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1 Introduction

Most of the remote sensing methods in marine electromagnetics are focused
on very or extremely low frequency fields. Due to the highly conductive
seawater this is the frequency range of largest importance. The measured
fields are apart from artificial sources or scatterers mainly determined by the
conductivity profile of the surrounding marine environment. Inverse prob-
lems of electromagnetic sounding [1] therefore often aim at recovering a one-
dimensional conductivity profile from electromagnetic field measurements.
Based on these profiles accurate field predictions from artificial sources can
be calculated. It is important to describe the surrounding environment well,
since an inaccurate description will have a strong impact on the electro-
magnetic field predictions in the area. An insufficient environment model is
likely to cause major errors when calculating variables like detection ranges.

To extract the most appropriate model for a general inverse problem,
local Newton-like optimization methods are often applied. These methods
have shown to be sufficient, at least as long as the parameter search space
is reasonably simple. If the search space only contains a few local minima
the local method will find the optimal model if it is just restarted a num-
ber of times. For more complicated parameter spaces however, the local
optimization methods may get stuck in local minima too often. Obviously,
this will make the problems very time consuming to solve, and a need for
more efficient search algorithms arises. For example in the inverse acoustic
problems, which are similar to the inverse electromagnetic problems, global
search methods like the genetic algorithms [2] and hybrid methods [3], have
been shown good to apply. Further examples of this can be seen in [4], [5].
For the electromagnetic problem there are many examples of inversions with
local search methods [6], [7], [8]. However, there are not so many studies
which apply global search algorithms. Furthermore, the electromagnetic in-
verse problems which have been studied with global methods, see e.g. [10],
most often involve structures significantly different from those in our prob-
lem. It therefore seems motivated to explore if the global methods, which
worked well for the related acoustic inverse problem, also can be successfully
applied for the inverse electromagnetic problem.

In this study the restarted local Levenberg-Marquardt method used in
[8] is compared to two global methods, a genetic algorithm and a simu-
lated annealing method, for several inverse electromagnetic problems. The
genetic algorithms have been shown to be superior to other global search
methods, like simulated annealing [11] for certain applications. However,
there are also studies which show the simulated annealing to be better than
the genetic algorithms [12]. It seems dependent on the type of the stud-
ied problem which search method that is preferable. Both these methods
are therefore included in this study. Obviously there are many more global
search methods, but it would be an extensive task to try to find the most



suited method of them all. This study is therefore limited to a comparison
between the local Levenberg-Marquardt method, a genetic algorithm, and
a simulated annealing method.

Normally in studies which compare different search algorithms the re-
sult is presented as how the quality of the best found model increases with
the number of models evaluated. However, if a method is applied a great
number of times a few representative examples of such a function must be
selected. For methods whose performance strongly varies from time to time
this could be difficult. Here the result is therefore shown as the proba-
bility that a method finds a model with a certain quality as a function of
models evaluated. By using this way to present the results, the three men-
tioned methods are compared for several problems. Initially the methods
are compared for a problem which only aims at illustrating the strength of
the global methods. Later follows a comparison for some electromagnetic
problems with simulated data. All these problems are set up to resemble
the situation at a ranging station in the Stockholm archipelago. Finally the
methods are compared for real experimental input data from a sea trial.

2 Search Algorithms

The studied electromagnetic environment problem is a typical inverse prob-
lem in which a set of parameters shall be optimized to minimize an objective
function. This function can also be called the cost function or the fitness
value. To find the parameter values which correspond to the optimal objec-
tive function value there are numerous methods. Here the three well known
algorithms used in this study are briefly described. More detailed descrip-
tions of the global algorithm and the simulated annealing method are found
in the appendix.

2.1 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt based algorithm [8], [17] is a Newton like search
method which uses the derivative of the objective function to find a local
minimum. In contrast to the global methods this will make it impossible
for the method to escape from a local minimum. In order to find the global
optimum the method is therefore restarted a number of times. It would be
sufficient to restart the method with a uniformly distributed starting point.
However in [9] it is indicated that for the inverse electromagnetic problems
another generation of the starting points is more efficient. The idea of the
algorithm is to generate starting points far from earlier starting points, and
earlier found local minima. Each parameter value of the new starting point
is therefore randomly chosen in the largest interval between the values of
that parameter for earlier starting points and earlier found local minima. If



the more distant starting points are more likely to lead to a new minimum
this will increase the search speed.

2.2 The genetic algorithm

The genetic algorithm is a search algorithm inspired by the natural evolu-
tion. A set of models, referred to as a population, is used to create new
models, which are normally called children. Similar to nature the popula-
tion becomes too big and the weakest members are eliminated. The idea
is to repeat this natural selection procedure until the population includes a
model which is a good solution to the studied problem.

There are a number of different ways to construct a genetic algorithm.
Similar for all algorithms though is that the parameter values, which de-
scribe the models, are limited by bounds, based on prior knowledge. Within
these bounds the parameters are often discretized. There are also methods
in which the parameter can take any value between the bounds, but a dis-
cretization is definitely more common. The discretization steps are always
chosen to give 2™ n; € N, possible values, where n; is a number which corre-
sponds to the i:th parameter’s required sensitivity. A binary bit string with
n; bits is then enough to encode the value of each parameter. All models can
then be described by long bit strings containing different parts correspond-
ing to each parameter. These bit strings are referred to as chromosomes. In
this study we use a genetic algorithm which is based on GENITOR [18], a
method which applies the described chromosome like data structure. Our
genetic algorithm has shown successful in acoustic problems similar to the
electromagnetic problems in this study [16]. The basic idea is, as mentioned
in [4], [5], [14]:

1. Randomly generate an initial model population, encoding each model
to a binary string, a chromosome. Compute the fitness value and rank
each chromosome in the population.

2. Randomly select two parent chromosomes using a selection probability
proportional to the rank in the current population.

3. Generate two children which inherit their characteristics from their
parents.

4. Randomly delete one of the children and evaluate the other child’s
fitness value, and rank in the population.

5. Eliminate the chromosome with the worst fitness value in the popula-
tion.

6. Stop if the maximum number of allowed evaluations is reached, oth-
erwise go to 2.



The method is designed not to get stuck in a local optimum, However, it can
happen that all the chromosomes in a population describe models close to
each other in the parameter space, all gathered around a local optimum. To
avoid such a scenario, several populations can be randomly initiated, and
developed according to the following, as also described in [16].

1. Develop each population for a certain time according to the scheme (2
to 6) described above.

2. Copy the best chromosomes in each population to the other popula-
tions.

3. Eliminate the weakest individuals in each population.

4. Stop if the maximum number of allowed evaluations is reached, oth-
erwise go to 1.

These schemes define the structure of our genetic algorithm. However, to get
a good result it is important to choose appropriate values on population sizes
etc. To understand all the choices that have to be done, a closer description
of the different parts in our genetic algorithm is required. This is found in
the appendix.

2.3 Simulated annealing

In contrast to the genetic algorithms, simulated annealing only has one
starting point [12]. This is similar to the local optimizing methods, but for
simulated annealing the derivative of the objective function is not calculated.
Instead the next point is randomly chosen from a probability distribution
which continuously decreases with the distance from the starting point. An
additional difference from the local methods is that the new point is not
necessarily taken as a new starting point. The chance that it is taken is
instead related to the difference in objective function values between the
points. If the new point corresponds to a lower objective function value it is
taken, but it can also be taken when it is higher than the original. Hence, the
method is capable of climbing out of local optima. This procedure is then
repeated but the probability distributions are changed. As the search goes
on the distribution which controls the pick of the next point, gets narrower
and new points far away from the starting point are less likely. Furthermore
the probability that a point with a worse objective function value is accepted
decreases with time. The idea is that the starting point will jump around
over the entire search space in the beginning, avoiding getting stuck in local
minima, until it finally finds the global minimum in the end. This algorithm
has got it name from the roughly analogous physical process of heating
and then slowly cooling a material, to obtain a strong crystalline structure.
Just as in the physical process a system temperature controls the search
algorithm, which is described in detail in the appendix.



3 Performance for electromagnetic inverse prob-
lems

In this chapter the results of the comparison between the three methods are
shown. As previously mentioned there are many earlier studies in which
different search algorithms have been compared. For all of these studies the
compared methods are firstly each applied to a certain problem a number of
times. Then there is however no obvious way of how to compare the results.
Naturally it is both the quality of the produced solutions and the time
required to find them that are important. One method may however work
extremely well every hundred time it is used, but otherwise it may only give
decent solutions. It will then be dependent on the studied problem if that
method is better than an algorithm which mostly often extracts parameter
values corresponding to a quite low objective function value, but which
almost never performs extremely well. In most of the studies the result is
shown as how the objective function value corresponding to the best found
model decreases with the number of evaluated models. An example of this
can be seen in figure 1. Since it is only possible to show a few functions
for each method the authors have to select a few representative examples
for each algorithm. Even though it sometimes can be done, it seems almost
impossible to do if the evaluated method has large variations in the results.
Here we therefore introduce a way to compare the methods which eliminates
the need for the human capacity to select representative results. As before
each of the compared methods are applied to a problem a great number
of times. Based on the results, the probability that an algorithm will find
a model corresponding to a objective function value lower than a bound
Cso can be estimated as a function of the number of evaluated models.
The bound C, are varied to investigate which methods that find decent
solutions quickly, and which methods that find the extremely good models.

3.1 Initial example

To illustrate the strength of the global search algorithms the following ob-
jective function is studied

in?(\/z} + 23) — 0.5
Flay,zp) = —0.5 + S (Vo1 +§"2) —, (1)
(1 +0.001(z% + 23))?

where 21 and z9 are two parameters in [—100, 100]. As shown in figure 2 the
objective function has many local minima around the global minimum at
[0,0]. A locally restarted optimization method will only spin around and will
clearly not work very well for this problem. For the global search algorithms
however, this problem is quickly solved. A genetic algorithm with a single

population is sufficient to solve the problem. The result is shown in figure
3.
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Figure 1: An example of the conventional way to compare two methods.

Figure 2: The objective function in equation (1) as a function of z; and .
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Figure 3: The probability for the search methods to find a model with a cor-
responding objective function value below -0.99 is plotted against the num-
ber of evaluated models. The search space was limited to z; € [—100,100]
and z2 € [—100,100]. The parameter values for the genetic algorithm were
Neyor = 2750, Npopsize = 250, Npop =1, Nemig =0, Nmigr =0, kg =3,
¢m1 = 0.15, ¢ = 0.6, and uniform crossover was applied.
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Figure 4: The probability for the search methods to find a model with a
corresponding objective function value below -0.99 is plotted against the
number of evaluated models. The search space was limited to z; € [—10, 10]
and z2 € [—10,10] The parameter values for the genetic algorithm were
Neyor = 2750, Npopsize = 250, Npop =1, Nemig =0, Nmigr =0, kg =3,
¢m1 = 0.15, ¢p2 = 0.6, and uniform crossover was applied.

If the search space is limited to z; € [—10,10] and z2 € [—10,10] the
problem becomes significantly simplified. As seen in figure 4, the local al-
gorithm then works better than the global methods for this problem. This
is typical for the search algorithms. The global search methods tend to
be more competitive for complicated search spaces. For simple objective
functions with a limited number of minima the local methods are often
preferable. Hence, the choice between applying a local or a global method
strongly depends on the studied problem.

3.2 Electromagnetic problems with simulated data

Many electromagnetic inverse problems aim at describing the surrounding
environment with a one dimensional conductivity profile, like the one in
figure 5. To estimate a conductivity model a controlled current source and
one or several sensors are used. The source is either used at a fixed position
transmitting signals of several frequencies, or it is towed while sending only
one frequency. Normally, this is referred to as a frequency sounding problem
and a space sounding problem, respectively. To evaluate a conductivity
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Figure 5: An example of a one dimensional conductivity profile of the envi-
ronment. The thicknesses are in m, and the conductivities are in S/m.

model the electromagnetic wave propagation code NLAYER [15] is applied.
Given a one dimensional environment the code can calculate the electric
fields at the sensors. Hence the goal of the inverse problem is to extract
the conductivity and the thickness for each layer in the model which will
make the difference between the measured and calculated field as small as
possible. The best model is defined as the one which minimizes the sum of
the squares of the differences in field amplitudes, i.e.

F(z) =YY (rl(2))

j=1i=1

where 7! (z) is the difference between the model and the reference field for

the j:th sensor in the i:th direction. Hence the function F'(z) is the objective
function.

By applying the program NLAYER it is also possible to create synthetic
data for an environment with a one dimensional conductivity profile. This
has been done for a frequency sounding problem. The studied configura-
tion is very similar to a ranging station in the Stockholm archipelago [19].
Assume that the source is frequency limited and can not send signals with
frequencies above 200 Hz. Furthermore, the source is fixed close to the bot-
tom, which eliminates the possibility to use space sounding. Besides the
source there are two sensors connected to the ranging station. Both of them
are also close to the bottom. The problem consists of determining a one
dimensional conductivity profile to describe the environment, by using the

10



Depth | Conductivity
0-12 0.80

12—.’131 xT9

1 — o0 | T3

Table 1: Set up for the three layer inversion problem in the ranging station
environment. The reference data was simulated with z; = 27, z9 = 0.3, and
3 = 0.004. The transmitted frequencies were 0.5, 5, 37, 87, and 195 Hz.
The source position was (100, 50, 10.5) and the positions of the sensors were
(0, -12, 11) and (0,12,11).

amplitudes of the 3-dimensional E-field measured in the sensors, when 5
signals of different frequencies are sent. The configuration is shown in detail
in table 1.

In figure 6 the probability for the methods to find a model which corre-
sponds to an objective function value below 0.3 is shown as a function of the
number of model evaluations. As seen, the local method is superior to the
global methods which is expected. The problem only has three parameters
and does not involve any noise. If no noise is added to the data there is
of course possible to find the correct environment model. Here it is easy
for a local method to extract the correct solution. In the simulations it is
actually seen that the local algorithm found the correct solution for 99%
of the random starting points. This strongly indicates very few local min-
ima in the objective function. In figure 7 the objective function is plotted
as a function of the parameters x1 and xo, for four different values of the
parameter 3. The objective function only seems to depend weakly on the
parameter x3. As suspected the objective function is smooth and does not
have many local minima. The local search algorithm therefore easily finds
the global minimum. Both of the global methods also approaches the correct
solution but they are much slower. They both found decent solutions with
objective function values below 0.3 rather quickly, but the search for the
correct solution would in average take a long time. Hence, for this problem
it is clearly better to apply a local method instead of a global.

The no noise scenario can be illustrative but it will obviously never occur
in real life. A more realistic problem is therefore the same configuration
but with noise added. For all of the applied frequencies in the previous
example the background noise intensity has been measured at the station
the configuration is set to resemble. By adding these background fields
to the simulated data from NLAYER a new more interesting problem is
created. However, from the results in figure 8, it can be seen that the
methods perform similarly to the noiseless case. The local method does
however not find models with objective function values as low as before.

11
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Figure 6: The probability that the search methods find a model with a cor-
responding objective function value below 0.3 is plotted against the number
of evaluated models. The parameter values for the genetic algorithm were
Nevol = 100, Npopsize = 40; Npop = 4; Nemig = 2; Nmigr = 4; kg = 3,
c¢m1 = 0.15, ¢ = 0.6, and uniform crossover was applied.
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Figure 8: The probability for the search methods to find a model with a
corresponding objective function value below 1 is plotted against the number
of evaluated models. The parameter values for the genetic algorithm were
Nevol = 1007 Npopsize = 407 Npop = 47 Nemig = 27 Nmigr = 47 kg = 37
c¢m1 = 0.15, ¢ = 0.6, and uniform crossover was applied.

The additional noise removes the possibility to find a correct solution and
the best model will therefore correspond to a non zero objective function
value. Compared to the global methods though, the local algorithm is still
significantly faster in the search for decent solutions. From the simulations
it can also be seen that the local method extracted the same model in 94
% of the restarts. This configuration corresponds to an objective function
of 0.18. In an additional comparison of the ability of the methods to find
solutions with even lower objective function values (e.g. less than 0.2) the
local method would therefore come out even better.

As mentioned earlier the global methods are more competitive for more
complicated problems. One problem that is definitely more difficult is the
same ranging station but with a more detailed division of the conductivity
layers. Assume that we describe the environment with a 10 layer config-
uration, which is shown in table 2, and 4 of the variables are tried to be
estimated. The input data is as previously mentioned created by adding
the components calculated in NLAYER to the measured noise levels at the
station. From the results, shown in figure 9, the methods seem comparable.
The simulated annealing is as fast as the local method in the beginning. If
a decent model is not found in the 300 first model evaluations though, the

14



Depth | Conductivity
0-5 0.96

5-7 0.95

7-9 0.90

9-10 0.85

10-11 0.80

11-12 0.73

12—.’131 I3

Ty — T2 | T4

z9 — o0 | 0.004

Table 2: Set up for the a 10 layer inversion problem in the ranging station
environment. The reference data was simulated with 1 = 17, 2o = 27,
zg = 0.30, and x4 = 0.10. The transmitted frequencies were 0.5, 5, 37, 87,
and 195 Hz. The source position was (100, 50, 10.5) and the positions of
the sensors were (0, -12, 11) and (0,12,11).

possibilities to find such a model seems small. An alternative could there-
fore be to restart the algorithm after 300 model evaluations which would
improve the results. The genetic algorithm works nearly as well as the lo-
cal. Actually a more detailed study of the data shows that it is faster than
the local method to find solutions with objective function values below 0.3.
In the searches for really good solutions however, the local method is still
better. The more detailed study also revealed that the objective function
has numerous different local minima. Normally this would create significant
problems for the local algorithm, but in this case many of the minima cor-
respond to nearly the same objective function value. That is, it seems to
exist many solutions that are approximately equally good. Therefore the
local method still works well.

3.3 Electromagnetic problems with experimental data

All problems in the previous section were based on synthetic data from
NLAYER, which assumes a one dimensional conductivity profile. The ad-
dition of measured noise to the data created a more relevant scenario but
it is still not a real situation. For real experiments the conductivity pro-
file will always be more complicated than the one dimensional profile used
in NLAYER. Similar investigations as those in the previous chapter have
therefore been performed also for experimental data from the Stockholm
archipelago. Two experimental configurations were tested. The first one is
a frequency sounding problem with one source and one sensor. The second
configuration is a space sounding problem in which the source only trans-
mitted signals with one frequency, but the signal was measured for seven

15
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Figure 9: The probability for the search methods to find a model with
a corresponding objective function value below 0.25 is plotted against the
number of evaluated models. The parameter values for the genetic algorithm
were Neyor = 100, Npopsize = 40, Npop = 4, Nemig = 2, Npigr = 4, kg = 3,
c¢m1 = 0.15, ¢ = 0.6, and uniform crossover was applied.
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Figure 10: A map over the experimental set up. The source in the frequency
sounding problem is referred to as P1 and the sensor in both problems is
the one referred to as S1.

different source locations. The positions of the source and sensor for both
cases are illustrated in figure 10.

In the first case the frequency sounding aimed at extracting three pa-
rameter values in a 9 layer model. The details for the problem are shown
in table 3. As seen in figure 11 the local method worked well also for ex-
perimental data. The genetic algorithm also finds models which correspond
to approximately the same objective function values, but it is slower than
the local. For this problem the simulated annealing clearly performed worse
than the other methods. A more detailed study of the data shows that
the problem is rather simple since the local method converged to the same
minimum for 62 % of the restarts.

In the second problem with the space sounding the goal was to describe
the environment as well as possible with a two layer model. The set up is
more closely described in table 4. In figure 12 the results of the searches are
presented. The problem seems to be quite simple since all methods perform
very well, and quickly find solutions with objective function values below
0.008. The value 0.008 is furthermore close to the best achieved objective
function value for any found two layer model. Although all methods perform
well the local method is the fastest, and for this application there does not
seem to be any need for the global algorithms.

17



Depth Conductivity
0-6.5 0.973

6.5-8.5 0.947
8.5-10.5 | 0.900
10.5-12.0 | 0.850
12.0-13.6 | 0.800
13.6-15.0 | 0.765
15.0-17.5 | 0.757

17.5—1131 T2

r1 — X0 I3

Table 3: Assumed set up for the 9 layer frequency sounding inverse problem.
The transmitted frequencies were 1, 23, 77, 177, 377, 577, 777, 979, 1270,
1570, 1871, 2172, 2472, 2772, 3374, and 3975 Hz.

— Local algorithm
— Simulated annealing
Genetic algorithm

Probability for finding a model with objective function < 0.12

L L L L
0 500 1000 1500 2000 2500

Number of model evaluations

Figure 11: The probability for the search methods to find a model with
a corresponding objective function value below 0.12 is plotted against the
number of evaluated models. The parameter values for the genetic algorithm
were Neuol = 100, Npopsize = 40, Npop = 4, Nemig = 2, Nmigr = 4, kg = 3,
¢m1 = 0.15, ¢p2 = 0.6, and uniform crossover was applied.
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Depth | Conductivity
0-$1 xT9
r1 — o0 | I3

Table 4: Assumed set up for the two layer space sounding inverse problem.
The transmitted frequency was 5 Hz.

— Local algorithm
—— Simulated annealing 4
Genetic algorithm

Probability for finding a model with objective function < 0.008

L L L L
0 500 1000 1500 2000 2500

Number of model evaluations

Figure 12: The probability for the search methods to find a model with
a corresponding objective function value below 0.008 is plotted against the
number of evaluated models. The parameter values for the genetic algorithm
were Neuol = 100, Npopsize = 40, Npop = 4, Nemig = 2, Nmigr = 4, kg = 3,
¢m1 = 0.15, ¢p2 = 0.6, and uniform crossover was applied.

19



4 Discussion

For almost all of the inverse electromagnetic problems studied so far the local
method seems to be better than the global. Possibly the global methods
could perform better if even more efficient parameter settings are found.
The results from the simulated annealing show that it tends to get stuck in
local minima too often which indicates that another annealing schedule for
the system temperature could be preferable. Another possibility would be
to combine the global algorithm with the local. The genetic algorithm often
finds models close to the global minimum, and could therefore be used to
extract the starting point for the local method. However, it is clear from the
results that the inverse problems involving a one dimensional conductivity
profile have rather simple objective functions. As shown in the examples
in section 3.1 this normally makes the local search methods sufficient to
apply. Hence, as long as the problems are this simple it does not seem to
be necessary to replace the local algorithm with global methods. The only
problem in which the methods were comparable was the 10 layer inversion
with 4 unknown parameters. As mentioned earlier this problem created
numerous local minima, but all corresponding to nearly the same objective
function value. It seems like there could exist similar problems where one
or at least only a few minima are clearly better than the others. This would
create significantly problems for the local method which would get stuck too
often on suboptimal models. Earlier studies [20],[21], have shown that there
is often no meaning to apply too complicated divisions of the conductivity
profile. The electromagnetic background, which will always exist, is often
strong enough to make simple three or four layer models as efficient as
the nine or ten layer models. Hence, the one dimensional inverse problems
often only consist of a few parameters, and involve objective functions with
a quite simple structures. Based on this assumption it can be concluded
that the local methods probably will be sufficient for the one dimensional
electromagnetic inverse problems, and there is no need for global methods
like the genetic algorithms.

An important remark for future studies is that the conclusion is only
made for the one dimensional inverse problems. Similar to the acoustic
problems there is a need for E-field predictions in two and three dimensional
environments. This will automatically also require extractions of multi di-
mensional conductivity profiles from data. In these problems the parameter
search space will expand significantly compared to the one dimensional prob-
lems. It is then likely that the local methods will not be sufficient and that
global methods like the genetic algorithms will be required. An important
question for the future is to find out how complicated these inverse problems
may be before a need for global search methods arises.
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A Appendix

A.1 Detailed description of the applied genetic algorithm

Our genetic algorithm starts by randomly initiate N, populations with
Npopsize members. Each population is then evoluted N, times. These
generation updates follow step 2-6 in the earlier showed scheme and are
described in detail below. When all populations are updated the Ney,iq
best individuals in each population are copied to the other populations.
The least fitted chromosomes are then deleted until all populations have
recovered their original size, Npopsize. Depending on the number of function
evaluations which are to be done, this procedure is repeated N,,;4» number
of times.

Selection of parents The first step in the generation update is to choose
two chromosomes as parents. To imitate nature the most fit members of
the populations should be the likeliest parents. However all chromosomes
should have a chance to become a parent and the parents are therefore
chosen with a probability related to their rank in the population. Two
random, independent, uniformly distributed numbers (u;), between 0 and 1,
define the parents’ index. The indicies are set to the smallest integers which
are greater than or equal to the numbers s; respectively,

i = Npop — (Ui)(l/kg) " Npop, 1=1,2

where kg is a natural number and N,,, is the number of chromosomes in
the population. Here index 1 corresponds to the chromosome with the best
fitness value, index 2 corresponds to the second best chromosome etc. If
kg is chosen to 1 every chromosome in the population will have the same
probability to be chosen, but normally k, is set higher, e.g. &k, = 3. This
will make the choice of more fitted parents likelier.

Production of new chromosomes There are three standard methods
to produce the children to the selected parents, one point crossover, two
point crossover, and uniform crossover. In the one point crossover an index
c1 between one and the length of the chromosomes minus one are randomly
chosen, where all indices are equally likely. The first child then inherits all
bits corresponding to indicies from 1 to ¢; from the first parent and the rest
of the chromosome is inherited from the second parent. For the second child
it is vice versa. It inherits the beginning bits from the second parent and
the last bits from the first parent. For the two-point crossover two indices
are chosen (c¢; and c2) and the first child inherit bits 1 to ¢; from parent
one, bits ¢; + 1 to ¢z from parent two, and the last bits again from the first
parent. For the second child it is vice versa similar to the one point crossover
case. Finally, in the uniform crossover there is for each bit 50 percent chance
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that it shall be inherited from parent one for the first child. If the first child
inherits bit one from the first parent, the second child automatically inherits
that bit from the second parent and so on.

Mutation One problem which often occurs in genetic algorithms is that all
chromosomes in a population become almost identical. Parallel populations
with chromosomes which migrate between them improve the results, but
the problem still occurs. Since this limits the possibilities to escape local
minima, mutation is often applied. All produced children are mutated with
a certain probability which increases in relation to how much the children
resemble their parents. The chance that a child is mutated is

Pmutation = 20 * 6(71'2*6m1*pdiff) + Cm2, (2)

where ¢p,1 and ¢p2 are constants and pg;ry is the maximum percentage of
bits the child differs from one of the parents. If a child chromosome gets
mutated, each bit has a certain probability (half of the one in equation (2))
to get changed. Even though the mutation prevents the chromosomes in the
population to be too similar, it is not sufficient to completely eliminate the
problem. Further steps are therefore taken, such as no child which is a copy
of an already existing chromosome is accepted in the population. Together
these steps at least limit the risk of getting stuck in local optima.

A.2 Detailed description of the Very Fast Simulated Rean-
nealing

Similar to the genetic algorithms there are many different simulated anneal-
ing methods. Here we have applied the Very Fast Simulated Reannealing
(VFSR) [12], [13], which has been applied in areas such as combat analy-
sis, finance, and neuroscience. This product includes software developed by
Lester Ingber and other contributors. The presentation of the VFSR closely
follows that of [12]. Simulated annealing generally includes three functional
relationships.

1. g(z): Probability density function of the parameter search space of D
parameters x = x;;1 = 1, D.

2. h(z): Probability density function for the acceptance of a new starting
point given the just previous point.

3. T(k): schedule of how the temperature 7' varies with the annealing
time steps k. Both of the functions g(z) and h(z) are dependent on
this temperature.

The function g(x), which is the probability density function for the point
which possibly could be the new starting point, is usually chosen to be Gaus-
sian. An easy calculation however [12], show this approach to be rather slow.
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If the Gaussian distribution is replaced by e.g. a D-dimensional Cauchy dis-
tribution, the method becomes faster. The fatter tail of the Cauchy distri-
bution facilitate searches of many local minima which improves the result.
A disadvantage though is that the distribution is symmetric and it is there-
fore not adjustable for each parameter. Also, there is no quick algorithm
which produces random numbers from this distribution. All these issues are
solved in the VFSR, for which a new probability density function is intro-
duced. The distribution gives a faster search compared to the method which
applies the Cauchy distribution. Furthermore it is easy to produce numbers
from the distribution. All parameter values for the possibly new starting
point in the VFSR are generated as

Phy1 =Pk + 9 (Bi — Aj),

where py is a vector with the values of the parameters, A; and B; are the
limits for each parameter, and y* is a random number in [—1, 1]. The function
g is here defined as

1
ly'| + 7o) In(1 + 1/T3)’

g'WsT;) = o

where T; is the temperature for parameter i. The functions ¢*(y’;T}) are
repeatedly used until every parameter value has a value between its limits.
The generated point pg4; is then accepted as a new starting point, instead
of p, with a probability

h(z) = min{exp(—z/T¢ost), 1},

where z = C(pg+1) — C(pk) and C(p) is the objective function value for
a point p. Hence, if the generated point corresponds to a lower objective
function value compared to objective function value for the starting point, it
will always be accepted. The cost temperature in the described acceptance
probability density function varies as
1/D
Tcost(kcost) = Tocost exp(_ccostkc({st )
This is very similar to the annealing schedule for the temperatures 7; which
are changed according to
1/D
T, (k) = Ty exp(—cik;’"),

where ¢; is a constant which can be tuned to improve the search speed. The
main difference between the temperatures is that the index ko5 is deter-
mined by the number of accepted points, instead of the number of generated

points which are used to determine all indices k;. Since the parameters of-
ten have different sensitivities the temperatures are then “reannealed”. This
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rescaling of the annealing times k; is made to stretch out the ranges over
which insensitive parameter values are being searched. A similar reanneling
is also made for the cost temperature.

The above described VFSR algorithm can be tuned in many ways to im-

prove the speed of the searches. Generally for simulated annealing methods,
it can be guaranteed that the global optima will be found if the tempera-
tures decrease slowly enough. In this study we have only tried to set differ-
ent rates for this temperature decreasing, although other variations possibly
could have given better results.
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