
FOI-R–0840–SE
March 2003

ISSN 1650-1942

Scientific Report

Command and Control Systems
P.O. Box 1165

SE - 581 11 LINKÖPING

Martin Karresand

A Proposed Taxonomy
of Software Weapons

FOI – SWEDISH DEFENCE RESEARCH AGENCY
Command and Control Systems
P.O. Box 1165
SE - 581 11 LINKÖPING

FOI-R–0840–SE
March 2003

ISSN 1650-1942

Scientific Report

Martin Karresand

A Proposed Taxonomy
of Software Weapons

FOI-R–0840–SE

2

FOI-R–0840–SE

Acknowledgements
I would like to thank Arne Vidström for sharing his deep knowledge of
software weapons with me and for always being prepared to discuss defin-
itions, formulations, and other highly abstract things.

I would also like to thank my supervisor Mikael Wedlin and my exam-
iner Viiveke Fåk for their support and for having confidence in me.

Likewise I would like to thank Jonas, Helena, Jojo and the rest of my
class, as well as my other friends, for brightening my life by their presence.

And last but not least I would like to thank my beloved fiancée Helena
for always supporting me no matter how hard I studied. I love you from
the bottom of my heart, now and forever.

3

FOI-R–0840–SE

4

FOI-R–0840–SE

Issuing organisation Report number, ISRN Report type

Month year Project number

Customers code

Research area code

Sub area code

Author(s) Project manager

Approved by

Sponsoring agency

Scientifically and technically responsible

Report title

Abstract

Keywords

Further bibliographic information

LanguageISSN Pages

Price

Security classification

FOI - Swedish Defence Research Agency
Command and Control Systems
P.O. Box 1165
SE - 581 11 LINKÖPING

FOI-R–0840–SE Scientific Report

March 2003 E7033

5. Commissioned Research

4. C4ISR

41. C4I

Martin Karresand Mikael Wedlin

Lennart Nyström

Viiveke Fåk

A Proposed Taxonomy of Software Weapons

The terms and classification schemes used in the computer security field today are not standard-
ised. Thus the field is hard to take in, there is a risk of misunderstandings, and there is a risk the
scientific work is being hampered.
Therefore this report presents a proposal for a taxonomy of software based IT weapons. After an
account of the theories governing the formation of a taxonomy, and a presentation of the requisites,
seven taxonomies from different parts of the computer security field are evaluated. Then the
proposed new taxonomy is introduced and the inclusion of each of the 15 categories are motivated
and discussed.
The final part of the report contains a discussion of the general defences against software weapons,
together with a presentation of some open issues regarding the taxonomy. Finally the report is
summarised.

IT weapon, taxonomy, malware, IW, information warfare, computer security, virus, worm

ISSN 1650-1942 154 English

Acc. to price list

Unclassified

5

FOI-R–0840–SE

6

FOI-R–0840–SE

Utgivare Rapportnummer, ISRN Klassificering

Månad år Projektnummer

Verksamhetsgren

Forskningsområde

Delområde

Författare Projektledare

Godkänd av

Uppdragsgivare/kundbeteckning

Tekniskt och/eller vetenskapligt ansvarig

Rapporttitel

Sammanfattning

Nyckelord

Övriga bibliografiska uppgifter

SpråkISSN Antal sidor

Distribution enligt missiv Pris

Sekretess

Totalförsvarets Forskningsinstitut - FOI
Ledningssystem
Box 1165
581 11 LINKÖPING

FOI-R–0840–SE Vetenskaplig rapport

mars 2003 E7033

5. Uppdragsfinansierad verksamhet

4. Spaning och ledning

41. Ledning med samband, telekom och IT-system

Martin Karresand Mikael Wedlin

Lennart Nyström

Viiveke Fåk

Ett förslag på taxonomi för programvarubaserade IT-vapen

De termer och klassificeringsmodeller som idag används inom IT-säkerhetsområdet är inte stand-
ardiserade. Det är därför svårt att överblicka området, det finns en risk för missförstånd och det
vetenskapliga arbetet riskerar att bli lidande.
För att råda bot på dessa problem har ett förslag på en taxonomi för programvarubaserade IT-
vapen tagits fram, vilket presenteras i den här rapporten. Först presenteras dock de teorier som
ligger till grund för skapandet av en taxonomi, samt de behov av en taxonomi som identifierats
under arbetets gång. Därefter utvärderas sju taxonomier inom angränsande områden. När detta är
gjort introduceras den nya taxonomin och dess 15 kategorier motiveras och förklaras.
Den sista delen av denna rapport diskuterar kortfattat de generella försvarsmetoder som finns gen-
temot programvarubaserade IT-vapen. Detta följs av en presentation av den framtida utvecklingen
av taxonomin. Slutligen sammanfattas rapporten i en slutdiskussion.

IT-vapen, taxonomi, malware, IW, informationskrigföring, IT-säkerhet, virus, mask

ISSN 1650-1942 154 Engelska

Enligt prislista

Öppen

7

FOI-R–0840–SE

8

FOI-R–0840–SE

Contents
1 Introduction 15

1.1 Background . 16
1.2 Purpose . 16
1.3 Questions to be answered 16
1.4 Scope . 17
1.5 Method . 17
1.6 Intended readers . 17
1.7 Why read the NordSec paper? 18

1.7.1 Chronology of work 18
1.7.2 Sequence of writing 19
1.7.3 Line of thought 19

1.8 Structure of the thesis 19

2 The abridged NordSec paper 21
2.1 A Taxonomy of Software Weapons 21

2.1.1 Preliminary Definition 21
2.1.2 New Definition 22

2.2 A Draft for a Taxonomy 24
2.2.1 Type . 24
2.2.2 Affects . 25
2.2.3 Duration of effect 25
2.2.4 Targeting . 25
2.2.5 Attack . 25
2.2.6 Functional Area 25
2.2.7 Sphere of Operation 26
2.2.8 Used Vulnerability 26
2.2.9 Topology . 26
2.2.10 Target of Attack 26
2.2.11 Platform Dependency 27
2.2.12 Signature of Code 27
2.2.13 Signature of Attack 27
2.2.14 Signature When Passive 27
2.2.15 Signature When Active 27

3 Theory 29
3.1 Why do we need a taxonomy? 29

3.1.1 In general . 29
3.1.2 Computer security 31
3.1.3 FOI . 32
3.1.4 Summary of needs 33

3.2 Taxonomic theory . 33
3.2.1 Before computers 34
3.2.2 Requirements of a taxonomy 35

3.3 Definition of malware 37

9

FOI-R–0840–SE

4 Earlier malware categorisations 41
4.1 Boney . 41

4.1.1 Summary of evaluation 41
4.2 Bontchev . 42

4.2.1 Summary of evaluation 43
4.3 Brunnstein . 44

4.3.1 Summary of evaluation 46
4.4 CARO . 47

4.4.1 Summary of evaluation 48
4.5 Helenius . 49

4.5.1 Harmful program code 49
4.5.2 Virus by infection mechanism 50
4.5.3 Virus by general characteristics 51
4.5.4 Summary of evaluation 52

4.6 Howard-Longstaff . 52
4.6.1 Summary of evaluation 53

4.7 Landwehr . 54
4.7.1 Summary of evaluation 55

4.8 Conclusion . 55

5 TEBIT 57
5.1 Definition . 57

5.1.1 Instructions . 57
5.1.2 Successful . 58
5.1.3 Attack . 58

5.2 Taxonomy . 60
5.3 In depth . 61

5.3.1 Type . 61
5.3.2 Violates . 62
5.3.3 Duration of effect 63
5.3.4 Targeting . 64
5.3.5 Attack . 64
5.3.6 Functional area 65
5.3.7 Affected data 65
5.3.8 Used vulnerability 66
5.3.9 Topology of source 66
5.3.10 Target of attack 67
5.3.11 Platform dependency 67
5.3.12 Signature of replicated code 70
5.3.13 Signature of attack 70
5.3.14 Signature when passive 71
5.3.15 Signature when active 71

5.4 In practice . 71

10

FOI-R–0840–SE

6 Discussion 75
6.1 General defences . 75
6.2 How a taxonomy increases security 77
6.3 In the future . 79
6.4 Summary . 80

7 Acronyms 83

References 87

Appendix A
The NordSec 2002 paper 97

Appendix B
Categorised Software Weapons 121

Appendix C
Redefined Terms 147

11

FOI-R–0840–SE

12

FOI-R–0840–SE

List of Figures
1 The Boney tree . 42
2 The Bontchev tree . 43
3 The Brunnstein tree 46
4 The Scheidl tree . 49
5 The Helenius tree . 52
6 The Howard-Longstaff tree 54
7 The Landwehr et al. tree 55
8 A platform dependent program 68
9 A platform independent program; two processors . . . 69
10 A platform independent program; no API 69
11 The Roebuck tree of defensive measures 75

List of Tables
1 The taxonomic categories and their alternatives 24
2 The taxonomic categories and their alternatives, up-

dated since the publication of the NordSec paper . . . 60
3 The categorised weapons and the references used

for the categorisation 72
4 The standard deviation di of TDDoS, Tworms, Tall, and

the distinguishing alternatives (di > 0) 73

13

FOI-R–0840–SE

14

FOI-R–0840–SE

1 Introduction
The computer security community of today can be compared to the Amer-
ican Wild West once upon a time; no real law and order and a lot of new
citizens. There is a continuous stream of new members pouring into the re-
search community and each new member brings his or her own vocabulary.
In other words, there are no unified or standardised terms to use.

The research being done so far has mainly been concentrated to the
technical side of the spectrum. The rate of development of new weapons is
high and therefore the developers of computer security solutions are fight-
ing an uphill battle. Consequently, their solutions tend to be pragmatic,
many times more or less just mending breaches in the fictive walls sur-
rounding the computer systems.

As it is today, there is a risk of misunderstanding between different
actors in the computer security field because of a lack of structure. By not
having a good view of the field and no well defined terms to use, unneces-
sary time might be spent on making sure everyone knows what the others
are talking about.

To return to the example of the Wild West again; as the society evolved
it became more and more structured. In short, it got civilised. The same
needs to be done for the computer security society. As a part of that there
is a need for a classification scheme of the software tools used for attacks.

Also the general security awareness of the users of the systems will
benefit from a classification scheme where the technical properties of a
tool are used, because then they will better understand what different types
of software weapons actually can do. They will also be calmer and more in
control of the situation if the system is attacked, because something known
is less frightening to face, than something unknown.

One important thing is what lies behind the used terms, what properties
they are based on. The definitions of malware used today all involve intent
in some way, the intent of the user of the malicious software, or the intent
of the creator of the software. Neither is really good, it is really impossible
to correctly measure the intents of a human being. Instead the definition
has to be based on the tool itself, and solely on its technical characteristics.
Or as Shakespeare let Juliet so pertinently describe it in Romeo and Juliet1

[2, ch. 2.2:43–44]:

What’s in a name? That which we call a rose
By any other word would smell as sweet;

Therefore this proposed taxonomy of software weapons might have a func-
tion to fill, although the work of getting it accepted may be compared to
trying to move a mountain, or maybe even a whole mountain range. But
by moving one small rock at a time, eventually even the Himalayas can be
moved, so please, continue reading!

1The citation is often given as ‘[. . .] any other name [. . .]’, which is taken from the
bad, 1st Quarto. The citation given here is taken from the good, 2nd Quarto. [1]

15

FOI-R–0840–SE

1.1 Background
During the summer of 2001 a report [3] presenting a proposal for a tax-
onomy of software weapons (software based IT weapons2) was written at
the Swedish Defence Research Agency (FOI). This report was then further
developed in a paper that was presented at the 7th Nordic Workshop on
Secure IT Systems (NordSec 2002) [4].

The proposal was regarded as interesting and therefore a deepening of
the research was decided upon in the form of a master’s thesis. The project
has been driven as a cooperation between Linköping University, Sweden,
and FOI.

1.2 Purpose
The purpose of this thesis is to deepen the theoretical parts of the previ-
ous work done on the taxonomy and also empirically test it. If needed,
revisions will be suggested (and thoroughly justified). To facilitate the un-
derstanding of the thesis the reader is recommended to read the NordSec
paper, which is included as an appendix (see Appendix A).

Also the general countermeasures in use today against software weapons
with the characteristics described in the taxonomy will be presented.

1.3 Questions to be answered
The thesis is meant to answer the following questions:

• What are the requirements connected to the creation of a taxonomy
of software weapons?

• Are there any other taxonomies covering the field and if so, can they
be used?

• What use do the computer security community have for a taxonomy
of software weapons?

• Are the categories in the proposed taxonomy motivated by the above
mentioned purpose for creating a taxonomy?

• How well does the taxonomy classify different types of weapons?

2The Swedish word used in the report is ‘IT-vapen’ (IT weapon). This term has an-
other, broader meaning in English. Instead the term malware (malicious software) is used
when referring to viruses, worms, logic bombs, etc. in English. However, to avoid the
implicit indication of intent from the word malicious, the term software weapon is used in
the paper presented at the 7th Nordic Workshop on Secure IT Systems (NordSec 2002),
as well as in this thesis.

16

FOI-R–0840–SE

1.4 Scope

As stated in [3, 4] the taxonomy only covers software based weapons. This
excludes chipping3, which is regarded as being hardware based.

The work is not intended to be a complete coverage of the field. Due to
a lack of good technical descriptions of software weapons, especially the
empirical testing part of the thesis will not cover all different sectors of the
field.

No other report or paper exclusively and in detail covering a taxonomy
of software based IT weapons is known to have been published until now4,
but there are several simpler categorisation schemes of software weapons.
Mainly they use two or three tiered hierarchies and concentrate on the rep-
licating side of the spectrum, i.e. viruses and worms. They are all generally
used as parts of taxonomies in other fields closely related to the software
weapon field.

This affects the theoretic part of the thesis, which only describes some
of the more recent and well known works in adjacent fields, containing
parts formulating some kind of taxonomy or classification scheme of soft-
ware weapons. These parts have also been evaluated to see how well they
meet the requirements of a proper taxonomy.

Mainly the chosen background material covers taxonomies of software
flaws, computer attacks, computer security incidents, and computer system
intrusions.

1.5 Method

The method used for the research for this thesis has been concentrated on
studies of other taxonomies in related computer security fields. Also more
general information regarding trends in the development of new software
weapons has been used. This has mainly been information regarding new
types of viruses.

1.6 Intended readers

The intended readers of the thesis are those interested in computer security
and the software based tools of information warfare. To fully understand
the thesis the reader is recommended to read the paper presented at Nord-
Sec 2002 (see Appendix A) before reading the main text. The reader will
also benefit from having some basic knowledge in computer security.

3Malicious alteration of computer hardware.
4This is of course as of the publishing date of this thesis.

17

FOI-R–0840–SE

1.7 Why read the NordSec paper?

This thesis rests heavily on a foundation formed by the NordSec paper,
which is included as Appendix A. To really get anything out of the text
in the thesis the paper has to be read before the thesis. In the following
sections the reasons for this are further explained.

For those who have already read the paper, but need to refresh their
memories, Section 2 contains the most important parts.

1.7.1 Chronology of work

The first outlines of the taxonomy were drawn in the summer of 2001,
when the author was hired to collect different software based IT weapons
and categorise them in some way. To structure the work a list of general
characteristics of such weapons was made. Unfortunately the work with
developing the list, which evolved into a taxonomy, took all the summer,
so no weapons were actually collected. This ended in the publication of a
report in Swedish [3] later the same year.

The presentation of the report was met with great interest and the de-
cision to continue the work was taken. The goal was to get an English ver-
sion of the report accepted at a conference, and NordSec 2002 was chosen.
Once again the summer was used for writing and the result was positive,
the paper got accepted.

However, before the answer from the NordSec reviewers had arrived,
the decision was made that the paper-to-be was to be extended into a mas-
ter’s thesis. This work was set to start at the beginning of September 2002,
at the same date as the possible acceptance from the NordSec reviewers
was to arrive. The goal was to have completed the thesis before the begin-
ning of 2003.

Therefore the work with attending to the reviewers comments on the
paper, and the work on the master’s thesis run in parallel, intertwined. The
deadline for handing in the final version of the paper was set to the end
of October. After that date the thesis work got somewhat more attention,
until the NordSec presentation had to be prepared and then produced in
early November. Finally all efforts could be put into writing the thesis.

The deadline for having a checkable copy of the thesis to present to the
examiner was set to the end of November and therefore the decision to use
the paper as an introduction was taken, to avoid having to repeat a lot of
background material. Hence, due to a shortage of time in the writing phase
of the thesis work and thus the paper being used as a prequel, the two texts
are meant to be read in sequence. They may actually be seen as part 1 and
2 of the master’s thesis.

18

FOI-R–0840–SE

1.7.2 Sequence of writing

As stated in the previous section the work with deepening the research ran
in parallel with amending the paper text. Therefore the latest ideas and
theories found were integrated into the paper text until the deadline. The
subsequent results of the research was consequently put into the thesis.

Because the text was continuously written as the research went along,
there was no time to make any major changes to the already written parts,
as to incorporate them into the flow of the text. The alternative of cutting
and pasting the paper text into the thesis was considered, but was regarded
to take too much time from the work with putting the new results on paper.
Hence, the text in the paper supplies the reader with a necessary back-
ground for reading the text in the thesis.

1.7.3 Line of thought

Because this taxonomy is the first one to deal with software weapons ex-
clusively, the work has been characterised by an exploration of a not fully
charted field. The ideas on how to best create a working taxonomy have
shifted, but gradually settled down into the present form. Sometimes the
changes have been almost radical, but they have always reflected the know-
ledge and ideas of that particular time. They therefore together span the
field and thus are necessary to be acquainted with, because they explain
why a certain solution was chosen and then maybe abandoned. Con-
sequently, to be able to properly understand the taxonomy, how to use
it, and follow the line of thought, the reader has to read both parts of the
work, i.e. both the paper and the thesis.

1.8 Structure of the thesis
The thesis is arranged in five sections and three appendices that are shortly
introduced below.

Section 1 This is the introduction to the thesis. It states the background
and purpose of the thesis, together with some questions which will
be answered in the document. Furthermore the scope, method, and
intended readers are presented. There is also a subsection explaining
why it is important to read the NordSec paper. Finally the structure
of the thesis is outlined.

Section 2 To help those who have read the NordSec paper earlier to re-
fresh their memories this section contains some of the more import-
ant parts of the paper. These include the reasons of why no other
taxonomy of software weapons has been created, the discussion of
the old and new definition of software weapons and a short introduc-
tion to the categories of the taxonomy as they were defined at that
time.

19

FOI-R–0840–SE

Section 3 This section introduces the theories behind a proper taxonomy
and also some reasons on why a taxonomy as this one is needed.
The discussion, which was started in the NordSec paper on the prob-
lems regarding the use of the term malware (see Section 2.1.1), is
continued.

Section 4 The section presents the evaluation of seven taxonomies from
adjacent fields containing some sort of classification schemes of soft-
ware weapons (called malware). Each evaluation shows how well
the evaluated categorisation scheme meets the needs stated in Sec-
tion 3.1.4 and the requirements stated in Section 3.2.2.1. The last
part in the section summarises the evaluations.

Section 5 In this section the proposed taxonomy of software weapons is
presented together with the accompanying definition. Each of the fif-
teen categories and their alternatives are discussed regarding changes,
the reasons for including them in the taxonomy, and general methods
to protect computer systems from weapons with such characteristics
as the categories represent. The revisions made are mainly related to
the formulation of the names of the categories and their alternatives.
Also some of the categories have been extended to avoid ambiguity
and make them exhaustive, and to facilitate a more detailed categor-
isation. Last in the section the result of a small test of the taxonomy
is presented.

Section 6 This section contains the discussion part and the summary. Some
general countermeasures to be used to secure computer systems from
attacks are given. Also the future use and developments of the tax-
onomy needed to further push it towards a usable state are presented.
Finally the thesis is summarised.

Appendix A This appendix contains the the paper presented at the Nord-
Sec workshop.

Appendix B In this appendix the categorisations of nine software weapons
are given. The categorisations were made by the author of the thesis
and are meant to function as a test of the taxonomy. The reader can
independently categorise the same weapons as the author and then
compare his or her results with the categorisations presented in this
appendix.

Appendix C The appendix shows the proposed definitions (or categorisa-
tions), made by the author of the thesis, of the three terms trojan
horse, virus, and worm. These categorisations indicates how the tax-
onomy may be used to redefine the nomenclature of the computer
security field. Also completely new terms may be defined in this
way.

20

FOI-R–0840–SE

2 The abridged NordSec paper
In this section some of the more important parts of the NordSec paper will
be presented as they where published, to refreshen the memory of readers
already familiar with the paper. To somewhat incorporate the text from
the paper into the flow of the main text of the thesis, some changes of the
layout and corrections of the spelling have been made. Apart from this
everything else is quoted verbatim from the paper.

2.1 A Taxonomy of Software Weapons
My own hypothesis of why no other taxonomy of software weapons has
yet been found can be summarised in the following points:

• The set of all software weapons is (at least in theory) infinite, be-
cause new combinations and strains are constantly evolving. Com-
pared to the biological world, new mutations can be generated at
light speed.

• It is hard to draw a line between administrative tools and software
weapons. Thus it is hard to strictly define what a software weapon
is.

• Often software weapons are a combination of other, atomic, software
weapons. It is therefore difficult to unambiguously classify such a
combined weapon.

• There is no unanimously accepted theoretical foundation to build a
taxonomy on. For instance there are (at least) five different defini-
tions of the term worm [5] and seven of trojan horse [6].

• By using the emotionally charged word malicious together with in-
tent, the definitions have been crippled by the discussion whether to
judge the programmer’s or the user’s intentions.

2.1.1 Preliminary Definition

The preliminary definition of software weapons5 used at FOI6 has the fol-
lowing wording (translated from Swedish):

[. . .] software for logically influencing information and/or
processes in IT systems in order to cause damage.7

5The term ‘IT vapen’ (IT weapon) is used in the swedish FOI report.
6Swedish Defence Research Agency
7In Swedish: ‘[. . .] programvara för att logiskt påverka information och/eller pro-

cesser i IT-system för att åstadkomma skada.’

21

FOI-R–0840–SE

This definition satisfies the conditions mentioned earlier in the text. One
thing worth mentioning is that tools without any logical influence on in-
formation or processes are not classified as software weapons by this defin-
ition. This means that for instance a sniffer is not a software weapon. Even
a denial of service weapon might not be regarded as a weapon depend-
ing on the interpretation of ‘logically influencing . . . processes’. A web
browser on the other hand falls into the software weapon category, be-
cause it can be used in a dot-dot8 attack on a web server and thus affect the
attacked system logically.

Furthermore, the definition does not specify if it is the intention of
the user or the programmer, that should constitute the (logical) influence
causing damage. If it is the situation where the tool is used that decides
whether the tool is a software weapon or not, theoretically all software
ever produced can be classified as software weapons.

If instead it is the programmer’s intentions that are decisive, the defini-
tion gives that the set of software weapons is a subset (if yet infinite) of the
set of all possible software. But in this case we have to trust the program-
mer to give an honest answer (if we can figure out whom to ask) on what
his or her intentions was.

A practical example of this dilemma is the software tool SATAN, which
according to the creators was intended as a help for system administrators
[7, 8]. SATAN is also regarded as a useful tool for penetrating computer
systems [9]. Whether SATAN should be classified as a software weapon or
not when using the FOI definition is therefore left to the reader to subject-
ively decide.

2.1.2 New Definition

When a computer system is attacked, the attacker uses all options avail-
able to get the intended result. This implies that even tools made only for
administration of the computer system can be used. In other words there
is a grey area with powerful administrative tools, which are hard to de-
cide whether they should be classified as software weapons or not. Hence
a good definition of software weapons is hard to make, but it might be
done by using a mathematical wording and building from a foundation of
measurable characteristics.

With the help of the conclusions drawn from the definitions of informa-
tion warfare the following suggestion for a definition of software weapons
was formulated:

A software weapon is software containing instructions that
are necessary and sufficient for a successful attack on a com-
puter system.

8A dot-dot attack is performed by adding two dots directly after a URL in the address
field of the web browser. If the attacked web server is not properly configured, this might
give the attacker access to a higher level in the file structure on the server and in that way
non-authorised rights in the system.

22

FOI-R–0840–SE

Even if the aim was to keep the definition as mathematical as possible,
the natural language format might induce ambiguities. Therefore a few of
the terms used will be further discussed in separate paragraphs.

Since it is a definition of software weapons, manual input of instruc-
tions is excluded.

2.1.2.1 Instructions

It is the instructions and algorithms the software is made of that should be
evaluated, not the programmer’s or the user’s intentions. The instructions
constituting a software weapon must also be of such dignity that they to-
gether actually will allow a breakage of the security of an attacked system.

2.1.2.2 Successful

There must be at least one computer system that is vulnerable to the tool
used for an attack, for the tool to be classified as a software weapon. It is
rather obvious that a weapon must have the ability to do harm (to break the
computer security) to be called a weapon. Even if the vulnerability used by
the tool might not yet exist in any working computer system, the weapon
can still be regarded as a weapon, as long as there is a theoretically proved
vulnerability that can be exploited.

2.1.2.3 Attack

An attack implies that a computer program in some way affects the con-
fidentiality9, integrity10 or availability11 of the attacked computer system.
These three terms form the core of the continually discussed formulation
of computer security. Until any of the suggested alternatives is generally
accepted, the definition of attack will adhere to the core.

The security breach can for example be achieved through taking ad-
vantage of flaws in the attacked computer system, or by neutralising or
circumventing its security functions in any way.

The term flaw used above is not unambiguously defined in the field of
IT security. Carl E Landwehr gives the following definition [11, p. 2]:

[. . .] a security flaw is a part of a program that can cause
the system to violate its security requirements.

Another rather general, but yet functional, definition of ways of attacking
computer systems is the definition of vulnerability and exposure [12] made
by the CVE12 Editorial Board.

9‘[P]revention of unauthorised disclosure of information.’[10, p. 5]
10‘[P]revention of unauthorised modification of information.’[10, p. 5]
11‘[P]revention of unauthorised withholding of information or resources.’[10, p. 5]
12‘[CVE is a] list of standardized names for vulnerabilities and other information secur-

ity exposures – CVE aims to standardize the names for all publicly known vulnerabilities
and security exposures. [. . .] The goal of CVE is to make it easier to share data across

23

FOI-R–0840–SE

2.1.2.4 Computer System

The term computer system embraces all kinds of (electronic)13 machines
that are programmable and all software and data they contain. It can be
everything from integrated circuits to civil and military systems (including
the networks connecting them).

2.2 A Draft for a Taxonomy
The categories of the taxonomy are independent and the alternatives of
each category together form a partition of the category. It is possible to use
several alternatives (where applicable) in a category at the same time. In
this way even combined software weapons can be unambiguously classi-
fied. This model, called characteristics structure, is suggested by Daniel
Lough [15, p. 152].

In Table 1 the 15 categories and their alternatives are presented. The
alternatives are then explained in separate paragraphs.

Table 1. The taxonomic categor-
ies and their alternatives Category Alternative 1 Alternative 2 Alternative 3

Type atomic combined
Affects confidentiality integrity availability
Duration of effect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Sphere of operation host-based network-based
Used vulnerability CVE/CAN other method none
Topology single source distributed source
Target of attack single multiple
Platform dependency dependent independent
Signature of code monomorphic polymorphic
Signature of attack monomorphic polymorphic
Signature when passive visible stealth
Signature when active visible stealth

2.2.1 Type

This category is used to distinguish an atomic software weapon from a
combined and the alternatives therefore cannot be used together.

A combined software weapon is built of more than one stand-alone
(atomic or combined) weapon. Such a weapon can use more than one

separate vulnerability databases and security weapons.’ [13]. The list is maintained by
MITRE [14].

13This term might be to restrictive. Already advanced research is done in for example
the areas of biological and quantum computers.

24

FOI-R–0840–SE

alternative of a category. Usage of only one alternative from each category
does not necessarily implicate an atomic weapon. In those circumstances
this category indicates what type of weapon it is.

2.2.2 Affects

At least one of the three elements confidentiality, integrity and availability
has to be affected by a tool to make the tool a software weapon.

These three elements together form the core of most of the definitions
of IT security that exist today. Many of the schemes propose extensions to
the core, but few of them abandon it completely.

2.2.3 Duration of effect

This category states for how long the software weapon is affecting the
attacked system. It is only the effect(s) the software weapon has on the
system during the weapon’s active phase that should be taken into account.
If the effect of the software weapon ceases when the active phase is over,
the duration of the effect is temporary, otherwise it is permanent.

Regarding an effect on the confidentiality of the attacked system, it can
be temporary. If for example a software weapon e-mails confidential data
to the attacker (or another unauthorised party), the duration of the effect is
temporary. On the other hand, if the software weapon opens a back door
into the system (and leaves it open), the effect is permanent.

2.2.4 Targeting

The target of an attack can either be selected manual[ly] by the user, or
autonomous[ly] (usually randomly) by the software weapon. Typical ex-
amples of autonomously targeting software weapons are worms and vir-
uses.

2.2.5 Attack

The attack can be done immediate[ly] or conditional[ly]. If the timing of
the attack is not governed by any conditions in the software, the software
weapon uses immediate attack.

2.2.6 Functional Area

If the weapon attacks its host computer, i.e. hardware directly connected
to the processor running its instructions, it is a local weapon. If instead
another physical entity is attacked, the weapon is remote.

The placement of the weapon on the host computer can be done either
with the help of another, separate tool (including manual placement), or
by the weapon itself. If the weapon establishes itself on the host computer

25

FOI-R–0840–SE

(i.e. breaks the host computer’s security) it certainly is local, but can still be
remote at the same time. A weapon which is placed on the host computer
manually (or by another tool) need not be local.

2.2.7 Sphere of Operation

A weapon affecting network traffic in some way, for instance a traffic ana-
lyser, has a network-based operational area. A weapon affecting stationary
data, for instance a weapon used to read password files, is host-based, even
if the files are read over a network connection.

The definition of stationary data is data stored on a hard disk, in memory
or on another type of physical storage media.

2.2.8 Used Vulnerability

The alternatives of this category are CVE/CAN14, other method and none.
When a weapon uses a vulnerability or exposure [12] stated in the CVE, the
CVE/CAN name of the vulnerability should be given15 as the alternative
(if several, give all of them).

The alternative other method should be used with great discrimination
and only if the flaw is not listed in the CVE, which then regularly must be
checked to see if it has been updated with the new method. If so, the classi-
fication of the software weapon should be changed to the proper CVE/CAN
name.

2.2.9 Topology

An attack can be done from one single source or several concurrent dis-
tributed sources. In other words, the category defines the number of con-
current processes used for the attack. The processes should be mutually
coordinated and running on separate and independent computers. If the
computers are clustered or in another way connected as to make them sim-
ulate a single entity, they should be regarded as one.

2.2.10 Target of Attack

This category is closely related to the category topology and has the altern-
atives single and multiple. As for the category topology, it is the number

14The term CAN (Candidate Number) indicates that the vulnerability or exposure is
being investigated by the CVE Editorial Board for eventually receiving a CVE name [16].

15NIST (US National Institute of Standards and Technology) has initiated a meta-
base called ICAT [17] based on the CVE list. This meta-base can be used to search
for CVE/CAN names when classifying a software weapon.

The meta-base is described like this: ‘ICAT is a fine-grained searchable index of stand-
ardized vulnerabilities that links users into publicly available vulnerability and patch in-
formation’. [18]

26

FOI-R–0840–SE

of involved entities that is important. A software weapon concurrently at-
tacking several targets is consequently of the type multiple.

2.2.11 Platform Dependency

The category states whether the software weapon (the executable code)
can run on one or several platforms and the alternatives are consequently
dependent and independent.

2.2.12 Signature of Code

If a software weapon has functions for changing the signature of its code,
it is polymorphic, otherwise it is monomorphic. The category should not
be confused with Signature when passive.

2.2.13 Signature of Attack

A software weapon can sometimes vary the way an attack is carried out,
for example perform an attack of a specific type, but in different ways, or
use different attacks depending on the status of the attacked system. For
instance a dot-dot attack can be done either by using two dots, or by using
the sequence %2e%2e. If the weapon has the ability to vary the attack, the
type of attack is polymorphic, otherwise it is monomorphic.

2.2.14 Signature When Passive

This category specifies whether the weapon is visible or uses any type of
stealth when in a passive phase16. The stealth can for example be achieved
by catching system interrupts, manipulating checksums or marking hard
disk sectors as bad in the FAT (File Allocation Table).

2.2.15 Signature When Active

A software weapon can be using instructions to provide stealth during its
active phase. The stealth can be achieved in different ways, but the purpose
is to conceal the effect and execution of the weapon. For example man-
in-the-middle or spoofing weapons use stealth techniques in their active
phases through simulating uninterrupted network connections.

If the weapon is not using any stealth techniques, the weapon is visible.

16A passive phase is a part of the code constituting the software weapon where no
functions performing an actual attack are executed.

27

FOI-R–0840–SE

28

FOI-R–0840–SE

3 Theory
The formulation of a taxonomy needs to follow the existing theories re-
garding the requirements of a proper taxonomy. They have evolved over
time, but the core is more or less unchanged since Aristotle (384-322 B.C.)
began to divide marine life into different classes [19, 20]. Some of the
more recent works done within the computer security field dealing with
taxonomies have also contributed to the theory.

A taxonomy also needs to be based on a good definition. This re-
port discusses software weapons and consequently this term needs to be
defined. One section therefore presents some alternative ways of defining
software weapons, a.k.a malware.

3.1 Why do we need a taxonomy?
A field of research will benefit from a structured categorisation in many
ways. In this section both general arguments for the use of a taxonomy,
as well as more specific arguments concerning the computer security field,
and specifically FOI, will be given.

3.1.1 In general

In [20] the main focus lies on the botanical and zoological taxonomies
developed and used throughout time. In spite of this it gives a few gen-
eral arguments for the use of a taxonomy. One of the main arguments is
formulated in the following way:

A formal classification provides the basis for a relatively
uniform and internationally understood nomenclature, thereby
simplifying cross-referencing and retrieval of information.

To enable systematic research in a field, there is a need for a common
language and the development of a taxonomy is part of the formulation
of such a language. [21] When searching for new things the history must
first be known and understood. Therefore a common nomenclature within
the field of research is vital, otherwise resent discoveries might not be re-
membered in a few years time and will have to be made again. This may
lead to a waste of time and money.

Essentially a taxonomy summarises all the present knowledge within a
field. In [22, p. 16] a citation from The principles of classification and a
classification of mammals by George Gaylord Smith [23] with the follow-
ing wording is presented:

Taxonomy is at the same time the most elementary and the
most inclusive part of zoology, most elementary because an-
imals cannot be discussed or treated in a scientific way until
some systematization has been achieved, and most inclusive

29

FOI-R–0840–SE

because taxonomy in its various guises and branches even-
tually gathers together, utilizes, summarizes, and implements
everything that is known about animals, whether morpholo-
gical, physiological, or ecological.

The citation deals solely with zoology, but the idea is perfectly applicable
to other fields as well, also computer security. There already exist fre-
quently and commonly used terms for different types of software weapons.
But they do not cover the complete field and thus do not help in structuring
the knowledge attained this far.

A good taxonomy has both an explanatory and a predictive value. In
other words, a taxonomy can be used to explain the scientific field it covers
through the categorisation of entities. By forming groups, subgroups and
so on with clear relationships in between, the field is easier to take in. The
structuring also makes it possible to see which parts of the field that would
benefit from more research. [22]

A parallel can be drawn to the exploration of a new world. To be able
to find the unexplored areas, some knowledge of the ways of transport
between the already explored parts will be of much help. Thus a structuring
of the attained knowledge will speed up the exploration of the rest of the
world.

A good and often used example of such a classification is the periodic
system of elements. Simply by looking at the position of an element in
the table, it is possible to get a feeling for the general properties of that
element. The table has also been used to predict the existence of new ele-
ments, research which in the end has resulted in a couple of Nobel Prizes.

In [24, p. 21] the following arguments for the need of a categorisation
are given:

• the formation and application of a taxonomy enforces a structured
analysis of the field,

• a taxonomy facilitates education and further research because cat-
egories play a major role in the human cognitive process,

• categories which have no members but exist by virtue of symmetries
or other patterns may point out white spots on the map of the field
and

• if problems can be grouped in categories in which the same solutions
apply, we can achieve more efficient problem solving than if every
problem must be given a unique solution.

Therefore the scientists active within a field of research would gain a lot
from spending some time and effort to develop a formally correct classi-
fication scheme of the field.

30

FOI-R–0840–SE

3.1.2 Computer security

Today none of the widely used terms given to different types of software
weapons are strictly and unanimously defined. Almost every definition has
some unique twist to it.

For example such terms as trojan horse, virus, and worm all have sev-
eral different definitions for each term. Also the way the terms relate to
each other differ among the classification schemes, as shown in Section 4.
This is also described by Jakub Kaminski and Hamish O´Dea in the fol-
lowing way [25]:

One of the trends we have been observing for some time
now is the blurring of divisional lines between different types
of malware. Classifying a newly discovered ‘creature’ as a
virus, a worm, a Trojan or a security exploit becomes more
difficult and anti-virus researchers spend a significant amount
of their time discussing the proper classification of new viruses
and Trojans.

Therefore some sort of common base to build a definition from is needed.
If all terms used have the same base, they are also possible to compare
and relate. By forming the base from general characteristics of software
weapons the measurability requirement is met.

There is also a need for a better formal categorisation method regard-
ing software weapons. By placing the different types of weapons in well
defined categories the complete set of software weapons is easy to take
in. Also the communication within the computer security community is
facilitated in this way.

Much of the previous research being done has been concentrated to
the three types of software weapons mentioned above. The concept of
for example a denial of service (DoS) weapon was not on the agenda
until the large attacks on eBay, Yahoo and E*trade took place. Because
these weapons represents rather new concepts, they sometimes are forgot-
ten when talking about software weapons. This is unfortunate, because in
a study done in 2001 the number of DoS attacks on different hosts on the
Internet over a three week period was estimated to be more than 12,000.
[26] A categorisation of the complete set of software weapons would con-
sequently lessen the risk of forgetting any potential threats.

The research in computer security would also benefit from having a
common database containing specimens of all known software weapons.
Both the problem with naming new software weapons and the tracing of
their relationship may be solved having access to such a database.

Another thinkable field of use is in forensics. In the same way as the po-
lice have collections of different (physical) weapons used in crimes today,
they (or any applicable party) may benefit from having a similar collection
of software weapons. Then the traces left in the log files after an attack
may be used as unique identifiers to be compared to those stored in the

31

FOI-R–0840–SE

software weapon collection. If needed the weapon may even be retrieved
from the collection and used to generate traces in a controlled environment.

Today many anti-virus companies maintain their own reference data-
bases for computer viruses, but there is no publicly shared database. There-
fore the WildList Organization International has taken on the challenge of
creating such a database for computer viruses. [27]

3.1.3 FOI

Regarding the specific needs for a taxonomy at FOI, they mainly relate to
defensive actions and the protection of military computer systems. For ex-
ample there is a need for tools to help creating computer system intrusion
scenarios. [28] One part of such a tool would be some sort of rather de-
tailed descriptions of the general characteristics of different existing and
also non-existing, but probable, software weapons. These descriptions
therefore need to be both realistic regarding the weapons existing today,
as well as comprehensive enough to be usable even in the foreseeable fu-
ture.

The threats posed to the network centric warfare (NCW) concept by
different software weapons have to be met. To be able to do that the prop-
erties of different types of weapons have to be well structured and well
known to make it possible to counter them in an effective way.

The level of detail of the categorisation needs to be rather high, but yet
usable even by laymen. Therefore also the used vocabulary (for example
the names of the different classes) need to be both general and technically
strict.

There is also a need to extend the terminology further, especially in
the non-viral software weapon field. There are as many different types of
viruses defined as there are of all other software weapons together. For ex-
ample in [29] fourteen different types of viruses and ten non-viral weapons
are listed. And in [30] there are eleven non-viral software weapons given
and about as many types of viruses (depending on how they are categor-
ised). In [31] two (three including joke programs) types of non-viral soft-
ware weapons and five or ten virus types (depending on the chosen base
for the categorisation) are presented.

To facilitate the creation of the scenario tools mentioned above many
more types of software weapons are needed than what the categorisation
schemes offer today. What really is needed is the same level of detail
as offered by the scenario creation tools used for conventional warfare.
These tools sometimes contains classes of troop formations down to pla-
toon level.

In a computer system intrusion situation (not only directly involving
the military) all involved personnel need to be fully aware of what the dif-
ferent terms used really mean. Thus the terminology needs to be generally
accepted and unambiguous. To enable the definition of such generally ac-
cepted terms some common base has to be used. A natural base to build a

32

FOI-R–0840–SE

definition from would be the technical characteristics of the weapons rep-
resenting the different terms.

A taxonomy of software weapons will have educational purposes too,
especially when training new computer security officers. Then the usabil-
ity of the taxonomy is very important. Each category and its alternatives
need to be easy to understand and differentiate. The taxonomy then also
may function as an introduction to the different technologies used in the
software weapon world.

Because of the intended use in the development of the defence of milit-
ary computer systems, the categories have to be defined as unambiguously
as possible. They also have to be measurable in some way, to enable the
objective evaluation of the defensive capacity of different proposed com-
puter security solutions.

3.1.4 Summary of needs

The different reasons for having a taxonomy of software weapons can be
summarised in the following points:

• The nomenclature within the computer security field needs to be
defined in an objective, generally accepted, and measurable way, be-
cause today the lines between the terms are blurring. It also has to
be further extended, especially within the non-viral field.

• The use of a taxonomy makes a structured analysis and thus a more
scientific approach to the software weapon field possible. In that way
the field will be easier to take in, which would benefit the training of
new computer security personnel. Also the future research will be
helped by the predictive properties of a taxonomy.

• To be able to find better solutions to problems quicker and lessen the
risk of forgetting important types of weapons a good way of group-
ing different software weapons is needed.

• When constructing computer system intrusion scenarios a rather de-
tailed categorisation of the different tools available, both today and
in the future, is needed.

3.2 Taxonomic theory
In this section the theory behind a taxonomy will be presented. First of all
the classical theory dating back to Aristotle (384–322 B.C.) is introduced.
Then the formal requirements of a taxonomy are specified and connected
to the need for a taxonomy of software weapons. Finally some of the
taxonomies in the computer security field are evaluated with respect to
how well they fit the requirements of a taxonomy of software weapons.
The evaluated taxonomies were chosen because they were well known,
closely related to the software weapon field, and fairly recently written.

33

FOI-R–0840–SE

3.2.1 Before computers

The word taxonomy comes from the Greek words taxis (arrangement, or-
der) and nomos (distribution) and is defined in the following way in [32]:

Classification, esp. in relation to its general laws or prin-
ciples; that department of science, or of a particular science or
subject, which consists in or relates to classification; esp. the
systematic classification of living organisms.

Another definition of the term taxonomy, this time from a more explicit
biological point of view, is given in [33]:

[SYSTEMATICS] A study aimed at producing a hierarch-
ical system of classification of organisms which best reflects
the totality of similarities and differences.

In the beginning the word was used in zoology and botany, but in more re-
cent times the usage has been widened and today comprises almost every
thinkable field. This trend has actually started to make the term some-
what watered down, which is unfortunate. In many cases the taxonomies
are simply lists of terms, lacking much of the basic requirements of a tax-
onomy stated in the theory.

The fundamental idea of a taxonomy is described in the following way
in [11, p. 3]:

A taxonomy is not simply a neutral structure for categoriz-
ing specimens. It implicitly embodies a theory of the universe
from which those specimens are drawn. It defines what data
are to be recorded and how like and unlike specimens are to
be distinguished.

According to Encyclopedia Britannica the American evolutionist Ernst Mayr
has said that ‘taxonomy is the theory and practice of classifying organ-
isms’. [20] This quotation summarises the core of the ideas behind a tax-
onomy in a good way.

The first one to look into the theory of taxonomies was Aristotle. He
studied the marine life intensively and grouped different living things to-
gether by their nature, not by their resemblance. This form of classification
was used until the 19th century. [19, 20]

In 1758 the famous Swedish botanist and zoologist Carolus Linnaeus
(Carl von Linné), usually regarded as the father of modern taxonomy, used
the Aristotelian taxonomic system in his work. He extended the number
of levels in the binomial hierarchy and defined them as class, order, genus,
and species. In other words, he should really not be credited for inventing
the taxonomy, but for his work in naming a big amount of plants and an-
imals and creating workable keys for how to identify them from his books.
[20]

34

FOI-R–0840–SE

When Darwin in 1859 published his work ‘The Origin of Species’ the
theory of taxonomy began to develop and seep into other fields. [22] Later
both Ludwig Wittgenstein and Eleanor Rosch have questioned the theory.
The work of Rosch led to her formulation of the prototype theory, which
suggests that the categories of a taxonomy should have prototypes against
which new members of the category are compared. [24]

The idea of having a prototype to compare new members against is also
stated in [20]. Such prototypes should be stored in a public institution, so
researchers can have free access to the material. It is then also possible to
correct mistakes made in earlier classifications, the first taxonomist maybe
missed an important property, or new technology makes it possible to fur-
ther examine the prototype.

Additionally, by having one publicly available specimen being the cri-
terion of the group, it is in reality working as a three dimensional, touch-
able definition of the members of the group.

There is also a third theory mentioned in [24] and that is conceptual
clustering. The theory is by some regarded as lying between the classical
theory and prototype theory. In short it states that items should be arranged
by simple concepts instead of solely on predefined measures of similarity.
The theory is directed towards automatic categorisation and machine learn-
ing.

3.2.2 Requirements of a taxonomy

Some of the references used in this section relates to biology, others to
computer security. The given references and requirements are really ap-
plicable to all types of taxonomies and thus also to a taxonomy of software
weapons.

To make a taxonomy usable in practice, it must fulfil some basic re-
quirements. First of all, a taxonomy without a proper purpose is of little
or no use and thus the purpose must be used as a base when developing
the taxonomy. To fit the purpose the items categorised with the help of the
taxonomy must be chosen in some way. Therefore the taxonomy has to be
used in conjunction with a definition of the entities forming the field to be
categorised, because the definition functions as a filter, which excludes all
entities not belonging to the field and thus not fitting the taxonomy. How
to formulate such a definition for software weapons is further discussed in
Section 3.3.

Also, the properties of the items to be categorised, i.e. the categories of
the taxonomy, must be easily and objectively observable and measurable.
If not, the categorisation of an item is based on the personal knowledge of
the user of the taxonomy, as stated in this citation from [22, p. 18]:

Objectivity implies that the property must be identified
from the object known and not from the subject knowing. [. . .]
Objective and observable properties simplify the work of the

35

FOI-R–0840–SE

taxonomist and provide a basis for the repeatability of the clas-
sification.

In [15, p. 38] a list compiled from five taxonomies in different fields of
computer security is presented. From that list four different properties can
be extracted that the categories of a taxonomy must have. These properties
are stated in [21, 22, 24, 34, 35], although different names are used in some
papers. The categories must be:

• mutually exclusive,

• exhaustive,

• unambiguous, and

• useful.

If the categories are not mutually exclusive the classification of an item
cannot be made, because there are more than one alternative to choose
from. This property is closely connected to the property unambiguous. If
a category is not clearly defined and objectively measurable, the boundary
between different categories becomes inexact and an item may belong to
more than one category.

The property exhaustive is also important. If the category does not
completely cover all possible variations in the field, an entity may be im-
possible to categorise. It simply does not belong anywhere, even if it
should. Thus an alternative other may be needed to make a category ex-
haustive, although then there is a risk of getting too many entities categor-
ised in this class.

Finally the categories have to be useful, which is connected to the
whole idea of having a taxonomy. As mentioned in the beginning of this
section a taxonomy must have a purpose to be of any use. In [24, p. 85] it
is stated that:

The taxonomy should be comprehensible and useful not
only to experts in security but also to users and administrators
with less knowledge and experience of security.

Even Lough mentions the usefulness as an important property [15, p. 2].
If the categories and terminology used in the taxonomy are hard to under-
stand, the group of people able to use it tend to be rather small and the
descriptive property is lost.

3.2.2.1 Summary of properties

If the categories of a taxonomy lack any of the properties mentioned in this
section, a classification done by one person cannot be repeated by another,
or even by the same person at different occasions. Then, in practice, the
taxonomy becomes useless. Therefore, the approach taken in this thesis is
that a proper taxonomy is required to:

36

FOI-R–0840–SE

• have a definition properly limiting the set of items to be categorised,

• have categories based on measurable properties of the items to be
categorised,

• have mutually exclusive categories,

• have exhaustive categories,

• have unambiguous categories, and

• be formulated in a language and way that makes it useful.

3.3 Definition of malware
How to define malware (or whatever name used) is a disputed question.
Most, if not all the different definitions previously made incorporate mali-
cious intent in some way. The problem is that it is very hard, if not to say
impossible, to correctly decide the intent behind the creation or use of a
software. The problem is described in the following way in [36], which is
quoted verbatim:

Dr. Ford has a program on his virus testing machine called
qf.com. qf.com will format the hard drive of the machine it is
executed on, and place a valid Master Boot Record and Par-
tition Table on the machine. It displays no output, requests
no user input, and exists as part of the automatic configuration
scripts on the machine, allowing quick and easy restoration of
a "known" state of the machine. Clearly, this is not malware.

1. If I take the executable, and give it to my wife, and tell
her what it is, is it malware?

2. If I take the executable, and give it to my wife, and don’t
tell her what it is, is it malware?

3. If I mail the executable to my wife, and tell her it is a
screen saver, is it malware?

4. If I post the executable to a newsgroup unlabelled[,] is it
malware?

5. If I post the executable to a newsgroup and label it as a
screensaver[,] is it malware?

Ford then concludes that the only thing not changing is the software itself.
Therefore his personal belief is ‘[. . .] that any definition of malware must
address what the program is expected to do’. But he does not specify what
he means with ‘expected to do’. Is it up to each user to decide what is
expected? Or should it be more generally defined expectations, and if so,
how should they be found?

37

FOI-R–0840–SE

Another article debating the use of the words malicious intent in the
definition of malware is written by Morton Swimmer [37]. There he states
that:

In order to detect Malware, we need to define a measurable
property, with which we can detect it. [. . .] “Trojan horses”
are hard to pin one particular property to. In general, “intent”
is hard even for a human to identify and is impossible to meas-
ure, but malicious intent is what makes code a Trojan horse.

He gives viruses the property of self-replication, but then argues that the
consequence of such a definition is that a copy program copying itself
would fit the definition, and thus be a virus. In other words, a false posit-
ive17.

Also there will always be false negatives18, in [38] Fred Cohen math-
ematically prove that the same definition as above of the virus property is
undecidable. The proof is built on the idea that a possible virus has the
ability to recognise whether it is being scanned by a virus detection al-
gorithm looking for the virus property. If the virus detects the scanning,
it does not replicate, it just exits, i.e. it is not a virus in that context. The
virus code would look something like this19:

if (Scan(this) == TRUE) {
exit();

} else {
Replicate(this);

}

Cohen’s proof has been criticised for being too theoretical, and only valid
in a rather narrow environment. A generalisation of the original proof has
been presented by three scientists at IBM in [39].

Also Kaminski and O´Dea have commented on the problem of determ-
ining whether a tool is malicious or not. They write, in the abstract of a
paper [25] presented at the Virus Bulletin 2002 conference, that:

[. . .] the real problems start when the most important di-
vision line dissolves - the one between intentionally malicious
programs and the legitimate clean programs.

As can be deducted from above, the use of intent in the definition of mal-
ware is not optimal, because it is impossible to measure. If the creator of a
software tool is found, it is very hard to decide if he or she gives an honest

17An indication of something being of some type, which it in reality is not. Crying
‘wolf!’ when there is none, so to speak.

18Something in reality being of some type, which it is not indicated as being of. Saying
‘lamb’, when one really ought to cry ‘wolf!’ instead.

19The Java-like code might very well be optimised, but it has not been done because of
readability issues.

38

FOI-R–0840–SE

answer to the question on the intended purpose of the software tool used
in an attack.

Consequently a new way of defining a software weapon has to be
found, a definition not involving intent in any way. It has to be based
on a measurable property of a software weapon and focus on the weapon
itself, not the surrounding context or other related things.

Therefore the following formulation of a definition is proposed to be
used in conjunction with the taxonomy [4]:

A software weapon is software containing instructions that
are necessary and sufficient for a successful attack on a com-
puter system.

This definition is further explained in Section 2.1.2 and also in Section 5.1.

39

FOI-R–0840–SE

40

FOI-R–0840–SE

4 Earlier malware categorisations
Although the concept of a categorisation of the existing software weapons
has been proposed a few times already, nobody has yet dedicated a whole
paper to it. In this section some of the works containing some kind of pro-
posed categorisation of software weapons are presented. Each presentation
is followed by a short evaluation of its significance and how well it meets
the requirements of a taxonomy of software weapons. Each summary fol-
lowing an evaluation includes a figure showing how the specific taxonomy
relates the three terms trojan horse, virus and worm to each other.

4.1 Boney
The purpose of this paper is to develop a software architecture for offens-
ive information warfare. [40] Thus Boney needs to form a taxonomy from
earlier work in rogue programs, which are defined as all classes of mali-
cious code. He credits Lance Hoffman20 for inventing the term and follows
the discussion in a book written by Feudo21. Boney writes that rogue pro-
grams primarily have been used in denial of service attacks.

He lists trojan horses, logic bombs, time bombs, viruses, worms, trap-
doors and backdoors as being the complete set of malicious programs. His
definition of a trojan horse states that it is appearing as a legitimate pro-
gram and at the same time performing hidden malicious actions. A virus
in its turn ‘[. . .] may be a trojan horse but has the additional character-
istic that it is able to replicate’. [40, p. 6] The more formal definition of a
virus states that it is parasitic and replicates in an at least semi-automatic
way. When transmitting itself it uses a host program. Worms are defined
as being able to replicate and spread independently through network con-
nections. If they too may be trojan horses is not explicitly stated by Boney,
but he writes that the difference between a virus and a worm is the way
they replicate. Eventually the conclusion may be drawn that also worms
might be trojan horses.

4.1.1 Summary of evaluation

Boney’s taxonomy is rather simple, it is a number of short definitions of
some common terms used in the computer security field. He does not
mention if the list is meant to be exhaustive.

He states that ‘[a] virus may be a Trojan horse’ [40, p. 6], but at the
same time he does not define virus as a subclass of trojan horse, which
indicates that the two categories are not mutually exclusive. The same

20The book is not part of the background material used for this thesis. If anyone is
interested the reference to the book is [41].

21The book is not part of the background material used for this thesis. If anyone is
interested the reference to the book is [42].

41

FOI-R–0840–SE

thing may be true for worms, but Boney does not explicitly state whether
worms may be trojan horses (see Figure 1).

Consequently the categorisation scheme does not fulfil the require-
ments of a taxonomy stated in this thesis (see Section 3.2.2.1). Also the
shortness and lack of clear definitions make the taxonomy not fulfilling the
needs of FOI for a detailed taxonomy (see Section 3.1.3).

Figure 1. The relationship of a
trojan horse, a virus and a worm
according to Boney.

Malware

Trojan horseVirus Worm Worm

4.2 Bontchev
The report does not give any specific definition of the term malware, more
than referring to it as ‘malicious computer programs’. The goal of the
presented classification scheme is to make it cover all known kinds of ma-
licious software [30, p. 11].

Four main types of malware are given; logic bomb, trojan horse, virus,
and worm. They are then further divided into sub-categories. The rela-
tionship between the different types of malware are given implicitly by the
levels of the section headers used in the report. [30, pp. 14–22]

Logic bomb is the simplest form of malicious code and can be part of
other types of malware, often trojan horses. A special variant of
a logic bomb is a time bomb. Logic bombs typically work as the
triggering part of other types of malicious software.

Trojan Horse is defined as a piece of software containing one or more, by
the user, unknown and destructive functions. Often the trojan horse
also poses as a legitimate software. If the software warns the user
and asks for authorisation when the destructive function is activated,
it is not a trojan horse.

Virus is described as a computer program that is able to replicate by at-
taching itself to other computer programs in some way. The program
the virus attaches to is called a host or victim program.

Worm is a replicating stand-alone program, which in some cases can be
regarded as a subclass of viruses, according to Bontchev.

Bontchev writes that most specialists favour the view that viruses are not
to be regarded as forming a subclass of trojan horses. Instead the two
types are to be placed on the same level, with viruses defined as replicating
software and trojan horses are non-replicating. His definition of a trojan

42

FOI-R–0840–SE

horse (as shown above) only specifies that there should exist destructive
functions, unknown to the user, and that there should be no warning when
the destructive function is activated. He does not explain why he chose not
to follow the other experts.

A subclass of the worm class is the software weapon type chain letter,
which is defined as the simplest form of a worm. It is an attachment to an
e-mail and needs user intervention to be able to execute and replicate. The
text part of the message is meant to convince the user the attached file con-
tains some useful function. But instead the weapon performs some kind of
destructive action, mostly including sending the message and attachment
on to addresses found in the affected user’s address book. Consequently
this description does fit both the worm class and the trojan horse class, but
Bontchev does not mention this, or tries to solve the ambiguity.

4.2.1 Summary of evaluation

Bontchev states that worms sometimes can be considered a special case of
viruses. This makes the resulting tree somewhat difficult to draw. How-
ever, one possible variant is the one shown in Figure 2.

Figure 2. The relationship of a
trojan horse, a virus and a worm
according to Bontchev.

Malware

Trojan horse Virus

Worm

His definitions of the non-viral software weapons are not completely
mutually exclusive in some cases. One example is the definition of chain
letters, which also fits the definition of trojan horses.

His own definition of trojan horses is contradicted when he writes that
the view favoured by most specialists is the division of viruses and trojan
horses into replicating respectively non-replicating programs. He does not
give any reason for his choice to not follow the other specialists. This
unfortunately brings some ambiguity to his work.

An example of the taxonomy not being exhaustive (and at the same
time ambiguous) is the logic bomb, which is said to most often be embed-
ded in larger programs and there be used to trigger for instance a trojan
horse. But if the logic bomb resides inside another program, it may be
viewed as the unknown and destructive function defining a trojan horse.
Thus, the definition of the logic bomb as a separate class does really ne-
cessitate the forming of other types of hidden and destructive functions
being part of trojan horses.

Even if the part dealing with viruses is rather detailed, the taxonomy
as a whole is too coarse to really fit the needs for a detailed taxonomy

43

FOI-R–0840–SE

stated in Section 3.1.4. Nor are the formal requirements, formulated in
Section 3.2.2.1, fulfilled.

4.3 Brunnstein
In [43] Klaus Brunnstein writes about the difficulties of defining malware.
He regards the traditional definitions as self-contradicting and not exhaust-
ive. Therefore he proposes a new way of defining the term, which he calls
intentionally dysfunctional software. His definition is meant to distinguish
normal dysfunctionalities from intentionally malevolent ones.

To be able to define the term, he postulates that all software which is
essential to some business or individual also is governed by a specification
of all its functions (at least those which may have an effect on the system
in use). If not, such a specification can be replaced by some sort of reverse
engineering.

He then defines functionality in the following way [43, Def. 1–2]
(quoted verbatim from the source):

A program´s or module´s or object‘s ”functionality” is
characterized by the set of all specifications, formal or in-
formal, from which information about ”proper work” of a pro-
gram can be concluded, and from which certain undesired
functions can be excluded.

Remark: it is irrelevant whether the manufacturer‘s spe-
cifications, formal or informal, are explicitly known to the
user. Even if a manufacturer decides to hide functions (e.g. for
objects with limited visibility and inheritance), such functions
belong to the functionality of a software. If a manufacturer
decides to include some hidden Trojanic payload, then this be-
comes part of the specification and therefore the functionality
of that software.

[. . .] A software or module is called ”dysfunctional” when
at least one function deviates from the specification.

In other words, if the creator of a software weapon includes the destructive
functions in some sort of secret specification, the software is perfectly good
(or not dysfunctional anyway). He also admits this consequence later in the
text, at least regarding trojan horses.

According to Brunnstein, intentionally dysfunctional software is a piece
of code where some essential function is not contained in the manufac-
turer’s specification [43, Def. 3]. He also writes that the deviation from the
specification shall be significant to make the software dysfunctional. Later
he states that [43, Def. 4]:

A software or module is called ”malicious” (”malware”)
if it is intentionally dysfunctional, and if there is sufficient
evidence (e.g. by observation of behaviour at execution time)

44

FOI-R–0840–SE

that dysfunctions may adversely influence the usage or the be-
haviour of the original software.

It is left to the reader to decide what ‘essential function’ and ‘significant
deviation’ really mean. Neither does he try to grade these ambiguous terms
to make the definitions easier to use.

He continues his line of argument with the definition stating how soft-
ware is turned into malware. The text is quoted from [43, Def. 5]:

A software or module with given functionality is trans-
formed into ”malware” by a process called ”contamination”.

The definition gives that it is not the contaminating code that should be
regarded as malware, but the victim of the contamination.

Brunnstein then gives three types of contamination: infection, propaga-
tion and trojanisation. [43, Example of def. 5] The first two relates to vir-
uses and worms respectively and the last one, logically, to trojan horses.
He then defines a trojan horse in the following way, quoted from [43, Def.
7]:

A ”Trojan Horse” is a software or module that, in addi-
tion to its specified functions, has one or more additional hid-
den functions (called ”Trojanic functions”) that are added to
a given module in a contamination process (”trojanization”)
usually unobservable for a user. These hidden functions may
activate depending upon specific (trigger) conditions.

However, it is somewhat unclear if the definition should be interpreted
as trojan horses having an infectious property, or if it is the victim of a
trojanisation that becomes a trojan horse. The definition of contamination
stated in [43, Def. 5] gives that the latter alternative probably is the correct
one.

To handle the software working as specified, but having intentionally
destructive functions, he introduces a new term; critter. However, such
software is not to be included in the malware category, according to him.

Brunnstein writes that real malware ‘[. . .] may be constructed by re-
petitively combining different types or instances of self-reproducing soft-
ware for one or several platforms with Trojanic functions’ and gives an
example in WNT/RemoteExplorer.

Finally he summarises his line of thought in a final definition of how
malware may appear [43, Def. 8]:

Malware may be developed from a given (functional) soft-
ware or module by intentionally contaminating it with unspe-
cified (hidden) functions. Such malware may consist of com-
binations of self-replicating or propagating part, or both, which
may be triggered by some built-in condition. Malware may in-
clude hidden Trojanic functions, which may also activate upon

45

FOI-R–0840–SE

some built-in condition (trigger). The development of mal-
ware (in the contamination process, namely the Trojanization)
may be observed in cases of self-reproducing software, but it
is (at present) difficult to anticipate the malicious Trojanic be-
haviour before it materializes.

He claims that by using these definitions it is possible to completely char-
acterise all currently known malwares by their combinations of replicative
and trojanic parts.

4.3.1 Summary of evaluation

Brunnstein does not present a real hierarchical system. Instead he concen-
trates on the definition of malware and therefore really has only one level
in his hierarchy. This level contains three types of malware, namely trojan
horse, virus and worm, which then are combined into what he calls ‘real
malware’. This is shown in Figure 3.

Figure 3. The relationship of a
trojan horse, a virus and a worm
according to Brunnstein.

Real malware

Trojan horse Virus Worm

The goal of creating a definition distinguishing normal software dys-
functionalities from intentionally malevolent ones, which Brunnstein stated
in the paper, is not reached. By concentrating on the specification of soft-
ware he misses all those softwares which are intended and specified to have
the ability to create havoc in computer systems. Such softwares, given the
name critters, are explicitly said not to be malware.

Another problem with the proposed definitions is the idea that a mal-
ware is formed in a contamination process. Brunnstein states that a good
software is transformed into malware by being contaminated with non-
specified functions that may adversely affect the usage of the system. The
definition might work if applied in a software development environment,
but not as it is now, on real and existing software, which has passed the de-
velopmental phase. The effect is that what Brunnstein defines as malware
really is the victim of for instance a virus attack. What he does may be
compared to trying to eradicate a disease by declaring the patients as evil.
Of course, if it is possible to kill the patients faster than the disease can
infect new victims, the battle might be won. The question is, who won the
war?

His declaration of real malware as being a combination of trojan horses,
viruses, and worms may have the effect that almost all existing malwares
will belong to the same category. There is a maximum of seven different

46

FOI-R–0840–SE

categories to place a specific malware in and the present trend is to cre-
ate more and more complex combinations of malware from simpler types.
Consequently there is a risk of getting almost all malwares in a single cat-
egory, namely the trojan horse-virus-worm one.

The rather ambiguous vocabulary used for the definitions and the fact
that all malwares are seen as contaminated, makes the proposed definitions
and classification scheme not fulfilling the needs stated in Section 3.1.4.
Nor are the requirements specified in Section 3.2.2.1 fulfilled.

4.4 CARO
All the anti-virus companies today name the viruses they have found in
their own way, several of them similar to the Computer Antivirus Research
Organization (CARO) naming convention established in 1991. [29, 44]
Unfortunately the companies have not managed to agree on a common
implementation. One of the bigger obstacles on the road towards a com-
mon naming scheme is money. Each company wants to show that they
where the first to find a virus and also to present a cure for it. Therefore
they are reluctant to share information to facilitate a common naming of a
virus. [45]

An attempt to fix this has been made. The project is named VGrep
and is a list or database linking the different names used by the anti-virus
companies to the same virus. More information can be found at [46].

CARO is, as written above, a naming convention and should not be
evaluated as a taxonomy. However, one of the reasons for using a tax-
onomy is to be able to name the entities in the field in question and in that
way get a better understanding of them. The CARO naming scheme also
divides viruses into a four (or actually five) tiered hierarchy and thus have
some resemblance of a taxonomy. The levels are [47]:

1. family name

2. group name

3. major variant

4. minor variant

5. modifier

The authors propose an informal way of grouping the different existing
viruses into families, by categorising them after their structural similarities.
For example small viruses which only replicate and do not contain any
other distinctive feature are grouped into six families depending on the type
of file they infect. The given list is not exhaustive any longer, because it
only states that .COM or .EXE files are infected. There are no alternatives
for the other types of executable files (or really interpreted, for instance
Java) used by more recent viruses.

47

FOI-R–0840–SE

The lower levels are defined in similar ways. Most parts of the defin-
itions deal with how to form a proper name, which words are to be used
and not to be used.

Scheidl proposes in [48] an extension to the CARO naming conven-
tion adding categories for platform, multi-partite virus, type, and language.
The category type does specify other types of software weapons. The new
types are [48, p. 2]:

Joke – just a funny program made to pull someone’s leg, not a virus.

Testfile – an anti-virus test file such as the EICAR-testfile.

Trojan – a program which claims to be useful but turns out to be malware
at some point during the execution.

Worm – a program which does not replicate on the same computer as it
resides on, but spreads over networks.

Dropper – not a virus, but a program that drops a virus.

Germ – the first generation of a virus in its initial, programmed form.

Intended – a program which is intended to be a virus, but which for some
reason cannot replicate.

Malware – an unspecified type of malware.

4.4.1 Summary of evaluation

The CARO naming convention is specifically stated to be a naming scheme
by the authors and therefore should not really be treated as a taxonomy.
However, it is a rather significant document and it does build on categor-
ising viruses into families, groups, etc. It is included in the evaluation
because it might be possible to use it to categorise software weapons any-
way.

The original version of the naming convention does only cover viruses
and it lacks a category for file viruses infecting other file types than .COM
or .EXE files. This makes the convention not fulfilling the requirement of
a taxonomy to have exhaustive categories. Neither version defines the term
virus and it is thus hard to decide whether the proposed extension makes
the categories exhaustive, even if the extension adds more file types.

The proposed extension made by Scheidl does have categories for tro-
jan horses and worms. They are put on the same level as viruses, but a
virus with the abilities of both a worm and a virus is to be classified as a
virus (the term virus is not defined anywhere in the text). Therefore the
two classes are not mutually exclusive, as shown in Figure 4.

The above mentioned reasons implies that the CARO naming conven-
tion, with or without the extension by Scheidl, does not fulfil the needs
specified in Section 3.1.4, or the requirements of a proper taxonomy stated

48

FOI-R–0840–SE

Figure 4. The relationship of a
trojan horse, a virus and a worm
according to Scheidl.

Malware

Trojan horse Virus Worm

in Section 3.2.2.1. It therefore is hard to use as a basis to build a complete
taxonomy from, without major changes being made to the scheme.

4.5 Helenius
Helenius has written a dissertation with the title ‘A System to Support the
Analysis of Antivirus Products’ Virus Detection Capabilities’. [31] Hence,
the reason for having a classification of malware (here called harmful pro-
gram code) is to familiarise the reader with certain terms used in the dis-
sertation. Helenius also needs to establish a set of terms describing the dif-
ferent types of harmful program code handled by the anti-virus products.
Thus, a classification scheme of harmful program code is formulated and
also two ways of categorising viruses, one based on the infection mechan-
ism and one based on more general characteristics.

Helenius first concludes that not even among computer anti-virus re-
searchers the term malware is unanimously agreed on. He also points out
that the term is hard to define because the maliciousness of a software de-
pends on the purpose of the use and gives the example of the disk formating
tool presented in [36] (see also Section 3.3).

4.5.1 Harmful program code

The classification scheme of harmful program code he presents is construc-
ted from Brunnstein’s definition (see Section 4.3). However, this scheme
is not as detailed as Brunnstein’s and also differs in some ways. He has
also been influenced by Bontchev (see Section 4.2). This can be seen from
Helenius definition of harmful program code as being ‘[. . .] any part of a
program code which adds any sort of functionality against the specification
or intention of the system’. [31, p. 12]

He then continues by stating that ‘[h]armful program code includes all
program parts which are against the system’s specification or intention’
[31, p. 12]. However, he does not specify how the intention of the system
is to be measured or whom to ask.

The interesting part of the scheme (from the point of view of this thesis)
is the part defining intentionally harmful program code, which is said to be
equal to malicious program code. The class includes four types; trojan
horses, computer viruses, joke programs and malicious toolkits (in the ac-
companying figure there is a fifth type; others). Helenius admits the list

49

FOI-R–0840–SE

may not be exhaustive22.
The category joke programs is defined in the following way by Hel-

enius [31, p. 12]:

[. . .] a program which imitates harmful operation, but does
not actually accomplish the object of imitation and does not
contain any other malicious operation.

Noteworthy is the fact that they are regarded as only imitating harmful op-
erations, without accomplishing anything harmful. Helenius does not fur-
ther explain the underlying causes for including them in the intentionally
harmful program code class.

Computer viruses are said to have the capability to replicate recursively
by themselves and may also include operations typical for trojan horses
and malicious toolkits. However, this does not make them belong to those
categories, according to Helenius.

The same thing is said to be valid for computer worms, but they are
instead independent, by themselves recursively replicating programs. He
also specifies them as a subgroup of computer viruses.

He defines a trojan horse as a self-standing program with hidden de-
structive functions, in the same way as Bontchev does (see Section 4.2).
The term self-standing is said to have the meaning not being able to rep-
licate by itself. In the same way as for the types described above he writes
that a trojan horse might include operations typical for a malicious toolkit,
but that does not make the trojan horse belong to that category.

Finally Helenius describes a malicious toolkit, which is said to be de-
signed to help malicious intentions aimed at computer systems. The class
includes such programs as virus creation toolkits, among others.

4.5.2 Virus by infection mechanism

Helenius divides computer viruses into 4 + 1 groups based on their infec-
tion mechanisms. Four groups are mutually exclusive and the fifth group
indicates that two or more of the mechanisms are used together in the virus.
The groups are:

File viruses, which are viruses replicating via infecting executable files.

22The actual wording used in Helenius dissertation is: ‘The list may not be exclusive.’
[31, p. 12] This has been regarded a typing error. Helenius’ text can be interpreted in
two ways, either there is a word missing (mutually), or he really meant to write exhaust-
ive. Because Helenius specifically writes that ‘[a malware type] may include operations,
which are typical for [other types of malware], but this does not make such [types into
other types]’ the list actually becomes mutually exclusive. Thus he probably did not in-
tend to write ‘may not be [mutually] exclusive’. Furthermore, in the figure accompanying
the scheme in the dissertation there is an extra category named ‘Others?’, which makes
the class exhaustive. This category is not included in the text and therefore the more
probable alternative is that he meant to write exhaustive.

50

FOI-R–0840–SE

Boot sector viruses, which replicate by infecting boot sectors of diskettes
or hard disks, or partition sectors of hard disks, or a combination
thereof.

Macro viruses, which use application macros for replication.

Script viruses, which replicates via operating scripting language, such as
for example DOS batch files, Visual Basic Scripting, or Unix shell
scripts.

Multi-partition viruses, which form a combination of two or more of the
previous four infection mechanisms.

However, in the classification scheme of harmful program code, worms
are said to be a subclass of viruses, but that is not reflected in this scheme.
Furthermore, worms are said to be independent programs capable of rep-
licating on their own, without using a host program. Therefore not all the
different mechanisms in the scheme are applicable to worms. This is es-
pecially true for the file virus class, an independent program using a host
program is a contradiction.

4.5.3 Virus by general characteristics

The classification by characteristics is shown as a tree, but would fit equally
well as a matrix, because a virus categorisation can be formed by combin-
ing any number of the given characteristics. Helenius writes that the set of
characteristics might not be exhaustive and that there might appear previ-
ously unknown characteristics in the future. He also points out that a virus
always has to have at least one of the two characteristics memory resident
or direct action.

The characteristics in Helenius’ scheme [31, pp. 15–17] are:

• polymorphic,

• companion,

• stealth, with subclass tunnelling,

• direct action or memory resident,

• linking, and

• information distributing, with subclasses self-distributing and e-mailing,
which in turn have the common subclass self-e-mailing.

51

FOI-R–0840–SE

4.5.4 Summary of evaluation

The classification scheme of harmful program code is really not exhaust-
ive, especially not the subclasses of malware, which Helenius also admits.
The classification is also somewhat ambiguous, because viruses, worms,
and trojan horses are said to eventually include operations typical for other
types of malware, but should yet not be classified as such. How to dif-
ferentiate the malware types in those situations is not specified. Helenius
would also need to further explain why the non-harmful (derived from his
definition) category joke programs is included in the malware class, which
he has defined as programs deliberately made harmful.

Regarding the classification scheme based on different infection mech-
anisms for viruses, it does not specify where to place worms, which are
regarded as a subclass of viruses. Consequently a user of the classification
scheme needs an implicit understanding of the field to be able to classify a
virus or a worm, i.e. the scheme is hard to use in practice.

Also the last presented way of categorising viruses, namely after their
(general) characteristics, suffers from not being exhaustive. Moreover, the
two categories stealth and linking are not mutually exclusive, because one
way of acquiring stealth is to change the linking of sectors in the file sys-
tem, which also happens to be the definition of the linking class.

How Helenius relates the three malware types trojan horse, virus and
worm to each other is shown in Figure 5.

Figure 5. The relationship of a
trojan horse, a virus and a worm
according to Helenius.

Malware

Trojan horse Virus

Worm

None of the three categorisation schemes presented by Helenius in [31]
does fill all the requirements of a taxonomy stated in Section 3.2.2.1). The
parts about viruses are shorter versions of Bontchev’s, which was regarded
as not detailed enough for filling the needs of FOI (see Section 3.1.3).

4.6 Howard-Longstaff
Howard and Longstaff aim at creating a common language for computer
security incidents and therefore also has to categorise the tools used for
‘exploiting a computer or network vulnerability’ [21, p. 13].

The outline of the proposed incident taxonomy is fairly the same as in
[35]. The tool part contains the same categories, but the definitions are

52

FOI-R–0840–SE

more detailed in the latter. However, that report does not mention anything
about the exclusiveness or exhaustiveness of the categorisation. Therefore,
only the first one, [21], is evaluated here.

The list of tools used covers a wider spectrum than just software based
IT weapons. The software based tools listed are (quoted from [21, pp. 13–
14]):

Script or program – a means of exploiting a vulnerability by entering
commands to a process through the execution of a file of commands
(script) or a program at the process interface. Examples are a shell
script to exploit a software bug, a Trojan horse login program, or a
password cracking program.

Autonomous agent – a means of exploiting a vulnerability by using a pro-
gram, or program fragment, which operates independently from the
user. Examples are computer viruses or worms.

Toolkit – a software package which contains scripts, programs, or autonom-
ous agents that exploit vulnerabilities. An example is the widely
available toolkit called rootkit.

Distributed tool – a tool that can be distributed to multiple hosts, which
can then be coordinated to anonymously perform an attack on the
target host simultaneously after some time delay.

Each category is said to have the possibility to contain any number of the
other categories. There is an ordering of the categories from simpler to
more sophisticated.23 When using their taxonomy, often a choice has to be
made among several tools. By always categorising by the highest category
of tool used, Howard and Longstaff claim the categories become mutually
exclusive in practice. Based on their experience they also claim their list
of tools is exhaustive.

4.6.1 Summary of evaluation

Howard and Longstaff do not explicitly state how they relate the three mal-
ware types trojan horse, virus and worm to each other. Consequently, what
is shown in Figure 6 is the relationship extracted from the definitions of
their categories, where they use the three malware types as examples.

The software part of their classification scheme is really simple, using
only four categories in a strictly hierarchical structure. By specifying that
a tool always shall be categorised by the highest category of tool it may
belong to, their scheme becomes unambiguous.

23Howard and Longstaff do not specify the ordering in more detail, but they give user
command (not software based and therefore not in the list above, in their list it is written
before script or program) as the lowest level and distributed tool as the highest. Sup-
posedly their list actually is ordered in the same way as it is written.

53

FOI-R–0840–SE

Figure 6. The relationship of a
trojan horse, a virus and a worm
according to Howard and Long-
staff.

Malware

Virus/worm

Trojan horse

However, the category toolkit is placed below a distributed tool in the
hierarchy of their classification scheme. A toolkit containing (among other
things) a distributed denial of service (DDoS) weapon would accordingly
be classified as a distributed tool, even if it in practice is even more ad-
vanced than such a tool. Thus, their scheme might need an extension and
the exhaustiveness may therefore be questioned.

Even if the taxonomy almost (apart from the questioned exhaustive-
ness) did fill the requirements stated in Section 3.2.2.1 the simple hierarchy
with only one alternative in each level is far to coarse to fit the needs of FOI
stated in Section 3.1.3 and the taxonomy cannot be used as a taxonomy of
software weapons.

4.7 Landwehr
The work by Landwehr et al. outlines a taxonomy of computer program
security flaws. They have chosen to use the term malicious flaw as a syn-
onym for malware and in that way managed to incorporate the term into
their taxonomy.

They acknowledge the difficulties of characterising intention, that it is
hard to decide whether a program flaw is made on purpose or not. But
they use the term anyway, because as they see it the risk of inadvertently
creating a malware is minimal in practice.

A trojan horse is by them specified as [11, p. 6]:

[. . .] a program that masquerades as a useful service but
exploits rights of the program’s user – rights not possessed by
the author of the Trojan horse – in a way the user does not
intend.

They then define a virus as a trojan horse ‘[. . .] replicating itself by copy-
ing its code into other program files’. Accordingly a worm becomes a
trojan horse that ‘[. . .] replicates itself by creating new processes or files
to contain its code, instead of modifying existing storage entities’.

They place trapdoors and logic bombs (including time bombs) as sep-
arate classes on the same level as trojan horses. However, trapdoors and

54

FOI-R–0840–SE

time bombs are said to be possible to include in trojan horses, so the classes
are not mutually exclusive.

4.7.1 Summary of evaluation

The uppermost level of the Landwehr et al. proposed classification scheme
of malicious flaws is formed by trojan horses, trapdoors, and time bombs
or logic bombs. But because of the possibility to incorporate the other two
classes into trojan horses, the classes are not mutually exclusive. Con-
sequently the scheme is not detailed enough to fill the needs stated in
Section 3.1.4. Nor does the scheme meet the requirements stated in Sec-
tion 3.2.2.1).

Landwehr et al. regard viruses and worms as subclasses of trojan horses,
as shown in Figure 7.

Figure 7. The relationship of a
trojan horse, a virus and a worm
according to Landwehr et al.

Malware

Trojan horse

Virus Worm

4.8 Conclusion
None of the evaluated taxonomies or categorisation schemes fulfil all the
requirements of a proper taxonomy, specified in Section 3.2.2.1. The part
of Howard’s and Longstaff’s incident taxonomy covering software was the
one closest to fulfilling the requirements. The reason for this was its simple
structure with only one category at each level in the hierarchy. On the
other hand, this simplicity made it far from fulfilling the needs presented
in Section 3.1.4. Actually, the required level of detail is not available in
any of the different categorisation schemes used today.

Regarding the CARO naming convention it should not really have been
evaluated as a taxonomy. However, it was included because it is a widely
known document, which might have been used to form the basis for a new
taxonomy. Unfortunately it was not found to be exhaustive, probably be-
cause it is rather old. The new types of viruses missing from the specifica-
tion were maybe not predicted by the authors. The proposed extension by
Scheidl was not detailed enough to bring the naming scheme up to a high
enough standard for making the scheme usable as a taxonomy. Also the
fact that it is focused on viruses made it too weak on the non-viral side to
meet the requirements in Section 3.1.4.

55

FOI-R–0840–SE

The figures indicating the relationship of the three software weapon
types trojan horse, virus, and worm show how differently each classifica-
tion scheme define these types. Not two figures are alike! If any conclusion
is to be drawn from this, there is a tendency of putting all three types on
the same level24, although they in several cases are defined as not being
mutually exclusive.

The differences in the figures also clearly show the need for a redefini-
tion of the three terms, a redefinition made from a common base.

24Figures 1, 2, 3, and 4 representing 4
7 of the set

56

FOI-R–0840–SE

5 TEBIT
The name TEBIT is a Swedish acronym for ‘Technical characteristics’ de-
scription model for IT-weapons’25. The acronym has only been kept be-
cause no better English alternative has been found.

In this section the definition accompanying the taxonomy, as well as the
taxonomy will be discussed. The taxonomy has been slightly updated since
the publishing of the NordSec paper. Therefore all the categories have
got their own subsection containing the motivation for including them, the
changes made, as well as any other necessary information.

Note that the information presented in the NordSec paper will not be
repeated (not on purpose anyway). The reader is therefore recommended to
read the paper (see Appendix A or Section 2.2) before reading this section.

5.1 Definition
The definition used is based solely on measurable characteristics of soft-
ware weapons. As stated earlier in the text, the definition reads as follows:

A software weapon is software containing instructions that
are necessary and sufficient for a successful attack on a com-
puter system.

The italicised words are all explained in Section 2.1.2, paragraph New
Definition and then the first three words are further explained in the sub-
sections below.

5.1.1 Instructions

Because the instructions constituting the code are to be used to decide
whether a tool is a software weapon or not, they have to be available in a
readable format. How this is to be achieved falls outside the scope of this
thesis, but a few possible ways might be mentioned anyway.

First of all the compiled code may be possible to decompile or in
any other way reverse-engineer. For example the anti-virus companies
are sometimes using such methods when dissecting new strains of com-
puter viruses. Professor Klaus Brunnstein, head of the Virus Test Center
(VTC) in the Computer Science Department at the University of Hamburg,
Germany has been teaching reverse engineering methods to students since
1988 [43]. Thus the methods are there and possible to use.

Secondly, tools simulating complete virtual network environments ex-
ist. These can then be used to study the behaviour of different software
weapons and in that way give a rather good idea of the technical charac-
teristics of the weapons. One problem with this method is that the ex-
haustiveness of the study is undecidable, there is no way of proving that all

25‘Teknisk beskrivningsmodell för IT-vapen’ in Swedish.

57

FOI-R–0840–SE

properties have been found. Not even a lower boundary of the quality of
the study is possible to calculate. The problem might be compared to soft-
ware testing (debugging) and quality control, but in the software weapon
case there is often no specification available to tell what the software is
expected to do.

There is always the possibility that the source code of a weapon might
be available in some way. Then the only thing required is programming
skills in the language used and such a thing is always achievable.

5.1.2 Successful

For a software tool to be a weapon there has to be at least one system (real
or modelled) containing a vulnerability or exposure that the software tool
uses to violate the computer security of the system. The vulnerability or
exposure does not have to be known in advance, as soon as a software
tool violates the computer security in any way, it is to be regarded as a
software weapon. Nor has the system to be on the market or in a working
condition. It is enough that the weapon violates the computer security of a
system in development, or simply any algorithm that might be included in
a future system, because if the system or algorithm is ever used, it will be
vulnerable to that specific weapon.

This was not clearly stated in the NordSec paper (see Section 2.1.2.2,
Successful). The text somewhat contradicted itself, because it was first
stated that at least one system had to be vulnerable, then that a used vul-
nerability did not have to be part of an existing system. As stated above,
it is enough to have proven that the weapon will break the security of a
system as soon as that system exists.

5.1.3 Attack

Regarding the definition of attack, some terms can be further explained.
First of all the definition of computer security is not generally agreed upon.
[10, 49, 50] However, the inclusion of the three objectives confidentiality,
integrity, and availability is almost unanimous.

In the NordSec paper the definitions of the terms where cited from
Gollmann [10, p. 5] (who cited ITSEC). A fairly similar definition is the
following one, quoted from Common Criteria (CC) [51, p. 14]:

Security specific impairment commonly includes, but is
not limited to, damaging disclosure of the asset to unauthor-
ised recipients (loss of confidentiality), damage to the asset
through unauthorised modification (loss of integrity), or unau-
thorised deprivation of access to the asset (loss of availability).

The real difference is that CC uses the word ‘damaging’ and ‘damage’ in
the definitions of confidentiality and integrity, which Gollmann and ITSEC

58

FOI-R–0840–SE

does not. As seen above even CC acknowledges the core as these three
terms and agrees that sometimes also other terms are included.

In [24, p. 6] vulnerability (and the accompanying term security policy)
is defined in the following way, which is quoted verbatim from the source:

Vulnerability is a condition in a system, or in the procedures
affecting the operation of the system, that makes it pos-
sible to to [sic!] perform an operation that violates the
explicit or implicit security policy of the system.

Security policy is some statement about what kind of events
are allowed or not allowed in the system. An explicit
policy consists of rules that are documented (but not ne-
cessarily correctly enforced), while an implicit policy en-
compasses the undocumented and assumed rules which
exist for many systems.

Another definition is the one used in [12]. It is a long text, but the main
idea is that the term vulnerability can have two different interpretations,
one wide and one narrow. In the first case a vulnerability is regarded as a
breaking of the security of a computer system in some context. The more
narrow interpretation concerns only deviations from the specification of
the functionality of a software, somewhat in accordance with Brunnstein’s
definition of dysfunctional software (see Section 4.3). In this way pro-
grams that work as specified, but in an insecure way, are not regarded as
containing any vulnerabilities.

Because there are several interpretations of vulnerability, the Common
Vulnerabilities and Exposures (CVE) Editorial Board decided to use the
term exposure to work together with the narrow interpretation, in order to
make the two alternative definitions more equal. The term exposure is then
defined as everything relating to computer security not regarded as being
a vulnerability by some, but still introducing a weakness into the affected
program or computer system. The definition proposed by the CVE Editor-
ial Board is not a strict one and is expected to change over time. However,
in 1999 they voted to accept a content decision describing the terminology
to be used in CVE, ratifying the proposed definitions discussed above. [12]

Because the definition and the taxonomy are created from a technical
point of view, the preferred definition of a vulnerability (and exposure) is
the CVE one. Also the definition made by Lindqvist (see above or [24,
p. 6]) is applicable, with the restriction that it should only be weaknesses
in the software constituting the system, that are used to violate the security
of the system. In other words, a bad security policy or careless users are not
to be regarded as vulnerabilities (even if they in some cases really might
be qualifying as such . . .).

59

FOI-R–0840–SE

5.2 Taxonomy
A few changes have been made to the taxonomy since the publication of
the NordSec paper. Each change is discussed in depth in Section 5.3. The
original definitions of the categories are shown in Section 2.2.

The current taxonomy consists of 15 categories (see Table 2), but new
changes might be needed after the taxonomy has been further tested.

Table 2. The taxonomic categor-
ies and their alternatives, up-
dated since the publication of
the NordSec paper

Category Alt. 1 Alt. 2 Alt. 3 Alt. 4

Type atomic combined
Violates confidentiality integrity; integrity; availability

parasitic non-parasitic
Duration of effect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Affected data stationary in transfer
Used vulnerability CVE/CAN other vuln. none
Topology of source single distributed
Target of attack single multiple
Platf. depend. dependent independent
Sign. of repl. code monomorphic polymorphic not repl.
Sign. of attack monomorphic polymorphic
Sign. w. passive visible stealth
Sign. w. active visible stealth

All categories in the taxonomy are independent, but they are not mu-
tually exclusive. If they were, the taxonomy would not be possible to use,
the requirement to use at least one alternative from each category would
contradict the mutual exclusiveness. As soon as one category was used,
the others would be disqualified.

Instead the alternatives in each category, except for the category Viol-
ates, are mutually exclusive and unambiguous (based on an empirical eval-
uation). Together the alternatives in a category form a partitioning of the
category and thus they also are exhaustive. The alternatives in the category
Violates are only disjunct, not mutually exclusive.

Another way of describing the taxonomy is to view it as a 15-dimensional
basis spanning the set of all software weapons. Then the mutual exclusive-
ness, exhaustiveness, and unambiguity come naturally.

Regarding the usability the names of the categories and alternatives are
selected to be as short and at the same time as descriptive as possible. The
chosen level of abstraction of the properties described by the categories
are rather high to make the taxonomy future proof, yet detailed enough to
satisfy the requirements of FOI regarding the scenario development tool.
The number of possible categories are

2 ∗ (22 − 1)11 ∗ (23 − 1)2 ∗ (24 − 1) = 260406090

60

FOI-R–0840–SE

which is more than enough to fulfil the needs of FOI.
The format of the taxonomy can be either a (two-dimensional) matrix,

or a one-dimensional vector. The real difference is that the matrix is easier
to read and understand, furthermore it is compact. The vector format can
be viewed as a 34-bit binary string which facilitates the comparison of
different categorisations. The definitions of the categories and alternatives
are the same for the two views, they are just different ways to view the
same thing. This is further discussed in Section 5.3.1.

5.3 In depth
In this section each category of the taxonomy is discussed regarding its
interpretation, why it should be included in the taxonomy (its relevance
regarding the needs stated in Section 3.1.4), and a brief discussion of pos-
sible countermeasures.

The explanations of the different categories presented in the NordSec
paper are repeated in Section 2.2. In this section changes made since the
publication of the paper and further explanations will be given. The user
is therefore recommended to read Section 2.2, which explains the back-
ground of the categories, before reading the text in the following subsec-
tions.

5.3.1 Type

Many of the software weapons created today are complex combinations of
simpler, already existing software weapons. Consequently, there is a need
for a possibility to separate the simpler weapons from the combined ones.
Therefore this category has to be included in the taxonomy.

An atom is the smallest part of a software fitting the definition of a
software weapon. There is actually no guarantee that an atom is not using
more than one alternative from each category, which then might contradict
the mutual exclusiveness of the alternatives.

One example of this is the Affects category. Think of the simplest form
of a parasitic virus; the only thing it does is replicate and create new copies
of itself within the host file. Of course this affects the integrity; parasitic
of the system, but because of the lack of a birth control function, it will
also eventually fill the hard disk and maybe crash the system. Thus it also
affects the availability of the system.

An alternative to the definition of Type used in the NordSec paper (see
Section 2.2.1) is to regard the category as indicating if there is more than
one alternative used in any category. The alternative atomic would then
be changed to the more appropriate single. Such a weapon would use
exactly one alternative from each category and the violation of the mutual
exclusiveness would be avoided. However, if that solution is used, there
is no way of telling the different atoms forming a combined weapon apart.

61

FOI-R–0840–SE

Nor is it possible to learn from the categorisation of a weapon, whether it
is an atom or not, and that is a high price to pay.

However, if the matrix form of the taxonomy is abandoned in favour
of a one-dimensional form, the problem of having to use several mutually
exclusive alternatives together might be solved. The taxonomy then can
be seen as 34 new categories constructed from the combination of an old
category and an alternative from that category. These new categories can
be either true or false (or 1 or 0). But then the taxonomy will be rather hard
to take in and for an atomic (not nuclear!) weapon approximately half of
the categories might be redundant. Worth noticing is that the requirement
of using at least one alternative from each old category is not relaxed. One
advantage of the one-dimensional form is that it will make the checking of
the deviation between the categorisations of two weapons easier.

The chosen alternative is to retain the matrix form and use it where suit-
able, because it increases the readability. However, the preferred definition
of the category Type is the latter one indicating the categorised weapon
being an atom, and with no connection to how many alternatives that may
be used in each category. But, in most cases dealing with an atom, there
probably will be only one applicable alternative in each category, except
maybe for the category Violates.

One important thing to observe is that in the category Type it is not
possible to combine the two alternatives atomic and combined. Either the
categorised weapon is an atom, or it is not. In other words this category is
really a meta-category, one level above the other fourteen.

5.3.2 Violates

For a software tool to be defined as a weapon, it has to violate at least one
of the fundamental properties of computer security, namely confidentiality,
integrity, or availability. But these alternatives are actually possible to
combine, i.e. they are not mutually exclusive, only disjunct. Despite of this
fact the category, which is renamed from Affects to Violates, is fundamental
for the categorisation of a software weapon and thus a natural part of the
taxonomy.

However, more than the name of the category has changed since the
publication of the NordSec paper (see Section 2.2.2). The alternative in-
tegrity has been divided into two parts; integrity; parasitic and integrity;
non-parasitic. The new alternatives are meant to provide a way to separate
software weapons needing a host to hold their code (integrity; parasitic)
from weapons capable of sustaining their code themselves (integrity; non-
parasitic). The alternative parasitic is not restricted to viruses only, it also
includes weapons for instance needing to piggy back on another file to be
able to transfer themselves to new hosts.

A parasite26 in some way connects its own code to code found in the

26The term is defined in the following way in [33]: ‘[BIOLOGY] An organism that
lives in or on another organism of different species from which it derives nutrients and

62

FOI-R–0840–SE

attacked system, i.e. a host file. The parasite does not replace its host, it
needs part of the host to be alive27 to function. Thus, a file virus which
completely replaces all of the host file content, only leaving the linking of
the host file in the file allocation table (FAT) untouched, is not parasitic.
This is also true if the virus keeps the two first bytes in the .EXE file it
infects. The bytes are the same for all .EXE files and are not to be regarded
as a unique part of the code.

Nor is a boot sector virus a parasitic virus, at least not if it replaces
all the original code in the boot sector with its own code. The only thing
remaining is the dead shell, the physical or virtual position, of the original
code. Compare the situation to that of the non-parasitic hermit crab, which
uses the abandoned shells of gastropods as a protective cover [52].

However, if the boot sector virus does not retain the original content
of the boot sector somewhere, the system will crash immediately after the
execution of the virus code. The virus does replicate, but the chance of
noticing such a poorly implemented virus is big.

These two new alternatives of the category are needed in the taxonomy
to make a categorisation more exact regarding how a software weapon is
sustaining itself, if it needs a host file or not to function.

The alternative solution of having a new category called Subsistence
added to the taxonomy is not preferable, because the alternative integrity
would be dependent on the alternative parasitic in the new category.

There are no 100% good countermeasures against weapons violating
either of the four alternatives in the category. The possible countermeas-
ures to be used against respective alternative are:

Confidentiality violating weapons may be counteracted by using crypto-
graphic methods to render the information unreadable. These meth-
ods can also be used to authenticate the reader of the information.

Integrity; parasitic may be enforced by write-protecting files as far as
possible. Some kind of hashing (checksumming) of the executable
files in the system might also help.

Integrity; non-parasitic In this case some type of cryptography may be
used to sign and verify the correctness of data.

Availability is hard to uphold, but by identifying possible bottlenecks and
then building some redundancy into the weak spots the resistance
against attacks on the availability can be improved.

5.3.3 Duration of effect

This category is included in the taxonomy, because it is vital to know if a
weapon does permanent damage to an attacked system or not. Of course

shelter.’
27Here defined as needing some unique part of the code to be present.

63

FOI-R–0840–SE

a violation of the computer security of a system is serious no matter what,
but when dealing with for instance risk assessment and grading of the ser-
iousness of the threat from a specific weapon, the duration of the effect is
good to know.

Sometimes a conventional weapon is defined as being a tool used to
inflict irreversible damage. The same definition is not fully applicable in
the world of computers, where it is possible to make identical copies of
files, which then can be used to restore a destroyed system. However, using
such an approach most attacks using software weapons may be regarded
as doing only temporary damage. Therefore the definition of this category
does not take the possible backup and restoration facilities into account. It
is the duration of the effect of a weapon on a system where no restoring
operations are performed that should be measured.

The characteristic of a software weapon described by this category is
too general to have any specifically applicable countermeasures. What can
be done is taking regular and frequent backups of the data and also always
install new software patches as soon as they are published.

5.3.4 Targeting

Both a manually aimed weapon and an autonomously targeting weapon
can do severe damage. Often it is harder to defend a system against a
manually targeted weapon, because it can be more accurately aimed. In
that case there is also most probably a human being supervising the exe-
cution of the weapon and that is the most formidable enemy to face. Of
course the address of the attacked system can be changed, but then no other
parties will be able to reach the victim either.

But on the other hand an autonomously targeting weapon can infect a
large amount of computers in a very short time. It is also possible to think
of the use of artificial intelligence to build agents that choose their targets
in a more systematic way than simply using random IP addresses, as often
is the case today.

A possible countermeasure is changing the address of the affected sys-
tem when it is being attacked, but that will then turn into a very effective
attack on the availability of the system instead. Other thinkable (and less
radical) methods is to use a firewall or network address translation (NAT)
server to hide the actual addresses of the system.

5.3.5 Attack

The concept of flow control is a cornerstone in programming and thus
many weapons use conditions to govern their attack pattern. These weapons
often are called logic bombs, mines etc. Also other types of weapons use
conditions to vary their behaviour. Therefore this category is an essential
part of the taxonomy.

64

FOI-R–0840–SE

In this case the general countermeasure is to use a sandbox28 to run
suspicious code in. Also the perimeter defences must make sure that no
software weapons are let into the system.

5.3.6 Functional area

The idea is to separate a weapon using some sort of remote procedure call
(RPC), remote method invocation (RMI), or the like to execute an attack,
from a weapon attacking the computer it is residing on. Also other ways
of attacking a remote computer is thinkable. A weapon not residing on the
attacked computer may be harder to defend against, it might also be harder
to detect, at least in its passive phase. Consequently, to be able to take the
correct defensive actions this category is of utter importance.

To defend a system against weapons of this kind the system has to be
properly updated with all the latest software patches. No unnecessary29

rights should be given to code in the system and the code has to be thor-
oughly debugged and tested. Also the perimeter defences (firewalls, NATs,
etc.) have to be in place and properly configured.

5.3.7 Affected data

Especially weapons affecting data in transfer can be effective in prepar-
ing or even execute an attack. By sniffing the network traffic valuable in-
formation can be retrieved. Both the general topology of the network and
more specific information, such as passwords and cryptographic keys, are
valuable for making a successful attack possible. Also for example a man-
in-the-middle weapon can be used. In that case the attacker more or less
controls every single bit sent between two users. Therefore this category
needs to be included in the taxonomy.

This category indicates if the attacked data (everything not being hard-
ware) is stationary or transported over a network. Its name has been changed
from Sphere of operation to Affected data to better indicate this. Also the
alternatives of the category are renamed from the version presented in the
NordSec paper (see Section 2.2.7). However, the underlying idea is not
changed.

Regarding the characteristic represented by this category the use of
good cryptographic solutions will strengthen the defences by making the
data unreadable by an assailant. The communicating parties need to use
cryptographic authentication methods when initiating a session. The rights

28A virtual area in the computer isolated from the rest of the system, where untrusted
code can be executed without affecting the rest of the system.

29Sometimes programs need to have access to services usually reserved for the core of
the operating system. Occasionally a programmer gives such rights to the program as a
whole, even if it is not needed. These rights might then be violated by utilising a software
vulnerability in the program.

65

FOI-R–0840–SE

of the different involved parties also have to be thought through. If possible
the right to write to files should be restricted.

5.3.8 Used vulnerability

By knowing the exact vulnerability used by a weapon to violate the se-
curity of a computer system, it is possible to directly see which software
patches protect a system from a specific weapon. Therefore this category
is meant to be used together with for example the ICAT [17] and CVE [13]
databases to facilitate such a function.

The alternative other method in the category is changed to other vul-
nerability. In this way the alternative better reflects the fact that some sort
of vulnerability is used, even if it lacks a CVE/CAN name. To make the
alternatives of the category exhaustive, the alternative should be defined as
all technical (not user related) vulnerabilities and exposures not listed by
CVE. The use of the alternative none then will indicate that the weapon
needs help from a user in the attacked system to be able to execute.

In this way a trojanic property can be indicated by defining a trojan
horse as a piece of software which is not using any software vulnerability
or exposure to violate the security of the attacked system. In other words,
it dupes a user to execute its code to be able to perform the intrusion or
attack.

The preferred definition of a vulnerability or exposure is the one used
in connection to the CVE meta-base (see Section 5.1 or [12]).

The best way to keep the defences high is to install all the latest soft-
ware patches as soon as possible. Another important thing is to implement
a good security policy, which has to be followed by every user in the sys-
tem.

5.3.9 Topology of source

A massive, synchronised attack from several concurrent sources is really
hard to find countermeasures for. By distributing daemons to a large num-
ber of computers and then activate them by remote control, a synergy effect
can be attained, because a larger (virtual) area of the Internet is affected.
An attacker grossly outnumbering the victim of an attack has a huge ad-
vantage, and if also the sources of the attack can be spoofed, the victim
is more or less defenceless. Thus, the inclusion of this category in the
taxonomy is very important.

Because the distributed daemons are alike, they also are affected by
the same type of countermeasures. If it is possible to identify the software
weapon used for the attack, there might be ways to shut the daemons down
by sending special instructions to them. Then all of them might shut down
at the same time. Of course this is only possible if the source addresses are
authentic.

66

FOI-R–0840–SE

Also the system needs to be well patched and using good perimeter
defences.

5.3.10 Target of attack

Some weapons have the ability to concurrently attack several targets at
once, for instance to make the spreading of the weapon more effective.
One example is CodeRed [53, 54, 55] using 100 threads at the same time to
search for new victims to infect. Also other types of weapons are thinkable,
a tool searching for vulnerabilities scanning a whole range of IP addresses
at once, for example. The multi-threaded weapons can spread very quickly
and therefore amount a considerable threat to computer systems. Thus the
category has to be included in the taxonomy.

To be able to defend against software weapons with the characteristics
described by this category, the use of an IDS is recommended. By checking
the behaviour of the code executed in the system and taking action when
something unusual is discovered (for example generating a lot of threads),
the system might have some protection, or at least other systems might be
somewhat protected from attacks emanating from this system.

5.3.11 Platform dependency

Weapons able to run on several different platforms of course have a greater
ability to do widespread damage and may therefore be more dangerous
than single platform weapons. Also the increasing use of mobile code and
interactive web sites for commercial purposes have added to the vulnerab-
ility of the modern society. Therefore it is important to be able to correctly
categorise a software weapon with the ability to run on several platforms
and hence the category has to be part of the taxonomy.

There are no real platform independent programming languages or
softwares yet, at least not in a strict sense. Therefore the choice to use
the word independent as the name of the second alternative might be dis-
puted. What the alternative is meant to indicate is that the weapon is not
depending on one single platform to run, instead it has the ability to run
on several platforms. The word independent is logically the complement
to dependent. It is also a way of making the category future proof. In a
few years time there might exist real platform independent programming
languages and thus also real platform independent software weapons.

All computer programs need a processor to run on, many of them also
need one or more operating system application program interfaces (APIs)
(or other operating system specific modules) to be able to execute. The
most important API in an operating system needed by an executable file
should be chosen to represent the operating system. One example of such
an API is Win32 in the Microsoft Windows series of operating systems.

To properly include languages running on any kind of emulators the
word processor should not be literally interpreted. Take the Java language

67

FOI-R–0840–SE

as an example. When compiling a Java program it is converted into byte
code. The compiled program then can be executed on a Java Virtual Ma-
chine (JVM), which is available for many different combinations of op-
erating system and processors. What the JVM really does is converting
the byte code into machine code specific to that particular combination of
processor and operating system. Therefore the JVM can be likened to a
processor from the Java program’s point of view. Actually there also exist
several different Java hardware processors [56, 57, 58].

The same thing is true for macro or script languages. For example the
Visual Basic for Applications (VBA) scripts used in Microsoft Office as
macros are using the VBA interpreter as a processor to run on, irrespective
of the operating system installed on the computer. Therefore they are to be
regarded as platform independent.

From the code of a program it is possible to see whether the program
uses any APIs or not. It is also possible to see if the program needs a spe-
cific processor to run on. If this is abstracted to a two dimensional graph
with the processor type as the x-axis and the needed operating system spe-
cific APIs as the y-axis, it is possible to describe the platform dependency
graphically. This is done through counting how many points the particular
program is represented by in the graph.

A program needing an API specific for one operating system and to be
run on one specific type of processor is represented in the graph as one
single point, which makes it a platform dependent program (see Figure 8).
The program will still be platform dependent even if there exists a software
emulator implemented in another operating system or on another type of
processor than the program can run on, because the code of the program
still indicates that it needs both a specific API and a specific processor to
execute.

Figure 8. This is an example
of what the graph of a platform
dependent program would look
like.

Win32

IA32

[API]

[CPU]

If the program can use APIs from different operating systems and run
on one or more type(s) of processor(s), or vice versa, it is represented by
two or more points, and thus is platform independent (see Figure 9). There
are examples of software weapons containing code written in two different
languages, for example the proof-of-concept virus Peelf [59].

A program not needing any specific APIs to run will be represented by
one (or more) vertical line(s), i.e. be platform independent (see Figure 10).
This can for example be a Java program, or a Microsoft Office macro. Also

68

FOI-R–0840–SE

Figure 9. This fictive platform in-
dependent program is represen-
ted by two points.

Win32

Solaris

IA32 Sparc

[API]

[CPU]

a program written purely in machine code and not needing any operating
system to start would be platform independent. One thinkable example is
a software weapon which is active before the operating system is loaded.
This might seem to be wrong, because the software weapon might only
be able to run on a very narrow series of processors. However, it would
be able to run regardless of the type of operating system installed on the
computer.

Figure 10. The platform inde-
pendent program not using any
particular API is represented by
a vertical line.

JVM

[API]

[CPU]

The platform dependency category might seem to suffer from the same
problem as the malware definition, it is the context of the program that
decides whether a program is platform dependent or not. When new oper-
ating systems are developed they in most cases are made compatible with
older versions of operating systems from that manufacturer. They might
also contain APIs making them compatible with operating systems from
other manufacturers.

If the platform dependency is to be measured by the number of op-
erating systems able to run the program, and not the requirements of the
program itself stipulated in its code, almost all programs would sooner or
later become platform independent. This would not be a good solution and
hence the platform dependency is to be decided solely from the code of the
program. In that way the categorisation of a software weapon would not
have to be changed if a new all-in-one operating system was developed.

The platform independent software weapons (as well as the dependent
ones) can be counteracted by running all untrusted code in a sandbox. The
policy to only use code verified to be good by a trusted party may also help.

69

FOI-R–0840–SE

5.3.12 Signature of replicated code

If not the look, the signature, of the thing being searched for is known, it
is much harder to find. Thus, a replicating weapon with the ability to vary
the signature of its code is of course much harder to detect by scanning for
code signatures, than a weapon not changing its signature. Consequently,
this characteristic is of great importance, because it makes it possible to
distinguish polymorphic weapons from monomorphic or not replicating
weapons. As a bonus it also gives an opportunity to indicate whether a
weapon replicates or not.

Therefore the name of the category was changed from Signature of
code to Signature of replicated code and the alternative not replicating
was added. Another reason for the change was to be able to separate
non-replicating weapons and monomorphic weapons, which got lumped
together when using the old version of the category.

The use of heuristic scanners as well as behaviour checking tools will
decrease the risk of being successfully attacked by polymorphic weapons.
Regarding the monomorphic weapons they are possible to defend against
using signature scanners, which is also applicable to non-replicating soft-
ware weapons.

5.3.13 Signature of attack

An important property of a software weapon to know about is the ability
to adapt to the defensive strategies used by its victims, because such a
weapon is much harder to find countermeasures for. Thus, this property
must be included in the taxonomy.

The definition of this category used in the NordSec paper was formally
correct, but not really useful. It restricted the alternative polymorphic to
weapons able to vary their attack signature between attacks of the same
type.

First of all, by using that definition the category becomes ambiguous.
It is left to the reader to decide whether an attack is of the same type as
another. Nothing is mentioned of the level to make the distinction on, if
it is defined as using the same vulnerability, or if it is some kind of meta
level attack, as for example a denial of service attack.

Secondly, if all users of the taxonomy managed to interpret the category
in the same way, there was a risk of imbalance in the usage of the two al-
ternatives. Depending on the interpretation used, either almost no weapons
(of those existing today) would be placed in the polymorphic group (when
using the stricter interpretation), or the situation could be reversed (when
using a meta-level interpretation).

Therefore the definition of the category is changed to distinguish between
weapons able to in some way vary their method of attack independently,
without user intervention (polymorphic), and those using a preset attack
method (monomorphic). The variation can be random or governed by

70

FOI-R–0840–SE

rules, the important thing is that the weapon is changing the attack type
on its own. When a rule set is used the weapon can adapt its behaviour to
the defensive actions taken by the victim.

An example of a weapon using a random attack pattern is the Tribe
Flood Network 2000 (TFN2K) distributed denial of service weapon which
can randomly switch between four different attacks (see Appendix B and
[60]).

An IDS may somewhat protect from attacks performed by software
weapons having the ability to polymorphically change their attack pattern,
by detecting them and maybe even adapt to their behaviour.

5.3.14 Signature when passive

By using some kind of stealth technique a software weapon can hide its
presence from defensive softwares. When the weapon is not performing
any attack related operations, it is in a passive phase. If stealth is used the
software weapon can lie hidden in a system for a long period of time and
wait for the right moment to attack. Therefore it is important to know if a
software weapon has such a characteristic and the category consequently
needs to be included in the taxonomy.

There are no really good countermeasures against weapons using stealth
techniques, more than never letting them seize the opportunity to attack. In
other words they have to be stopped at the gates (by a firewall, NAT, or the
like).

5.3.15 Signature when active

As stated in the Signature when passive category (Section 5.3.14) it is im-
portant to know if a weapon uses stealth techniques to hide. Such tech-
niques can also be used by the weapon when it is in an active phase, i.e. is
performing operations representing an attack on a computer system. Con-
sequently this category is equally important and thus needs to be included
in the taxonomy for the same reasons.

The countermeasures available to defend against weapons using stealth
techniques for hiding their active phases are the same as those used against
weapons using stealth during their passive phases (see Section 5.3.14).

5.4 In practice
As stated in Appendix A the proposed taxonomy needs to be tested. A
proper testing of its usability would require several different persons to
independently classify a set of software weapons. The resulting classific-
ations would then need to be completely similar to indicate that the tax-
onomy might be usable in practice (after corrections of the direct misun-
derstandings during the classifier’s learning phase). Also the testers gen-

71

FOI-R–0840–SE

eral opinions on the usability of the taxonomy would have to be collected
and any complaint or remark be properly attended to.

To facilitate such a test (at least a small one) nine software weapons
have been classified by the author. The result is shown in Appendix B.
The reader of this thesis then may test the taxonomy on his or her own by
classifying these weapons. The weapons and the references used for the
classification are shown in Table 3.

Table 3. The categorised
weapons and the references
used for the categorisation

Software weapon Reference(s)

mstream [61]
Stacheldraht [62, 63]
TFN [64]
TFN2K [60]
Trinoo [63]
CodeRed [53, 54, 55]
CodeRed II [65, 66, 67]
Nimda [68, 69, 70]
Sircam [71, 72, 73]

For the taxonomy to be usable in practice it has to classify phylo-
genetically30 related software weapons in a fairly similar way. Of course
weapons not related to each other then would have to have deviating clas-
sifications.

The best way of measuring the level of diversity in a group of soft-
ware weapons can be discussed. The method chosen in this thesis is to
represent each alternative as a one-dimensional 34 bit long binary string,
which is mathematically represented as a column vector s (see tables in
Appendix B). Each bit of the string has the value given by si where
si ∈ {0, 1} and i = 1, 2, . . . , 34.

A collection of m ≥ 1 categorised software weapons, all represented
as vectors in accordance with the format described above, together form a
set T . This set then can be described as a matrix where sij is the value of
the i:th bit in the categorisation of software weapon j.

To measure the level of difference the standard deviation, here called
d, is calculated for each row i in T . Thus the formula becomes

di =

√
√
√
√

1

m − 1

m∑

j=1

(sij − si)2

The nine weapons were divided into two sets, TDDoS and Tworms. The
resulting standard deviation di for each set is shown together with the di

for the whole group (Tall) in Table 4. The last column shows where di = 0
in each group, but di > 0 for the complete set. In other words it indicates

30In [33] phylogeny is defined in the following way: ‘[EVOLUTION] The evolutionary
or ancestral history of organisms.’

72

FOI-R–0840–SE

which combinations of category and alternative that may be used to distin-
guish the two groups from each other. If di > 0 in the Disting. column
in the table, that specific combination of category and alternative distin-
guishes the two groups.

Table 4. The standard deviation
di of TDDoS, Tworms, Tall,
and the distinguishing alternat-
ives (di > 0)

Category Alternative TDDoS Tworms Tall Disting.

Type atomic 0 0 0 0
Type combined 0 0 0 0
Violates confidentiality 0 0.5 0.5 0
Violates integrity; parasitic 0 0.5 0.5 0
Violates integrity; non-parasitic 0 0.5 0.5 0
Violates availability 0 0.58 0.44 0
Dur. of effect temporary 0 0.58 0.44 0
Dur. of effect permanent 0 0.5 0.5 0
Targeting manual 0 0 0.53 0.53
Targeting autonomous 0 0 0.53 0.53
Attack immediate 0.45 0.5 0.44 0
Attack conditional 0.45 0.5 0.53 0
Funct. area local 0 0 0.53 0.53
Funct. area remote 0 0.5 0.33 0
Affected data stationary 0 0 0.53 0.53
Affected data in transfer 0 0.5 0.5 0
Used vuln. CVE/CAN 0 0.5 0.5 0
Used vuln. other vuln. 0 0 0 0
Used vuln. none 0 0.5 0.5 0
Topol. of source single 0 0 0.53 0.53
Topol. of source distributed 0 0 0.53 0.53
Target of attack single 0 0.5 0.5 0
Target of attack multiple 0 0.58 0.44 0
Platform depend. dependent 0 0 0 0
Platform depend. independent 0 0 0 0
Sign. of repl. code monomorphic 0 0 0.53 0.53
Sign. of repl. code polymorphic 0 0 0 0
Sign. of repl. code not replicating 0 0 0.53 0.53
Sign. of attack monomorphic 0.45 0 0.33 0
Sign. of attack polymorphic 0.45 0 0.33 0
Sign. when passive visible 0 0.58 0.44 0
Sign. when passive stealth 0 0.58 0.44 0
Sign. when active visible 0 0.58 0.44 0
Sign. when active stealth 0.55 0.58 0.53 0

The result of the standard deviation calculations indicates that the TDDoS

was more homogeneous than Tworms. No further conclusions will be drawn
from this than that the term worm is more general than DDoS, but that was
no big surprise. As seen in the table there is a possibility to differenti-
ate between members of the two groups by looking at how the following
categories and alternatives are used:

• Targeting

73

FOI-R–0840–SE

• Functional area; local

• Affected data; stationary

• Topology of source

• Signature of code; monomorphic

• Signature of code; not replicating

However, the statistical selection is not very large and the results should
therefore not be taken too seriously. The two categories Targeting and
Topology of source empirically seem good to use, but maybe the preferred
method of differentiating classes should be to theoretically find the most
prominent properties of each class not belonging to both of them.

As shown in Sections 4.1– 4.7 the definition of the term trojan horse
differs among many of the computer security experts and the same is true
for such terms as virus and worm. Also the way the three terms are related
to each other differs, which is shown in Figures 1– 7. These things indicate
a problem, because when the researchers cannot agree on as fundamental
terms as these, they certainly cannot agree on others. One way of solving
this dilemma is to make a fresh start, by defining new terms, or redefining
already existing terms and their relationships.

To do this the one-dimensional format of the taxonomy is used. Each
combination of category and alternative considered relevant for the term in
question is marked with either a 1 or a 0, and the other combinations are
marked with wildcards.

By comparing the number of (and which) categories that are relevant
(not having wildcards) for a certain term, the relationship of the different
terms can be established. The computer security field of research will in
that way get a new and generally agreed upon standard of terms. Then
all efforts can be put into finding countermeasures to the ever increasing
amount of software weapons being created.

In Appendix C a proposed way of defining the three terms trojan horse,
virus, and worm is given. These categorisations are to be regarded as re-
commendations. The computer security research community has to agree
on the proper definitions together. By using this taxonomy as a base, that
mission will be lot easier to accomplish.

74

FOI-R–0840–SE

6 Discussion
What everything in this thesis really centres around is computer security
and therefore also how to secure computer systems from attacks made with
the help of software weapons. Now the issue of how to defend a computer
system against software weapons is big enough to fill many a PhD thesis.
Therefore it will be dealt with only briefly in one part of this section. After
all, the thesis is meant to be a master’s thesis, nothing more.

Before the summarising discussion ending the thesis, the future issues
regarding the proposed taxonomy and its further development will be ana-
lysed in a separate part.

6.1 General defences
There is an enormous amount of books, papers, articles, reports, etc. pub-
lished on how to secure a computer system against intrusion or other non-
authorised activities. This section therefore will only shortly introduce the
basic ideas of how to minimise the risk of a successful attack involving the
use of a software weapon.

The protective measures taken to defend a computer system can be
divided into three parts; prevention, detection, and reaction. [10, pp. 4–5]
Other names and ways to divide them have also been used, in [74] they
instead are referred to as a dichotomy31 (see Figure 11).

Figure 11. The dichotomy of de-
fensive measures presented by
Roebuck. [74]

Defences

Technical

Pro-active Reactive

Non-technical

Pro-active Reactive

Irrespective of which scheme is used, the idea is to avoid as many as
possible of the dangers by being prepared, both by being precautious and
by using technical aids. If anything happens, and it always will, there
also have to be (working) methods to decrease the damages and restore the
system to normal operation again.

It is easy to draw a parallel to fire fighting. Certainly most people
are aware that nothing is really fire proof, also a brick house will burn if
drenched in petrol. Also there are no fail-safe technical countermeasures,
sprinkler systems need water and maintenance to function and even if fire
retardant materials burn less intensely, they still burn. And if there is a fire,

31From the Greek word dihkotomia, a cutting in two. [32]

75

FOI-R–0840–SE

the faster and more well organised the fire-fighting, the less devastating the
result. Finally, one single fire is all it takes to suffer damage. [74]

Unfortunately, in computer security the focus is on (imperfect) tech-
nical countermeasures. The pro-activity and strong reactivity are almost
forgotten [74]. Most of the efforts are put into developing better anti-virus
scanners, firewalls and IDSs. These efforts are of course not wasted in any
way, the methods are needed as perimeter defences and for detection of un-
authorised behaviour, but if anyone finds a new ingenious way to do harm,
they are of little or no help. Furthermore the methods are reactive, not
pro-active, and thus always struggling to keep pace with the development
of new software weapons. Also the security in operating systems, the core
of all computer systems, is concentrated to stopping unauthorised users
from entering the system, while those being let in sometimes get almost
unlimited rights.

Therefore the security policy used at the site is of utter importance.
When a good policy is adhered to, it functions as a pro-active defence. To
be good it has to be strict, but yet allow the users to do their job. If too
high a level is enforced the users feel the system is working against them
and they tend to invent short-cuts to circumvent the implemented security
measures.

The policy has to be supported by the management, too. After all, they
decide how much money there is to pay for the computer security. Hence,
if they think that enforcing security is a way to waste money, instead of a
way to prevent money from being lost, there is an uphill battle to fight for
the IT staff at the site.

One very important aspect of the computer security policy is to include
continuous education of both the users, the IT staff, and the managers.
They all need to be aware (to different degrees) of the threats posed at the
moment. Also they need to be constantly reminded of the importance of
following the computer security policy.

Regarding the technical aspects of the defence there have to be some
sort of anti-virus scanner installed on each and every computer. Preferably
there should be scanners from different suppliers installed on the servers
versus the workstations or laptops. In that way the risk of a new virus not
being included in an update of the signature database is decreased.

This leads to another important issue connected to anti-virus scanning.
There is a constant flow of new viruses entering the Internet, hence the
signature databases of the anti-virus scanners need to be continuously up-
dated. There are heuristic scanning algorithms built into most of the mod-
ern scanners, meant to detect yet unknown breeds of viruses, but they tend
to give a rather high number of both false positives and false negatives.

Also the softwares constituting the computer system have to be updated
with the latest patches. This has to be done as soon as possible after the
release of a new patch. There existed patches of the vulnerabilities used by
the worms CodeRed and Nimda months before the two worms showed up.
If the patches had been installed on the affected systems, the worms would

76

FOI-R–0840–SE

not have been able to spread as fast and far as they did. [75]
A complement to an anti-virus scanner is an integrity checker, which

calculates checksums (or hashes) of files in the system. To be usable in
practice only those files not subject to frequent updates or changes will
be included in the check, because each time a checksum is calculated the
file has to be verified to be clean (the update of the checksum to be au-
thorised) by a user. Consequently the user has to be aware of the eventual
implications of the action.

By using an integrity checker the changing or infection of a file is pos-
sible to detect, but it really is a reactive function. If the period between the
change of the file and the detection is long, for example a virus may have
been able to do considerable damage.

Another problem with using checksums is the fact that they are sur-
jective, i.e. several files can have the same checksum. Thus a virus can
(at least in theory) infect a file and pad it so the checksum is not changed
when checked. Another way for a virus to defeat an integrity checker is to
simply catch the call from the checksum calculation function and supply
the function with an unchanged copy of the file.

By having a single point of connection to the outside world, or at least
as few as possible, the risk of intrusion is decreased. Of course all the
connections need to be properly secured by firewalls and e-mail filters with
anti-virus scanning capabilities.

One weak point in the perimeter defence is the connection of remote
users. Often they use laptops which are connected through modem con-
nections, which to be fairly secure have to use encryption and good au-
thentication routines. Also the users must keep a strict watch over their
computers to prevent anyone from stealing them or maybe install a trojan
horse program.

The above mentioned security enhancing methods will not give a 100%
effective protection of a computer system. Therefore it is vital to back up
the data in the system as often as possible. If anything happens and a back
up has to be restored, every change to the data files in system since the time
of the back up will be lost. Multiply the amount of work erased by the back
up with the number of affected users (and customers) and the price will be
high for not backing up more regularly. If then the cost of the bad-will and
eventually severed customer relations are added to the result, the company
might be on the brink of bankruptcy.

6.2 How a taxonomy increases security
The use of a taxonomy of software weapons in the field of computer se-
curity will improve the security related work in many ways. First of all, a
taxonomy structures the field it is used in, both the general understanding
of the field, as well as the more detailed knowledge of each entity con-
tained. By knowing both on a macro level and a micro level what types of
weapons there are and their technical characteristics, the suitable counter-

77

FOI-R–0840–SE

measures against each type can be stated in advance and easily found when
needed.

Of course, the first thing to do when a system is hit is to find out what
type of software weapon is used for the attack. First when that has been
done different countermeasures can be applied. The phase of finding and
identifying the used weapon might be made more effecive by using the cat-
egories of the proposed taxonomy as guidelines to what to look for. When
the weapon has been identified, the taxonomy will point to other weapons
with similar characteristics and therefore also indirectly to possible coun-
termeasures.

The use of the taxonomy as a common ground for categorising soft-
ware weapons will also make sharing new methods of defence easier. The
joining of forces against an attacker is facilitated, because everyone in-
volved in the defence instantly knows the characteristics of the weapon or
weapons used.

Also the definition of the terms used need to be based on a common
ground, because it will increase the mutual understanding and coordiantion
of the defensive work. And the sooner the new definitions are decided
upon, the better, because the present situation with a mismatch of different
definitions leads to a significant risk of disastrous misunderstandings. The
following fictive example will function as a scenario of how things can go
wrong when not having a common ground for the used vocabulary. For
example the term trojan horse is by some defined as a subclass of the virus
and worm classes (see Section 4.6), while others define the relationship
between the three terms the other way around (see Section 4.7). Now to
the scenario:

A small company has been hit by a virus packed into a
downloaded shareware functioning as a trojan horse. The man-
ager, regarding a trojan horse as a subclass of a virus, tells his
employee, which regards a virus being a subclass of a trojan
horse, that they have been hit by a trojan horse and that he
needs to take appropriate measures to get rid of it. The em-
ployee deletes the file the manager has pointed out and also,
as an extra precaution, reboots the system to get rid of active
processes related to the trojan horse. He regards his actions to
be sufficient, because if it had been a virus his manager would
had said so. After all, he thinks, viruses are only a subclass of
trojan horses. Thus the trojan horse cannot be parasitic.

The manager on his side thinks he has been clear enough,
trojan horses are a subclass of viruses and worms and there-
fore the employee should have understood that the software
weapon might have been parasitic. Hence they both rest as-
sure of that everything is taken care of. To really be on the sure
side the employee makes a new backup of the whole computer
system on the same tape as the old one, thinking the old back

78

FOI-R–0840–SE

up is not needed anymore, because he has done what the man-
ager told him to do. They are both up for a rather unpleasant
surprise the next morning.

If they instead had used terms defined from a common ground, such as this
proposed taxonomy of software weapons, they both would have known
what the other meant. The employee would have restored a (clean) backup
or gotten rid of the viral code from the infected files in another way.

A real life example of such a weapon as the one described in the scen-
ario might be for example Sircam. It is often referred to as a worm, but
it sends itself attached to an e-mail inserted into an ordinary file (which
needs to be actively opened by the recipient) and also infects other com-
puters via self-standing files transferred over network shares. It therefore
would fit also the definitions of both a trojan horse and a worm.

Using a classification done with the help of the proposed taxonomy of
software weapons, the employee would have known that the weapon was
both parasitic and non-parasitic. He would probably also had had a whole
class of similar weapons and the suitable countermeasures conneced to
them to refer to.

By having a complete map of all existing software weapons and their
realtionship through shared technical characteristics, the different defens-
ive methods developed may be compared and possible weak spots found.
Also the development of new countermeasuress might be made more ef-
fective and new fields of research found. A good example from another
field is the periodic table, which gives much information on the different
elements it contains, their number of electrons, their weight and chemical
properties, if they are inert, etc. It has also helped researchers to find new
elements, which in the end have resulted in several Nobel Prizes.

6.3 In the future
As stated in the title of this thesis this is a proposed taxonomy and it there-
fore has been subject to rather big and frequent changes, and still is, al-
though the frequency is decreasing.

As mentioned in [3, 4] the taxonomy needs to be evaluated further.
First of all the different categories and their alternatives have to be tested
on a wider range of software weapons than what mostly is regarded as
malware. The evaluation must be made independently by several people
categorising the same weapons, using the same technical descriptions of
the weapons. The result and their opinions then have to be compared and
possibly changes have to be made to the taxonomy.

If the resulting categorisations are alike and no grave errors have been
found, the formation of a reference database can begin. There already
exists such a project for viruses in the form of the WildList [27], but that
project is for natural reasons not done in accordance with this proposed

79

FOI-R–0840–SE

taxonomy. Therefore a new project has to be started, including all software
weapons.

At the same time the computer security research community needs to
jointly agree on definitions of the terms in the nomenclature used. Old
terms might need to be redefined and new terms invented to extend the
vocabulary to include different forms of non-viral software weapons. To
simplify the work, this proposed taxonomy may be used as a common
basis. Using the taxonomy will also guarantee that all terms are compar-
able regarding their technical characteristics and thus they may be arranged
in a hierarchy reflecting their relationships.

Another issue needing to be dealt with is how to measure the charac-
teristics of a weapon when no source code is available. This has only been
mentioned briefly in the text, because it falls outside the scope of the thesis,
but it still is an obstacle on the road towards a fully workable taxonomy and
thus needs to be solved. The preferable solution is to find ways to recreate
the source code in all possible situations.

6.4 Summary
There is definitely a need for a taxonomy of software weapons. As it is
today the research might be hampered by the lack of generally accepted
definitions of the terms used. Several taxonomies containing parts dealing
with software weapons exist and a selection of them have been evaluated
in this thesis. Unfortunately none of them fulfils all the requirements of a
proper taxonomy, or the needs of the computer security field of research
specified in Section 3.1.4 and Section 3.2.2.1.

The theories governing the formation of a taxonomy have been around
for a while. A proper taxonomy should have mutually exclusive, exhaust-
ive, and unambiguous categories. It also has to be formulated in a language
suited for the intended readers, in other words both technically correct and
yet rather general.

If a taxonomy meets these requirements it might be usable, but it also
has to have a purpose. Regarding a taxonomy of software weapons there
is a need for a detailed categorisation scheme able to classify the com-
plete set of software weapons, both now and in the foreseeable future. The
taxonomy also has to be used together with a definition of the entities in
the field in question. The definition then works as a filter excluding all
softwares not intended to be classified by the taxonomy.

The proposed taxonomy presented in this thesis is formulated without
using any of the existing malware classification schemes as a base. Instead
it is built from scratch, based exclusively on the technical characteristics
of software weapons. In this way the taxonomy has not inherited any of
the weaknesses of the current classification schemes. Hence, it has the
potential to be used as a standard both for categorising weapons as well as
redefining the terminology in the field.

To complete the taxonomy a new definition of software weapons is

80

FOI-R–0840–SE

formulated. The definition is not based on the intention of a user, creator or
any other subjective and immeasurable property. Instead it is based solely
on the weapon itself, by looking at the code. Although there might be
practical problems with finding the code and reading it, these are solvable
problems.

The taxonomy consists of 15 different and independent categories each
having at least two alternatives, which together form a partitioning of the
category. There have been some problems related to the definitions of some
of the alternatives, but at the moment all of them are felt to be good and
adequate.

Regarding the different countermeasures used against software weapons,
there are (as in most cases) no perfect solutions. The best way is simply
to keep the overall security as high as possible and to accept the fact that
there always will be successful attacks. In that way the chance of noticing
irregular behaviours in the computer system will be high, the users and the
administrators will keep a good watch and not sit back and relax in false
conviction that their system is impenetrable.

Finally, the taxonomy still needs to be tested further. Also the work
with redefining the nomenclature of the field of research would need to be
started.

81

FOI-R–0840–SE

82

FOI-R–0840–SE

7 Acronyms
API Application Programming Interface. The language or messaging format

used by applications to communicate with an operating system, or
other functions and programs. [76]

CAN Candidate Number. A vulnerability or exposure under investigation
by the CVE Editorial Board for possible upgrading to a real vulner-
ability or exposure, when it also will receive a CVE number. [16]

CARO Computer Antivirus Research Organization. Created an unofficial
recommendation of the naming procedure for viruses in 1991. An
extension and update was proposed by Scheidl in 1999. [48]

CC Common Criteria. A joint effort by several governmental organisa-
tions, as a group called ‘the Common Criteria Editing Board’ [10,
p. 159] to create a standard for evaluating and grading computer
security. The effort is sponsored by the Common Criteria Project
Sponsoring Organisations, which are listed in [51, p. ii].

CERT Computer Emergency Response Team. There are several national
CERTs distributed over the world. They issue alerts and warnings
regarding different computer security threats, as well as other secur-
ity related publications. Their Coordination Center is situated at the
Software Engineering Institute, Carnegie Mellon University. [77]

CVE Common Vulnerabilities and Exposures. A meta-base containing
information of different vulnerabilities and exposures. The meta-
base is supported by MITRE (a name, not an acronym). [14, 13]

DDoS Distributed Denial of Service. An attack degrading the availability
of a computer system. The attack is executed using several remotely
controlled agents all concurrently performing a denial of service at-
tack on a specific target. [78, 79, 80]

DoS Denial of Service. An attack degrading the availability of a system
by flooding it with a vast amount of network traffic or bad packets.
[81]

EICAR European Institute for Computer Antivirus Research. However,
the acronym has become self-standing and they also have expanded
their working field to general IT security, with a focus on anti-virus
research. [82]

FAT File Allocation Table. A table containing the addresses of the sectors
on a harddisk occupied by the different files in a file system. The
table is maintained by the operating system. [83]

FOI Swedish Defence Research Agency. In Swedish: ‘Totalförsvarets for-
skningsinstitut’. [84]

83

FOI-R–0840–SE

ICAT ICAT. No extension has been found. Maybe it is not an acronym,
but a name. [17]

IDS Intrusion Detection System. A system to monitor the activity in a
network and in that way possibly detect intrusions. There are two
methods used; rule-based monitoring and statistical-based. [76]

IIS Internet Information Services. A web-server from Microsoft. [85] It
is widely used and therefore also often attacked.

ITSEC Information Technology Security Evaluation Criteria. A European
document providing a framework for security evaluation of com-
puter systems. [10, p. 155]

JVM Java Virtual Machine. It is like a virtual CPU that compiled Java
programs run on. In this way the same Java code can be executed on
several different computer platforms, without having to be recom-
piled. [76]

NAT Network Address Translation. A NAT server offers the possibility to
hide the internal addresses of a network and thus only have one IP
address visible to the outside world. This service is also offered by
for example a proxy server. [76, 83]

NCW Network Centric Warfare. The new idea of how to revolutionise the
way of faring war. All different participants are meant to be connec-
ted in a network. In this way the troops may be better coordinated,
information sharing among the soldiers and their superiors will be
facilitated, and more can be achieved by less participants. [86]

NIST (US) National Institute of Standards and Technology. The goal of
this federal agency is to strengthen and advance the science and tech-
nology within USA. [76, 83]

NordSec 2002 The 7th Nordic Workshop on Secure IT Systems. The work-
shop was held at Karlstad University, Sweden 7–8 November 2002.
[87]

RMI Remote Method Invocation. A protocol developed by Sun to allow
Java objects to remotely communicate with other Java objects over a
network. [76, 83]

RPC Remote Procedure Call. A protocol (middleware) that allows a com-
puter to execute a program on another (server) computer. [76, 83]

TFN2K Tribe Flood Network 2000. A DDoS software weapon. [60]

VBA Visual Basic (for) Applications. A programming language based on
BASIC and developed by Microsoft. It provides a graphical pro-
gramming environment. [83]

84

FOI-R–0840–SE

VTC Virus Test Center. A laboratory specialised in reverse engineering
and decompilation of viruses. They also perform tests of the effi-
ciency of different virus-scanners on the market. The laboratory is
headed by professor Klaus Brunnstein and is part of the Computer
Science Department at the University of Hamburg, Germany. [88]

85

FOI-R–0840–SE

86

FOI-R–0840–SE

References
[1] Michael Best, Printing, and problems in Shakespeare’s text, Septem-

ber 2001.
http://web.uvic.ca/shakespeare/Library/
SLTnoframes/literature/problems.html, accessed
9 December 2002.

[2] William Shakespeare, The Arden Shakespeare Complete Works,
chapter Romeo and Juliet, pp. 1005–1038, Thomas Nelson and Sons
Ltd, Walton-on-Thames, Surrey, UK, 1998.

[3] Martin Karresand, ‘TEBIT – Teknisk Beskrivningsmodell för
IT-vapen (TEBIT. Technical characteristics’ description model
for IT-weapons)’, Tech. Rep. FOI-R–0305–SE (Metodrap-
port/Methodology report), Command and Control Warfare Techno-
logy, FOI - Swedish Defence Research Agency, Linköping, Sweden,
August 2001.

[4] Martin Karresand, ‘A Proposed Taxonomy for IT Weapons’, in Nord-
Sec 2002 – Proceedings of the 7th Nordic Workshop on Secure IT
Systems, Simone Fisher-Hübner and Erland Jonsson, Eds., Karlstad,
Sweden, November 2002, pp. 244–260, Karlstad University Studies.

[5] Ian Whalley, Bill Arnold, David Chess, John Morar, Alla Segal, and
Morton Swimmer, An Environment for Controlled Worm Replication
and Analysis or: Internet-inna-Box, September 2000.
http://www.research.ibm.com/antivirus/
SciPapers/VB2000INW.htm, accessed 18 July 2002.

[6] Ian Whalley, Testing Times for Trojans, October 1999.
http://www.research.ibm.com/antivirus/
SciPapers/Whalley/inwVB99.html, accessed 18 July
2002.

[7] CERT (Computer Emergency Response Team), CERT Advisory
CA-1995-06 Security Administrator Tool for Analyzing Networks
(SATAN), April 1995.
http://www.cert.org/advisories/CA-1995-06.
html, accessed 12 June 2002.

[8] Sarah Gordon, Devil’s Advocate, 1995.
http://www.commandsoftware.com/virus/satan.
html, accessed 23 July 2002.

[9] CIAC (Computer Incidents Advisory Center), Information Bulletin
F-20: Security Administrator Tool for Analyzing Networks (SATAN),
April 1995.

87

FOI-R–0840–SE

http://www.ciac.org/ciac/bulletins/f-20.shtml,
accessed 12 June 2002.

[10] Dieter Gollmann, Computer Security, John Wiley & Sons, 1999,
ISBN 0-471-97844-2.

[11] Carl E Landwehr, Alan R Bull, John P McDermott, and William S
Choi, ‘A Taxonomy of Computer Program Security Flaws, with
Examples’, ACM Computing Surveys, vol. 26, no. 3, September
1994.
http://chacs.nrl.navy.mil/publications/CHACS/
1994/1994landwehr-acmcs.pdf, accessed 12 June 2002.
A note taken from the text published on the web: ‘As revised for publication in

ACM Computing Surveys 26, 3 (Sept., 1994). This version, prepared for electronic

distribution, reflects final revisions by the authors but does not incorporate

Computing Surveys´ copy editing. It therefore resembles, but differs in minor

details, from the published version. The figures, which have been redrawn for

electronic distribution are slightly less precise, pagination differs, and Table 1 has

been adjusted to reflect this’.

[12] CVE,
http://cve.mitre.org/about/terminology.html,
accessed 4 July 2002.

[13] CVE,
http://cve.mitre.org/about/index.html, accessed 24
June 2002.

[14] MITRE, The Early Years.
http://www.mitre.org/about/history.shtml, ac-
cessed 12 June 2002.

[15] Daniel L Lough, A Taxonomy of Computer Attacks with Applications
to Wireless Networks, PhD thesis, Virgina Polytechnic Institute and
State University, April 2001.
http://scholar.lib.vt.edu/theses/available/
etd-04252001-234145/unrestricted/lough.
dissertation.pdf, accessed 13 June 2002.

[16] CVE,
http://cve.mitre.org/docs/docs2000/naming_
process.html, accessed 12 June 2002.

[17] ICAT,
http://icat.nist.gov/icat.cfm, accessed 12 June 2002.

[18] ICAT,
http://icat.nist.gov/icat_documentation.htm,
accessed 27 September 2002.

88

FOI-R–0840–SE

[19] Simon Hornblower and Tony Spawforth, Eds., Who’s Who in the
Classical World, Oxford University Press, 2000, ISBN 0-19-280107-
4.

[20] Encyclopedia Britannica Online,
http://www.britannica.com/eb/article?eu=
119735&tocid=48695, accessed 12 June 2002.

[21] John D Howard and Thomas A Longstaff, A Common Language
for Computer Security Incidents, Sandia National Laboratories,
Livermore, CA, October 1998.
http://www.cert.org/research/taxonomy_988667.
pdf, accessed 6 September 2002.

[22] Ivan V Krsul, Software Vulnerability Analysis, PhD thesis, Purdue
University, May 1998.
http://www.acis.ufl.edu/~ivan/articles/main.
pdf, accessed 13 June 2002.

[23] George Gaylord Simpson, ‘The principles of classification and a clas-
sification of mammals’, in Bulletin of the American Museum of Nat-
ural History, vol. 85, pp. 1–350. 1945.

[24] Ulf Lindqvist, On the Fundamentals of Analysis and Detection of
Computer Misuse, PhD thesis, Department of Computer Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden, 1999.
http://www.ce.chalmers.se/staff/ulfl/pubs/
ul-phd.pdf, accessed 11 October 2002.

[25] Jakub Kaminski and Hamish O’Dea, How to smell a RAT - remote
administration tools vs backdoor Trojans.
http://www.virusbtn.com/conference/this_year/
abstracts/remote_administration.xml, accessed 22
July 2002.
Only the abstract of the paper was available and therefore no references are made

to the body of the document.

[26] David Moore, Geoffrey M Voelker, and Stefan Savage, Inferring
Internet Denial-of-Service Activity, 2001.
http://www.caida.org/outreach/papers/2001/
BackScatter/usenixsecurity01.pdf, accessed 22
November 2002.

[27] Joe Wells, How Scientific Naming Works.
http://www.wildlist.org/naming.htm, accessed 22
November 2002.

[28] Per Ånäs, ‘Aktören vid IT-relaterade attacker – vem, varför och hur?
(The actor making IT-related attacks - who, why and how?)’, Tech.

89

FOI-R–0840–SE

Rep. FOI-R–0271–SE (Underlagsrapport/Base data report), Defence
Analysis, Swedish Defence Research Agency, December 2001.

[29] Bernie Klinder, Computer Virus and Malware Primer for Network
Administrators, September 2002.
http://www.labmice.net/AntiVirus/articles/
avprimer.htm, accessed 22 November 2002.

[30] Vesselin Vladimirov Bontchev, Methodology of Computer Anti-Virus
Research, PhD thesis, University of Hamburg, Germany, 1998.

[31] Marko Helenius, A System to Support the Analysis of Antivirus
Products’ Virus Detection Capabilities, PhD thesis, University of
Tampere, Finland, 2002.
http://acta.uta.fi/pdf/951-44-5394-8.pdf, ac-
cessed 22 July 2002.

[32] Oxford English Dictionary Online, 2nd edition, 1989.
http://dictionary.oed.com/cgi/entry/00247833,
accessed 24 November 2002.

[33] Sybil P Parker, Ed., Dictionary of bioscience, McGraw-Hill, 1997,
ISBN 0-07-114919-8.

[34] Ulf Lindqvist and Erland Jonsson, ‘How to Systematically Classify
Computer Security Intrusions’, in Proceedings of the 1997 IEEE
Symposium on Security & Privacy, Oakland, CA, 1997, pp. 154–163,
IEEE Computer Society Press.
http://www.ce.chalmers.se/staff/ulfl/pubs/
sp97ul.pdf, accessed 12 June 2002.

[35] John D Howard, An Analysis of Security Incidents on the Internet
1989-1995, PhD thesis, Carnegie Mellon University, Pittsburg, April
1997.
http://www.cert.org/research/JHThesis/Word6/,
accessed 12 June 2002.

[36] Richard Ford, Malware.
http://www.malware.org/malware.htm, accessed 17 July
2002.

[37] Morton Swimmer, Malware.
http://www.swimmer.org/morton/malware.html, ac-
cessed 18 July 2002.

[38] Fred Cohen, ‘Computer viruses: Theory and experiments’, Com-
puters & Security, vol. 6, no. 1, pp. 22–35, February 1987.

90

FOI-R–0840–SE

[39] David M Chess and Steve R White, An Undetectable Computer
Virus, IBM Thomas J. Watson Research Center, Hawthorne, New
York, USA, 2000.
http://www.research.ibm.com/antivirus/
SciPapers/VB2000DC.pdf, accessed 21 November 2002.

[40] David G Boney, ‘The Plague: An Army of Software Agents for
Information Warfare’, Tech. Rep., Department of Computer Science,
School of Engineering and Applied Science, Washington D.C. 20052,
June 1999.

[41] Lance J Hoffman, Ed., Rogue Programs: Viruses, Worms, and Trojan
Horses, Van Nostrand Reinhold, 1990.

[42] Christopher V Feudo, The Computer Virus Desk Reference, Business
One Irwin Computer, 1992.

[43] Klaus Brunnstein, From AntiVirus to AntiMalware Software and
Beyond: Another Approach to the Protection of Customers from
Dysfunctional System Behaviour, Faculty for Informatics, University
of Hamburg, Germany, July 1999.
http://csrc.nist.gov/nissc/1999/proceeding/
papers/p12.pdf, accessed 22 July 2002.

[44] Jo Ticehurst, Virus naming chaos causes confusion, October 2000.
http://newsletter.vnunet.com/News/1112012, ac-
cessed 18 November 2002.

[45] Ken Dunham, Malware Taxonomy: Challenges, July 2001.
This text is the last part of three in a series published at SecurityPortal in July, 2001.

The other two are called The Great Analogy and Malware Taxonomy: Introduction.

Unfortunately the portal is nowadays offline. The article was received by e-mail

from Ken Dunham, dunhamk@rmci.net.

[46] Ian Whalley, VGrep, Advanced Security Research, McAfee Security.
http://toronto.virusbtn.com/resources/vgrep/,
accessed 21 November 2002.

[47] Fridrik Skulason and Vesselin Bontchev, A New Virus Naming Con-
vention, 1991.
http://vx.netlux.org/lib/asb01.html, accessed 18
November 2002.

[48] Gerald Scheidl, Virus Naming Convention 1999 (VNC99), beta
edition, July 1999.
http://members.chello.at/erikajo/vnc99b2.txt,
accessed 22 October 2002.

91

FOI-R–0840–SE

[49] Donn B Parker, Advancing Security, 1999.
http://www.infosecuritymag.com/articles/1999/
parker2.shtml, accessed 22 November 2002.

[50] Winn Schwartau, The Basics are the Basics, September 1999.
http://www.infowar.com/chezwinn/
articles092899/TheBasicsAreTheBasics.shtml,
accessed 22 November 2002.

[51] Common Criteria, Common Criteria for Information Technology
Security Evaluation, part 1, 2.1 edition, August 1999.
http://www.commoncriteria.org/docs/PDF/
CCPART1V21.PDF, accessed 3 December 2002.

[52] Philip Babcock Gove, Ed., Webster’s Third New International Dic-
tionary, Merriam-Webster Inc., 1993, ISBN 3-8290-5292-8.

[53] Eric Chien, CodeRed Worm, Symantec, July 2002.
http://securityresponse.symantec.com/
avcenter/venc/data/codered.worm.html, accessed
24 July 2002.

[54] Trend Micro, CODERED.A, July 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.A&VSect=T, accessed 24
July 2002.

[55] eEye Digital Security, .ida ”Code Red” Worm, July 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010717.html, accessed 13 September 2002.

[56] Digital Communication Technologies Inc, Lightfoot 32-bit Java
Processor Core, August 2001.
http://www.dctl.com/downloads/fpga_lightfoot_
ds.pdf, accessed 6 December 2002.

[57] aJile Systems Inc, Real-time Low-power JavaT M Processor aJ-80,
2000.
http://www.ajile.com/downloads/aj80.pdf, accessed
6 December 2002.

[58] Sun Microsystems, Sun Unveils Its First Java Processor micro-
Java701 Looks to Post Industry’s Highest Caffeinemarks, October
1997.
http://www.sun.com/smi/Press/sunflash/9710/
sunflash.971015.1.html, accessed 6 December 2002.

[59] Peter Ferrie, W32.Peelf.2132, April 2002.
http://securityresponse.symantec.com/

92

FOI-R–0840–SE

avcenter/venc/data/w32.peelf.2132.html, accessed
6 December 2002.

[60] Jason Barlow and Woody Thrower, TFN2K – An Analysis, March
2000.
http://packetstormsecurity.nl/distributed/
TFN2k_Analysis-1.3.txt, accessed 17 November 2002.

[61] David Dittrich, George Weaver, Sven Dietrich, and Neil Long, The
”mstream” distributed denial of service attack tool, May 2000.
http://staff.washington.edu/dittrich/misc/
mstream.analysis.txt, accessed 16 November 2002.

[62] David Dittrich, The ”stacheldraht” distributed denial of service
attack tool, December 1999.
http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis, accessed 24 July 2002.

[63] David Dittrich, The DoS Project’s ”trinoo” distributed denial of
service attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/
trinoo.analysis.txt, accessed 24 July 2002.

[64] David Dittrich, The ”Tribe Flood Network” distributed denial of
service attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/
tfn.analysis.txt, accessed 16 November 2002.

[65] Eric Chien and Peter Szor, CodeRed II, Symantec, July 2002.
http://securityresponse.symantec.com/
avcenter/venc/data/codered.ii.html, accessed
18 October 2002.

[66] Trend Micro, CODERED.C, August 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.C&VSect=T, accessed 18
October 2002.

[67] eEye Digital Security, CodeRedII Worm Analysis, August 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010804.html, accessed 18 October 2002.

[68] Eric Chien, W32.Nimda.A@mm, Symantec, July 2002.
http://securityresponse.symantec.com/
avcenter/venc/data/w32.nimda.a@mm.html#
technicaldetails, accessed 21 October 2002.

[69] K Tocheva, G Erdelyi, A Podrezov, S Rautiainen, and M Hypponen,
Nimda, F-Secure, September 2001.

93

FOI-R–0840–SE

http://www.europe.f-secure.com/v-descs/nimda.
shtml, accessed 21 October 2002.

[70] Trend Micro, PE_NIMDA.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?Vname=PE_NIMDA.A&VSect=T, accessed
21 October 2002.

[71] Peter Ferrie and Peter Szor, W32.Sircam.Worm@mm, Symantec,
July 2002.
http://securityresponse.symantec.com/
avcenter/venc/data/w32.sircam.worm@mm.html#
technicaldetails, accessed 23 October 2002.

[72] Gergely Erdelyi and Alexey Podrezov, Sircam, F-Secure, July 2001.
http://www.europe.f-secure.com/v-descs/
sircam.shtml, accessed 23 October 2002.

[73] Trend Micro, WORM_SIRCAM.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=WORM_SIRCAM.A&VSect=T, ac-
cessed 23 October 2002.

[74] Terrance A Roebuck, A Holistic Approach to Viruses and Other
Malware.
http://abyss.usask.ca/~roebuck/malware.HTML,
accessed 26 November 2002.

[75] Todd McGuiness, Defense In Depth, November 2001.
http://rr.sans.org/securitybasics/defense.php,
accessed 27 November 2002.

[76] Tom Sheldon, McGraw-Hill Encyclopedia of Networking & Tele-
communications, McGraw-Hill, Berkeley, California 94710, USA,
2001, ISBN 0-07-212005-3.

[77] CERT/CC, Welcome, December 2002.
http://www.cert.org, accessed 9 December 2002.

[78] Tim Yardley, Distributed Attacks and the Way To Deal With Them,
1999.
http://packetstormsecurity.com/papers/
contest/Tim_Yardley.doc, accessed 9 December 2002.

[79] CERT/CC, Results of the Distributed-Systems Intruder Tools
Workshop, December 1999.
http://www.cert.org/reports/dsit_
workshop-final.html, accessed 9 December 2002.

94

FOI-R–0840–SE

[80] Serghei Sevcenco, Distributed Denial of Service (DDoS) attacks,
Symantec, July 2001.
http://securityresponse.symantec.com/
avcenter/venc/data/ddos.attacks.html, accessed
10 December 2002.

[81] CERT R© Coordination Center, Denial of Service Attacks, June 2001.
http://www.cert.org/tech_tips/denial_of_
service.html, accessed 9 December 2002.

[82] EICAR Online, 2002.
http://www.eicar.org, accessed 9 December 2002.

[83] Thomas M Thomas, II, Thomas’ Concise Telecom & Networking
Dictionary, McGraw-Hill, Berkeley, California 94710, USA, 2000,
ISBN 0-07-212253-6.

[84] Welcome to FOI – The Swedish Defence Research Agency, Septem-
ber 2002.
http://www.foi.se/english/index.html, accessed 9
December 2002.

[85] Microsoft, Internet Information Services Community Center.
http://www.microsoft.com/windows2000/
community/centers/iis/default.asp, accessed 10
December 2002.

[86] David S Alberts and John J Garstka, Network Centric Warfare – De-
partment of Defense Report to Congress.
http://www.c3i.osd.mil/NCW/, accessed 9 December
2002.
The text that was read for this reference was the ‘Executive Summary’ found

at http://www.c3i.osd.mil/NCW/ncw_exec_sum.pdf. However, the

general URL stated above leads to the main website, which contains the (com-

plete?) report in several large PDF files.

[87] Albin Zuccato, Nordsec 2002, July 2002.
http://www.cs.kau.se/nordsec2002/index.html,
accessed 9 December 2002.

[88] Klaus Brunnstein, Virus Test Center, April 2002.
http://agn-www.informatik.uni-hamburg.de/vtc/,
accessed 9 December 2002.

95

FOI-R–0840–SE

96

FOI-R–0840–SE

Appendix A

The NordSec 2002 paper

97

FOI-R–0840–SE

98

A Proposed Taxonomy for IT Weapons∗

Martin Karresand
FOI

Swedish Defence Research Agency, Division of Command and Control Systems,

Department of Systems Analysis and IT Security

Box 1165, SE-581 11 Linköping, Sweden

martin.karresand@foi.se

Abstract

This report presents a proposal for a taxonomy of IT weapons, limited
to computer software. Because of this limitation the term software weapons
is used instead of IT weapons. A definition of software weapons is also
formulated. No other taxonomy with the above scope is known to exist
today. This taxonomy therefore offers a theoretical base for the unification
of the nomenclature for classification of software weapons.

The taxonomy contains 15 categories of general properties of a software
weapon. It has been adapted to international standards through a connection
to the CVE list (Common Vulnerabilities and Exposures), which is main-
tained by MITRE.

The problem of how to make unambiguous classifications of combined
software weapons is discussed and a solution is proposed. Each category of
the taxonomy is explained in a separate paragraph. Thereafter the taxonomy
is used to classify two well known software weapons.

Keywords: computer security, information warfare, IT weapon, IW, malware,
software weapon, taxonomy, virus, worm.

1 Introduction

The terminology used in the IT security area is not yet fully standardised and
the situation is getting worse [1, 2, 3] because of the continuous influx of new

∗To appear in: Nordsec 2002 – Proceedings of the 7th Nordic Workshop on Secure IT Systems,
Karlstad University, Sweden, 7–8 November 2002.

99

100 1 INTRODUCTION

members to the research community, who all have their own preferred vocabulary.
Hence there is an increasing need for a standardisation of the used terms.

On top of that the research being done so far has been concentrated on the
pragmatic, technical side of the spectrum, i.e. ways of detecting the increasing
amount of malware (malicious software) being written. The classification and
grouping of the malware has been given less attention and the area is therefore
hard to take in.

To enable the development of efficient countermeasures there is a need for
an unambiguous classification of the software used to cause harm to individuals
and organisations via computer systems. Also the users of the computer systems
need to have a general understanding of the threats posed by different types of
malware. This would lead to a higher degree of awareness of possible malware
attacks and in that way higher security. One step towards this goal is to have
commonly acknowledged names for the separate types of malware. Consequently
these types must be well defined too.

Furthermore, the education of IT security personnel would benefit from a
structured classification of the malware area. A common vocabulary would for
example decrease the risk of misunderstandings.

Whether a specific tool would be classified as a weapon or not is often judged
from the context of the situation where the tool is used. This is the juridical point
of view, the tool a murderer used is to be regarded as a weapon, because he or she
used it with the intent to kill. Consequently, anything can be a weapon.

The sentence ‘He used a pillow as a weapon’ gives that the pillow was a
weapon in that specific situation. But by disregarding the context and just con-
centrate on the ‘as a weapon’ part of the sentence, we see that a tool must have
certain properties to be a weapon.1 These properties are in some way measurable;
they do harm (why else would they be used for fighting and attacking?). If the line
of argument is transferred to the world of computers, the result is that a certain
class of software has a specific set of properties, which are measurable, and those
properties define the software as weapons.

The advantage of this approach is the much lesser degree of ambiguity. A
weapon is a weapon because of its properties and as long as the purpose is to
study it technically, that is enough. With a deeper knowledge of the technical
details of software weapons (malware) as a group, they can be classified, properly
named, etc. This in turn leads to a more structured knowledge of the area and thus
a possibility to develop better defences, maybe even in advance. Or as Sun Tzu
once wrote in his book The Art of War [5, chapter VI]:

Whoever is first in the field and awaits the coming of the enemy,

1One definition is ‘an object such as a knife, gun, bomb, etc. that is used for fighting or attack-
ing sb’. [4]

1.1 Background 101

will be fresh for the fight; whoever is second in the field and has to
hasten to battle will arrive exhausted.

1.1 Background

This is an updated version of a report [6] written in Swedish. The amendments
were mostly related to preparing the report for international publishing. Some
parts have also been rewritten because new background material has been found.

In an attempt to somewhat lessen the emotional charge in the used vocabulary,
the term software weapon will be used throughout the text. Something malicious
can be nothing but evil, but a weapon is simply a tool that has the ability to cause
harm and that can be used in both offensive and defensive situations.

Regarding the area of malware, several definitions and classification schemes
exist for different parts of the area (see for example [7, 8, 9]). Most of them
deal with viruses and worms, and only casually mention other types of malicious
software. They all give their own way of measuring, or quantifying, maliciousness
and at the same time conclude that this cannot be done objectively.

No definition or taxonomy2 covering the complete set of software-based IT
weapons has yet been found by the author.

1.2 Purpose

The purpose of the report is to present a taxonomy of software weapons, and also
give a definition supporting the taxonomy. The taxonomy and definition are not
meant to be complete in any way, but merely suggestions for future work.

The purpose of the taxonomy is to fill the needs stated in the introduction, or
at least lay the foundation for a future fulfilment of them.

1.3 Scope

The taxonomy only handles software based (IT) weapons from a technical point of
view. Chipping3 is considered to be hardware based and is therefore not discussed.

1.4 Method

The study has been done with a broad technical base. Several different types of
material have been studied. Most of the material has been taken from the Inter-
net to give up to date information. It has mostly been descriptions of tools and

2The word originates from the two Greek words taxis, arrangement, order, and nomos, distri-
bution.

3Malicious alterations of computer hardware.

102 2 A TAXONOMY OF SOFTWARE WEAPONS

methods used by hackers. Also technical reports, dissertations, and taxonomies
focused on IT security and malware have been used.

2 A Taxonomy of Software Weapons

My own hypothesis of why no other taxonomy of software weapons has yet been
found can be summarised in the following points:

• The set of all software weapons is (at least in theory) infinite, because new
combinations and strains are constantly evolving. Compared to the biolo-
gical world, new mutations can be generated at light speed.

• It is hard to draw a line between administrative tools and software weapons.
Thus it is hard to strictly define what a software weapon is.

• Often software weapons are a combination of other, atomic, software weapons.
It is therefore difficult to unambiguously classify such a combined weapon.

• There is no unanimously accepted theoretical foundation to build a tax-
onomy on. For instance there are (at least) five different definitions of the
term worm [10] and seven of trojan [11].

• By using the emotionally charged word malicious together with intent, the
definitions have been crippled by the discussion whether to judge the pro-
grammer’s or the user’s intentions.

2.1 Theory

As a consequence of some of the problems mentioned above, the set of software
weapons will grow continuously. Therefore it can be regarded as always new and
unexplored. The fact that software weapons can be created from combinations
of other software weapons, without limitations, gives that a traditional taxonomy
based on relationships would not work very well. The rules for classification
would grow indefinitely complex and soon get out of hand. A better solution
would be to base the taxonomy on technical characteristics. With a proper selec-
tion of characteristics, such a taxonomy would have the potential to work for more
than a few years.

It is not enough to find a working set of characteristics to get a good taxonomy,
though. It must fulfil a few more requirements to be useful. Daniel Lough has
created a list of 18 properties from 5 different taxonomies of IT security, which
he presents in his dissertation [12]. I consider the following properties taken from

2.2 Definition 103

two of those taxonomies [13, 14] to be the most important. The categories of the
taxonomy should:

• Be mutually exclusive and exhaustive so that the taxonomy completely cov-
ers the intended area, i.e. be a partitioning of the area

• Be unambiguous to prevent subjective interpretations

• Usable through the use of well known and consistent terminology.

To minimise the risk of subjective interpretations when classifying objects, the
alternatives in each category should be based on measurable or observable char-
acteristics [15]. In the case of software these characteristics are the instructions
and algorithms constituting the software [16]. This will guarantee that the classi-
fication of a software weapon will be the same, regardless of who is classifying.

How the characteristics of the software weapon shall be found is a separate
problem. It can be done by either having access to the source code of the weapon,
or by re-engineering the source code from a binary version of the weapon. A third
way is to have some sort of automatic analysis software; a virtual environment
where the software weapon could be scientifically studied in a controlled manner.
Such an environment already exists for worms and viruses [10].

2.2 Definition

In this section a definition of software weapons is presented, together with the
reasons for developing it. To avoid influences from the definitions of malware
mentioned earlier, the new definition has been constructed with information war-
fare as a base.

2.2.1 Background.

There are several definitions of IT and cyber warfare. Of course they cover a
much larger area than just software weapons, but they do give a hint of what the
important things are. The US Department of Defense has the following definition
of the military part of information warfare [17]:

Information Warfare - Actions taken to achieve information su-
periority in support of national military strategy by affecting adversary
information and information systems while leveraging and defending
our information and systems.

Dr. John Alger, MITRE Corporation, Enterprise Security Solutions Department,
gives the following definition of information warfare in a book by Winn Schwartau
[18, p. 12]:

104 2 A TAXONOMY OF SOFTWARE WEAPONS

Information Warfare consists of those actions intended to pro-
tect, exploit, corrupt, deny, or destroy information or information
resources in order to achieve a significant advantage, objective, or
victory over an adversary.

A similar definition is given by Ivan Goldberg [19], head of IASIW (US Institute
for the Advanced Study of Information Warfare):

Information warfare is the offensive and defensive use of inform-
ation and information systems to deny, exploit, corrupt, or destroy,
an adversary’s information, information-based processes, information
systems and computer-based networks while protecting one’s own.
Such actions are designed to achieve advantages over military or busi-
ness adversaries.

All the above definitions mentions that an advantage over an adversary should
be achieved and this should be done by influencing the adversary’s information
systems. An advantage in the software context would correspond to a breach in
the security of the adversary’s computer system. The influencing part would then
be the instructions of the tool(s) used for the attack. Thus a software weapon
should have such properties.

The definitions mentioned above are all very much alike, which might indicate
that they all have the same source. If so, three renowned institutions has adopted it,
which in that case strengthens its importance. I therefore think that the definitions
above carry such weight that they can be used as a basis for the definition of
software weapons used in this report.

2.2.2 Preliminary Definition.

The preliminary definition of software weapons4 used at FOI5 has the following
wording (translated from Swedish):

[. . .] software for logically influencing information and/or pro-
cesses in IT systems in order to cause damage.6

This definition satisfies the conditions mentioned earlier in the text. One thing
worth mentioning is that tools without any logical influence on information or
processes are not classified as software weapons by this definition. This means
that for instance a sniffer is not a software weapon. Even a denial of service

4The term IT weapon is used in the report FOI report.
5Swedish Defence Research Agency
6In Swedish: ‘[. . .] programvara för att logiskt påverka information och/eller processer i IT-

system för att åstadkomma skada.’

2.2 Definition 105

weapon might not be regarded as a weapon depending on the interpretation of
‘logically influencing . . . processes’. A web browser on the other hand falls into
the software weapon category, because it can be used in a dot-dot7 attack on a web
server and thus affect the attacked system logically.

Furthermore, the definition does not specify if it is the intention of the user
or the programmer, that should constitute the (logical) influence causing damage.
If it is the situation where the tool is used that decides whether the tool is a soft-
ware weapon or not, theoretically all software ever produced can be classified as
software weapons.

If instead it is the programmer’s intentions that are decisive, the definition
gives that the set of software weapons is a subset (if yet infinite) of the set of all
possible software. But in this case we have to trust the programmer to give an
honest answer (if we can figure out whom to ask) on what his or her intentions
was.

A practical example of this dilemma is the software tool SATAN, which ac-
cording to the creators was intended as a help for system administrators [20, 21].
SATAN is also regarded as a useful tool for penetrating computer systems [22].
Whether SATAN should be classified as a software weapon or not when using the
FOI definition is therefore left to the reader to subjectively decide.

2.2.3 New Definition.

When a computer system is attacked, the attacker uses all options available to get
the intended result. This implies that even tools made only for administration of
the computer system can be used. In other words there is a grey area with powerful
administrative tools, which are hard to decide whether they should be classified as
software weapons or not. Hence a good definition of software weapons is hard to
make, but it might be done by using a mathematical wording and building from a
foundation of measurable characteristics.

With the help of the conclusions drawn from the definitions of information
warfare the following suggestion for a definition of software weapons was formu-
lated:

A software weapon is software containing instructions that are
necessary and sufficient for a successful attack on a computer system.

Even if the aim was to keep the definition as mathematical as possible, the
natural language format might induce ambiguities. Therefore a few of the terms

7A dot-dot attack is performed by adding two dots directly after a URL in the address field of
the web browser. If the attacked web server is not properly configured, this might give the attacker
access to a higher level in the file structure on the server and in that way non-authorised rights in
the system.

106 2 A TAXONOMY OF SOFTWARE WEAPONS

used will be further discussed in separate paragraphs.
Since it is a definition of software weapons, manual input of instructions is

excluded.

Instructions. It is the instructions and algorithms the software is made of that
should be evaluated, not the programmer’s or the user’s intentions. The instruc-
tions constituting a software weapon must also be of such dignity that they to-
gether actually will allow a breakage of the security of an attacked system.

Successful. There must be at least one computer system that is vulnerable to
the tool used for an attack, for the tool to be classified as a software weapon. It
is rather obvious that a weapon must have the ability to do harm (to break the
computer security) to be called a weapon. Even if the vulnerability used by the
tool might not yet exist in any working computer system, the weapon can still be
regarded as a weapon, as long as there is a theoretically proved vulnerability that
can be exploited.

Attack. An attack implies that a computer program in some way affects the con-
fidentiality8, integrity9 or availability10 of the attacked computer system. These
three terms form the core of the continually discussed formulation of computer
security. Until any of the suggested alternatives is generally accepted, the defini-
tion of attack will adhere to the core.

The security breach can for example be achieved through taking advantage
of flaws in the attacked computer system, or by neutralising or circumventing its
security functions in any way.

The term flaw used above is not unambiguously defined in the field of IT
security. Carl E Landwehr gives the following definition [24, p. 2]:

[. . .] a security flaw is a part of a program that can cause the
system to violate its security requirements.

Another rather general, but yet functional, definition of ways of attacking com-
puter systems is the definition of vulnerability and exposure [25] made by the
CVE11 Editorial Board.

8‘[P]revention of unauthorised disclosure of information.’[23, p. 5]
9‘[P]revention of unauthorised modification of information.’[23, p. 5]

10‘[P]revention of unauthorised withholding of information or resources.’[23, p. 5]
11‘[CVE is a] list of standardized names for vulnerabilities and other information security ex-

posures – CVE aims to standardize the names for all publicly known vulnerabilities and security
exposures. [. . .] The goal of CVE is to make it easier to share data across separate vulnerability
databases and security weapons.’ [26]. The list is maintained by MITRE [27].

2.2 Definition 107

Computer System. The term computer system embraces all kinds of (elec-
tronic)12 machines that are programmable and all software and data they contain.
It can be everything from integrated circuits to civil and military systems (includ-
ing the networks connecting them).

2.2.4 Evaluation.

To test if the new definition has the intended extent, it is applied to a selection of
common hacker tools. First five classes of tools chosen from a list made by David
Icove [28, pp. 29–60] is used, then two tools not commonly regarded as software
weapons, a web browser and a word processor.

To get as relevant a test as possible, tools that have a high ambiguity with re-
spect to whether they should be regarded as software weapons or not are selected.

Denial of Service. Tools that in some way degrade the service of a computer
system exist in several versions. The instructions of such a tool is both necessary
and sufficient to successfully degrade the availability of the attacked system and
it is thus a software weapon.

Data Diddling. A tool performing unauthorised manipulation of data on the
attacked system can for instance be a log eraser. The definition states that this is a
software weapon, because the tool affects the integrity of the attacked system.

Port Scanning. A port scan can be compared to going round a house (in full
daylight) trying all the doors and windows to see if any of them is open [29].
Such knowledge can then be used for intrusion.

On the other hand, merely studying the visual characteristics of an object does
not affect its confidentiality. Something clearly visible cannot be regarded as
secret. Thus, such a simple port scanner as the one described above is not suf-
ficient enough to affect the confidentiality of the scanned system and is therefore
not a software weapon.

However, what today commonly is known as a security scanner is more power-
ful than the tool described above. A few examples are SATAN, Nessus, and NSS.
They can for instance search for specific vulnerabilities and perform port map-
ping for different applications. Such a tool contains instructions both necessary
and sufficient to affect the confidentiality of the attacked system.

12This term might be to restrictive. Already advanced research is done in for example the areas
of biological and quantum computers.

108 2 A TAXONOMY OF SOFTWARE WEAPONS

Password Sniffing. By analysing the content of packets sent over a network
passwords can be found, without interrupting the network traffic. If the sniffed
passwords are unencrypted (or can be decrypted by the sniffer), the password
sniffing is necessary and sufficient to violate the confidentiality of the attacked
system and the sniffer is therefore a software weapon.

On the other hand, if the sniffer tool itself does merely send the encrypted
passwords to another tool for decryption, its instructions is not sufficient for a
successful attack. In other words, a sniffer is a good example of a tool that reside
in the grey area.

Traffic Analysis. Tools performing traffic analysis work in a similar way to
password sniffers, but instead they use the address field of the data packet. In
that way they can be used for mapping the topology of a network. The informa-
tion can be used to identify specific servers and security functions. These can then
be circumvented or attacked.

The situation can be compared to a reconnaissance device collecting data on
the positions of enemy troops on a battle field. Such data is most likely confid-
ential and might be necessary and sufficient for a successful attack on the enemy,
i.e. a traffic analysis tool is a software weapon [30, 29]

However, many traffic analysis tools are manually operated, i.e. the user gives
the parameters that control the operation. These parameters can then be viewed as
the instructions that perform the actual attack. Thus in this case the traffic analysis
tool itself cannot be regarded as being a software weapon. Instead it should be
compared to a terminal program.

From the above we can see that a traffic analyser occupies the grey area men-
tioned before. Each traffic analyser therefore has to be inspected separately to
determine whether it should be classified as a software weapon or not.

Web Browser. Using a web browser a hacker can make a dot-dot attack on
a computer system. In this case the actual instructions representing the attack
are given by the user, not the web browser. Thus the instructions constituting
a web browser are not sufficient to successfully attack a computer system and
consequently the browser is not a software weapon. Instead it can be regarded as
a manually operated terminal program.

Word Processor. Through the built-in macro language, a word processor can be
utilised to perform unauthorised actions on an attacked system. The instructions
used for the attack are given by the macro, the word processor only interprets
them. In other words the word processor does not in itself contain the instructions

2.3 A Draft for a Taxonomy 109

that perform the attack. Thus a word processor is not a software weapon (but the
macro is).

Summary of Evaluation. The tools that challenged the definition the most were
the traffic analyser and the port scanner. Both tools can very well be used by a sys-
tem administrator for totally legitimate purposes. For example a traffic analyser
can be used by an administrator to continuously monitor the traffic in a network
and in that way detect anomalies signalling an intrusion. A port scanner can be
used to test the security configuration of the system and especially the firewall
set-up.

It is therefore important to remember that it is the code constituting the soft-
ware that should contain instructions that are necessary and sufficient be used for
a successful attack. If a port scanner does more than just scan for open ports in a
firewall, it might very well perform actions successfully affecting the confidenti-
ality of the scanned system and as a result be a software weapon, regardless of the
context.

2.3 A Draft for a Taxonomy

The categories of the taxonomy are independent and the alternatives of each cat-
egory together form a partition of the category. It is possible to use several al-
ternatives (where applicable) in a category at the same time. In this way even
combined software weapons can be unambiguously classified. This model, called
characteristics structure, is suggested by Daniel Lough [12, p. 152].

In Table 1 the 15 categories and their alternatives are presented. The alternat-
ives are then explained in separate paragraphs.

2.3.1 Type.

This category is used to distinguish an atomic software weapon from a combined
and the alternatives therefore cannot be used together.

A combined software weapon is built of more than one stand-alone (atomic
or combined) weapon. Such a weapon can utilise more than one alternative of a
category. Usage of only one alternative from each category does not necessarily
implicate an atomic weapon. In those circumstances this category indicates what
type of weapon it is.

2.3.2 Affects.

At least one of the three elements confidentiality, integrity and availability has to
be affected by a tool to make the tool a software weapon.

110 2 A TAXONOMY OF SOFTWARE WEAPONS

Table 1: The taxonomic categories and their alternatives

Category Alternative 1 Alternative 2 Alternative 3

Type atomic combined
Affects confidentiality integrity availability
Duration of effect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Sphere of operation host-based network-based
Used vulnerability CVE/CAN other method none
Topology single source distributed source
Target of attack single multiple
Platform dependency dependent independent
Signature of code monomorphic polymorphic
Signature of attack monomorphic polymorphic
Signature when passive visible stealth
Signature when active visible stealth

These three elements together form the core of most of the definitions of IT
security that exist today. Many of the schemes propose extensions to the core, but
few of them abandon it completely.

2.3.3 Duration of effect.

This category states for how long the software weapon is affecting the attacked
system. It is only the effect(s) the software weapon has on the system during
the weapon’s active phase that should be taken into account. If the effect of the
software weapon ceases when the active phase is over, the duration of the effect is
temporary, otherwise it is permanent.

Regarding an effect on the confidentiality of the attacked system, it can be
temporary. If for example a software weapon e-mails confidential data to the
attacker (or another unauthorised party), the duration of the effect is temporary.
On the other hand, if the software weapon opens a back door into the system (and
leaves it open), the effect is permanent.

2.3.4 Targeting.

The target of an attack can either be selected manual[ly] by the user, or autonom-
ous[ly] (usually randomly) by the software weapon. Typical examples of autonom-

2.3 A Draft for a Taxonomy 111

ously targeting software weapons are worms and viruses.

2.3.5 Attack.

The attack can be done immediate[ly] or conditional[ly]. If the timing of the
attack is not governed by any conditions in the software, the software weapon
uses immediate attack.

2.3.6 Functional Area.

If the weapon attacks its host computer, i.e. hardware directly connected to the
processor running its instructions, it is a local weapon. If instead another physical
entity is attacked, the weapon is remote.

The placement of the weapon on the host computer can be done either with
the help of another, separate tool (including manual placement), or by the weapon
itself. If the weapon establishes itself on the host computer (i.e. breaks the host
computer’s security) it certainly is local, but can still be remote at the same time.
A weapon which is placed on the host computer manually (or by another tool)
need not be local.

2.3.7 Sphere of Operation.

A weapon affecting network traffic in some way, for instance a traffic analyser,
has a network-based operational area. A weapon affecting stationary data, for
instance a weapon used to read password files, is host-based, even if the files are
read over a network connection.

The definition of stationary data is data stored on a hard disk, in memory or
on another type of physical storage media.

2.3.8 Used Vulnerability.

The alternatives of this category are CVE/CAN13, other method and none. When
a weapon uses a vulnerability or exposure [25] stated in the CVE, the CVE/CAN
name of the vulnerability should be given14 as the alternative (if several, give all
of them).

13The term CAN (Candidate Number) indicates that the vulnerability or exposure is being in-
vestigated by the CVE Editorial Board for eventually receiving a CVE name [31].

14NIST (US National Institute of Standards and Technology) has initiated a meta-base called
ICAT [32] based on the CVE list. This meta-base can be used to search for CVE/CAN names
when classifying a software weapon.

The meta-base is described like this: ‘ICAT is a fine-grained searchable index of standardized
vulnerabilities that links users into publicly available vulnerability and patch information’. [33]

112 2 A TAXONOMY OF SOFTWARE WEAPONS

The alternative other method should be used with great discrimination and
only if the flaw is not listed in the CVE, which then regularly must be checked
to see if it has been updated with the new method. If so, the classification of the
software weapon should be changed to the proper CVE/CAN name.

2.3.9 Topology.

An attack can be done from one single source or several concurrent distributed
sources. In other words, the category defines the number of concurrent processes
used for the attack. The processes should be mutually coordinated and running on
separate and independent computers. If the computers are clustered or in another
way connected as to make them simulate a single entity, they should be regarded
as one.

2.3.10 Target of Attack.

This category is closely related to the category topology and has the alternatives
single and multiple. As for the category topology, it is the number of involved en-
tities that is important. A software weapon concurrently attacking several targets
is consequently of the type multiple.

2.3.11 Platform Dependency.

The category states whether the software weapon (the executable code) can run
on one or several platforms and the alternatives are consequently dependent and
independent.

2.3.12 Signature of Code.

If a software weapon has functions for changing the signature of its code, it is
polymorphic, otherwise it is monomorphic. The category should not be confused
with Signature when passive.

2.3.13 Signature of Attack.

A software weapon can sometimes vary the way an attack is carried out, for ex-
ample perform an attack of a specific type, but in different ways, or use different
attacks depending on the status of the attacked system. For instance a dot-dot at-
tack can be done either by using two dots, or by using the sequence %2e%2e. If
the weapon has the ability to vary the attack, the type of attack is polymorphic,
otherwise it is monomorphic.

113

2.3.14 Signature When Passive.

This category specifies whether the weapon is visible or uses any type of stealth
when in a passive phase15. The stealth can for example be achieved by catching
system interrupts, manipulating checksums or marking hard disk sectors as bad in
the FAT (File Allocation Table).

2.3.15 Signature When Active.

A software weapon can be using instructions to provide stealth during its active
phase. The stealth can be achieved in different ways, but the purpose is to con-
ceal the effect and execution of the weapon. For example man-in-the-middle or
spoofing weapons use stealth techniques in their active phases through simulating
uninterrupted network connections.

If the weapon is not using any stealth techniques, the weapon is visible.

3 Examples

In this section, as a test, two software weapons are classified using the taxonomy.
The weapons used are the distributed denial of service (DDoS) weapon Stacheldraht
and the worm CodeRed. They were chosen for being well documented and well
known.

The test is in no way exhaustive. It is only meant to function as a demonstra-
tion of what a classification can look like for a particular software weapon.

3.1 Stacheldraht.

The classification of the DDoS weapon Stacheldraht was made with the help of
[34, 35] and looks like this:

Type: combined

Affects: availability

Duration of effect: temporary. The agents used to get the distributed character-
istic of the weapon are installed permanently in the computers they reside
on. To get them in place other tools are used [34], so the placing of the
agents is to be considered as a separate attack not done with Stacheldraht.

The actual denial of service attack affects the attacked system until the at-
tacker decides to quit.

15A passive phase is a part of the code constituting the software weapon where no functions
performing an actual attack are executed.

114 3 EXAMPLES

Targeting: manual

Attack: conditional

Functional area: remote. As stated above, the placement of the agents is not
considered an attack performed by Stacheldraht.

Sphere of operation: network based

Used vulnerability: none

Topology: distributed source

Target of attack: multiple

Platform dependency: dependent

Signature of code: monomorphic

Signature of attack: monomorphic The weapon can use ICMP flood, SYN flood,
UDP flood, and Smurf style attacks, which are separate types of attacks.

Signature when passive: visible

Signature when active: visible, stealth The stealth is used in the communica-
tion between the different parts of the weapon (client, handler, and agent).
This is done through using ICMP_ECHOREPLY packets and encrypted TCP
[34].

3.2 CodeRed.

The classification of the worm CodeRed was made with the help of [36, 37, 38]
and looks like this:

Type: combined

Affects: integrity, availability

Duration of effect: temporary. The documentation states that nothing is written
to disk [37]. However, the weapon is also said to look for a file named
‘NOTWORM’ in the root of C:. How that file ends up there is not men-
tioned.

Regarding the defacing of the server it is done in memory by hooking and
redirecting incoming request to the worm code during 10 hours [36], i.e. a
temporary effect. The DoS attack is also limited in extent and therefore a
temporary effect.

115

Targeting: autonomous

Attack: conditional

Functional area: local, remote. The weapon (in version 1) defaces the server
it has infected and also performs a DoS attack on a specific IP address.
Therefore it is both local and remote.

Sphere of operation: host based, network based. See the previous category.

Used vulnerability: CVE-2001-0500 (idq.dll),
CVE-2001-0506 (SSI)

Topology: single source

Target of attack: single, multiple. The weapon executes a DoS attack on a single
IP address. It is also divided into several (99 + 1) threads, which all con-
currently tries to infect (attack) randomly chosen IP addresses. This makes
it both a single and multiple target attacking weapon.

Platform dependency: dependent

Signature of code: monomorphic

Signature of attack: monomorphic There are both a DoS attack and an infection
mechanism, but each type of those two attacks are always executed in the
same way.

Signature when passive: visible. The weapon is put to sleep when certain con-
ditions are met. This cannot be regarded as using any stealth technique.

Signature when active: visible

4 Summary

The report has outlined a suggestion for a taxonomy, i.e. a classification scheme
and a definition of software weapons. The definition part has been given much
weight, because a classification scheme must have a solid base to work properly.
To enable an unambiguous definition the emphasis was moved from the use of the
weapon, to the technical (measurable) characteristics of the weapon. This gave
the following formulation:

A software weapon is software containing instructions that are
necessary and sufficient for a successful attack on a computer system.

116 4 SUMMARY

The classification part is meant to be used at a rather abstract level and for that
reason the categories (and their alternatives) are chosen to be general properties
held by all software weapons. A classification of a weapon must contain at least
one alternative from each category.

By incorporating CVE names the taxonomy offers a connection to a global
standard for naming vulnerabilities and exposures in software. This means that a
meta-base of software weapons can be built, which can offer a global standardisa-
tion of the area.

The work done so far has been mainly theoretical. The next thing to do is to
test the taxonomy empirically. Each category and its alternatives must be thor-
oughly tested to see if any of them needs to be changed.

Also the quality of the classification scheme needs to be tested. Software
weapons related by common sense shall also have fairly similar classifications
and unrelated weapons more or less be orthogonally classified.

REFERENCES 117

References

[1] Richard Ford, Malware.
http://www.malware.org/malware.htm, accessed 17 July 2002.

[2] Marko Helenius, ‘Problems, Advantages and Disadvantages of Malware
Testing’, in EICAR 1999 Best Paper Proceedings, 1999.
http://conference.eicar.org/past_conferences/1999/other/

Helenius.pdf, accessed 18 July 2002.

[3] Jakub Kaminski and Hamish O’Dea, How to smell a RAT - remote
administration tools vs backdoor Trojans.
http://www.virusbtn.com/conference/this_year/abstracts/

remote_administration.xml, accessed 22 July 2002.

Only the abstract of the paper was available and therefore no references are made to the

body of the document.

[4] A S Hornby, Oxford advanced learner’s dictionary of current English, Ox-
ford University Press, Oxford, 6 edition, 2000, ISBN 0-19-431510-X.

[5] Sun Tzu, The Art of War, 500 B.C.
http://all.net/books/tzu/tzu.html, accessed 12 June 2002.

Translation by Lionel Giles, 1910.

[6] Martin Karresand, ‘TEBIT – Teknisk Beskrivningsmodell för IT-vapen (TE-
BIT. Technical characteristics’ description model for IT-weapons)’, Tech.
Rep. FOI-R–0305–SE (Metodrapport/Methodology report), Command and
Control Warfare Technology, FOI - Swedish Defence Research Agency,
Linköping, Sweden, August 2001.

[7] Klaus Brunnstein, From AntiVirus to AntiMalware Software and Beyond:
Another Approach to the Protection of Customers from Dysfunctional Sys-
tem Behaviour, Faculty for Informatics, University of Hamburg, Germany,
July 1999.
http://csrc.nist.gov/nissc/1999/proceeding/papers/p12.pdf, ac-

cessed 22 July 2002.

[8] Marko Helenius, A System to Support the Analysis of Antivirus Products’
Virus Detection Capabilities, PhD thesis, University of Tampere, Finland,
2002.
http://acta.uta.fi/pdf/951-44-5394-8.pdf, accessed 22 July 2002.

[9] Morton Swimmer, Malware.
http://www.swimmer.org/morton/malware.html, accessed 18 July 2002.

118 REFERENCES

[10] Ian Whalley, Bill Arnold, David Chess, John Morar, Alla Segal, and Morton
Swimmer, An Environment for Controlled Worm Replication and Analysis
or: Internet-inna-Box, September 2000.
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.

htm, accessed 18 July 2002.

[11] Ian Whalley, Testing Times for Trojans, October 1999.
http://www.research.ibm.com/antivirus/SciPapers/Whalley/

inwVB99.html, accessed 18 July 2002.

[12] Daniel L Lough, A Taxonomy of Computer Attacks with Applications to
Wireless Networks, PhD thesis, Virgina Polytechnic Institute and State
University, April 2001.
http://scholar.lib.vt.edu/theses/available/

etd-04252001-234145/unrestricted/lough.dissertation.pdf,

accessed 13 June 2002.

[13] John D Howard, An Analysis of Security Incidents on the Internet 1989-
1995, PhD thesis, Carnegie Mellon University, Pittsburg, April 1997.
http://www.cert.org/research/JHThesis/Word6/, accessed 12 June 2002.

[14] Ulf Lindqvist and Erland Jonsson, ‘How to Systematically Classify Com-
puter Security Intrusions’, in Proceedings of the 1997 IEEE Symposium on
Security & Privacy, Oakland, CA, 1997, pp. 154–163, IEEE Computer So-
ciety Press.
http://www.ce.chalmers.se/staff/ulfl/pubs/sp97ul.pdf, accessed 12

June 2002.

[15] Ivan V Krsul, Software Vulnerability Analysis, PhD thesis, Purdue Univer-
sity, May 1998.
http://www.acis.ufl.edu/~ivan/articles/main.pdf, accessed 13 June

2002.

[16] Robert J. Bagnall and Geoffrey French, The Malware Rating System
(MRS)TM , 2001.
http://www.dodccrp.org/6thICCRTS/Cd/Tracks/Papers/Track7/

105_tr7.pdf, accessed 22 July 2002.

[17] Reto Haeni, What is Information Warfare, August 1996.
http://tangle.seas.gwu.edu/~reto/infowar/what.htm, accessed 27

June 2001.

REFERENCES 119

[18] Winn Schwartau, Information Warfare – Cyberterrorism: Protecting Your
Personal Security in the Electronic Age, Thunder’s Mouth Press, New York,
NY, 2 edition, 1996, ISBN 1-56025-132-8.

[19] Ivan Goldberg, January 2001.
http://www.psycom.net/iwar.1.html, accessed 26 June 2002.

[20] CERT (Computer Emergency Response Team), CERT Advisory CA-1995-06
Security Administrator Tool for Analyzing Networks (SATAN), April 1995.
http://www.cert.org/advisories/CA-1995-06.html, accessed 12 June

2002.

[21] Sarah Gordon, Devil’s Advocate, 1995.
http://www.commandsoftware.com/virus/satan.html, accessed 23 July

2002.

[22] CIAC (Computer Incidents Advisory Center), Information Bulletin F-20:
Security Administrator Tool for Analyzing Networks (SATAN), April 1995.
http://www.ciac.org/ciac/bulletins/f-20.shtml, accessed 12 June

2002.

[23] Dieter Gollmann, Computer Security, John Wiley & Sons, 1999, ISBN
0-471-97844-2.

[24] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi, ‘A
Taxonomy of Computer Security Flaws’, ACM Computing Surveys, vol. 26,
no. 3, September 1994.
http://chacs.nrl.navy.mil/publications/CHACS/1994/

1994landwehr-acmcs.pdf, accessed 12 June 2002.

A note taken from the text published on the web: ‘As revised for publication in ACM

Computing Surveys 26, 3 (Sept., 1994). This version, prepared for electronic distribution,

reflects final revisions by the authors but does not incorporate Computing Surveys´ copy

editing. It therefore resembles, but differs in minor details, from the published version.

The figures, which have been redrawn for electronic distribution are slightly less precise,

pagination differs, and Table 1 has been adjusted to reflect this’.

[25] CVE,
http://cve.mitre.org/about/terminology.html, accessed 4 July 2002.

[26] CVE,
http://cve.mitre.org/about/index.html, accessed 24 June 2002.

[27] MITRE, The Early Years.
http://www.mitre.org/about/history.shtml, accessed 12 June 2002.

120 REFERENCES

[28] David Icove, Karl Seger, and William VonStorch, Computer Crime: A
Crimefighter’s Handbook, O´Reilley & Associates Inc, Sebastopol, CA,
1995.

[29] Anonymous, Maximum Security – A Hacker’s Guide to Protecting Your
Internet Site and Network, Sams Publishing, 2 edition, 1998, ISBN 0-672-
31341-3.

[30] William Stallings, Cryptography and Network Security, Principles and
Practice, Prentice Hall, 2 edition, 1999, ISBN 0-13-869017-0.

[31] CVE,
http://cve.mitre.org/docs/docs2000/naming_process.html, accessed

12 June 2002.

[32] ICAT,
http://icat.nist.gov/icat.cfm, accessed 12 June 2002.

[33] ICAT,
http://icat.nist.gov/icat_documentation.htm, accessed 27 September

2002.

[34] David Dittrich, The "stacheldraht" distributed denial of service attack tool,
December 1999.
http://staff.washington.edu/dittrich/misc/stacheldraht.

analysis, accessed 24 July 2002.

[35] David Dittrich, The DoS Project’s "trinoo" distributed denial of service at-
tack tool, October 1999.
http://staff.washington.edu/dittrich/misc/trinoo.analysis, ac-

cessed 24 July 2002.

[36] eEye Digital Security, .ida ”Code Red” Worm, July 2001.
http://www.eeye.com/html/Research/Advisories/AL20010717.html,

accessed 13 September 2002.

[37] Eric Chien, CodeRed Worm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/data/

codered.worm.html, accessed 18 July 2002.

[38] Trend Micro, CODERED.A, July 2001.
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?

VName=CODERED.A&VSect=T, accessed 24 July 2002.

FOI-R–0840–SE

Appendix B

Categorised Software Weapons

121

FOI-R–0840–SE

122

Categorised Software Weapons

Martin Karresand

1st April 2003

124 LIST OF TABLES

Contents

1 Introduction 125

2 The categorised weapons 125
2.1 mstream . 125
2.2 Stacheldraht . 126
2.3 TFN . 127
2.4 TFN2K . 128
2.5 Trinoo . 129
2.6 CodeRed . 130
2.7 Code Red II . 131
2.8 Nimda . 132
2.9 Sircam . 133

List of Tables
1 The one-dimensional categorisation of mstream 135
2 The one-dimensional categorisation of Stacheldraht 136
3 The one-dimensional categorisation of TFN 137
4 The one-dimensional categorisation of TFN2K 138
5 The one-dimensional categorisation of Trinoo 139
6 The one-dimensional categorisation of CodeRed 140
7 The one-dimensional categorisation of CodeRed II 141
8 The one-dimensional categorisation of Nimda 142
9 The one-dimensional categorisation of Sircam 143

125

1 Introduction
In this appendix nine well known software weapons are categorised with the help
of the TEBIT taxonomy and presented in separate sections. The chosen weapons
are five distributed denial of service (DDoS) weapons and four worms1.

First in each section the categorisation is shown using the two-dimensional
view of the taxonomy. Some short comments are added to the categorisations
where needed. The sources of the technical descriptions used for the categorisa-
tions are stated in the introduction to each weapon.

There is also a table showing the one-dimensional view of the taxonomy,
which represents the basic data used in the calculation of the standard deviation
in Section 5.4 in the main report. Each combination of category and alternative is
presented as a 1 bit binary variable si, i = 1, 2, . . . , 34. A complete categorisation
forms a column vector.

2 The categorised weapons
The nine categorised weapons are presented in separate sections. Both a two-
dimensional presentation, which is easier to read, and a one-dimensional view of
each weapon is given in each section. The two views of a weapon shows the same
categorisation, the only thing differing is the way the data is presented.

2.1 mstream
The classification of the DDoS weapon mstream was made with the help of [1].
The weapon is the most primitive of the DDoS weapons categorised here, because
the analysed code was in an early stage of development. Most likely the creator
will continue developing the weapon, to get it more potent. However, already in
this beta stage the weapon is far from harmless.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

1The term is defined in the old way; self-standing, replicating.

126 2 THE CATEGORISED WEAPONS

Functional area: remote

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The tool uses TCP ACK packets with forged,
randomly generated source addresses.

Signature when passive: visible

Signature when active: visible

The one-dimensional categorisation is presented in Table 1.

2.2 Stacheldraht
The classification of the DDoS weapon Stacheldraht was made with the help of
[2, 3]. The weapon is based on the source code of TFN (see Section 2.3) and has
features similar to Trinoo’s (see Section 2.5). It also uses encrypted communica-
tion between the attacker and the master program, as well as automated update of
the daemons.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary. The agents used to get the distributed character-
istic of the weapon are installed permanently in the computers they reside
on. To get them in place other tools are used [2], so the placing of the agents
is to be considered as a separate attack not done with Stacheldraht.

The actual denial of service attack affects the attacked system until the at-
tacker decides to quit.

Targeting: manual

Attack: conditional

2.3 TFN 127

Functional area: remote. As stated above, the placement of the agents is not
considered an attack performed by Stacheldraht.

Affected data: network based

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The weapon can use ICMP flood, SYN flood,
UDP flood, and Smurf style attacks, which are separate types of attacks.

Signature when passive: visible

Signature when active: visible, stealth The stealth is used in the communication
between the different parts of the weapon (client, handler, and agent). This
is done through using ICMP_ECHOREPLY packets and encrypted TCP [2].

The one-dimensional categorisation is presented in Table 2.

2.3 TFN
The classification of the DDoS weapon Tribe Flood Network (TFN) was made
with the help of [4]. This DDoS weapon uses ICMP packets for the communica-
tion between the different parts and thus is hard to detect (at least from looking at
the packet flow). It was found when an installation of a Trinoo (see Section 2.5)
network was stumbled upon.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

128 2 THE CATEGORISED WEAPONS

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The tool can use UDP flood, ICMP flood,
SYN flood, or Smurf style attacks, but which of the types to use is set by
the user.

Signature when passive: visible

Signature when active: visible, stealth The tool uses ICMP_ECHOREPLY to provide
stealth for the communication between the client and the daemon. It also
sets the sequence number in the header of all packets to 0x0000 to imitate
ping replies [4].

The one-dimensional categorisation is presented in Table 3.

2.4 TFN2K
The classification of the DDoS weapon Tribe Flood Network 2000 (TFN2K) was
made with the help of [5]. By randomly chosing from three different methods of
communication and from four different attack patterns, plus having the ability to
spoof the source addresses, this weapon is making itself hard to find countermeas-
ures for. By the way, it also encrypts the communication.

The categorisation of the weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

2.5 Trinoo 129

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: polymorphic The weapon has the ability to randomly vary
the attack patterns between UDP flood, ICMP flood, SYN flood, or Smurf
style attacks on its own.

Signature when passive: visible

Signature when active: visible, stealth The stealth is achieved by:

• encrypting the inter-tool communication

• inserting a random number of decoy packets in the communication
flow

• randomly vary the type of packets used for the communication

• randomised packet headers

• completely silent daemons, they do not acknowledge the received com-
mands

• having the daemons spawn a new child for each attack and tries to

• falsifying the child processes names on some platforms

• spoofing all packets between clients and daemons.

The one-dimensional categorisation is presented in Table 4.

2.5 Trinoo
The classification of the DDoS weapon Trinoo was made with the help of [3]. The
Trinoo DDoS weapon was found together with the TFN (see Section 2.3) weapon
when an intrusion of a system was investigated.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

130 2 THE CATEGORISED WEAPONS

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The tool uses a UDP flood attack.

Signature when passive: visible

Signature when active: visible

The one-dimensional categorisation is presented in Table 5.

2.6 CodeRed
The classification of the worm CodeRed was made with the help of [6, 7, 8].
This is a famous worm, which pestered the users of the Internet in July 2001. It
attacks servers running the Internet Information Services (IIS) and defaces them.
At certain occasions the worm also makes a DoS attack on a specific IP address
(the old IP address of the White House, Washington D.C.).

The categorisation of the worm looks like this:

Type: combined

Violates: integrity;non-parasitic, availability

Duration of effect: temporary. The documentation states that nothing is written
to disk [6]. However, the weapon is also said to look for a file named ‘NOT-
WORM’ in the root of C. How that file ends up there is not mentioned.

Regarding the defacing of the server it is done in memory by hooking and
redirecting incoming request to the worm code during 10 hours [8], i.e. a
temporary effect. The DoS attack is also limited in extent and therefore a
temporary effect.

2.7 Code Red II 131

Targeting: autonomous

Attack: conditional

Functional area: local, remote. The weapon (in version 1) defaces the server
it has infected and also performs a DoS attack on a specific IP address.
Therefore it is both local and remote.

Affected data: host based, network based. See the previous category.

Used vulnerability: CVE-2001-0500 (idq.dll),
CVE-2001-0506 (SSI)

Topology of source: single

Target of attack: single, multiple. The weapon executes a DoS attack on a single
IP address. It is also divided into several (99 + 1) threads, which all con-
currently tries to infect (attack) randomly chosen IP addresses. This makes
it both a single and multiple target attacking weapon.

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic There are both a DoS attack and an infection
mechanism, but each type of those two attacks are always executed in the
same way.

Signature when passive: visible. The weapon is put to sleep when certain con-
ditions are met. This cannot be regarded as using any stealth technique.

Signature when active: visible

The one-dimensional categorisation is presented in Table 6.

2.7 Code Red II
The classification of the worm Code Red II was made with the help of [9, 10,
11]. CodeRed II utilises the same vulnerability in IIS servers as CodeRed (see
Section 2.6), but the payload is different. This time a backdoor is installed on the
attacked systems.

The categorisation of the worm looks like this:

Type: combined

Violates: confidentiality

132 2 THE CATEGORISED WEAPONS

Duration of effect: temporary, permanent The mechanism used to infect new
victims is active for 24–48 hours. The installed backdoor is permanent.

Targeting: autonomous

Attack: immediate

Functional area: local

Affected data: stationary

Used vulnerability: CVE-2001-0500 (idq.dll), CVE-2001-0506 (SSI)

Topology of source: single

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic

Signature when passive: visible

Signature when active: visible

The one-dimensional categorisation is presented in Table 7.

2.8 Nimda
The classification of the worm Nimda was made with the help of [12, 13, 14]. This
software weapon is really more than a worm. It spreads in four different ways;
infection of files, via e-mail, via pages offered by IIS servers, and between shared
partitions in local networks.

The categorisation of the software weapon looks like this:

Type: combined

Violates: confidentiality, integrity;parasitic, integrity;non-parasitic The weapon
both attaches a file to itself to spread (integrity;parasitic), and changes web
pages on infected IIS servers (integrity;non-parasitic).

Duration of effect: permanent

Targeting: autonomous The weapon uses randomly generated IP addresses as
targets.

2.9 Sircam 133

Attack: immediate, conditional The mass-mailing function is activated every 10th
day, which makes it conditional. The other used types of attack are imme-
diate.

Functional area: local, remote The remote part consists of attacks on file servers
on the local network and computers running IIS on the Internet.

Affected data: stationary

Used vulnerability: CVE-2000-0884, CVE-2001-0154

Topology of source: single

Target of attack: single The mass mailing function is not to be regarded as an at-
tack on multiple targets. Each mail contains a separate copy of the weapon.

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic

Signature when passive: stealth

Signature when active: stealth

The one-dimensional categorisation is presented in Table 8.

2.9 Sircam
The classification of the worm Sircam was made with the help of [15, 16, 17].
This is a trojan horse and a worm in the same packet. It has the ability to spread
through Microsoft Windows network shares, as well as e-mail itself piggy-backing
on a random document from the ‘My Documents’ folder in the infected computer.

The categorisation of the software weapon looks like this:

Type: combined

Violates: confidentiality, integrity;parasitic, integrity;non-parasitic, availability
The weapon fills the remaining space on C: if a certain condition is met.
It also merges itself with a randomly chosen file on the infected system
and sends this resulting file on to infect new victims. Another used way of
infecting new hosts is via network shares and in that case it copies itself to
the share without any other file, thus it is both parasitic and non-parasitic.

Duration of effect: permanent

134 2 THE CATEGORISED WEAPONS

Targeting: autonomous

Attack: immediate, conditional The e-mailing part of the attack is of the imme-
diate type.

Functional area: local, remote Apart from infecting files locally, the weapon
also tries to infect all shares connected to the attacked computer, i.e. a
remote functional area.

Affected data: stationary

Used vulnerability: none

Topology of source: single

Target of attack: single

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic

Signature when passive: stealth

Signature when active: stealth

The one-dimensional categorisation is presented in Table 9.

2.9 Sircam 135

Table 1: The one-dimensional categorisation of mstream

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

136 2 THE CATEGORISED WEAPONS

Table 2: The one-dimensional categorisation of Stacheldraht

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 0
Attack conditional 1
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 1

2.9 Sircam 137

Table 3: The one-dimensional categorisation of TFN

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 1

138 2 THE CATEGORISED WEAPONS

Table 4: The one-dimensional categorisation of TFN2K

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 0
Sign. of attack polymorphic 1
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 1

2.9 Sircam 139

Table 5: The one-dimensional categorisation of Trinoo

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

140 2 THE CATEGORISED WEAPONS

Table 6: The one-dimensional categorisation of CodeRed

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 1
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 0
Targeting autonomous 1
Attack immediate 0
Attack conditional 1
Funct. area local 1
Funct. area remote 1
Affected data stationary 1
Affected data in transfer 1
Used vuln. CVE/CAN 1
Used vuln. other vuln. 0
Used vuln. none 0
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 1
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

2.9 Sircam 141

Table 7: The one-dimensional categorisation of CodeRed II

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 1
Violates integrity;parasitic 1
Violates integrity;non-parasitic 0
Violates availability 0
Dur. of effect temporary 1
Dur. of effect permanent 1
Targeting manual 0
Targeting autonomous 1
Attack immediate 1
Attack conditional 0
Funct. area local 1
Funct. area remote 0
Affected data stationary 1
Affected data in transfer 0
Used vuln. CVE/CAN 1
Used vuln. other vuln. 0
Used vuln. none 0
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

142 2 THE CATEGORISED WEAPONS

Table 8: The one-dimensional categorisation of Nimda

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 1
Violates integrity;parasitic 1
Violates integrity;non-parasitic 1
Violates availability 0
Dur. of effect temporary 0
Dur. of effect permanent 1
Targeting manual 0
Targeting autonomous 1
Attack immediate 1
Attack conditional 1
Funct. area local 1
Funct. area remote 1
Affected data stationary 1
Affected data in transfer 0
Used vuln. CVE/CAN 1
Used vuln. other vuln. 0
Used vuln. none 0
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 1
Target of attack multiple 0
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 0
Sign. when passive stealth 1
Sign. when active visible 0
Sign. when active stealth 1

2.9 Sircam 143

Table 9: The one-dimensional categorisation of Sircam

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 1
Violates integrity;parasitic 1
Violates integrity;non-parasitic 1
Violates availability 1
Dur. of effect temporary 0
Dur. of effect permanent 1
Targeting manual 0
Targeting autonomous 1
Attack immediate 1
Attack conditional 1
Funct. area local 1
Funct. area remote 1
Affected data stationary 1
Affected data in transfer 0
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 1
Target of attack multiple 0
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 0
Sign. when passive stealth 1
Sign. when active visible 0
Sign. when active stealth 1

144 REFERENCES

References
[1] David Dittrich, George Weaver, Sven Dietrich, and Neil Long, The

”mstream” distributed denial of service attack tool, May 2000.
http://staff.washington.edu/dittrich/misc/mstream.
analysis.txt, accessed 16 November 2002.

[2] David Dittrich, The ”stacheldraht” distributed denial of service attack tool,
December 1999.
http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis, accessed 24 July 2002.

[3] David Dittrich, The DoS Project’s ”trinoo” distributed denial of service
attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/trinoo.
analysis.txt, accessed 24 July 2002.

[4] David Dittrich, The ”Tribe Flood Network” distributed denial of service
attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/tfn.
analysis.txt, accessed 16 November 2002.

[5] Jason Barlow and Woody Thrower, TFN2K – An Analysis, March 2000.
http://packetstormsecurity.nl/distributed/TFN2k_
Analysis-1.3.txt, accessed 17 November 2002.

[6] Eric Chien, CodeRed Worm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/
venc/data/codered.worm.html, accessed 24 July 2002.

[7] Trend Micro, CODERED.A, July 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.A&VSect=T, accessed 24
July 2002.

[8] eEye Digital Security, .ida ”Code Red” Worm, July 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010717.html, accessed 13 September 2002.

[9] Eric Chien and Peter Szor, CodeRed II, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/
venc/data/codered.ii.html, accessed 18 October 2002.

REFERENCES 145

[10] Trend Micro, CODERED.C, August 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.C&VSect=T, accessed 18
October 2002.

[11] eEye Digital Security, CodeRedII Worm Analysis, August 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010804.html, accessed 18 October 2002.

[12] Eric Chien, W32.Nimda.A@mm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/
venc/data/w32.nimda.a@mm.html#technicaldetails,
accessed 21 October 2002.

[13] Trend Micro, PE_NIMDA.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?Vname=PE_NIMDA.A&VSect=T, accessed 21
October 2002.

[14] K Tocheva, G Erdelyi, A Podrezov, S Rautiainen, and M Hypponen, Nimda,
F-Secure, September 2001.
http://www.europe.f-secure.com/v-descs/nimda.shtml,
accessed 21 October 2002.

[15] Peter Ferrie and Peter Szor, W32.Sircam.Worm@mm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/
venc/data/w32.sircam.worm@mm.html#technicaldetails,
accessed 23 October 2002.

[16] Gergely Erdelyi and Alexey Podrezov, Sircam, F-Secure, July 2001.
http://www.europe.f-secure.com/v-descs/sircam.
shtml, accessed 23 October 2002.

[17] Trend Micro, WORM_SIRCAM.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=WORM_SIRCAM.A&VSect=T, accessed
23 October 2002.

146 REFERENCES

FOI-R–0840–SE

Appendix C

Redefined Terms

147

FOI-R–0840–SE

148

Redefined Terms

Martin Karresand

1st April 2003

150 2 REDEFINED TERMS

1 Introduction
The definitions of the three terms trojan horse, virus, and worm presented in this
appendix are really only proposals. They have been made using the main charac-
teristics of the terms, extracted from some of the more widespread definitions used
today. However, to be usable the defintions of the terms need to be unanimously
agreed upon by the whole research community.

2 Redefined terms
Each definition is presented as a table in a separate section, where also a short
explanation of the underlying ideas are included.

The requirement to use at least one alternative from each category is still valid
regarding the software weapons belonging to a class, but it is dropped when using
a wildcard in a categorisation of a definition. Setting a combination of a category
and alternative to 0 is not the same as using an alternative in that category.

2.1 Trojan horse
A trojan horse is often defined as a program performing destructive, or at least
not by the user authorised functions, when at the same time posing as a legitimate
program.

Another definition with the same meaning as the one above can be formulated
as the weapon needing a user to start the execution by tricking him or her into it.
This way of defining the term is the preferred one and hence the definition shown
in Table 1. As can be seen the old definition really still fits the new one.

2.2 Virus
A virus is a program which replicates and also is parasitic. Often it is regarded as
only attacking the host computer, the computer it is residing on, but this definition
is far from being generally accepted.

The new proposed definition, which can be seen in Table 2, is meant to be
rather general. There are several categories which are marked with wildcard that
might be used to narrow the definition a bit. For example the targeting of a virus
might be set to 1, because they tend to spread uncontrollably. It is also possible to
set the Functional area; local to 1, because of the virus being regarded as always
replicating on its own host. To separate the viruses from trojan horses the Used
vulnerability; none might be set to 0. Mostly a virus have a single source topology,
at least a simple virus, and consequently that alternative might be set to 1.

2.3 Worm 151

2.3 Worm
The worms are often regarded as forming a sub-class of viruses, but not always.
Both a virus and a worm are defined as replicating. The things setting them apart
are that worms are defined as being self-standing (not being parasitic) and often
also as replicating over network connections.

The new, proposed definition is shown in Table 3 and as for the new definition
of virus it is rather general and hence might also be narrowed down a bit.

First of all, the Affects; integrity;non-parasitic alternative may really be needed,
because the worm installs itself on the system and thus affects the integrity of the
system, although not in a parasitic way. It might also be necessary to separate
a worm from a trojan horse, and therefore the Used vulnerability; none may be
set to 0. Also the targeting is mostly autonomous, but not necessarily. Because
a worm by some is regarded to only replicate over network connections, the al-
ternative Functional area; remote might be set to 1 and Functional area; local to
0.

152 2 REDEFINED TERMS

Table 1: The redefined term Trojan horse

Category Alternative 0/1/wildcard

Type atomic wildcard
Type combined wildcard
Violates confidentiality wildcard
Violates integrity;parasitic wildcard
Violates integrity;non-parasitic wildcard
Violates availability wildcard
Dur. of effect temporary wildcard
Dur. of effect permanent wildcard
Targeting manual wildcard
Targeting autonomous wildcard
Attack immediate wildcard
Attack conditional wildcard
Funct. area local wildcard
Funct. area remote wildcard
Affected data stationary wildcard
Affected data in transfer wildcard
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single wildcard
Topol. of source distributed wildcard
Target of attack single wildcard
Target of attack multiple wildcard
Platform depend. dependent wildcard
Platform depend. independent wildcard
Sign. of repl. code monomorphic wildcard
Sign. of repl. code polymorphic wildcard
Sign. of repl. code not replicating wildcard
Sign. of attack monomorphic wildcard
Sign. of attack polymorphic wildcard
Sign. when passive visible wildcard
Sign. when passive stealth wildcard
Sign. when active visible wildcard
Sign. when active stealth wildcard

2.3 Worm 153

Table 2: The redefined term virus

Category Alternative 0/1/wildcard

Type atomic wildcard
Type combined wildcard
Violates confidentiality wildcard
Violates integrity;parasitic 1
Violates integrity;non-parasitic wildcard
Violates availability wildcard
Dur. of effect temporary wildcard
Dur. of effect permanent wildcard
Targeting manual wildcard
Targeting autonomous wildcard
Attack immediate wildcard
Attack conditional wildcard
Funct. area local wildcard
Funct. area remote wildcard
Affected data stationary wildcard
Affected data in transfer wildcard
Used vuln. CVE/CAN wildcard
Used vuln. other vuln. wildcard
Used vuln. none wildcard
Topol. of source single wildcard
Topol. of source distributed wildcard
Target of attack single wildcard
Target of attack multiple wildcard
Platform depend. dependent wildcard
Platform depend. independent wildcard
Sign. of repl. code monomorphic wildcard
Sign. of repl. code polymorphic wildcard
Sign. of repl. code not replicating 0
Sign. of attack monomorphic wildcard
Sign. of attack polymorphic wildcard
Sign. when passive visible wildcard
Sign. when passive stealth wildcard
Sign. when active visible wildcard
Sign. when active stealth wildcard

154 2 REDEFINED TERMS

Table 3: The redefined term worm

Category Alternative 0/1/wildcard

Type atomic wildcard
Type combined wildcard
Violates confidentiality wildcard
Violates integrity;parasitic 0
Violates integrity;non-parasitic wildcard
Violates availability wildcard
Dur. of effect temporary wildcard
Dur. of effect permanent wildcard
Targeting manual wildcard
Targeting autonomous wildcard
Attack immediate wildcard
Attack conditional wildcard
Funct. area local wildcard
Funct. area remote wildcard
Affected data stationary wildcard
Affected data in transfer wildcard
Used vuln. CVE/CAN wildcard
Used vuln. other vuln. wildcard
Used vuln. none wildcard
Topol. of source single wildcard
Topol. of source distributed wildcard
Target of attack single wildcard
Target of attack multiple wildcard
Platform depend. dependent wildcard
Platform depend. independent wildcard
Sign. of repl. code monomorphic wildcard
Sign. of repl. code polymorphic wildcard
Sign. of repl. code not replicating 0
Sign. of attack monomorphic wildcard
Sign. of attack polymorphic wildcard
Sign. when passive visible wildcard
Sign. when passive stealth wildcard
Sign. when active visible wildcard
Sign. when active stealth wildcard

	Blanksida.pdf
	

