velocities of the target with respect to some radar stations are
known. Thus, using the same notation as in the previous section, we also know N
Doppler velocities,

vi =
v � (r � ri)

jr � rij
; i = 1; 2; : : :N (12)

The values of vi; i = 1; 2; :::N will depend on the location r of the target. Therefore
v will be expressed in terms of r which is either known or regarded as a parameter.
The problem can be formulated as follows.

Problem 2.

Given the vectors r and ri, i = 1; 2; : : :N , N � 3 in R3 and the radial velocities vi,
i = 1; 2; : : :N , given by (12), determine v.

With a similar approach as in the previous section, we put (r � ri)
t=jr � rij as

rows in the N � 3 matrix A. With u = (v1; v2; : : : vN)
t, the equation becomes

Av = u (13)

9
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This time we might expect A to have rank 3, so we can either solve (13) via SVD-
factorisation as in the previous section or use the normal equations

AtAv = Atu (14)

4 Position and velocity of one target from bistatic

measurements.

Here we will look at a similar situation to the one in section 3. The di�erence is that
we instead of monostatic measurements will consider bistatic ditto. As mentioned
earlier, intersections of ellipsoids (which are connected to bistatic measurements) are
harder to handle algebraically than intersections of spheres (which are connected
to monostatic measurements). This diÆculty will be handled through a certain
redundancy.

4.1 Notation

Consider our N radar stations at r1; r2; : : : rN . For a while, we will assume that
N = 4, so that we have (target at �) monostatic measurements

di = j�� rij; i = 1; 2; 3; 4

and bistatic measurements

dij = j�� rij+ j�� rjj; 1 � i; j � 4

so that in particular dii = 2di.
For the Doppler speed, we write

vi = _di =
d

dt
j�� rij =

�� ri
j�� rij

� _� =
�� ri
j�� rij

� v; i = 1; 2; 3; 4

where a dot indicates di�erentiation with respect to time. Similarly, we write

vij =
�� ri
j�� rij

� _�+
�� rj
j�� rjj

� _�; 1 � i; j � 4

so that vii = 2vi. Let us also use the notation Bij for the set of all bistatic measure-
ments between station si and station sj.

10
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4.2 Position from three bistatic measurements

In the case of three bistatic measurements (from four stations forming pairs), two
di�erent situations may occur. In the simplest case, we have the information from
the three possible pairs formed by three stations, i.e., we know for instance d12; d23
and d31. The information has the structure

j�� r1j + j�� r2j = d12
j�� r2j + j�� r3j = d23

j�� r1j + j�� r3j = d31

(15)

so that we may easily �nd j�� r1j, j�� r2j and j�� r3j explicitly and then use the
methods of section 3.1.

The other, and more complicated situation is when we know for instance d12; d23
and d14. This time the information is

j�� r1j + j�� r2j = d12
j�� r2j + j�� r3j = d23

j�� r1j + j�� r4j = d14

(16)

Unless all ri lie in the same plane, there is a unique solution, which is, however, not
so straightforward to �nd.

When we have multiple targets, there may be inconveniently many relations of
the type (15), since we don't know if a suggested triple (�12; �23; �31) corresponds to a
real target or not. If, however, there are redundant measurements, it can be possible
to test for consistency of data in a very fast and immediate way. It is therefore of
interest to solve redundant equations of the type (16). This will be discussed in the
next section.

4.3 Position from four bistatic measurements

In this section, we will look at a redundant bistatic con�guration. We will assume
that we from four radar stations have four bistatic measurements d12; d34; d13 and
d24 so that we have measurements according to the following scheme:

j�� r1j + j�� r2j = d12
j�� r3j + j�� r4j = d34

j�� r1j + j�� r3j = d13
j�� r2j + j�� r4j = d24

(17)

11
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It is not possible to �rst solve (uniquely) for j� � rij, i = 1; 2; 3; 4, since in the
equation

A

0
BB@

j�� r1j
j�� r2j
j�� r3j
j�� r4j

1
CCA =

0
BB@

d12
d34
d13
d24

1
CCA

the matrix A is singular. However, we still expect equation (17) to have a unique
solution, since there are only three unknown variables (x; y; z) � �. We now show
that it is possible to solve equation (17) without invoking complicated fourth-order
polynomial equations.

We �rst note that (17) can be solved parametrically:0
BB@

j�� r1j
j�� r2j
j�� r3j
j�� r4j

1
CCA =

0
BB@

d12 � d24
d24
d34
0

1
CCA+ t

0
BB@

1
�1
�1
1

1
CCA (18)

where we have used the fact that d12�d24+d34 = d13. (This follows from (17).) We
now choose r4 as origin point, so that r4 = 0 and j�� r4j = j�j = �. If we compare
with (18), we see that t = � and therefore that (18) can be written

j�� r1j = d12 � d24 + �
j�� r2j = d24 � �
j�� r3j = d34 � �

By squaring the equations and noting that the terms � � � = �2 cancels, we get

�2� � r1 + r21 = (d12 � d24)
2 + 2�(d12 � d24)

�2� � r2 + r22 = d224 � 2�d24
�2� � r3 + r23 = d234 � 2�d34

or

� � r1 = ��(d12 � d24) +
r2
1
�(d12�d24)2

2

� � r2 = +�d24 +
r2
2
�d2

24

2

� � r3 = +�d34 +
r2
3
�d2

34

2

(19)

In order to (partially) eliminate � in the left hand side of (19) we note that if we
choose � and � so that d12 � d24 � �d24 = 0 and d12 � d24 � �d34 = 0, then

� � (r1 + �r2) =
r2
1
�(d12�d24)2

2
+ �

r2
2
�d2

24

2

� � (r1 + �r3) =
r2
1
�(d12�d24)2

2
+ �

r2
3
�d2

34

2
(20)

12
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Therefore, with the ansatz

� = 
(r1 + �r2) + Æ(r1 + �r3) + "(r1 + �r2)� (r1 + �r3)

(20) gives us equations for 
 and Æ. Knowing these, we get " from (19).
An alternative way to solve (19) is to create an orthogonal set of vectors from

r1; r2 and r3. This is always possible in theory unless r1; r2; r3 and r4 all lie in the
same plane (since we have chosen r4 = 0). If this is not the case, we can replace
(r1; r2; r3) by an orthonormal set (bx; by; bz) so that the equation (19) takes the form

� � bx = a� + �
� � by = b� + �
� � bz = c�+ 


(21)

By squaring and adding these equations, we get an quadratic equation for �. Know-
ing �, we insert � in the right hand side of (21) and can thus determine � =
xbx + yby + zbz completely. If r1; r2; r3 and r4 all happen to lie in the same plan,
equation (21) becomes

� � bx = a� + �
� � by = b� + �
0 = c�+ 


(22)

so that we know � immediately. This will then give us x and y and �nally z up to
sign.

4.4 Position and velocity from bistatic measurements

In this subsection we will see how also radial Doppler estimates of the target deter-
mines its three-dimensional velocity. We start by putting

bui =
�� ri
j�� rij

; v = _�

If the measurement is of the type (15), the equation for v is

bu1 � v + bu2 � v = v12bu2 � v + bu3 � v = v23bu1 � v + bu3 � v = v31

(23)

where everything is known except v. Again the system is explicitly solvable and the
problem is reduced to the problem described in section 3.2.

With a measurement of type (17), we must solve

bu1 � v + bu2 � v = v12bu3 � v + bu4 � v = v34bu1 � v + bu3 � v = v13bu2 � v + bu4 � v = v24

(24)

13
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The immediate parameter solution is0
BB@
bu1 � vbu2 � vbu3 � vbu4 � v

1
CCA =

0
BB@

v12 � v24
v24
v34
0

1
CCA+ t

0
BB@

1
�1
�1
1

1
CCA (25)

We see that t = bu4 � v and thus0
@ (bu1 � bu4) � v

(bu2 + bu4) � v
(bu3 + bu4) � v

1
A =

0
@ v12 � v24

v24
v34

1
A (26)

This is (at least generically) an invertible system of equations, which gives v. We
note that in order for (24) to be solvable, the radial Doppler measurements must
ful�ll the consistency relations (cf. remark under equation (18))

v12 + v34 = v13 + v24 (27)

This will be used in section 5.

5 Multiple positions and velocities from four bistatic

measurements

As mentioned in the introduction, and also described elsewhere, there are reasons
for considering redundant measurements of several targets. These measurements
can be monostatic or bistatic, and in general we have a mixture of both types. The
overall problem is to have an region with several targets and recover these (i.e., their
position and velocity) from data.

Depending of the type of data and the degree of redundancy, several processing
methods are possible. Here we will look at the following situation:

Problem 3

Suppose that we have a scene containing N targets, and four radar stations at
r1; r2; r3; r4 monitoring the scene. Determine the positions and velocities of the tar-
gets given the bistatic measurements B12; B34; B13 and B24.

Note that we could have six bistatic measurements (and four monostatic) , but
that we use only four, matching the situation in section 4.3. The remaining sets B14

and B23 can be used to give extra redundancy or allow for certain data losses. All
targets need not be seen by by all measurements, but for simplicity, we assume, for
the moment, that all targets are seen by all measurements. Thus Bij registers

dij(k) and vij(k); 1 � k � N; ij = 12; 34; 13; 24

14
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In principle, we could use three measurements, B12; B34 and B13 to form (up to)
N3 candidates with respect to position and velocity and then check against B24. As
mentioned earlier, these calculations, apart from being N3 in number, are somewhat
involved. By incorporating B24 directly, we can instead proceed as follows:

15
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Step 1 Each target seen by B12 can be associated with a target seen by B34, so
that these two measurements together give N2 candidates. Form these N2

candidates, and sort them after their added distances, i.e., after the possible
values of

d12(k) + d34(l); 1 � k; l � N

We denote these distances by

d12+34(m); 1 � m � N2

and note that the sorting can be done on O(N2 logN) operations.

Step 2 In an identical way we form and sort the sum of the distances d13 and d24.
These gives us

d13+24(m); 1 � m � N2

where each d13+24(m) = d13(k) + d24(l) for some k and l.

Step 3 If there is a target at �, then there must exist a m and a m0 so that

d12+34(m) = j�� r1j+ j�� r2j+ j�� r3j+ j�� r4j = d13+24(m
0) (28)

Therefore, we start by comparing the ordered sets

fd12+34(m); 1 � m � N2g and fd13+24(m); 1 � m � N2g

and get candidates for those m and m0 where (28) holds within a given toler-
ance. In most situations, the number of targets is considerably less then the
number of range bins, but to get pessimistic estimates, we assume that these
numbers are comparable. Suppose, therefore, that we have � N range bins so
that each range bin contains � N candidates. In this case, several d12+34(m)
and d13+24(m

0) may be equal within the precision of the range bins so that no
e�ective reduction of false candidates, i.e., ghosts occur. We therefore note
that in addition to the equality (28), for a target, we must also have

v12(k) + v24(l) = v13(k
0) + v24(l

0) (29)

for those k; l; k0; l0 where

d12(k) + d24(l) = d12+34(m) = d13+24(m
0) = d13(k

0) + d24(l
0) (30)

Thus, in step 3, we compare all d12+34 and d13+24 in a given range bin and
among these keep only the pairs for which (29) and (30) hold within the
choosen tolerence. (If there are several d12+34 and d13+24 in the same range
bin, we need not check all pairs, since we can, within each range bin, sort both
d12+34 and d13+24 with respect to the velocities v12(k)+v24(l) and v13(k

0)+v24(l
0)

respectively.)

16
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Step 4 By the preceding steps, we will remove most, but not all ghosts. The
remaining ghosts are located at points (and given velocities) which are com-
patible with B12; B34; B13 and B24. Therefore, no further reduction can be
made without incorporating further measurements. Thus step 4 consists of
further comparison with additional measurements. What extra information is
available depends, of course, of the situation.

Even if this method leaves some ghosts (due to insuÆcient data) there is a point,
namely that the described procedure reduces the number of ghosts so that further
investigations can be performed with a low e�ort.

17
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5.1 A comments on ghosts and processing complexity

We saw in the description of step 1 and step 2 that these steps could be carried
out in O(N2 logN) operations, where N is the number of targets. If we, for each
given distance �12+34, i.e., each range bin corresponding to such a distance also sort
data after velocity as mentioned in step 3, it is clear that also step 3 is performed
in O(N2 logN) operations. Since step 4 can be performed simultaneously with
step 3, the overall number of operations to run through steps 1 to 4 above is still
O(N2 logN).

To get an estimate of the number of ghosts remaining, we will make the following
(pessimistic) estimate. Using the rough �gures N targets, N range bins and N
velocity bins, step 1 distributes N2 candidates in N2 velocity-range bins, and the
same holds for step 2. In step 3, candidates from step 1 and step 2 will be more or
less paired with each other. Therefore, the number of candidates will be of the order
N2 (or less), but we note that in step 3 there will also be a e�ective reduction of
ghosts if the number of targets is signi�cantly less then N (N still being the number
of range bins).

To summarize, we have presented a method which, in O(N2 logN) operations,
reduces N3 potential candidates to (less that) N2 candidates, each of which can
be assigned a three-dimensional position and velocity by the methods described in
section 4.3. In combination with additional measurements, this gives a O(N2 logN)
method for complete determination of targets with respect to both position and
velocity.
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