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Abstract

Optimal control theory is applied to optimize the shape of an airfoil with respect
to the energy of disturbances in the boundary layer for the purpose of delaying
laminar-turbulent transition. The inviscid flow is obtained by solving the Euler
equations for compressible flows, and the viscous mean flow is obtained from the
solution of the boundary layer equations for compressible flows on infinite swept
wings. The evolution of convectively unstable disturbances is analyzed using the
linear parabolized stability equations (PSE). The results show a reduction of the
total amplification of a large number of disturbances, which is assumed to rep-
resent a delay of the transition in the boundary layer. As delay of the transition
implies reduction of the viscous drag, the shape optimization problem formulated
here is a new approach of shape optimization to perform viscous drag reduction.
The method does not intend to damp effects of the turbulence but relies on a mod-
elling of the propagation of the disturbances in the laminar part of the boundary
layer. Similar results are also obtained when simultaneously reducing the pressure
drag and the disturbance kinetic energy while maintaining lift and pitch-moment
coefficients near their values at initial design.
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1

Introduction

In the aeronautics industry, reducing the viscous drag on a wing while maintaining
operational properties such as lift is of great interest, and the research in this
area regarding active flow control is vast, see Joslin [23] for a thorough review
on the topic of Laminar Flow Control (LFC). It is known that the viscous drag
increases dramatically as the boundary layer flow changes from a laminar to a
turbulent state. Therefore, an increase of the laminar portion of the wing, that is,
a shift downstream of the point of laminar-turbulent transition, may decrease the
viscous drag. Design of a geometry such that the laminar portion is increased or
maximized is commonly denoted Natural Laminar Flow (NLF) design, which is a
simpler and more robust technique than the ones devised in the area of active flow
control. Once a feasible geometry is found, no additional devices such as suction
systems, sensors, or actuators need to be mounted.

Transition in the boundary layer on aircraft wings is usually caused by break-
down of small disturbances that grow as they propagate downstream. The growth
of these disturbances can be analyzed using linear stability theory, in which it is
assumed that disturbances with infinitesimal amplitude are superimposed on the
laminar mean flow. The growth rate can then be used to predict the transition loca-
tion using the so called ¢V method, see van Ingen [43], Smith & Gamberoni [40]
and Arnal [4]. In this method it is assumed that transition will occur at the lo-
cation where the total amplification of the disturbance, with respect to the first
streamwise position where the disturbance starts to grow, attains an empirically
determined value, whose logarithm is generally denoted by V.

A distinctive feature of any flow design process is its computational cost. De-
spite that the complete flow field in principle can be obtained by solving the com-
plete Navier-Stokes equations numerically, the computation is often very costly,
or even totally out of reach for any existing computer when transitional and turbu-
lent flow in complex geometries are involved. It is therefore common practice to
introduce approximations. An approach, appropriate for flow over slender bodies,
is to divide the flow into an inviscid outer flow field, and a viscous part describing
the boundary layer at the surface. In this way, the growth rate of a disturbance
superimposed on the boundary layer of a given geometry can be calculated as
follows:

1. The solution of the equations describing the inviscid flow provides a pres-
sure distribution on the surface of a given geometry.

2. The viscous mean flow is obtained by solving the boundary layer equations
given the pressure distribution, and the geometry.

3. The linear stability equations are solved for a given mean flow and geome-
try, providing the growth rate.

Using this approach, three state equation systems must be solved (inviscid, bound-
ary layer, linear stability), for any variation of the geometry in order to predict the
growth rate. However, if we consider the inviscid flow being the solution of the
Euler equations, such a computation might be completed in minutes.

Compared to the approach outlined above, there are other methods to perform
NLF design.

Based on the knowledge how the growth rates of convectively unstable dis-
turbances change due to variations of the pressure distribution, see for instance
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Schubauer & Skramstad [38], Malik [27] and Zurigat et al. [46], an existing pres-
sure distribution for a given wing can be altered manually followed by a linear
stability analysis. Other approaches exist, where approximative relations between
variations in the pressure distribution and /V-factors have been derived, see Green
& Whitesides [18]. Once a pressure distribution has been obtained that meets
a given criteria regarding transition delay, a geometry must be designed which
meets this “target” pressure distribution. Such an analysis involves an inverse de-
sign step, which was first studied by Lighthill [25] who solved it for the case of
incompressible two-dimensional flow. A review of different techniques to perform
inverse design can be found in Jameson [21].

In this presentation, we investigate an optimal-control approach of a shape
optimization problem that is formulated to perform NLF design. Optimal control
theory concerns optimization problems ’constrained’ by ordinary or partial differ-
ential equations (PDE’s). The inverse design problem, mentioned above, may be
attacked using an optimal-control approach: Given a flow model to compute the
pressure distribution p on a surface I, that is, a system of PDE’s with boundary
conditions on T, find the shape I" that minimizes a measure of the difference be-
tween the target pressure p' and p. A relevant measure, called objective function
in the context of optimization, is

T0.1) =5 [ Io@) = (@) Pde. ()

The target pressure could, for example, be such that it damps the growth of dis-
turbances as mentioned above. Let us denote

ApT)=0 )

the relation between the shape I, the system of PDE’s with boundary conditions
(on T"), and its solution p. The optimization problem is summarized as

min_ J (p,I") subjectto A(p,T') =0, (3)
rer
where F is a set of admissible shapes. The system of PDE’s, denoted .4, imposes
constraints between the pressure distribution and the subject of optimization, the
shape I'. The objective function J depends on the shape I" as well as on the
solution p of a PDE. Moreover, the pressure p is a function of T if it is the unique
solution of the system (2). We denote .J (I") the function defined by

J(T)=J(p[),I), 4)

where p (") is solution of the PDE (2). The optimization problem outlined by (3)
may then be reformulated in the nested form

pin J(T) . (%)
Gradient-based methods prove to be the most efficient for solving problems like (5),
assuming that J, expression (4), is continuous and differentiable. These methods
are explained in details in text books on optimization, for example Nocedal &
Wright [31]. Meanwhile, the computation of the gradient of an objective function
like .J is not trivial as .7, expression (1), depends explicitly on the design variable,
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here the shape I', as well as implicitly through the pressure, which is uniquely de-
fined by the shape through the state equation (2). This is often a major difficulty in
optimal-control problems. However, a practical method consists in approximating
each component of the gradient V.J by finite differences (each is a partial deriva-
tive). The cost is prohibitive for large scale problems, that is, for a large number of
design parameters, due to expensive solutions of the PDE’s (a 3D RANS solution
may take days of computation). The cure is the solution of an additional PDE,
called the adjoint problem, as it provides a means to calculate V.J at a cost that
is independent of the number of parameters. The use of adjoint equations in de-
sign optimization may be viewed as an off-spring of the theory of optimal control
for PDE developed by Lions [26] in the 60°s. Based on this approach, the optimal
shape of a body in viscous flow at very low Reynolds number, called Stokes flows,
could be derived by Pironneau [32] in 1973. In 1988, Jameson [21] formulated
the adjoints of the full potential flow equations and of the Euler equations in or-
der to solve inverse problems. Thereafter, research teams have developed adjoint
codes for industrial applications to improve the design of aircrafts in which CFD
codes are used for the flow computation (see Anderson & Bonhaus [3], Baysal &
Ghayour [6], Burgreen et al. [9], Elliot [14], Enoksson [15], Jameson et al. [22],
Mohammadi [30], Reuther et al. [37], Soemarwoto [41], Sung & Kwon [42] ).
The reader will find an introduction to the method of adjoints applied to aero-
dynamic design in Giles & Pierce [17]. In our approach of NLF design, three
systems of PDE’s are solved sequentially, in order to calculate the objective func-
tion J, which is a function of the disturbance kinetic energy. The present work
emphasizes the relation between the three adjoint problems that need to be solved
for the calculation of the gradient V.J.

Linear stability analysis has been used in the context of optimal NLF design
in a number of investigations. In Green & Whitesides [18], an iterative approach
uses a target pressure-N-factor relationship to compute the desired pressure distri-
bution, and an inverse method to find the geometry which satisfies the computed
pressure distribution. The INV-factors have also been used in multidisciplinary op-
timization problems of whole aircraft configurations, where aerodynamics is con-
sidered as one discipline. In Lee et al. [24], it was used to predict the onset of
transition in order to determine where to turn on a chosen turbulence model in
the Reynolds-Averaged-Navier-Stokes equations, enabling calculation of the fric-
tion drag. In Manning & Kroo [29], a surface panel method was coupled with
an approximative boundary layer calculation, and linear stability analysis. Note
however, that none of these investigations explicitly calculated the sensitivities
of a quantity obtained from the linear stability analysis such as the N-factor or
disturbance kinetic energy, with respect to the geometry.

In the approach taken here, we use an iterative gradient-based optimization
procedure (see Byrd et al. [10]) with the aim of minimizing an objective function
based on the disturbance kinetic energy by changing the shape of an airfoil. The
inviscid flow is obtained by solving the Euler equations for compressible flows,
and the viscous mean flow is obtained from the solution of the boundary layer
equations for compressible flows on infinite swept wings. The evolution of con-
vectively unstable disturbances is analyzed in the framework of nonlocal stability
theory, which means that the growth of the boundary layer is taken into account, as
opposed to the commonly used linear local stability theory. The design variables
control the displacements of the nodes that are situated on the airfoil by solving a
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minimization problem associated with the Poisson equation. Linear constraints on
the displacements are accounted for in this parameterization so that they are ful-
filled independently of the design variable. In this way we can fix the volume, or
cross section area, a limited region of the airfoil (around the leading edge) and the
position of the trailing edge. The resulting quadratic programming formulation
of the displacements is comparable to the formulation of the obstacle problems
in mechanics. This technique generates smooth shapes at each optimization step
without reducing the set of possible shapes, within the limit of the constraints and
the size of the discretization. A simple mesh movement algorithm is used to prop-
agate the nodal displacements from the airfoil to the rest of the computational
domain of the inviscid flow. The gradient of the objective function is obtained
from the solution of adjoint state equations, mesh sensitivities, and sensitivities of
the parameterization.

The current report is an introduction and gives the status of an ongoing project
on shape optimization for transition delay. Therefore a large effort is made to
present the state and adjoint equations involved, gradient evaluation, and validity
tests of the gradient computed using the solution of the adjoint equations. As this
work is a joint project between one regarding shape optimization using the Euler
equations, and another using the boundary layer and parabolized stability equa-
tions (PSE) for disturbance control, differences occur in the numerical schemes
and methods used to derive the adjoint equations. Issues related to the latter is also
discussed herein. Finally, some first results are presented of shape optimization
for transition delay.
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2 Theory

The aim of the current work is to perform gradient-based shape optimization in
order to delay transition, and thus decrease the viscous drag, possibly in conjunc-
tion with wave-drag minimization. The objective function to be minimized is a
measure of the disturbance growth. Its value is obtained by computing consec-
utively the inviscid flow for a given geometry, the viscous mean flow given the
pressure distribution from the inviscid solution, and finally the linear growth rate
for a given mean flow. In this section a concise description is given of the state
equations involved, objective function based on the disturbance growth, gradient
derivation, and resulting adjoint equations.

2.1 State equation for the inviscid flow

The system of Euler equations governs the flow of an inviscid compressible fluid
and expresses the conservation of mass, momentum and energy. In steady state,
the following integral form holds for any fixed region V' with boundary oV

/ f-ndS=0, (6)
ov
where 71 is the unit normal, outward oriented, of the control volume V, and f is
the 3-by-1 matrix of tensors

ou
f=|pu@u+lIp], (7)
u(E +p)

where E, the total energy per unit volume, is related to the pressure p, the density
p and the velocity w. In the framework of ideal fluids, assuming the law of perfect
gas applies, E is given by

__p 1
E_/Y_1+2pu. (8)
The impermeability condition
u-f =0 (9)

applies at the walls. The fluid state in conservative variables is denoted w and is
the 3-by-1 matrix

w=|m |, (10)

where m = pu. Primitive variables are also used at some parts of the implemen-
tation and are denoted v, the 3-by-1 matrix
P
v=| u (11)
p

In order to solve (6)—(9) for the flow around an airfoil, a finite sub-domain 2
is defined. Artificial boundary conditions are thus needed, and in the case of

11
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Figure 1. Dual grid (dashed
lines) for inviscid flow computa-
tion.

12

an airfoil, these are usually farfield conditions. We use the program Edge [13],
a node-centred and edge-based finite-volume solver for Euler and the Reynolds
Averaged Navier—Stokes equations (RANS). It is used here to solve equations
(6)—(9) plus boundary conditions at the farfield.

Given a discretization 7, of the domain €2, we will denote by V(2) the set of
all node indexes, V; the dual control volume at node i, and n;; the surface normal
vector associated with edge ¢j (see Figure 1). For an introduction to this type of

discretization, we refer to Barth [5]. The set of edges is denoted £(€2). The steady
state equations are solved by explicit time integration of the system

dw; ) —

V%d—vi YR, =0, Vie V@), (12)
until the residuals R; vanish within some tolerance. Convergence is accelerated
by local time stepping, multigrid, and implicit residual smoothing. The residuals
R, are

R, = Z (’I’Lij . fij -+ dij) Vi e V(Q) ,
JEN;

R, = (’I’Lij . fij + dij) +n,;- fibc Vi € V(OQ) .
JEN;

(13)

where A/; is the set of indexes of nodes that are connected to node 7 with an edge.
The residuals may be assembled by a single loop over all edges and all boundary
nodes (see Eliasson [13]). The fluxes f on a control surface associated with ny; is
approximated by f;; which in this study is

1 .
which gives a central scheme. An artificial dissipation flux d;;, a blend of second

and fourth-order differences of Jameson type is used,

dij = € (Wi —w)) + (€, V2w, — V?w;) (15)
with
kEN;

The second-order dissipation is active where pressure gradients are large to pre-
vent oscillations in the vicinity of shocks. The fourth-order dissipation is meant
to remove oscillating solutions from grid point to grid point while preserving the
second-order accuracy of the central scheme away from the shocks. The fluxes f
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at the boundary are computed using a weak formulation of the boundary condi-
tions, see Eliasson [13], here denoted f°. At node 7 on a wall, applying (9) for
computing f; - n; amounts to taking

£ = | Ip; | . 17

At node 7 on a farfield boundary the fluxes (7) are computed using either the
primitive farfield data v, for incoming characteristics, or an extrapolation of the
primitive variables v; for characteristics leaving the domain of computation:

£° = £ (v§ (7))
vé () = L (R, Voo ) H (X)) L1 (72, Vo) Vi (18)
+ L (7, Vo) (T = H (X)) L7 (725, Voo ) Vo

where L (71;, v ) is @ matrix of left eigenvectors that diagonalizes the Jacobian
matrix of the flux in primitive variables along the outward-directed unit normal
7, H ()\;) is a diagonal matrix whose diagonal is 0 for negative eigenvalues and
1 for positive ones, and I is the identity matrix.

2.2 State equations for the viscous flow

The flow field considered here is the boundary layer on a swept wing with infinite
span, which is obtained by solving the mass, momentum, and energy conserva-
tion equations for a viscous compressible fluid. The equations are written in an
orthogonal curvilinear coordinate system with streamwise, spanwise, and wall-
normal coordinates denoted as «!', 22 and 3 respectively. A length element is
defined as ds? = (hydz!)” + (hyda?)® + (hgdx®)® where h, are the scale factors.
The total flow field, ¢, is decomposed into a mean, ¢, and a perturbation part, g,
as

qtot(37173727$37t) = 6(1’171’3) + é(xl,xQ,xg,t)

where ¢ € [U,V,W,P,T,p] and § € [a,v,w,p,T,p]. Here U, V,W are the
streamwise, spanwise and wall-normal velocity components of the mean flow, re-
spectively, T is the temperature, p the density, and P the pressure. The lower
case variables correspond to the disturbance quantities. The equations are de-
rived for a quasi three-dimensional mean flow with zero variation in the span-
wise direction. The evolution of convectively unstable disturbances is analyzed
in the framework of the nonlocal stability theory. All flow and material quanti-
ties are made dimensionless with the corresponding reference flow quantities at
a fixed streamwise position x5, except the pressure, which is made dimension-
less with twice the corresponding dynamic pressure. Here, dimensional quan-
tities are indicated by the superscript x. The reference length scale is taken as
Iy = (ugxg/UO*)%. The Reynolds and Mach number are defined as Re = U /v
and M = Uy /(R~TE )% respectively where R is the specific gas constant, v the
kinematic viscosity and - the ratio of the specific heats. In the following sections
the scale factors h, = hs; = 1 are due to the infinite swept wing assumption.

13
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2.2.1 Mean-flow equations

The dimensionless boundary-layer equations describing the steady viscous com-
pressible mean flow on a swept wing with infinite span written on primitive vari-
able form are given as

1.9(pU) | O(pW)

; = 19
hy Ox! a3 0 (19)
pU OU oU  1dP. 1 & [ U
hy Oxz! pW8x3 by dat T Red® \MoiB ) (20)
pU oV ov 1 9 1%
P~ 2 — = —— (u— 21
hy Oxt T o Redz® \M'923 ) 1)
puor ot 1o (T
@ hy Ozt PP 955 T ReProzd \" o3
UM? dP. pM? [ (OUN? | (oV?
_ —1 & a9 22
(r=1) hy dxz! + 0= Re (83:3) * <8:c3> (22)

where the dynamic viscosity is given by ., specific heat at constant pressure g,
and heat conductivity by . Under the boundary layer assumptions, the pressure
is constant in the direction normal to the boundary layer, i. e. P = R(x'). The
equation of state can then be expressed as

yM?P, = pT,
and the streamwise derivative of the pressure is given as

dP, dU,

det ~ Peednt
Here variables with subscript e are evaluated at the boundary layer edge. For a
given pressure distribution given by the pressure coefficient

P* — PX,

505.Q%2

where Q% is the dimensional free stream velocity, and the sweep angle given by
1, the values at the boundary layer edge are given as

Cp =

~y—1 1
P 1 P Y P\~
_ e~ — e — e — 2 2
e T=(7) o= (3) wmvarETE
where
P 1 1-Tec
€ =14+ -CyM? Q=14+ —2T= " and V,=sin.
Poo + 2Cp7 ’ Qe + (’Y — 1)%M27 ‘/e SlIll/J

Here, we have used the assumptions that for an inviscid, steady, and adiabatic
flow the total enthalpy is constant along a streamline, and the isentropic relations
are used to obtain the relation between total and static quantities. A domain €
is defined for equations (19)-(22) such that 2! € [Xg, X,], 22 € [Z,, Z,] and
23 € [0,00). The no-slip condition is used for the velocity components and the
adiabatic wall condition for the temperature. In the free stream, the streamwise
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and spanwise velocity components, and the temperature takes the corresponding
values at the boundary layer edge

T
[U,V,W,%} (z',0) = [0,0,0,0] vrl € [Xg, X,
(23)
dim (U, V. T](«",2°) = [U,V,,T.](z") Va'e[Xg X,).

3 —+00

These non-linear equations are solved in an iterative way. From (20)—(22) we
obtain the solution of Q = (U, V,T) using the boundary condition above for a
given value of W. Equation (19) is then integrated in the wall normal direction to
obtain W. The solution is considered converged when the relative change in the
wall-normal derivative of the streamwise velocity component at the wall is below
a specified value. In the proceeding sections we consider Q = (U, V, W, T) to be
the solution of the boundary layer state. This is made to simplify the presentation.

2.2.2 Disturbance equations

The perturbations are assumed to be time- and spanwise periodic waves as
a(at 2 2% 1) = §(a',2°)0(z", 2%, 1), (24)

where )

€T
O(x!, 2% t) = exps (/ a(z')dx' + pa? — wt) :

XO
Here « is the complex streamwise wavenumber, 3 the real spanwise wavenumber,
and w the real disturbance angular frequency. Disturbances are superimposed on
the mean flow at a streamwise position denoted X,,. We assume a scale separation
Re~! between the weak variation in the z!-direction and the strong variation in the
x3-direction. Further, it is assumed that /92! ~ O(Re~!) and W ~ O(Re™1).
Introducing the ansatz given by equation (24) and the assumptions above in the
linearized governing equations, keeping terms up to order O(Re™!), yields a set
of nearly parabolic partial differential equations, see Bertolotti et al. [8], Malik &
Balakumar [28], Simen [39] and Herbert [20]. The system of equations, called
Parabolized Stability Equations (PSE), is lengthy and therefore written here as
0q 0%q

5% (o

1 09
q D——— =0 25
Agq + B + B 9! , (25)
AT
where q = {ﬁ,a,ﬁ,w,T} . The coefficients of the 5 x 5 matrices A, B,C and

D are found in Pralits et al. [34]. A domain €2, for equation (25) is defined such
that »! € [X,, X;], 2% € [Z,,Z,] and 2® € [0,00). The boundary conditions
corresponding to equation (25) are given as

[uva} (21,0) = [0,0,0,0] Va!e [X,,X,],

lim [uwT (z',2%) = [0,0,0,0]  Val e [X,, X,].

23— +00

To remove the ambiguity of having z!-dependence of both the amplitude and
wave function in the ansatz, and to maintain a slow streamwise variation of the

15
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amplitude function q, a so called "auxiliary condition’ is introduced

+o0 8(51
~H 3 _ )
/0 i dz® =0, (26)

where superscript H denotes the complex conjugate transpose. Equation (25) is
integrated in the downstream direction normal to the leading edge with an ini-
tial condition given by local stability theory. At each z!-position the streamwise
wavenumber « is iterated such that the condition given by equation (26) is satis-
fied. After a converged streamwise wavenumber has been obtained, the growth
rate based on the disturbance kinetic energy can be calculated from the relation

0
0 = —q; + @(ln\/ﬁ),

where
“+00
B= [ o (i + 0P + i) do®.
0

The growth rate can then be used to predict the transition location using the so
called ¢V-method, see van Ingen [43], Smith & Gamberoni [40] and Arnal [4].
The N-factor for a given disturbance based on its Kinetic energy is given as

X
NE:/ o dz!,
X

nl

where X, is the lower branch of the neutral curve. A complete description of
equation (25) is found in Pralits et al. [34], and the numerical schemes used here
are given in Hanifi et al. [19].

2.3 Objective function related to viscous drag

The objective here is to use shape optimization to reduce the viscous drag on a
wing. A reduction of the viscous drag can be seen as an increase of the laminar
portion of the wing, that is, to move the location of laminar-turbulent transition
further downstream. It is therefore important that the chosen objective function
can be related to the transition process. One choice is to measure the Kkinetic
energy of a certain disturbance at a downstream position, say X;. This can be
written as

7 (27)

1 Z1 +o0
E; = —/ / Q" Mq hy dz? da?
2)z Jo
0 xlzXf

where M = diag(0, 1, 1, 1,0) which means that the disturbance kinetic energy is
calculated from the disturbance velocity components. If the position X; is chosen
as the upper branch of the neutral curve, then the measure can be related to the
maximum value of the NV-factor of a given disturbance as

=In/=L (28)

where Ej, is the disturbance kinetic energy at the first neutral position. If in ad-
dition, the value of the N-factor of the measured disturbance is the one which
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first reaches the transition /N-factor, then the position can be related to the onset
of laminar-turbulent transition. It is however not clear, a priori, that minimizing
such a measure will damp the chosen or other disturbances in the whole unstable
region, especially if different types of disturbances are present, such as TS and
cross-flow waves. For Blasius flow, it has been shown that an objective function
based on a single TS wave is sufficient to successfully damp the growth of other
TS waves, see Pralits et al. [36] and Airiau et al. [1]. On a wing however, it is
common that both TS and cross-flow waves are present simultaneously. An alter-
native is therefore to measure the kinetic energy as the streamwise integral over
a defined domain. Using such an approach, several different disturbances can be
accounted for, with respective maximum growth rate at different positions. Here,
the size of K disturbances superimposed on the mean flow at an upstream position
X, is measured by their total kinetic energy as

Lo~ [Xme (5 ARSI 1.2 73
Ep = 52/ / / apMaqy hy dx” dz” dz®. (29)
k=17 Xms 2o 70

Here X, and X, are the first and last streamwise position between which the
disturbance Kinetic energy is integrated, and adds the possibility to evaluate F;,
in a streamwise domain within [X,, X,]. For a measure of a single disturbance,
expression (29) is denoted E,.

2.4 Derivation of the gradient

The objective function evaluated for a single disturbance J = F3, expression (29),
depends explicitly on g and on the (Euler) mesht, here defined by the vector of
nodal coordinates X, that is

J=J(q,X). (30)

The aim of our investigation is to minimize J, expression (30), where q is the
solution of the PSE (25)—(26). The latter is here given as

Al] (éia Q> X) = 0 ’ (31)

where (31) is defined for given X and Q. The mean flow Q is solution of the BLE
(19)-(22), here denoted
Ao (Q,w,X) =0, (32)

which is defined for a given X and w. Finally, the inviscid flow w is the solution
of the Euler equations (6)—(9), denoted

Ay (W, X)=0. (33)

In the presentation of the adjoint problems it will be convenient to introduce the
functions Jx, Jg and J,, defined in Table 1. These are just objective func-
tion (30) in which various intermediate quantities are regarded as independent
variables.

The mesh nodes X are calculated from the displacements y of the nodes on
the airfoil, by a mesh movement algorithm. This can be written X = X (y), and
is described in §3. The displacements are controlled by the parameters a, that is

1The nodes on the airfoil are common to the three discretized equations: Euler, BLE and PSE.

17
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Table 1. Functionals defined by
the objective function J and the
state equations (31)-(33).

18

Objective function: ‘?qx}gf — (élf X)
. . VQ X VX R
subject to (31): Q. X} — Jo(Q,X) =J(a(Q,X),X)
. . Vw X VX R
subject to (31)-(32): w.X} J.wX) =Jo(Q(w,X),X)
, V. R
subject to (31)-(33): < — L (X) = Jo, (w (X),X)

y =y (a), see §3. Given a function Jx of the variable X, for example defined as
in Table 1, it will also be convenient to define J, and .J,, as

Ix (X(y)),

7, (3 (a) 39

To summarize our approach, the aim is to minimize .J, subject to (31)-(33) with
respect to the design parameters a, using a gradient-based method. This requires
the computation of the gradient V.J, which is computed from V.Jx in §3. The
aim of this section is to show that ¥V Jx can be computed at an efficient cost using
an optimal control approach.

In the following it is assumed thatq € V;, Q € Vg, w € V,,, and X € V,
and that Vg, Vi, Vi, and Vx are vector spaces equipped with the inner products
(") gr (50 gr (5 )y @Nd (-, ) x, respectively. Furthermore, it is assumed that all
mappings are differentiable and, for example, 0.4,/0q denotes linearization with
respect to variable q of the mapping 4,, at the given state {q, Q, w,X}. The
notations (8Aq/8€1)_1, and (0.A4,/0q)", denote the inverse, and the adjoint of
the linearized mapping 0.4,/0q, respectively. Finally, the notation (0.4,/0q) dq
denotes the application of 0.4,/0q on 6q.

2.4.1 Sensitivity of the PSE

For arbitrary variations {6Q, X} € Vg x Vx, of {Q, X} in the PSE (31), the
first variation of the solution of the PSE is denoted dq € 1/, and is defined by the
sensitivity equations

9q

_0Ag5q A
502~ 50X (35)

0q =

Furthermore, for any variations {6q,0X} in V; x Vx we define the first variation
of the objective function J as

oJ . oJ
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In the remaining, &q is solution of the sensitivity equations (35), which yields a
new expression for (36)

T (dAN TN BA, DA, > <aJ >
5J—<%,<8(~1> (—%m—a—xax q+ ox 0X n 37)

and, for q solution of (31) and dq solution of (35) , the definition of Jg (Table 1)
yields

8.Jg =6J. (38)

The gradient of the functional Jg is V.Jg = {0Jg/0Q, 0Jg/0X} and is a vector
of the product space V;; x Vx such that for all {6Q, X} in 1V x Vx we have

8. aJ,
5Jg = <6—5,5Q>Q+<6—£,5X>X. (39)

Using the definition of the adjoint of the operator 0.4,/0q in expression (37) and
using (38), we obtain

AN 0T o4, 0A,
‘”Q‘<<<%> ) o5 0 X %)

oJ
—,0X
(),
which is in turn rewritten using the definition of the adjoint of 0.4,/0Q, and
0A,/0X, respectively, as

OAN" [ (0AN Y\ 8
(5 ((5%) ) 5),

(40)

N+ (41)
OAN" 0AG\ oJ oJ
<<8X> << 94 > ) 8«1’5X>X+ <8X’5X>X |
Therefore, by introducing the adjoint state g, solution of the system
OAN" . 0J
(%) « =5 “

we obtain that
0Jg _(0AN' o Ddg 0T (04g)"
Q <8Q>q and - TX < ox <ax . @

The cost for obtaining gradient of .J; is reduced to one solution of the system (42)
and two matrix—vector products as shown in (43).

2.4.2 Sensitivity of the BLE

For arbitrary variations {dw, X} € V;, x Vx, of {w, X} in the BLE (32), the
first variation of the solution of the BLE is denoted 6Q < Vg, and is defined by
the sensitivity equations

0AgQ 5Q = 0Ag 0AgQ

19
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Furthermore, from the definition (39) and the expression of the gradient (43), for
arbitrary variations {0Q, 6X} in Vi x Vx, the variation é.Jg is

ia=(-(ag) 99), (o~ (o) %), @

In the following, 6Q is solution of the sensitivity equation (44). The variation
dJg is expressed, making use of (45) and (44), as

) (OANT L (0AQ\ T 0Ag . DA
5JQ‘< (50) o (56) (~pow o
Q@  (46)
aJ OANT
“(ox - (%) aox)
and, for Q solution of (32) and 6Q solution of (44) , the definition of .J, (Table 1)
yields

0Jy = (5JQ . (47)

The gradient of J,, is the vector {9.J,, /0w, 0.J,, /JOX} in the product space V;, x
Vx such that for all {ow, X} inV,, x Vx we have

0Jy 0Jy

Using the adjoint of the inverse linearized BLE operator (éMQ/aQ)_l in (46),
0Jy (47) is expressed as

B 040\ N\ /04" . 94 040
‘”w—<‘ ((%) ) <a—<5> q’_a—w5w_a—X5X>
Q  (49)

aJ  [0ANT .
+<a—x‘(a—x> q’5X>X'

Using the adjoints of 0.4g/0w and 0.Ag/0X enables us to rewrite relation (49)
040\ [ (04 M (04T L
‘”“"<<8w> <<8Q> ) (5g) @

DA\ [ (040 "\ [0A\" . (50)
+<<6X> ((6@) ) <% GoX)

aJ  [BAN" .
+<a—x‘<a—x> Q75X>X'

It suggests, as previously, to define an adjoint state Q" as
OAQ\™ .. OAN"
) = =2 . 1
(%) @- (%) « Y
Setting Q™ in (50) and identifying the new expression with (48) we obtain
OJw  (0AQ\" L. 0Jy 0J OAN" . OAQ\" ..
8—w_<—8w> Q" and 8—X_a_x_<a—x> q +<—ax> Q- (%2

The use of adjoint equations limits cost for obtaining the gradient of .J, to solving
the systems (42) and (51), as well as four matrix—vector products: one to ’assem-
ble’ the right-hand side of the adjoint system (51) and three to obtain the final
expression (52).
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2.4.3 Sensitivity of the Euler equations

For arbitrary variations 6X € Vx, of X in the Euler equation (33), the first varia-
tion of solution of the Euler equation is denoted éw € V/,, and is defined by the
sensitivity equation

O Aw 0 A
Sadw = — X (53)

Furthermore, for arbitrary variations {éw, X} in Vj, x Vx the first variation of
the functional .J,, is expressed, from the gradient (52)

_ /(%4
o= () @ow).

0 (04 L (040Y"
+<6_X <6X>q+<aX>Q’5X>X

In the following, dw is the solution of the sensitivity equation (53), which enables
us to rewrite expression (54) as

/(04 04\ " OA,
5‘]’“’_<<a >Q’ <6w> 6—X(5X>
o (04N L (%)
+<8X <8X>q+<aX>Q’5X>X’

and, for w solution of (33) and éw solution of (53), the definition of .Jx (Table 1)
yields

(54)

(55)

5Jx = 6.1y . (56)

The gradient of Jx is the vector VJx in the space Vx such that for all 6X in Vx
we have
d0Jx = (VJx,0X) s . (57)

The adjoint of the linearized Euler operator is used in (55) to express §.Jx (56) as
dALN "\ [0Ag DAy
5‘]X_<<(aw> ) <8w> Q’_8X5X>
(o (%) o+ (58) @)
The adjoint instead of the linear operator 0.4,,/0X is used in (58) and leads to
/0T (0ANT . (0AQ\T As
= (gx - () o+ () @)
AN [ (04, ") [0AQ\" .
_<<6X> <(aw> ) <8w> Q’5X> ’
X
The method of adjoint is again applied as we define an adjoint state w*, here

solution of the system
OAL\" . 0AgQ
(Gar) w- (%2) o (60)

21

(58)
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which enables us to give expression for the gradient in expression (57)

WX—a—x‘<a—x> a +<a—x> Q _(a—x> v 6D
The total cost of this gradient evaluation is three adjoint systems (42), (51) and

(60), and five matrix—vector products: two for the assembly of the right-hand-
sides of the systems (51) and (60), and three for the final expression (61).

2.5 Adjoint equations

The concise description given in §2.4 gives an expression of the gradient V.
(61), which is a function of three adjoint states ¢, Q* and w*. These states
are the solutions of the adjoint of the parabolized stability equations (42), ad-
joint of the boundary layer equations (51) and adjoint of the Euler equations (60),
respectively. There are in principle two different approaches on how to derive
these adjoint equations. In the first, sometimes denoted the “discrete approach”
or “discretize-then-differentiate”, the adjoint equations are derived from the dis-
cretized set of state equations. In the second approach, sometimes denoted the
“continuous approach” or “differentiate-then-discretize”, the adjoint equations are
derived from the continuous state equations. The continuous adjoint equations are
then discretized, commonly in a similar way as the corresponding state equations.

2.5.1 Adjoint of the Parabolized Stability Equations (APSE)

The adjoint of the parabolized stability equations (42) are derived using a contin-
uous approach. The complete derivation is found in Pralits et al. [34] and they are
here given as

_ ~8q* _ 82(21* -1 8(21*
Aq* + Bax?) + 67(6:63)2 + By Oal Sy, (62)
o [T ., (0A 0B\ . 3
@ 0 (% + %> q hldl' =
0 V'rl ¢ [Xms>Xme]’
+00 (63)
1|02 / Q"M hydx® Va' € [X,,4, X0,
0
where
T 8q - 8(r q) vxl ¢ [X Xme]'

St = 0t~ Oal ms?
-

04 0(rrq) HA )2 1
T 8:1:1 8:1:1 +§M q\@\ Va© € [Xms7Xme]’
and
~ oB" o%cH ocH oD+
H H
= - — - [ 2 - -
./4 ./4. 6:[}3 mis B + (6:[,‘3>2 + mis 61:3 8.’,5'1 )
~ H
B = —-B" + 26—63 + 2mq3 CH,
) ox
¢ = ¢
D = D"
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Here, q* = [p*,u*,v*,w*,0*]", and the above equations are subject to the fol-

lowing boundary conditions

[u*,v*, w*, 0%] (z1,0) = [0,0,0,0]  Va!e [X,, X,],
lim  [u*,v*,w*, 0%] (z*, 23) [0,0,0,0] val € [X,, X4).

z3—+00

The initial conditions are

q (X, 2%) = (1-&qj(e®)  Va? e [0, +o0),
(X)) = Q1=9r; Va3 € [0, 4+00),

with g} and r evaluated at #! = X as

qi = [OPDT(M —al)q,  rf=[0]c,

/ (hiq"M DT <6—A + %> q—iq"Mq) da?
& = 2o Jda O
/ q"D™ oA + 95 q hy da®
0 9o 9o

(64)

where DT = (D")~!. Equation (62) is solved by backward integration in space.
Even though it is a linear equation, in order to reuse the code developed to solve
the PSE iteratively to satisfy the auxiliary condition, at each streamwise position
r* is solved iteratively such that expression (63) is satisfied. The right hand side of
equation (62) and the initial condition depend on the choice of objective function,

i. e. the value of .

2.5.2 Adjoint of the Boundary Layer Equations (ABLE)

The adjoint of the boundary-layer equations are derived using a continuous ap-
proach. Details regarding the derivation is found in Pralits [33] and Pralits &

Hanifi [35] and they are here given as

B(h,W*) U . OV . T\ o
P H43 fup <8;U3U + 6:B3V +Cp8x3T ) =S,
D(pUU*)  (hypWU*) oU . oV owr  aT,.
(L Doy T Py
Oox! Ox? &L‘lU +8x1v Oox! +Cp8x1
dPe 2(’}/—1) 0 ou
o 2% e A\ T 2 a2 Y Y
(y-1M dale Re M ol <h1'u8x3T ) *
10 [ 0U")\
@@(“ 927 >—5U>
o(pUV™)  O(hpWV*) 2(y—1). 5 9 v .
. 2L (Lt
Bz 023 re o sl )t
1 0 MV |
R—e@@ 927 >—5V’

(65)

(66)

(67)
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ApUT*)  O(hypWT*) pU (OU _, OV _, OW*

" ort TP o8 T \owtl Ton’ " aw )T
2 * _ 2 2

pU, 0T g 5 PTG [(OUN? (VN
T " ox! RePr (0z3)2 Re dT |\ 9z3 Ox3

L dp [OU O(hU*) 0V o(hV*)] s
Re dT [8:03 055 08 043 =Sk (68)
where the right hand side S, =[S}, Sj7, S, Sg]' is given as

.| [Fw, Fy, By, Fr+Fy W/TI by Yzl € (X, Xy), (69)

o Vol € (Xg, X,

The non-zero right hand side is the coupling between the APSE and the ABLE and
express the sensitivity of the PSE with respect the variations in W, U, V and T
respectively. A detailed description is found in Pralits [33]. The above equations
are subjected to the following boundary conditions

d(h,T*
|:U*7V*’ (8;3 ):| (xl’o) = [07070] vxl € [X(]?Xl]?
Jim [ VEWE T (2N %) = [0,0,0,0]  Va' € [Xo, Xq].
o —400

The initial condition at 2! = X is given as
Q*(Xy,2%) = 0. Va3 e|0,+00),

These equations are linear oppose to the BLE but are however solved in a similar
iterative way as outlined in §2.2.1 in order to reuse the existing solver for the
boundary layer equations. The ABLE are solved by backward integration in the
streamwise direction. At each streamwise position we obtain the solution ofQ* =
[U*, V,* T*] from equations (66)—(68) using the boundary conditions above for
a given value of W*. Equation (65) is integrated in the wall-normal direction
in order to obtain W*. The solution at each streamwise position is considered
converged when the relative variation of W* is below a specified value.

The coupling between the Euler and the boundary-layer equations is the pres-
sure distribution P, and the mesh given by the nodal coordinates X. A variation of
the geometry which affects the Euler solution, will therefore appear as variations
of the pressure distribution in the boundary layer equations, which consequently
will affect the solution of the stability equations. In Pralits et al. [36], the pos-
sibility of an optimal control problem using the pressure distribution as control
variables and the total disturbance Kinetic energy as the objective function, was
considered. From the coupled APSE and ABLE for incompressible flows, an ex-
pression was derived for the gradient of the objective function with respect to the
pressure distribution. From the present APSE and ABLE a similar expression can
be evaluated and is here given as

oJ /+OO <_8U>k + (v — 1)M28(T*U)> de® V' e (Xg,X;). (70)
0

oP Oxt Oxt
Setting the Mach number equal to zero in expression (70), we find exactly the
same expression as the one derived in Pralits et al. [36]. Note that a variation of
X will also affect the nodal coordinates of the BLE and PSE. This can be seen in
expression (61).



FOI-R-0919-SE

2.5.3 Adjoint of the Euler equations

The adjoint equations (60) are solved following the same technique used for solv-
ing the Euler equations (§2.1), by explicit time integration of the system
dw* _

(Vl‘; YRI=0, VieV) (71)
until the residuals R; vanish within some tolerance. Derivation of the adjoint of

the Euler equations can be found in Amoignon [2]. The following gives expres-
sion for the adjoint residuals

Vi

. o(f; - mig) 1" (W* ) ~
R} _gi[ - J ] +]§[d Vi e V(Q),
. o(fi - mi)]" (W;'k _W;>
JEN;
fbc N1 T . )
+ Y di+ )y [ o } Wi Yie V(09), (72)
JjEN; JjEN; v
. O(fi - mij) 1" (W;'k _W;>
JEN;
fbc )17 * * . o
+ > dj+ Z[ - } wi—gf Vi V(090°),
JjEN; JjEN; v

where V(0€2°) is the set of nodes at which the pressure E. is measured, according
to the definition of the BLE (19)-(22). The right-hand-side of equation (60), is

included in the residuals
gl = ((—a Q) Q> (73)
w i

The adjoint d* of the artificial dissipation fluxes d, expression (15), are obtained
by freezmg the artificial viscosities, see Amoignon [2], that is, the differentiation
of e;” and €}, with respect to wy, is assumed to give terms which can be neglected.
This assumption yields that

d;; = el (wi — w;) + + (6, VW) — 6jV2W}‘). (74)

However, the resulting truncation error may not be negligible in the computation
of the gradient V.J. This is studied later in this report through numerical tests. A
similar freezing of the coefficients in the farfield boundary conditions yields the
following expression for the Jacobian of the farfield flux:
8(fbc . ’I’Ll) 8 (f . ’I’Ll) -1 dVi
L = L Aia 00 H i L Aia 00 .
o v, (i, Voo ) H () L™ (R, v )dwi

The Jacobian of the Euler wall flux function is expressed as follows

C .0 l|ul"2
Ot m) _ () (%) . (76)

(75)
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3 Implementation issues

3.1 Mesh displacements

046

673

400

7 127

Node on displaced mesh

Directions of the displacements Node on reference mesh

Figure 2. Reference (light grey) and displaced mesh (dark grey) in the neighborhood of the airfoil.

In the current study an explicit affine mapping is used to smoothly propagate
changes in the geometry to the entire mesh. It is formulated as

X" =X+ Ly*. (77)

where y* € R™ is the vector of normal nodal displacements on the airfoil, for
the design number &, X* € R is the vector of all nodal coordinates (d is the
dimension here 2, N is the total number of nodes in the grid), L € R¥N*" s a
constant coefficients matrix, and X is the reference mesh defined by its vector of
nodal coordinates. Given the gradient V.Jx, of a functional Jx such as defined
in Table 1, the gradient of the functional .J, (y) = Jx (X (y)) is obtained by a
matrix—vector product

VJ,=L"VJx. (78)

The definition of L was possible because the meshes we used here are issued from
structured grids. Given the normal displacement y; of a node < on the airfoil (for
example ¢ = 127 on Figure 2), let us denote by j the index of a node on an
intermediate layer of nodes and on the grid line that is normal to the airfoil and
contains ¢ (for example node 673 on Figure 2). Noting %, the node on the same
grid line than j; and ¢ but on the next layer (towards the outer boundary), the
displacement of j; is defined by

T, = :c?l + y,-r(é?l)tjl , (79)

where t;, is the unit vector defined as

0 0
xr: — @
th = —o——o7 > (80)
Hij o mjl“
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and 691 is the distance of node j; to node 4 (on the airfoil) normalized with respect
to the distance of node 7 to the farfield boundary, while r is a damping function
defined as ) )

7'(5):{ 1-9(3—-66)6%, for0<é<3

0, otherwise . (81)

More general schemes are needed when using general unstructured meshes, see
Berggren [7].

3.2 Parameterization of displacements and constraints

In shape optimization, the combination of gradient-methods and piecewise poly-
nomial interpolations, such as B-splines, may induce oscillations in the shapes, as
investigated in Frank & Shubin [16]. Smooth shapes are obtained in the current
approach together with geometric constraints, by taking the vectors of normal dis-
placements y that are solution of a minimization problem, see Amoignon [2], of
the form

veRn 2 ) (82)

1
y = min —v! Ag;v — v M,a
CTv=>b

where A, is the stiffness matrix associated with the Laplace operator, M is a
mass matrix, C is a matrix whose columns are the gradients of constraints im-
posed on the displacements (in R™*"*) and b is the vector of values imposed to
the constraints (in R™). The solution y to the above system is the vector of dis-
placements, which, according to the norm defined by the stiffness matrix A, is
the closest to the solution of the discretized Poisson problem defined by

A,y = M;a, (83)
and that fulfils exactly the constraints
CTy=b. (84)

Such a parameterization implies that the controls are the vector a, right hand side
of equation (83), and the vector b, right hand side of the constraints relations (84).
From the gradient with respect to the displacements V.J,, that is obtained from
expression (78), it is needed to calculate a gradient with respect to {a, b}. This
can be achieved by solving an adjoint problem, see Amoignon [2], of the form

AST -C v\ _ [ VJy,
from which it holds that

VJ,=MIy* and V.J,=-\*. (86)

3.3 Optimization algorithm

All numerical tests carried out here are formulated so that aerodynamic constraints
(lift and pitch) are incorporated in the objective function via a simple penalization
technique. Geometrical constraints (volume and fixed domain) can be treated
as simple bounds constraints via the parameterization previously discussed (see
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§3.2). However, the geometrical constraints are equality constraints, so that the
the right hand side, b in (82), will be a constant vector. The only control parameter
used in our applications is therefore the vector a, expression (82).

ab Tl gkl Xk ol Eyler ~| BLE ~ PSE
: o
Y
Vg —VIJ; —VJ% =< AEuler |= ABLE |- APSE

Figure 3. Flow chart for the case of minimizing the disturbance kinetic energy using the parameter a to control the shape of geometry.

The optimization algorithm is the limited memory quasi-Newton method (L-
BFGS-B) developed by Byrd et al. [11]. It is based on a limited memory BFGS
approximation of the Hessian matrix of the objective function J, which makes it
suitable for large scale problems where only the gradient of .J is available.

The state and adjoint equations are solved and the gradients are evaluated in
order to perform optimal NLF design as given in figure 3. There, k denotes the
design number. The design k& + 1 is obtained from the L-BFGS-B optimization
routine [45] after possibly one or several objective function and gradient evalua-
tion.
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4 Numerical tests

The accuracy of the gradient V.J,, expression (86), based on the discretized prob-
lem is a critical issue in optimization. Using the first order necessary optimality
condition, the gradient of the objective function or, of the Lagrangian, is zero at
an optimal design. Difficulties related to low accuracy, such as finding descent
directions even far from the optimal design, are quite common. There are two
possible causes of inaccuracies in our calculation of the gradient. As mentioned
previously, the derivation of the adjoint of the discretized Euler equations is made
using an approximation by not linearizing the coefficients of the 2nd order artifi-
cial dissipation. Effects of this approximation are investigated in §4.1. The adjoint
equations of the BLE and PSE are derived from the continuous state equations.
The effects of this method on the accuracy of the gradients of the type V.J, (for
Jw defined as in Table 1) is investigated in §4.2.1. The calculation of V.J, is ob-
tained by coupling the three systems of adjoint equations. The global accuracy is
investigated in §4.2.2.

The accuracy of the gradient at a design point a can be analyzed, compar-
ing the value obtained from the solution of the adjoint equations, with the one
estimated by finite differences as

Ja(a+ eqep) — Ja(a — eqep)
2¢,

(V) = ; (87)
where ey, is the vector having component k equal to 1 and all other components
being 0. Several calculations of (V.J,), is commonly performed, using different
values of ¢, in order to find the best compromise between accuracy and rounding
errors, the last being inherent to the finite difference method. The relative error be-
tween the gradient obtained by adjoint method Vap.J, and the one approximated
by finite-differences V.J, can be calculated as

_ IVapJa — V||

ernry.j, = 88
YRS TVAT )

where ||.|| denotes the norm in R™ defined by the dot product.
These tests are performed on different C-type meshes of the RAE 2822. They
are here denoted coarse, medium and fine, and the sizes are:

e Coarse: 3412 nodes with 112 nodes on the airfoil.

e Medium: 13352 nodes with 224 nodes on the airfoil.
e Fine: 52816 nodes with 448 nodes on the airfoil.

4.1 The inviscid case

Possible inaccuracies, due to the approximation made deriving the adjoint Euler
equations, are expected to be independent of the forcing of these equations. In our
investigation the right-hand-side of the adjoint equation (60) is (0.A4y/0w™) Q*
(see §2.4), identically equal to 0.J,,/0w, according to the definition of .J,, given
in Table 1. It is therefore the same as usual aerodynamic optimization problems
based on Euler flow analysis where J,, is usually one of the functions defined by
the wave drag, the lift or the moments coefficients. In order to avoid influences
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of possible errors when solving the BLE, the PSE and their adjoint equations, we
investigate here the accuracy of the gradient of the wave drag (Cp), the lift (C1)

and the pitch-moment coefficients (Cyy).

M

00 errvoy, errvcop erTvCy

0.754 | 1.9x 1072 [ 2.6 x 1072 | 1.6 x 1072
0.734 | 28 x 1072 [ 3.8 x 1072 | 2.2 x 1072
0.68 |55x1073 [49x1072 | 4.6 x 1073

Table 2. Effect of the Mach number on the relative errors between the gradients calculated based on
the adjoint equations and the ones calculated by finite differences, defined by (88), of the drag, lift and

pitch-moment coefficients.

My, [VOL| IVChl| IVCOuM||

0.754 | 3.3x 1071 [ 3.0x 1072 [ 2.2 x 1071
0.734 [ 32x 1071 [ 23%x 1072 [ 2.0 x 1071
068 [3.0x1071[24x103|15x1071

Table 3. Effect of the Mach number on the norm of the gradient of the coefficients of lift (C), drag

(Cp) and pitch (Cys). The gradients are calculated from the adjoint equations.

VIS2 ernvye, erycep, erryc,,
1. [55x102 [ 49x1072|4.6x 107
0. [45x107%[34x107% |38 x107*

Table 4. Effect of the 2nd order artificial viscosity fluxes on the relative errors between the gradients
calculated from the adjoint equations and the ones calculated by finite differences for the drag, lift and
pitch-moment coefficients. The 2nd order artificial viscosity is active for V152 = 1 and inactive for
VIS2=0.

The tests are carried out on the coarse grid, at three different design points
(different Mach number and angle of attack). In the results shown here, the value
of ¢, in the finite difference approximation of the gradient (V.J),, is equal to
10~%. However, various values in the interval [10~*,10®] were tested without
significant influence on the relative error. A summary of the results is given in
Table 2. The relative error varies between 0.5% and 5% and clearly depends on
the design point. Quite unexpected is that the error associated with the gradient
of the drag coefficient (Cp) increases when reducing the Mach number whereas
the influence of the 2nd order artificial dissipation would be expected to decrease
as the influence of the shock decreases. Indeed, the influence of the shock on the
flow solution is measured by the sensitivity of the wave drag and given in Table 3.
Additional tests were carried out at Mach number 0.68 without the second artifi-
cial dissipation showing that the approximation in the derivation of the adjoint of
these fluxes are causing the errors as, seen in Table 4.
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4.2 The coupled inviscid-viscous case

The solutions of the adjoint of the stability and boundary layer equations are used
as input to the adjoint of the Euler equations as well as the gradient assembly.
From the adjoint of the boundary layer equations an expression for the partial
derivative of the objective function with respect to the pressure distribution is ob-
tained, expression (70). This is the coupling between the adjoint of the boundary
layer equations and the adjoint of the Euler equations and is used to evaluate ex-
pression (73). The variation of the boundary layer and stability equations with
respect to the node coordinates are additional terms in the assembly of the gradi-
ent, expression (61).

4.2.1 Sensitivity w.r.t. the pressure distribution

In the coupling between the inviscid and viscous solution, there are two issues
which make a large impact on the accuracy of the gradients. The first is that a
grid resolution commonly used to obtain results with the Euler equations, is too
coarse to obtain converged results using the stability equations. A second issue
is how the adjoint equations are derived. The adjoint Euler equations are derived
from the discretized Euler equations, and the accuracy of gradients calculated
using this approach should not depend on the grid resolution. The adjoint of the
boundary layer and stability equations on the other hand, are derived using the
continuous approach, and the accuracy of gradients obtained with this approach
might therefore depend on the grid resolution.

Tests have been performed using the coarse, medium and fine grid with the
free stream Mach number M., = 0.73, Reynolds number Re = 6.7 x 10°, temper-
ature T, = 300 K and zero sweep angle. From the Euler solutions, the pressure
distributions and coordinates of the upper side of the airfoil starting from the stag-
nation point have been used as input to the boundary-layer equations. The mean
flow obtained from solving the boundary-layer equations, and the coordinates are
then used as input to the stability equations. The disturbance used in the stability
calculations is a two dimensional wave with dimensional frequency f* = 15.5
kHz. The objective function is evaluated as the disturbance kinetic energy, £,
integrated in a streamwise domain which is kept the same for the different grids
used here.

In figure 4 results are shown for a comparison between expression (70) and
a finite difference approximation of the partial derivative of the objective func-
tion with respect to the pressure distribution. The latter is evaluated in the same
way as expression (87), where the design a has been replaced by the pressure
P. Computations have been performed for different values of the finite-difference
step €,, and these values are 104, 107>, 10=%, 10=". Only the results for
€ = 10~° are shown. A first thing to note is that the partial derivative eval-
uated using the finite-difference approximation appears to converge as the grid
resolution increases. This is due both to the solution of the pressure distribution
converging in the Euler computation, and the solution of the stability equations
converging as the grid is refined. Secondly it can be seen that the difference be-
tween derivatives obtained from the finite-difference approximation and those ob-
tained from the solution of the adjoint equations, decreases as the grid is refined.
This is due to the continuous approach used to derive the adjoint equations.

The adjoint of the boundary layer and stability equations used here have been
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Figure 4. Partial derivative
of the objective function with
respect to pressure distribu-
tion. Comparison between
finite-difference  approximation
(solid-stars) and adjoint solution
(solid-plus) computed on (a)
coarse, (b) medium, and (c) fine
grid.
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Figure 5. Local Reynolds num-
ber as a function of the index k
of the control parameter for (a)
coarse grid, (b), medium grid, (c)
fine grid
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used in other problems concerning gradient evaluations for the purpose of optimal
control problems, see Pralits & Hanifi [35], Pralits et al. [34, 36]. There, different
grid resolutions expressed as a step length in the local Reynolds number ARe,
where Re = (U.x! /z/e)%, were tested to see the effect on the gradient accuracy.
In Pralits et al. [34], it was shown that a step length of ARe = 20 was needed
to converge the physical result for a flat plate boundary layer with zero pressure
gradient. Further, it was shown that a value of ARe = 10 was needed to obtain a
relative difference of 102 between the approximative finite difference calculation
and the adjoint calculation, in the major part of the computational domain. In
figure 5, the step length expressed as local Reynolds number has been plotted for
the different grids used here. It can be seen that the step length is almost constant
through out respective domain and the values are ARe = 50, 25 and 13 for the
coarse, medium and fine grids, respectively. Due to the variation of the pressure
gradient along wing profiles, the step lengths found in the previous study of flat-
plate boundary layers, might not be small enough to obtain the same convergence
in the results and accuracy of the gradients in the case studied here.

One option to increase grid resolution for the boundary layer, stability and
corresponding adjoint equations and thus the accuracy of the gradients, is to use
some interpolation technique, given the solution of the pressure distribution com-
puted on a ’coarse’ grid. Such an approach could also be favorable when three-
dimensional flows are considered, and thus the computational effort increases con-
siderably. We have to consider, however, that an increased grid resolution due
to some interpolation technique will primarily lead to a numerical convergence
(given some error measure). Another issue regarding grid resolution is conver-
gence of the physical problem such as the pressure distribution, boundary layer
thickness and disturbance growth rate. An ideal situation is that convergence both
of the physical problem as well as the gradient of interest is achieved. These are
important issues and will be the topic of another investigation. In addition, differ-
ent types of interpolation techniques as well as how to refine the grid need to be
investigated.

An example of using interpolation is given here. Lagrange polynomials of
different orders n are used to interpolate the pressure distribution on a refined
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Figure 6. Comparison of (a) Ue,
and (b) OU./dz! using different
Lagrange polynomials of order
n. The refined grid is obtained
by inserting one additional point
in between two consecutive old
grid points.

At the stagnation point

Ue(Xg) = 0, and the idea is
that the location of X4 does not
change as the grid is refined.
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streamwise grid. The new pressure distribution and grid are then used as input to
the boundary layer, stability and corresponding adjoint equations. The grid refine-
ment is made by inserting one additional node point in between two consecutive
old ones. In order to fix the location of the stagnation point, we have chosen to
interpolate U, instead of P.. The original grid and inviscid solution are the ones
used to compute the results in figure 4 denoted medium grid. In figure 6, results
of U, and 9U. /0x" are seen using different orders (n) of Lagrange polynomials.
The calculations have been performed when interpolation has been made using
the upper part of the wing, i. e. from the stagnation point to the trailing edge.
In figure 6a, results are shown of U, close to the leading edge. For n > 3 the
streamwise velocity at the first downstream position is negative and its magnitude
increase with increasing n. This is an unphysical solution and caused by the inter-
polation scheme used here. The streamwise derivative of the free stream velocity
corresponding to the cases n = 1,2, 3 in figure 6a are shown in figure 6b. Oscil-
lations in OU,/0x" are visible for the case when n=1, and this behavior decrease
as n is increased. The respective interpolated mean flows for cases n = 1,2,3
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Figure 7. Comparison of the
partial derivative 0.J/0P. com-
puted by finite differences for dif-
ferent values of the order n of
the Lagrange polynomial.
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were then used to compute the partial derivative 0.J/0F. both by solving the PSE,
APSE and ABLE, and by finite differences. In table 5 the relative difference for
each case (n) between the adjoint and finite difference solutions is found. The
error is computed as expression (88) where V.J, has been substituted by 0.J/9F..
A large reduction in the error is found increasing the value of n. In figure 7 a com-
parison of 0.J/0 P, computed by finite differences is made for different values of
the order of the Lagrange polynomial. Oscillations of 0.J/0F, are found for all
values of n and this is most evident for the case when n = 1.

In the results of shape optimization for transition delay shown in this report,
no interpolation technique has been used.

n 1 2 3
errgyep | 1.16 | 0.47 | 0.26

Table 5. Effect of order n of Lagrange polynomials on the relative error between the partial derivative
0J /0P, computed by finite differences and evaluated from the solution of adjoint equations.

4.2.2 Gradient of objective function w.r.t. the shape parameteriza-
tion

In the previous sections, tests have been performed to assess the accuracies of the
inviscid (§4.1), and viscous parts (§4.2.1) separately. In this section, we investi-
gate the accuracy of the gradient VJ, (86) which will be used in the optimization
procedure, when the objective function is based on a measure of the disturbance
kinetic energy. The reference case, denoted FD, is computed using the finite dif-
ference approximation of the gradient given by expression (87), which is evaluated
solving consecutively the Euler, BLE and PSE. The objective function in all tests
performed here is given as the disturbance kinetic energy of a single disturbance
integrated in a defined streamwise region, expression (29) with K=1. The gradi-
ent VJ, is calculated from the gradient V.Jx (61) by variables transformations,
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Figure 8. M, = 0.734 -
Gradients of the objective func-
tion (Disturbance kinetic en-
ergy) with respect to the op-
timization parameters (parame-
ters that control the shape of the
airfoil). The curves show FD
(solid), ADJ1 (dot), ADJ2 (dash).
The error between the FD and
respective adjoint solution are:
FD-ADJ1 (17.2%), FD-ADJ2
(4.95%), and FD—ADJ3 (4.85%,
not shown).
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from the nodal coordinates X to the displacements of the shape y, according to
(78), and from the displacements of the shape y to the right side of the Laplace
equation a, which requires to solve (85) and to apply (86). The gradient V .J is
given by expression (61)

_ 00y (AN L (0AQ\ . (AT,
_a—X_<a—X>q+<aX>Q_(aX>W'

cont.

VJx

discr.
As outlined in §3, it is evaluated from three systems of adjoint equations which
are solved in the following order

APSE — ABLE —

cont.

adjoint Euler,
N———

discr.

where each calculation depends on the solution of the previous one. The APSE
and ABLE are derived using the continuous approach, while the adjoint Euler
is derived using the discrete approach. This is above denoted cont., and discr.,
respectively. In this section we therefore investigate the influence of the solution
of the adjoint Euler, and the solution of the APSE and ABLE, on the accuracy of
the gradient which will be used in the optimization. This is made by comparing the
accuracy of the gradient computed from the solution of all adjoint equations with
the one evaluated from the solution of the adjoint Euler in which the right hand
side, see expression (60), is approximated by finite differences. The right hand
side is evaluated from expression (70) (0.J/0P) when the solution of the APSE
and ABLE are used. The finite difference approximation used here is the same
that was used in §4.2.1. In addition, the influence of including the geometrical
terms in the gradient evaluation from the solution of the PSE, APSE and ABLE
(denoted cont.) is investigated.
The different cases are summarized below:

e FD: finite difference approximation of the gradient given by expression (87),
computed solving the Euler, BLE and PSE.
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Figure 9. M = 0.68 - Gradients
of the objective function (Distur-
bance kinetic energy) with re-
spect to the optimization param-
eters (parameters that control
the shape of the airfoil). The
curves show FD (solid), ADJ2
(dash). The error is: FD-ADJ2
(0.02%)

x 107° Gradients
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e ADJL: gradient evaluated from the solution of the adjoint Euler, ABLE, and
APSE

e ADJ2: gradient evaluated from the solution of the adjoint Euler. The right
hand side of the adjoint Euler, evaluated from 0.J/9P, is approximated by
finite differences solving the BLE and PSE.

e ADJ3: gradient evaluated from the solution of the adjoint Euler, and by
a finite difference approximation of the terms from the BLE and PSE. The
right hand side of the adjoint Euler, evaluated from 90.J /0P, is approximated
by finite differences solving the BLE and PSE.

The relative difference between the FD and respective gradient evaluated from the
solution of the adjoint equations, is calculated using expression (88). In the first
test we consider the medium grid when the Mach number M, = 0.734. A part
of the geometry around the leading edge is kept fixed, and a comparison is made
between the FD and respective adjoint solution outlined in the summary above.
The gradients are plotted as functions of the index of the surface nodes, where
index 224 denotes the trailing edge. The fixed region around the leading edge
is given between indexes 80 and 119. The largest error, 17.2%, is found in the
comparison between the FD and the complete adjoint solution, ADJ1. When the
right hand side of the adjoint Euler equations is approximated by finite differences,
the error is reduced to 4.95%. Including the geometrical terms obtained from the
BLE and PSE in the gradient evaluation (ADJ3) only reduces the error by 0.1%
compared to the previous case (ADJ2).

The influence of including the second artificial viscosity on the gradient ac-
curacy was shown in (§4.1) for the inviscid flow equations. As the influence is
expected to decrease in the absence of a shock, a test was performed also here.
We consider the flow at Mach number 0.68, and the surface is kept fixed every-
where, except for the region where the objective function is evaluated. In figure 9,
a comparison is made between the FD and ADJ2. The error in this case is 0.02%.
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5 Optimization results

5.1 Description of the cases

Following the study performed on the accuracy of the sensitivities obtained using
the adjoint solutions, §4.2, we chose to perform the optimization on the medium
grid. Viscous calculations (RANS) are also carried out with EDGE? [13] prior to
and after some of the optimization tests in order to compare the N-factors based on
the pressure distribution obtained from the viscous calculation with those that are
computed using the Euler pressure distribution. These calculations are also used
to compare the viscous drag between the initial and the final optimized design.
The C-type grid for RANS calculations has the size:

e Medium ’RANS’ mesh: 22088 nodes with 224 nodes on the airfoil.

In a first series of tests the objective is to reduce the disturbances kinetic en-
ergy. The only constraints are geometrical and imposed using the parameteriza-
tion given in §3.2. The objective function to minimize is the total disturbance
kinetic energy of a single disturbance, E; from expression (29). There are several
reasons for imposing geometrical constraints. A constant volume is intuitively
a way to account for other industrial constraints such as having a minimum fuel
tank capacity in the wings or a maximum weight of the material structure. The
displacements of the nodes should not be allowed to be constant over all nodes,
which would mean a translation of the wing. To remove this singularity one point
should remain fixed, and our choice is the trailing edge. In addition, we chose to
fix a region of the airfoil around the leading edge in order to prevent changes in
the position of the stagnation point.
To summarize, the geometrical constraints are:

e Constant volume,
e Constant position of the trailing edge,

e Fixed region around the leading edge (between 0 of the chord length and
X, given in Table 6).

In order to test if the optimization can account for the usual aerodynamic require-
ments, two additional tests are carried out with a modified objective function,
denoted Jo. The aim is to simultaneously reduce the disturbance kinetic energy
and the wave drag, and in addition penalize changes in the coefficients of lift,
and pitch moment. The geometrical constraints are identical to the first type of
optimization which is described above. The modified objective function is given
as

1 1
Je =B+ pCp + 3 (Co — c9)? + shur (Co ), (89)

2The turbulence model used is the EARSM by Wallin & Johansson [44] and the k& — w model.
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Table 6. Optimization tests de-
scription.

42

Case | Objective | Mo | Reoo | F[kHZ] [ 8" [m1] | Xps | Xone

T11 By 0.734 | 1.7107 15.5 0 0.043 | 0.45
T12 By 0.734 | 6.510° 11 500 0.043 | 0.45
T21 By 0.68 | 1.6107 16.5 0 0.039 | 0.45
T31 Jo 0.734 | 1.7107 15.5 0 0.043 | 0.45
T32 Jo 0.734 | 6.510° 11 500 0.043 | 0.45

where Ej is the functional from expression (29), Cp, Cr, and Cy are the drag,
lift, and pitch-moment coefficients, respectively

C(D = Z 1p 2 D ’
. Q,OOOUOOSref
i€ V(0Qy)

pin; - dg,
Cr = Rl
- . Z lpoov2 Sref (90)

i € V(0Q) 2 o

Cy = Z pidas - (@i — Opeg,) X M _
i e V(@Q ) %PooUgoSrefLref

were dp is a unit vector in the direction of the farfield velocity, dp = —vo./|v% |,
dy, is a unit vector orthogonal to dp and, dj; is a unit vector orthogonal to dp
and dj..

The values C? and CY, are the lift and the pitch-moment coefficients for the
initial design. In expression (89), we take the square of the deviation of lift and
pitch moment with respect to the initial design in order to penalize both an in-
crease and decrease during the optimization. The real numbers { X/, Ap, Az, A}
are scaling factors chosen after a preliminary test as

1 N 1 10 3 10

= o000 D= 705> L= "7 M= —"—"""9"
10E) 100% (02)2 (cgw)Q
The tests are summarized in Table 6. For the case T21, the possibility to compute
the flow state and the adjoint without second order artificial viscosity (V152=0)
was used in order to get better accuracy (see Figure 9). The thermo dynamical
properties for the different cases correspond to two different altitudes such that
the TX1-cases are given at 0 meter ASLS, and the TX2-cases are given at 9600
meter ASL.

A\y (91)

5.2 Analysis of the disturbance growth

The objective function in the results shown here, is given as the total disturbance
kinetic energy of a single disturbance, expression (29) in which K = 1. A stability
analysis of a large number of modes with different frequencies f*, and spanwise
wave numbers 5* corresponding to different wave angles, is performed prior to
each optimization case, on the original design and the chosen flow conditions.
The wave angle is defined as the angle between the wave number vector k and
the inviscid streamline. The corresponding N-factors are calculated from these

3ASL denotes Above Sea Level
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Figure 10. N-factor values for
165 modes (dots) with dimen-
sional frequency f* = [5,20]
kHz (Af* = 1 kHz), spanwise
wavenumber * = [0,2500]
m~1 (AB* = 250 m~1). From
these values is the mode used in
the optimization (solid) chosen,
and the envelope of envelopes
(EOE) (dash) calculated. The
flow in this case is character-
ized by Re_, = 6.5106, M =
0.734, o = 2.1875 degrees.

N—factor

results, and the mode chosen to be used in the optimization which has the largest
N -factor value with respect to all other modes in the computational domain. The
reason of this particular choice is that it has been shown in previous studies on
optimal control, see Pralits et al. [36] and Pralits & Hanifi [35], that a control
that successfully decrease the growth of a single disturbance also have a damping
effect on other instability waves of the same type. It is common in transition
prediction, to compute the envelope or envelopes (EoE) of the INV-factor curves
(i. e. envelope over both frequency and spanwise wave number). Transition is then
assumed to occur at the position where the EoE curve first attains an empirically
determined value. This curve also serves as a measure of the efficiency of a control
or design, computed by minimizing a single disturbance, on a large number of
disturbances.

Results of the analysis discussed here is shown in figure 10. The design is the
medium mesh with a free stream Mach number M., = 0.734, Reynolds number
Re,, = 6.5106, and angle of attack o« = 2.1875 degrees. A total of 165 modes
have been analyzed with dimensional frequency f* = [5,20] kHz (Af* = 1
kHz), and spanwise wave number 3 = [0,2500] m~! (AB* = 250 m~1). This
choice of spanwise wave number corresponds to wave angles between zero and
85 degrees. The corresponding N-factor values of all modes are given by dots.
The mode chosen to be used in the optimization is given by the solid line and the
EOE curve by the dash line. The values of f* and 5* given here are used for all
EoE analysis made in this report.
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5.3 Reduction of disturbance kinetic energy under vol-
ume constraints

5.3.1 Cases including shock wave, M, = 0.734

Results are shown here for the case of minimizing the disturbance kinetic en-
ergy of a single disturbance with the initial volume of the airfoil kept constant.
Computations are performed for a given Mach number M., = 0.734 and two dif-
ferent Reynolds numbers. The latter two correspond to 0, and 9600 meter ASL,
and the cases are denoted T11 and T12, respectively. The convergence history
is given in figure 11 for the T11 case. The objective function and gradient norm
is given as a function of the iteration number. The optimization was stopped be-
cause the BLE could not converge for the design after the last iteration. This
occurred as the changes in the geometry caused the shock wave to move upstream
x/c =~ 0.42, into the domain in which the objective function is evaluated (be-
tween x/c = 0.043 and z/c = 0.45). This can be seen in figure 12, where the
pressure coefficient and geometry for the initial and final design are plotted. At
final design, the central upper part of the wing is thinner, measuring the thickness
as the distance of a point on the airfoil to the chord. Therefore, because of the
fixed region around the leading edge, the upper part region between 4.3% of the
chord length, from the leading edge, up to about 30% of the chord length has a
higher curvature at final design than at initial design.

An increase of the curvature of a wall boundary is known to reduce the pres-
sure in the fluid flow. This may be the effect that can be observed in figure 12
where the pressure coefficient at final design has decreased (—C, is increased) in
the region between 10% of the chord length, from the leading edge, up to about
30% of the chord length, in comparison to the initial design. In this way a pres-
sure gradient is obtained that damps the growth of disturbances as it is explained
below. However, the faster decrease of the pressure may be responsible for the
shock moving upstream. Note that the deformation of the lower part of the wing
is only due to the constraint that imposes a constant volume.

The effect on the disturbance growth can be seen in figure 13 where the EoE
curves have been plotted for the initial and final design. A large damping of all
modes has been achieved. This can be explained by the change in pressure gradi-
ent from adverse to favourable in a large part of the region where the disturbances
are amplified. The disturbance growth increases in this region due to the zero or
weak adverse pressure gradient just upstream of the shock wave in the case of the
final design.

The convergence history is given in figure 14 for the lower Reynolds number
case (T12). The decrease of the objective function is of two orders of magni-
tude smaller than it is for the case T11, figure 11, but the norm of the gradient is
decreased by four order of magnitude. This is larger than the decrease achieved
in case T11. The computation is here terminated as no further descent direction
could be found. The magnitudes of the deformations of the airfoil are smaller
compared to the case T11, shown in figure 12, but a similar trend is observed. The
favourable pressure gradients which cause a decrease of the disturbance kinetic
energy, may be caused by a local increase of the curvature on the upper part of
the wing. This occurs between 4.3% and 30% of the chord length downstream
of the leading edge. As a consequence, the shock wave is moved upstream. The
effect on the disturbance growth can be seen in figure 16 where the EOE curves
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have been plotted for the initial and final design. A large decrease in the distur-
bance growth is obtained using the optimized design, similar to the one found for
the high Reynolds number case (T11). Also this is due to the change in pressure
gradient from an adverse to favourable in the upstream part of the domain where
the disturbances become unstable. The shock wave has not moved as far upstream
and the boundary layer and stability analysis can therefore be made further down-
stream, also on the optimized airfoil.

An attempt has been made to use the N-factor results of the initial and final
design in order to determine the respective transition location. These results have
been used as input to RANS calculations of the initial and final design in order to
evaluate the change in the viscous drag. Values of the drag, lift and pitch-moment
coefficients for the initial and optimized designs are summarized in Table 7. The
viscous drag is reduced by 13 drag counts, and, as it could be expected from previ-
ous observations about the position of the shock, the wave drag is also decreased,
by 40 drag counts*. However, this is a byproduct of the reduction of the distur-
bance energy. Large changes in the lift and the pitch-moment coefficients are also
observed. These by-effects are controlled by imposing constraints in the cases
T31 and T32, see (§5.4).

The results from the RANS calculations are in addition used to see the differ-
ence in N-factors computed using the pressure distributions from the Euler-, and
RANS solutions. The transition position on the upper side of the initial design
was taken as the streamwise position corresponding to the maximum value of the
EOE curve of the NV-factors computed using the pressure distribution from the Eu-
ler solution. The value is s/c = 0.26, see figure 16. As the EoE curve of the final
design was lower in magnitude compared to the initial one, the transition location
of the final design was set as the downstream position of the computational do-
main of the boundary layer and stability analysis. The same transition position
was used on the lower side, both for the initial and final design. It should be noted
that the transition location for the initial design is not based on experimental re-
sults. A common reference for the RAE 2822 airfoil is Cook et al. [12], in which
the boundary layer was tripped at 3% chord in the experiments in order to have a
well defined turbulent portion.

The pressure coefficients obtained from the solution of the RANS calculations
for the initial and final design is found in figure 15. The largest difference com-
pared to the Euler solution occur at the position of the shock wave. Upstream
of this position however, the difference between the Euler and RANS solution is
smaller, which can also be seen in figure 16, where the EoE curves of the two
cases are compared. In the comparison of the pressure coefficients between the
Euler and RANS computations of the final design, one can note the difference in
the region between z/c ~ 0.4 and = /c =~ 0.5. Results of the velocity field from
the RANS calculation (not shown here), show that separation occurs in this region.
As this can not be accounted for in the boundary layer equations used here, the
EoE curve computed using the pressure distribution from the RANS calculation
is not performed downstream of x/c ~ 0.4, see figure 16.

*One drag count is 1074
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Figure 11. T11 - Objective func-
tion and norm of its gradient.
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Figure 12. T11 - Pressure co-
efficients and shapes at initial
(solid) and final design (dash).
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Figure 13. T11 - Enve-
lope of envelopes of N-factor
curves. Comparison between
initial (solid) and final design
(dash).

Table 7. Summary of aerody-
namic coefficients at initial and
final design for T12 and T32, us-
ing Euler and RANS flow analy-
sis.
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Envelope of envelope of N-factor curves
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Coef Case total \ viscous \ pressure pressure
Initial 23x1072 | 48x107 [1.8x107% | 1.3 x 1072
Cp | T12(Final) [ 1.6 x 1072 | 35x 1073 [1.3x1072 [ 7.9x 1073
T32 (Final) | 1.8 x 1072 | 3.7x1073 [1.4x1072[83x 1073
Initial 84x 1071 | =7.9x107° | 84 x 107! | 8.4 x 107!
C, | T12(Final) [ 7.0x 107" | =5 x 107> |[7.0x107! | 7.0 x 107!
T32 (Final) [ 8.5 x 1071 | —7x107° |85 x 107! |85 x 107!
Initial 3.2 x 107! - - 3.4 x 107!
C,; | T12(Final) | 2.4 x 1071 — — 2.6 x 1071
T32 (Final) | 3.1 x 107! — — 3.4 %1071
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Figure 14. T12 - Objective func-
tion and norm of its gradient.
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Figure 15. T12 - Pressure coef- Pressure coefficients
ficients and shapes at initial de- 15¢ :

sign for Euler (solid) and RANS
(dash-dot), and final design for
Euler (dash) and RANS (dot).
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Figure 16. T12 - Enve-
lope of envelopes of N-factor
curves. Comparison between
initial (solid) and final design
(dash). A comparison is also
made between the initial (dash-
dot) and final (dot) design, when
the pressure distribution is given
by the solution of the Reynolds
Averaged Navier Stokes equa-
tions.

Envelope of envelope of N—factor curves

slc

5.3.2 Shock-free case, M., = 0.68

Results are shown here for the case of minimizing the disturbance kinetic energy
of a single disturbance with the initial volume of the RAE 2822 airfoil kept con-
stant. Computations are performed for Mach number M,, = 0.68 at 0 meter ASL.
The shock wave shown in the T11-, and T12 cases is not present in this case, see
figure 18. The convergence history is given in figure 17. The objective function
and the norm of the gradient are reduced of about three orders of magnitude. The
pressure coefficients, and the geometries, at initial and final design, are found in
figure 18. Alike the previous cases, the changes in the geometry of the upper
part of the airfoil influence the pressure distribution in a way that is favourable
to decrease of the disturbance energy. However, the deformation of the airfoil is
of a different nature. Compared to the cases T11 and T12, the upper part of the
airfoil is thicker at final design than at initial design, which creates a region of
higher curvature at about 40% of the chord length away from the leading edge.
This is further downstream compared to where it appeared in the cases T11 and
T12. The effects of these deformations can be observed in changes of the pressure
coefficient.

The difference between the test cases is better understood looking at the en-
velope of envelopes (EOE) curves of the N-factors. In case T11, the disturbances
grow fastest in a region between z/c = 0.2 and = /c = 0.3, as seen in figure 13.
In the case T21, the growth of disturbances continues increasing outside of the
domain of integration of the objective function (29), that is for = /¢ > 0.45, fig-
ure 19. As a consequence, in case T11, damping the growth of disturbances in the
near region of the leading edge has a major effect, but in case T21 the damping
may be favoured as far downstream as z/c = 0.45. A decrease in disturbance am-
plification has been achieved for all modes in the major part of the computational
domain. This is due to change in the pressure distribution from a weak adverse
to a zero or weakly favourable in the region where the disturbances become un-
stable, see figure 18. Note however, that in the upper most streamwise region,
first an increase in the adverse pressure gradient occur. This is seen in the EoE
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Figure 17. T21 - Objective func-
tion and norm of its gradient.

52

curves which are actually larger between z/c ~ 0.05 and x/c ~ 0.1 compared
to the initial design. Note further the “smoothing” of the pressure distribution in
the region where the disturbances are amplified. The vanishing of these wiggles

is also seen in the EOE curve plotted for the final design.
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Figure 18. T21 - Pressure co-
efficients and shapes at initial
(solid) and final design (dash).
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Figure 19. T21 - Enve-
lope of envelopes of N-factor
curves. Comparison between
initial (solid) and final design
(dash).
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5.4 Reduction of disturbance kinetic energy and wave
drag under volume constraints while penalizing lift
and pitch

Results are shown here for the case of simultaneously minimizing the disturbance
kinetic energy of a single disturbance, and the wave drag. The initial volume is
kept constant during the optimization and changes in the lift, and pitch-moment
coefficients with respect to the initial design are penalized, see expression (89).
Computations are performed for a given Mach number M., = 0.734 and two
different Reynolds numbers. The latter two correspond to 0, and 9600 meter
ASL, and the cases are denoted T31 and T32, respectively. The objective func-
tion and gradient norm of case T31 are given as functions of the iteration number
in figure 20. The different components of the objective function are plotted in
figures 21, and 22. The objective function is decreased in each step of the opti-
mization even though the component of the wave drag is increased between iter-
ation number 2 and 4, compared to iteration number 1. The reason is that in this
interval, the deviation of lift, and pitch-moment coefficients is decreased. A re-
duction has been obtained at the last iteration, in both disturbance kinetic energy
and wave drag, while the lift, and pitch-moment coefficients are kept within a few
percent. Comparisons between the pressure coefficients, and geometries of the
initial and final design are given in figure 24. The change in pressure distribution
occurs mainly on the upper side of the airfoil, where the shock wave has moved
upstream and weakened. In comparison with T11, which has the same initial con-
ditions, the displacement of the shock in T31 is smaller, but, the changes in T31
reflect the conservation of the pitch-moment and lift coefficients. The effect on
the disturbance growth can be seen in figure 23 where the EOE curves have been
plotted for the initial and final design. A damping of the disturbance growth is
obtained in a large part of the computational domain using the final design. It is
clear looking at figure 24, that the adverse pressure gradient of the initial design
in the upstream region where the disturbances become unstable, has changed into
a zero or weakly favourable one in the final design. Close to the shock wave of
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the final design, which has now moved further upstream, the flow is decelerated.
This can be seen in the EoE curve where the value increases rapidly above that of
the initial design.

The convergence history for the lower Reynolds number case (T32) is found
in figures 25-27, and is similar to the one found for the case T31. The wave
drag experiences an increase during a few optimization steps also here, while the
deviation of lift, and pitch-moment coefficients decreases. In figure 29, a com-
parison is made between the pressure coefficient and geometry of the initial and
final design. In comparison with case T12, which has the same initial condi-
tions, the displacement of the shock is smaller but the pressure distribution in T32
minimizes changes in the coefficients of lift and pitch moment. The EoE curves
computed using the pressure distribution from the Euler solution are used, as in
case T12, to set the transition locations in two RANS calculations. The transition
position on the upper side of the initial design was taken as the streamwise po-
sition of the maximum value of the EoE curve of the V-factors computed using
the pressure distribution from the Euler solution (s/c = 0.26, see figure 28). The
maximum value of the EOE curve computed for the final design is below the value
found for the initial one. The transition location on the upper side of the final
design is therefore set as the downstream position of the computational domain of
the boundary layer equations. The same transition position was used both for the
initial and final design on the lower side. The major differences in the pressure
distribution between the Euler and RANS calculation occur in the region around
the shock wave. Upstream of the shock the difference is smaller, both for the ini-
tial and final design. This can also be seen in the comparison of the EoE curves
found in figure 28. A decrease occur in the N-factor values in both results show-
ing the EoE curves of the final design. This can be explained by the change in
pressure gradient from adverse to zero or favourable, in a large part of the region
where the disturbances are amplified.

55



FOI-R-0919-SE

Figure 20. T31 - Objective func-
tion and norm of its gradient.
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Figure 21. T31 - Disturbance ki-
netic energy and wave drag.
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Figure 22. T31 - Lift (triangle- Lift and pi'[Ch moment
solid) and pitch-moment (circle- 09, . . . . . . . . . .
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Figure 24. T31 - Pressure co-
efficients and shapes at initial
(solid) and final design (dash).
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Figure 25. T32 - Objective func-
tion and norm of its gradient.
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Figure 26. T32 - Disturbance ki-
netic energy and wave drag.
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Figure 27. T32 - Lift (triangle-
solid) and pitch moment (circle-
solid) coefficients. The values
at initial design are indicated at
each step (solid).

Figure 28. T32 - Enve-
lope of envelopes of N-factor
curves. Comparison between
initial (solid) and final design
(dash). A comparison is also
made between the initial (dash-
dot) and final (dot) design, when
the pressure distribution is given
by the solution of the Reynolds
Averaged Navier Stokes equa-
tions.
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Figure 29. T32 - Pressure coef-
ficients and shapes at initial de-
sign for Euler (solid) and RANS
(dash-dot), and final design for
Euler (dash) and RANS (dot).
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6 Summary and discussion

Optimal control theory has been applied to perform shape optimization with the
aim of transition delay, and thus a decrease of the viscous drag. The location
of laminar-turbulent transition is analyzed using linear stability theory, in which
perturbations with infinitesimal amplitude are superimposed on the laminar mean
flow. It is then assumed that transition will occur at the location where the total
amplification of disturbances, with respect to the first streamwise position where
the disturbance starts to grow, attains an empirically determined value, whose
logarithm is generally denoted by N. The inviscid flow is obtained by solving
the Euler equations for compressible flows, and the viscous mean flow is obtained
from the solution of the boundary layer equations for compressible flows on infi-
nite swept wings. The evolution of convectively unstable disturbances is analyzed
using the linear parabolized stability equations (PSE).

In the present approach, an iterative gradient based optimization procedure
is used with the aim of minimizing an objective function based on the distur-
bance kinetic energy. Tests are carried out starting from the RAE 2822 airfoil
and are formulated to produce a reduction of the disturbance kinetic energy while
maintaining a fixed volume, angle of attack, region around the leading edge and
trailing edge position. Flow conditions include transonic and subsonic cases, with
Reynolds number of 6.5, and 17 millions. Some cases are formulated to simul-
taneously reduce the wave drag and the disturbance kinetic energy while main-
taining lift and pitch-moment coefficients near their values at initial design. The
normal displacements of the nodes on the airfoil are solution of a quadratic pro-
gramming problem minimizing the variational form of the discrete Poisson prob-
lem and including linear constraints. Such a parameterization ensures smoothness
of the geometries for each design generated by the quasi-Newton optimization
algorithm by Byrd et al. [10] and enables to define complex sets of admissible
shapes as needed when coupling the three state equations. It has been shown that
the gradient of the objective function with respect to the design variables can be
evaluated from the solution of adjoint of the Euler, boundary layer and parabolized
stability equations. Using the adjoint equations, as opposed to other perturbation
techniques, constitutes an efficient way to evaluate functional gradients when the
number of design variables is large compared to the number of objective functions.

The work presented here is an ongoing project and current efforts are made
to improve the accuracy of the gradients and to include additional physical mod-
elling, for example to account for the occurence of separated flows. From the point
of view of the grid resolution there is a trade-off between gradient accuracy and
computation efficiency. Coarser grids penalize the accuracy of the sensitivities
based on the PDEs (adjoint BLE and adjoint PSE), whereas finer grids penalize
the cost of the Euler flow computation. A possible cure is to use interpolation
techniques as a mean of coupling the state equations (Euler and BLE) that could
be discretized using different resolutions at the surface of the airfoil.

As far as the numerical results are concerned several studies can be performed
without major changes to the current implementation. For example an objec-
tive function can be formed in order to delay the transition on both sides of the
wing. The objective function can also be the sum of K convectively unstable
disturbances. Another extension, which can include both of the above, is to use
multiple design points in the optimization. In such case the objective function is
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the sum of a chosen cost function at e. g. different Mach numbers and/or different
disturbances.

With the approach taken here there are some limitations which could be over-
come using additional physical modelling. As no iterative coupling exist between
the pressure distribution and the thickness of the boundary layer, this constitutes
an approximation. In addition, the boundary layer calculated here is assumed
laminar, and the effect of the increased thickness of the turbulent boundary layer
due to transition is not accounted for. Separation is another issue which is not
taken into account, and can be important especially for applications with large
angle of attack. Several studies have been made on this topic for the boundary
layer and stability analysis and might be possible to include in the current project.
Another option that should be tested in order to avoid large adverse pressure gra-
dients which might cause separation in the downstream domain, is to minimize
an objective function including both Ej- and E,. The idea to include also the
disturbance kinetic energy at a downstream position (Ef), is based on the knowl-
edge that an adverse pressure gradient has a destabilizing effect on the disturbance
growth. Instead of using the Euler equations an extension is to use the Reynolds
Averaged Navier-Stokes equations (RANS). This development should include the
adjoint of the RANS equations.

Even though the Euler and adjoint Euler equations can be derived and solved
for complete three-dimensional flows, the boundary layer and stability equations
used here are given for, at most, infinite swept wing flows. The absence of varia-
tion of the viscous mean flow in the spanwise direction in the BLE and PSE means
that e. g. tapered wings can not be analyzed without further approximations. To
proceed to fully three-dimensional cases, it therefore has to be decided what ap-
proximations to make, or if effort should be spent on solving the BLE and PSE
for complete three-dimensional flows.

The delay of transition is a benefit if accounting for all other aerodynamic
properties of the wing, which are the wave drag, lift and moments coefficients.
Reducing the wave drag is as important as the delay of transition when optimizing
the airfoil at cruise speed. The latter can be achieved by formulating the objective
function as a weighted sum of the wave drag and the disturbance kinetic energy.
Lift and pitch moment can also be maintained near to their value for the initial
design by adding terms to the objective function that penalize variations of these
coefficients. However, the interest in aeronautic industry is commonly to maintain
the lift above a minimum level while fixing the moments to their value at the orig-
inal design. Imposing bound constraints in this non linear optimization problem
would require to use more advanced method than the penalization technique that
has been used in this study.
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