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1. Introduction 
A photonic crystal is a periodically arranged structure consisting of at least two materials with 

different optical properties [1]. Typically both materials are dielectric, i.e. non-absorbing, one 

is a high index material and the other is a low index material, such as air or a polymer. The 

ratio of the two indices, nH/nL is sometimes used as a parameter to specify this property. The 

translational symmetry is such that the repeat distance is of the same order of magnitude as 

the wavelength of the light that the crystal is designed to control. An alternative short 

characterization of a photonic crystal is a generalized diffraction grating. It is thus not 

surprising that it can be used to influence the behaviour of an incoming light-beam.  

 

The characteristic property of a photonic crystal is that an electromagnetic wave propagating 

in the crystal obeys a non-trivial dispersion relation 

)(Kfh =ν    (1) 

which will be discussed in more detail below.  

 

An analogy to the dispersion relation (1) is the energy band structure for valence electrons in 

an ordinary crystal. The allowed states for electromagnetic waves in a photonic crystal can 

also be collected as branches of ν vs. K-curves, valid for different directions in the unit cell in 

wave-vector space, the Brillouin zone (BZ). Together these branches form a photonic band 

structure. It is typical for electronic band structures that they exhibit effects of symmetry, i.e. 

different behaviour in different symmetries and directions. The photonic bands also show 

diffraction effects near the limits of the BZ. These two effects are what was referred to as 

“non-trivial” above. 

 

The feature that has attracted most attention for both kinds of band structures is the presence 

of band gaps, i.e. energy intervals within which electrons and electromagnetic waves 

respectively, cannot propagate inside the crystal. Physically this can be understood as an 

effect from imaginary K-values within the band gap. An imaginary K causes exponential 

damping of the wave as obvious from the expression for a plane wave: 

 

)2(),( )(
0

tiet ω−•= rKErE  

 

Within a few lattice constants of penetration into the photonic crystal, the incoming electro-

magnetic wave is therefore effectively extinguished. If there exists an energy interval for 
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which K is imaginary for all angles of incidence and both polarizations, the band gap is 

additionally labelled complete. Complete band gaps appear for certain symmetries and if the 

index contrast is sufficiently large. Light with photon energy within the complete photonic 

gap will be totally reflected for any angles of incidence and state of polarization.  

 

If the transmittance T(λ) = 0, then total reflection is equivalent to zero emittance, which can 

be understood as a consequence of the relation between bulk optical emittance and 

reflectance: 

  

                             ε(λ) =1-R(λ)   (3) 

 

This equation can be used both at single wavelengths and suitably averaged over a 

wavelength interval. 

 

Thus, for bulk photonic crystals with complete band gaps, zero emittance can be expected 

within the energy gap. Formally this effect can be expressed by the equation for the thermal 

excitance [2]:  

  M(λ,T ) =ε(λ)
2hc2

λ5[exp( hc
kλT

) −1]
(4)  

M is the emitted power per unit area and wavelength written as the product of the spectral 

emittance and the Planck function for blackbody excitance. Eq (4) shows clearly that if the 

spectral emittance ε(λ) =0 for one wavelength or a wavelength interval, then the thermal 

emission will vanish for these wavelengths.  

 

This selective low emittance is the basis for the present project on signature management.  It 

represents a development of the traditional method of using broad band reflectors to suppress 

thermal emission. The typical example of this conventional approach is a shiny metal surface, 

which is low-emitting from visible wavelengths through all of the thermal infrared. In other 

words, eq. 3 above is averaged over the λ-values 0.5-50 µm instead of just one IR band as in 

the selective case. There are some drawbacks with the broadband suppression. A shiny metal, 

as required for the low thermal emission, is not suitable in the visible. The broadband 

suppression will seriously impair the radiative cooling, which is important for hot stationary 

or slowly moving objects. The fact that metals are electrical conductors that completely 
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screen electromagnetic waves in the radar and microwave ranges excludes their use on 

various radomes. 

 

In this work we shall discuss photonic crystals designed for suppressing thermal radiation in 

one of two wavelength regions, 3-5 µm and 8-13 µm, the infrared (IR) regions denoted as the 

two atmospheric windows. They are crucial since they correspond to the wavelength intervals 

where the atmosphere is transparent. In figure 1 the infrared transmission spectrum over 1.8 

km of clear, relatively dry atmosphere is shown.  

 

 
Fig. 1: The atmosphere absorbs infrared radiation due to the presence of gas molecules. The transmittance vs. 

wavelength is shown above, and the absorbing gas molecules are indicated above the graph. Cited from [3]. 

 

Figure 1 explains why the infrared seekers work within the two windows 3-5 and 8-13 µm. 

Going outside these ranges would only marginally increase the signal from the object, and 

strongly increase the noise of radiation from the atmosphere between the seeker and the 

object. The choice of window is partly dependent upon the temperature of the object. The 

peak position of blackbody curve, as obtained from (4), is at about 4 µm for T=450oC and at 9 

µm for 50oC. 

 

1.1 Signature Applications 

 

Modern IR sensors in for example seeker missiles operating in either of the two atmospheric 

windows are highly sensitive, and therefore it is important for military vehicles to blend in 

with the background, in an IR perspective. One way to deal with this quite intricate problem is 
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to apply a low-emitting coating on the vehicle, thereby decreasing the IR signature to 

something equal to that of the terrain in which the vehicle operates. A thin layer [4] of a 

photonic band gap material is well suited for this purpose, since it can be tailored to be low 

emitting in either of the two regions where the IR missile seekers operate. 

 

Intuitively, the IR appearance of the background is different depending on the environment, 

and therefore it is important to tailor the emission to values close to that of the terrain. As 

mentioned above, a bulk photonic crystal with a complete band gap will result in zero 

emittance – which is not optimal for signature reduction purposes. The background has also a 

wavelength-depending excitance according to (4). 

 

ε(λ) is in this case a complex material-dependent emittance function that depends on a more 

or less mixed terrain, more likely to be determined by data collected from IR measurements 

than by an analytical expression.  

 

The optical performance of a signature-managing coating should, primarily for practical and 

economic reasons, be optimised to work in a wide area of terrains and also during different 

seasons of the year. In the visual range, the optimisation is difficult, if even possible because 

of the different terrain colours during a normal year. In the infrared, however, the 

optimization process can be performed by collecting IR data from the main terrain type and 

through calculating an average IR terrain signature it can be chosen which IR signature the 

vehicle should have.  

  

Furthermore it is important to investigate the vehicles more carefully in terms of radiating 

parts. Exhaust pipes, vents, chimneys on boats, wheels and bands on tanks, the nose cone of 

an aircraft and engines are among the parts that will be heated during operation, and therefore 

in particular should be prepared with a low-emitting photonic band gap material.  
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2. Light dispersion in a solid 

 
2. 1 Elements of Material Optics 
 

On the length scale of the wavelength of light, the charge distribution of a solid is 

homogenous, and when the solid is excited by light, microscopic dipoles are created. The size 

of each dipole is small compared to the wavelength of the exciting electro-magnetic wave, 

which effectively means that a light wave creates an excitation averaged over a great number 

of dipoles. This average is quantified by the complex dielectric function, ε(ω), which gives 

the total dielectric displacement from the macroscopic polarization through the constitutive 

relation 

 

)()()()()( 00 ωωεεωωεω EPED =+=   (5) 

 
In the case of photonic crystals, a different type of averaging is necessary, since the photonic 

crystal is inhomogeneous on a length scale comparable to the wavelength of the light. 

Averaging over a wavelength is therefore not applicable, but nevertheless effective medium 

theory (EMT) has been used to simplify the calculations of the optical performance of 

photonic crystals [5].  

 

Returning to the formalism of optical excitation of a normal, homogeneous medium, we write 

the electromagnetic wave equation, 

2

2

0
2

t∂
∂=∇ DE µ   (6) 

in combination with the expression for the displacement given above and the equation for a 

plane electromagnetic wave, (2), gives a dispersion relation, i.e. ω as a function of the wave 

vector, K.  

)(

22
2

ωε
ω Kc=    (7) 

If we observe that ε(ω) is a complex quantity, we can take the square root of the above 

expression to obtain a linear equation relating ω to K: 

K
N
c=ω    (8) 

where )()( ωεω =N is the complex refractive index. 
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It is possible to express the dispersion graphically in an ω vs. K-diagram. In vacuum or in a 

non-dispersive medium, N is constant, which gives ω(K) vs. K as a straight line, sometimes 

named the light line. “Dispersion” often implies that the dielectric function, and hence the 

complex refractive index, varies with ω. This occurs in all solids. Nevertheless, some 

materials are non-dispersive within limited frequency ranges, and a straight line can be used. 

 

 
Fig. 2: An example of two linear dispersion curves; the solid line corresponds to N=1.0 and the dotted line to 
N=3.0. 
 

2.2 Wave-vector space and the reciprocal lattice 

 

We now return to the photonic crystal introduced above. For a photonic crystal, crystalline 

order is a key feature. Long range crystalline order is described by a repetition of one unit 

cell, which is described by three lattice translation vectors: a1 , a2 and a3. Mutual 

orthogonality is not a must, neither that they have the same length. However, for two of the 

most common structures, the body-centred cubic (bcc) and the face-centred cubic (fcc) the 

lattice translation vectors are equally long: 

)(
2

),(
2

),(
2 321

∧∧∧∧∧∧∧∧∧
+−=++−=−+= zyxaazyxaazyxaa    (9) 

and 
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)(
2

),(
2

),(
2 321

∧∧∧∧∧∧
+=+=+= zxaazyaayxaa    (10) 

respectively. 

 

We now introduce the reciprocal space, or k-space, as referred to in solid state physics. The 

unit cell in the reciprocal space is defined by three vectors b1, b2 and b3: 

)(
2

kji

kj
i aaa

aa
b

×⋅
×

= π   (11) 

where the indices (i,j,k) = 1,2,3 through cyclic permutation. The b-vectors span a reciprocal 

unit cell, and all points in the reciprocal space can be reached through a reciprocal lattice 

vector G=xb1+yb2+zb3 where (x,y,z) are integers. In reciprocal space the vectors have the 

dimension of inverse length. This implies that the wave-vectors K of light belong to 

reciprocal space. 

 

The reciprocal version of the primitive unit cell is the first Brillouin zone (BZ), which is the 

minimum volume enclosed by planes intersecting the reciprocal vectors Gi from the origin to 

the nearest neighbouring reciprocal lattice points. Conventionally, the BZ has a set of symbols 

for points of high symmetry; e.g. Γ denotes the origin of the reciprocal representation of the 

unit cell. These symbols are basic for reading and interpreting both electronic and photonic 

band structures. 

 

We shall use K as a general vector in the three-dimensional k-space. As mentioned above, K 

is a wave-vector. A band structure consists of ω(K)-lines along the directions of highest 

symmetry in the reciprocal space. The long range symmetry in real space results in a long 

range symmetry also in the reciprocal space. Since all lattice points in reciprocal space can be 

reached by translations with reciprocal lattice vectors G, symmetry tells us that it is possible 

to collect all energy or frequency values within one BZ. This is named the reduced zone 

scheme. A band structure, electronic or photonic, is thus a representation of the dispersion, 

with various branches that have been translated into the first Brillouin zone. 
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3. Calculating a photonic band structure and the resulting optical 

properties 

 
3.1 Calculating the band structure 

An existing software package [6] has been used for calculating the photonic band structures. 

The overview of the formalism presented below is largely based on [7, 8]. 

 

The calculation of a photonic band structure is essentially a discretization of Maxwell’s 

equations 

 

tt ∂
∂=×∇

∂
∂−=×∇ DHBE     ,   (12) 

which transformed into (ω, k)-space are 

 

DHkBEk ωω iiii −=×=×     ,  (13) 

 

They can in turn be rewritten as components to obtain 

 

zxyyx

yzxxz

xyzzy

kk
kk
kk

BEE
BEE
BEE

ω
ω
ω

=−
=−
=−

  and  

zxyyx

yzxxz

xyzzy

kk
kk
kk

DHH
DHH
DHH

ω
ω
ω

−=−
−=−
−=−

 (14) 

 

For small translations in k-space, the k-vector can be approximated using 

( ) [ ]
[ ]
[ ]1)exp()(

1)exp()(
1)exp(

1

1

1

−≈
−≈
−≈

−

−

−

cikic
bikib
aikia

zz

yy

xx

k
k
k

  (15) 

where a, b and c are the cell dimensions in x-, y- and z direction respectively. 

 

Inserting these approximations into the set of component equations (14), and Fourier 

transforming back to (r, t) space gives 

 

( ) ( )[ ] ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ] ( )rBrEbrErEarE

rBrEarErEcrE
rBrEcrErEbrE

zxxyy

yzzxx

xyyzz

ibia
iaic
icib

ω
ω
ω

=−+−−+
=−+−−+
=−+−−+

−−

−−

−−

11

11

11

)()(
)()(
)()(

  (16) 
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and 

( ) ( )[ ] ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ] ( )rDrHbrHrHarH

rDrHarHrHcrH
rDrHcrHrHbrH

zxxyy

yzzxx

xyyzz

ibia
iaic
icib

ω
ω
ω

=−+−−+
=−+−−+
=−+−−+

−−

−−

−−

11

11

11

)()(
)()(
)()(

 (17) 

 

Note that in (16) and (17) the time dependence is included in the E and H plane waves.  

 

 We now rewrite B and D in terms of H and E,  

 

( ) ( ) ( ) ( ) ( ) ( )rHrrBrErrD µµεε 00     , ==   (18) 

 

Furthermore it is assumed that all cell dimensions are equal, such that b=c=a. This is of course 

not necessary, and it limits the solutions to cubic symmetries, but it brings out more clearly 

the interesting result below.  

 

[ ] [ ]
[ ] [ ] )()()()()()(

)()()()()()(

0

0

rErrHrHrHrH
rHrrErErErE

xyyzz

xyyzz

iaaa
iaaa

εωε
µωµ

−=−−+−−−
+=−+−−+

 (19) 

 

[ ] [ ]
[ ] [ ] )()()()()()(

)()()()()()(

0

0

rErrHrHrHrH
rHrrErErErE

yzzyx

yzzxx

iaaa
iaaa

εωε
µωµ

−=−−+−−−
+=−+−−+

 (20) 

 

[ ] [ ]
[ ] [ ] )()()()()()(

)()()()()()(

0

0

rErrHrHrHarH
rHrrErErEarE

zxxyy

zxxyy

iaa
iaa

εωε
µωµ

−=−−+−−−
+=−+−−+

 (21) 

 

 

Assuming the electromagnetic wave propagates in the z direction, use in (21) the equations 

for the longitudinal z components of the E and H field to reduce and rewrite (19) and (20). 

The component equations can now be rewritten using a transfer matrix: 

 





















⋅



















=





















+
+
+
+

∑
)'(
)'(
)'(
)'(

)(
)(
)(
)(

'

44444241

34333231

24232221

14131211

r
r
r
r

TTTT
TTTT
TTTT
TTTT

ar
ar
ar
ar

y

x

y

x

r

y

x

y

x

H
H
E
E

H
H
E
E

  (22) 
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where the summation is over a discrete set of points in a plane. All matrix elements Tnm are 

functions of r and r’.  

 

In the case where we have a periodic structure which repeats after Lz cells, the fields on each 

side of the unit cell can be related as such: 

 





















⋅=





















+
+
+
+

∑
)'(
)'(
)'(
)'(

)0,(

)(
)(
)(
)(

'

r
r
r
r

LT

aLr
aLr
aLr
aLr

y

x

y

x

r
z

zy

zx

zy

zx

H
H
E
E

H
H
E
E

   (23) 

 

where 

∏
=

−=
zL

j
z jjTLT

1

)1,()0,(    (24) 

 

Bloch’s theorem is now applied,  

 





















⋅=





















+
+
+
+

)(
)(
)(
)(

)exp(

)(
)(
)(
)(

r
r
r
r

aLiK

aLr
aLr
aLr
aLr

y

x

y

x

zz

zy

zx

zy

zx

H
H
E
E

H
H
E
E

   (25) 

 

and the Bloch waves are identified as the eigenvectors of the transfer matrix. 

 





















⋅=



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






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



⋅∑
)(
)(
)(
)(

)exp(

)'(
)'(
)'(
)'(

)0,(
'

r
r
r
r

aLiK

r
r
r
r
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y

x

y

x
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y

x

y

x
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z

H
H
E
E

H
H
E
E

  (26) 

 

Thus, we can find all the Bloch waves for any given frequency. The advantage with the 

transfer matrix method described above, is that it calculates k(E,ε(ω,r)) instead of 

E(k,ε(ω,r)); in the latter case, the calculations are not straight forward due to the frequency 

dependence of ε: a recursive method must be used to obtain the result, which is numerically 

instable and tedious. With the method described above, we can obtain the band structure by 
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straight forward calculations, even when a true dispersion model for a dielectric - such as the 

Lorentz or Drude model - is included [9].  

 

3.2 Calculating the transmittance 

 

The transfer matrix equation (22) can be rewritten in a more compact notation, 

 

)()()( zFzTazF =+    (27) 

where 





















=

)(
)(
)(
)(

)(

r
r
r
r

zF

y

x

y

x

H
H
E
E

   (28) 

 

T is not an Hermitian matrix, but can be transformed into one through a change of basis: 

 























−
−=−

...0
)exp(

)exp(
)exp(

0)exp(

2

1

2

1

1

aik
aik

aik
aik

STS  (29) 

 

Here, S is a matrix used for the basis change, defined by normalizing (28) and component-

wise multiplying F by its transponate. This new matrix is Hermitian, with the eigenvalues as 

the diagonal elements. For every eigenvalue exp(ikja) there is a second corresponding 

eigenvalue exp(-ikja), and the interpretation of these two eigenvalues is that the eigensolutions 

are waves travelling in opposite directions.  

 

We can now use (29) to calculate transmission and reflection coefficients of a single layer of 

unit cells, referred to as a slice. Consider the new transfer matrix as given by (29) and rewrite 

it as 

 












==

−−
∧

+−
∧

−+
∧

++
∧

∧
−

)()(

)()()()( 1

zTzT

zTzTzTSzST   (30) 
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The interpretation of (30) can be seen in figure 3 below: a wave incident from the right in the 

figure results in reflected and transmitted waves. −
′jF  represents a wave propagating from right 

to left and +
′jF is a wave propagating from left to right; the - and + indicates the direction of 

propagation. As for the t-coefficients, -- or ++ indicates a transmitted wave from right to left 

and left to right, respectively, and +- or -+ indicates a reflected wave propagating from left to 

right and right to left, respectively.  

 

Fig. 3: A wave, −
′jF , incident from the right on a slice results in a transmitted wave, ∑ −−−

′
j

jjjt F , and a reflected 

wave, ∑ +−+
′

j
jjjt F . 

 

Using the transfer matrix, we can start with the waves on the left hand side of the system, i.e. 

the transmitted wave, 

 

∑ −−−

j
jjj Ft '    (31) 

and integrate through the slice to obtain the amplitudes of the right hand waves: 

 


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
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⋅


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






=








−−

−−
∧

+−
∧

−+
∧
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∧−+

tzTzT

zTzTt 0

)()(

)()(
1

  (32) 

 

from which can be obtained 

1

1

)(        )(

)()(
−−−−−

∧

−−−−+−+
∧

=

=

tzT

ttzT    (33a, b) 
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The other two components of the matrix in (32) are found if the waves on the left hand side 

are observed, 

 

 ∑ −+−
′

+++
′ +

j
jjjjjj tt FF    (34) 

 

 

 

Fig. 4: A wave incident from the left, +
′jF , results in a reflected wave, ∑ −+−

′
j

jjjt F , and a transmitted wave, 

∑ +++
′

j
jjjt F   

 

and as above, we integrate through the slice to obtain 

 









⋅












=








+−

−−
∧

+−
∧

−+
∧
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∧++

tzTzT
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)()(

)()(
0

  (35) 

which results in 

 

+−−−−+−

+−−−−−+++++

−=
−=

ttzT
ttttzT

1

1

)(            )(ˆ
)()(ˆ

  (36a, b) 

 

Now, we can summarize equations (33a,b) and (36a,b) into 

 










−
−

=







=
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−+++

11

11

)()(
)()(

)(ˆ)(ˆ
)(ˆ)(ˆˆ

ttt
tttttt

zTzT
zTzTT  (37) 

 

which is a matrix fully describing the transmission through a slice of the material.  
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By putting several slices together, we get a thicker unit, a slab, of the material. Since the 

transfer matrix starts with the calculated E and H fields defined in a slice and then integrates 

through to the next slice, it is straight-forward to stack multiple slices together by defining a 

new transfer matrix that is the product of the transfer matrices for each slice: 

∏
=

=
zL

z
z zTLT

1

)()(    (38) 

which used as a substitute for T(z) in (30) gives 

 













−
−

== −−−+−−−−

−−−−++−−−−−+++
−

11

11
1

)()(
)()(

)(ˆ)(
zzz

zzzzzz

LLL

LLLLLL
zz ttt

tttttt
LTSLST , (39) 

 

a matrix from which we can obtain the transmission coefficients for the entire slab of the 

material. 

 

4. Calculations 

 
4.1 2D structure of dielectric cylinders in air 

 

We have calculated the photonic band structure for a bulk 2D crystal with a square lattice of 

dielectric cylinders,  ε = 8.9, embedded in air (ε = 1). The cylinders are oriented in the y-

direction, as indicated in figure 5 below. This is similar to a case studied earlier by 

Joannopoulos et al [10]. 

 

 

 

 

 

 
 

Fig. 5: A cross-section of the quadratic structure of cylinders (left) and the Brillouin zone (right) with the high 

symmetry points. It should be noticed that the Brillouin zone is the unit cell in reciprocal space, “k-space”, and 

in the case of a square lattice the Brillouin zone is also a square. The y axis is perpendicular to the paper plane. 
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The ratio between the cylinder radius and the cell constant has been chosen as r/a = 0.2, and 

the unit cell length is set to a = 1.0 µm. The band structure, obtained as described in the 

previous section, is shown below in figure 6 where the transverse electric (TE, red) and 

transverse magnetic (TM, blue) modes for the high symmetry directions in the Brillouin zone, 

where TE and TM modes are characterized by having the electric and the magnetic field 

vector, respectively, perpendicular to the cylinders, i.e. the y-axis in figure 5.  

 

 
Fig. 6: The photonic band structure for the two-dimensional square array of cylinders (ε=8.9) embedded in air, 

with the lattice constant a=1.0µm. The photon energy is in eV. 

 

In the band structure, we note the absence of a complete photonic band gap, i.e. in all 

directions, for both polarizations, even though there are separate gaps for s- and p-polarized 

light within the Brillouin zone. For normal incidence, corresponding to the Γ-X part of the 

band structure, we have band gaps for TE modes as well as for TM modes but at different 

energies. It can be qualitatively understood from observing the behaviour of the dielectric 

displacement field within the material. The D-field is strongly concentrated to the regions 

where ε is high, i.e. the cylinders, since the D-field is directly proportional to the dielectric 

function. One mode concentrates most of the displacement energy within the cylinders, which 

is beneficial from an energy point of view, which lowers the energy of the mode. The first TM 

band, the band of lowest energy (the dielectric band) has most power in the dielectric 

cylinders, and the second TM band (the air band) has most of the power in the air 

surrounding the cylinders. This is what causes the bands to split. For the TE bands, the 

difference between power transmitted through the cylinders and through the surrounding air is 

not as large as for the TM modes, since the air in the material is not as well localized as the 

dielectric. This gives only a small TE band gap.    
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In the transmittance spectrum below calculated with (39), for normal incidence, 

corresponding to the X point of the band structure, it can clearly be seen that the gaps for TE 

and TM modes only have a small overlap. The thickness of this structure is 8 µm. 

 
Fig. 7: Transmittance for normal incidence. Note the small region where T=0 for both TE and TM modes. The 

slab thickness is 8µm. 

Focussing onto the Γ-X part of the band structure, the behaviour of the band structure can be 

further investigated by changing one of the parameters. By varying the packing fraction, r/a, 

from 0.1 up to 0.5 - the upper limit corresponding to touching cylinders - we can see that there 

is a value near the originally r/a value, 0.2, for which the band gaps have maxima, and also 

that the TM gap width decreases sharply from its maximum for other packing fraction values. 

The fact that both gaps have maxima does not imply that they overlap, as seen in figure 9, 

which shows the TM and TE dielectric and air bands.  However, one should note the striking 

difference in behaviour of the TE and TM gaps. In figure 8 below one can note that the TE 

gaps are less sensitive, in comparison with the TM gaps, to changes in packing fraction. 
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Fig. 8: The size of the band gap, for TE and TM modes, as a function of the packing fraction.  
 

 

 
Fig. 9: The TE (red) and TM (blue) dielectric and air  bands at the X point, showing the band gap as a function 

of packing fraction. It should be noticed that the gaps only partly overlap within narrow energy intervals.  
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Figure 10 shows the midgap energy as a function of the packing fraction, and it can be 

observed that as the packing fraction decreases, the midgap energy increases, which means 

that the band gap, and thus the highly reflective region, moves towards shorter wavelengths. 

This gives a possibility to use different packing fractions and thus tailor the material to be 

highly reflective in specified regions. However, also the results shown in figure 8 and 9 above 

should be remembered. A packing fraction of 0.2 gives, for TE as well as TM modes, the 

widest gap centred around 0.45 eV and 0.53 eV respectively, but the band gaps for TE and 

TM modes only overlap partly since the TM gap is wider.   
 

 

 
Fig. 10: The midgap energy of the band gap as a function of the packing fraction.  

 

4.2 2D structure of air cylinders in a dielectric medium 

We have also studied the inverse of the above structure: a bulk 2D crystal created from a 

square array of air holes, or ‘wells’, in a dielectric (ε=8.9). Here, the structure is close-packed 

(r/a=0.5), and the wells are, as in the previous case, oriented in the y-direction. The band 

structure below is not complete in the M-Γ part; there is a TM mode missing due to numerical 

problems in the calculations. As in figure 6, red lines are the TE modes, and blue the TM 

modes, and the points of high symmetry are indicated on the x-axis. 
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Fig. 11: The photonic band structure for the two-dimensional square array of close-packed (r/a = 0.5) air wells in 

a dielectric (ε=8.9), with red TE modes and blue TM modes.  

 

As for the previous case, there is no complete band gap for this structure. The transmittance, 

for normal incidence at the X point of the band structure, was calculated for the case of close-

packed air holes. The thickness of this structure is also 8 µm. Some very dense interference 

fringes can be observed in the lower energy part of the spectrum, and the energies where T=0 

clearly correspond to the band gaps at the X point in figure 11.  

 
Fig. 12: Transmittance for normal incidence, corresponding to the Γ-X part of the band structure. 

 

Also, in this case we have calculated the band gap width as a function of the packing fraction. 

Compared to the previous case, one should note that the gap widths tend to increase with the 

packing fraction instead of having a distinct optimum value as seen in figure 8, and also that 
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both TE and TM gaps are more sensitive to changes in r/a. The reason for this may be that the 

difference in the amount of dielectric present in the material. In the first case, the volume 

fraction of dielectric is 0.126, and for the second case it is 0.214. The amount of dielectric 

medium in the material affects the energy flow; as mentioned earlier the displacement field is 

proportional to the dielectric function, and thus the displacement is larger in the areas where ε 

is high, which lowers the frequency. As the volume fraction of the dielectric medium 

increases, the more power is within the TM dielectric bands.  

 
Fig. 13:  The photonic band gap width as a function of the packing fraction, for the square lattice of air holes.  

 

In figure 13 it is seen that the band gap tends to move towards higher energies, i.e. shorter 

wavelengths, as the packing fraction is increased.  
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Fig. 14: The TE (red) and TM (blue) dielectric and air bands, at the X-point of the band structure in figure 11. 

Note that the band gaps for TE and TM modes overlap partly, regardless of the packing fraction r/a. 

 

The midgap energy was studied as well, and found to behave differently from the previous 

case. For this structure the midgap energy increases with increasing packing fraction. 

 
Fig. 15: The midgap energy for TE and TM mode band gaps at the X-point.  

 

If the topology of the two structures is compared, it is noticed that in the first case we have 

cylindrical ‘islands’ where ε is high, and in the second case we have a connected structure, 
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with ‘islands’ of air. If the band structures are examined for the two cases, it is observed that 

for the first structure, the TM band gap is generally wider than the TE band gap, and vice 

versa for the latter case. This phenomenon can be qualitatively understood from the behaviour 

of the D-field within the material. In the case where the high ε regions are localized to 

cylinders, the D-field is forced to propagate through air, due to a continuity constraint on the 

field lines, even though propagating through the cylinders are beneficial from an energy point 

of view. This results in the power being concentrated to the dielectric regions, which lowers 

the frequency of the TM dielectric mode as described earlier. In the second case, where the 

air regions are localized to cylinders, the D-field prefers to propagate outside the air 

cylinders, and thus the TM modes are localized to the high ε region. Here, the field lines are 

not forced to propagate through air, which makes the energy more evenly distributed in the 

material. The TE modes are localized to the air cylinders, and the localization gives rise to the 

same effect as for the TM modes in the first case; the frequency for the TE dielectric band is 

lowered, and thus the gap becomes widened.  

 

5. Conclusions 
 

In this work we have described the fundamentals of photonic crystals, as well as one method 

for calculating a photonic band structure: the transfer matrix method. A software package was 

used to obtain band structures for two photonic band gap materials: one consisting of 

dielectric cylinders in a square lattice, and one with drilled holes in a dielectric medium. The 

band structures for these two-dimensional photonic crystals were presented, as well as optical 

transmittance spectra for the case of normal incidence. Also, the photonic band gap width was 

presented as a function of the packing fraction, r/a, of cylinders and holes.   

 

In the band structures we noticed the absence of complete photonic band gaps, but also the 

presence of TE and TM gaps for certain crystallographic directions. By modulating the 

packing fraction, we observed for the first material – the dielectric cylinders in air – that there 

was an optimum value for r/a, close to 0.2. No distinct optimum was found for the second 

material, the drilled holes in a dielectric. 

 

From the transmittance calculations we observed that for normal incidence there are energy 

intervals where the transmittance, and thus the emittance, was zero. It should be noticed, 

however, that the zero transmittance intervals generally do not overlap for TE and TM modes. 



FOI-R--0838--SE 
 

 29

6. References 

 

 
1. J. D. Joannopoulos,  R. D. Meade, J. N. Winn, ”Photonic crystals: Molding the Flow of 

Light”, Princeton Univ. Press, Singapore (1995). 
 
2. W. L. Wolfe in “The Infrared handbook”(Ed’s W.L. Wolfe, G. J. Zissis, IRIA Ctr. ERIM, 

Office of Naval Research, Washington DC 1989) ch. 1, sec. 6k 
 
3. R. Measures, “Laser Remote Sensing”, Wiley Interscience, J. Wiley & Sons (1984) 
 

4. A. Rung, CG. Ribbing, “Calculated photonic structures for infrared emittance control”, 

Appl. Opt. 41, 3327-3331 (2002) 

 

5. P. Lalanne,”Effective medium theory applied to photonic crystals composed of cubic or square 
cylinders. Appl. Opt. 35, 5369-5380 (1996) 
 

6. P. M. Bell, J. B. Pendry, L. M. Moreno, A.J. Ward, ”A program for calculating photonic 

band structures and transmission coefficients of complex structures”, Computer Physics 

Commun. 85, 306-322 (1995) 

 

7. J. B. Pendry, “Photonic band structures”, J. Mod. Opt. 41, no.2, 209-229 (1994) 

 

8. J. B. Pendry, “Calculating photonic band structure”, J. Phys. Condens. Matter, 8, 1085-

1108 (1996) 

 

9. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, K. M. Ho, “Electromagnetic wave 

propagation through dispersive and absorptive photonic band gap materials”, Phys. Rev. B, 

49, 11080-11087 (1994) 

 

10. As ref. 1, ch. 5, p. 56. 

 

 

 
 
 


