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Array Mapping:
Optimal Transformation Matrix Design

Per Hyberg

I. INTRODUCTION

The concept of array mapping was introduced around 1990

by Friedlander [1], and Weiss & Friedlander [6], who in

several papers suggested and analyzed different
applications such as interpolation between calibrated

directions, spatial smoothing, a. s. o. An application studied
also by many other authors, Eriksson & Viberg, [8],

Eriksson [13], is mapping from non-uniform wide spaced

linear arrays, NULA:s, onto l/2 spaced ULA:s in order to

allow the faster rooting estimators and still keep the

superior resolution or bandwidth of the larger non-uniform

array. Furthermore, the performance of mapped root-
MUSIC and MODE has been studied in several papers

1990-1995, Friedlander [4] and Weiss, Friedlander &
Stoica [7].

One way of speeding up the DOA estimation process is

manifold dimension reduction by mapping the real array

onto a similar imaginary array with fewer elements. This
type of mapping, including conditions to preserve DOA

accuracy, has been treated in Andersson [3], Eriksson &
Viberg, [8] and Eriksson [13].

In most of this earlier work, performance under mapping
has been assessed as the variance of the estimates in

relation to the Cramér-Rao bound. General conditions for
attaining this bound under mapping were derived by

Andersson [3].

In many scenarios however, especially when the bandwidth

of a given array is stressed, mapping bias can dominate
over variance. One example is decade bandwidth signal

reconnaissance in the 3-30 MHz band using one single
array with a limited number of antennas. In order not to

loose resolution such an array has to operate with element

spacing in excess of the usual l /2 limit at the upper

frequencies. Designing the transformation matrix for

minimum bias then becomes an issue. -See figure 1.1 for a

typical example.

      

T

x(t)
y(t)

.

Figure 1.1: A sparse non-uniform circular array, NUCA,

whose output vector x(t) is mapped by the matrix T onto the

output vectors y(t) of a crossed ULA. Two root algorithms,

one for each ULA, could then provide fast azimuth as well

as elevation estimates. However, the mapping may cause

additional  stochastic and systematic errors if T is not

designed properly.

II. CONTRIBUTIONS AND REPORT OUTLINE

Usually the transformation matrix T is designed to provide

a least square fit between the spaces spanned by the two
sets of response vectors, the real set collected as columns in

the matrix Ar(qqqq) and the virtual, collected as columns in

Av(qqqq ). This is done by taking T=  Av(qqqq)Ar(qqqq)†, where †

denotes the Moore-Penrose pseudo-inverse.

In many mapping situations where the least square fit is less

than perfect this design of T is not optimal. The present
report proposes an alternative design of T that greatly can

improve the performance of a mapped array by reducing the
bias caused by such a mismatch. Simulations show that

using the proposed design a mapped circular array like the

one in figure 1.1, can operate with up to 4l element

spacing, and still be mapped over a 300 wide sector onto a
ULA with negligible bias. This would be impossible with

the earlier design of T.

Instead of matching the spaces spanned by the two sets of
response vectors the alternative design puts the highlight on

rotating the mapping errors so that they become orthogonal

to the conjugate of the gradient of the estimator cost
function along the relevant signal eigenvectors. The design

is derived using a Taylor expansion of said cost function
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around the true1 directions of arrival and the corresponding

true signal eigenvectors.

The report is organized as follows: After the present
introduction the used notation and general assumptions are

given. Then the mapping operation is formulated and a
Taylor expansion is used to identify the bias mechanism. A

general condition for zero bias is then formulated and a

design criterion for the transformation matrix given.

Verifying simulations are presented along with a discussion
on the problem of simultaneous minimization of both bias

and variance. This part couples the proposed mapping
method to earlier results by Andersson and Weiss &

Friedlander. Finally a two step procedure is suggested that

minimizes both bias and variance.

The paper is then concluded with a summation of the
findings and a list of references.

III. DATA MODELS AND ASSUMPTIONS

Consider a general planar real array of mr isotropic antenna

elements. The array at this point may be linear, circular or
of any arbitrary configuration. Then introduce a spherical

coordinate system with azimuth f   measured counter-

clockwise from the x-axis and elevation q measured down-

wards from the z-axis.

Let the incoming signals be described by the d x N vector

function s[t] where d is the number of signals and t=tn,
1£n£N are the time samples (snapshots). We will assume a

Gaussian distributed signal model and the usual noise
properties of being both temporally and spatially white.

 With * denoting Hermitian transpose, the correlation bet-
ween the d incoming signals is described by the d x d co-

variance  matrix

   S s s= ◊{ }E t t( ) ( )*                          . . .     (3.1)

The array output becomes an mr x N vector function x(t)

   x A s n( ) ( ) ( ) ( )t t tr= ◊ +q         . . .   (3.2)

where the columns2 of the mr x d matrix Ar(qqqq) transform

                                                  
1 The "true" directions may f. ex. be a set of calibrated directions

from the impinging signals s(t) to the array output x(t), and

n(t) is the noise contribution from the mr receiver channels.
The p interesting signal parameters (azimuth and elevation)

are collected in the parameter matrix qqqq of dimension p x d.

To distinguish the real array from the virtual, we will

denote the former A r as in (3.2) and the latter Av. The

symbols q̂q, f̂  and q̂  will be used in the sequel for

estimates of the parameter matrix qqqq , azimuth f  and

elevation q respectively.

A. Decomposition into subspaces

For the subspace based DOA estimation methods
considered herein, the array output covariance matrix R is

important:

  R x x A S A I= ◊{ } = ◊ ◊ +E t t( ) ( ) ( ) ( )* *qq qq s2   . . .    (3.3)

It is normally estimated from the array output data by

   ˆ ( ) ( )*R x x= ◊
=

Â1

1N
t tn n

n

N

                        . . .       (3.4)

The estimated signal- and noise subspaces of R, Ês and

Ên  respectively, are formed by the eigenvalue

decomposition

  ˆ ˆ ˆ ˆ ˆ ˆ ˆR E E E E= +* *
s s n nLL LLs n   . . .   (3.5)

B. Problem formulation

Although the underlying application is mapping from a
circular array onto a uniform linear array, the argument and

derivations will be of a general nature. We will regard the

ULA3 and the associated ULA DOA4 estimator as one
entity, separated from the mapping operation. Hence all

estimator cost functions as well as derivatives and gradients
thereof will refer to the ULA and its ULA estimator, and be

independent of any pre-processing.

The above mentioned mapping errors will be regarded as

errors in the (virtual) field that impinges on the ULA and

parameterized as corresponding errors Des in the eigen-

                                                                                    
2 Often denoted steering- or response vectors. The set of all such vectors
within the parameter range of interest  will be called the array manifold.
3 Uniform Linear Array
4 Direction Of Arrival
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vectors es of the signal subspace of the ULA output

covariance matrix.

This view will simplify the analysis. The problem of best
mapping matrix design can now be formulated as a best

transformation on the errors Des . We can either minimize

them, or rotate them into directions where they cause the
least DOA errors, or both.

IV. ARRAY TRANSFORMATIONS

In a practical application it is the output vector xr(t) of the
real array that is mapped onto the corresponding output

vector xv(t) of the virtual array, but from (3.2) this is

equivalent to performing the same mapping between the
two linear spaces spanned by the vectors in the manifolds

Ar and Av.

The usual, but as we shall see not optimal way, is to design
the transformation matrix T for a least square fit between

these two spaces over a certain sector

  T T A A
T

opt r
c

v
c

F

* *= ◊ -
*

arg min ( ) ( )( ) ( )qq qq
2

   . . .  (4.1)

where F denotes the Frobenius norm.  The set of di-

rections  qqqq(c) is normally chosen relatively dense compared to

the beamwidth of the real array. If A r is not known

analytically, qqqq(c) can preferably be a set of calibrated

directions, hence the superscript (c).

Using the pseudo-inverse A A AA† ( )= * * -1 the solution to

(4.1) becomes T A Aopt v
c

r
c* = ◊( ) ( )( ) ( ) †qq qq , a matrix that in

a least square sense minimizes the mapping errors.

One important prerequisite is that the manifold of the real
array does not contain full ambiguities since lack of rank in

A r ( )qq  cannot be restored by the transformation. The virtual

array can of course always be configured optimally. Since it

is virtual it can preferably be a l/2 spaced ULA at all

frequencies and always be oriented perpendicular to the

bisector of  the chosen calibration sector.

If the minimum in (4.1) is zero, and T is full rank, the

mapping is perfect at the calibrated points qqqq(c) and leaves no

bias there, and between these (dense) directions the errors
will be negligible. However, for mapping between

dissimilar or wide spaced arrays over large sectors, perfect
match will seldom be the case. In general the mapping will

then cause additional DOA estimate bias. If the condition of

T is poor DOA estimate variance increase may also occur.
Minimizing the latter comprises the main scope of the

present report.

A. Bias vs. variance

In many cases bias can dominate over variance. Factors that

increase mapping bias are f. ex, dissimilarity between the

two arrays, element separation much in excess of l/2,

matching the two arrays over a wide sector, a. s. o.

Figure 4.1 shows such an example. An 8 element 4l spaced

uniform circular array, UCA, is mapped according to (4.1)

onto an 8 element l/2 spaced uniform linear array, ULA,

over a 300
 wide sector. The true DOA is -20 and the

statistics of 400 root- MUSIC estimates at SNR:s 10, 15,

20, 25, 30, 35 and 40 dB are displayed. The boxes have

lines at the lower quartile, median, and upper quartile
values. The whiskers show the extent of the rest of the data.

Outliers are also marked.

1 2 3 4 5 6 7 8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

Boxplot for estimates at Az=-2 deg. Pure manifold match

V
al

ue
s

SNR values from 5 to 40 dB

Figure 4.1: The statistics of 400 root MUSIC

estimates when an 8 element 4l  spaced UCA is

mapped onto an 8 element l/2 spaced ULA across a

300 wide sector. True DOA is -20 and bias is evident.

The boxes at SNR 10, 15, 20, 25, 30, 35 and 40 dB

mark the upper and lower quartile of the DOA

estimates. Here bias is the dominating source of error.

To avoid estimator bias caused by coloured noise, the

signal subspace was estimated from non-mapped data and

thereafter mapped by Topt
* . The noise subspace needed for

MUSIC was then constructed from the corresponding mr-d

smallest singular values. This precaution is necessary

because Topt
*  will in general not be unitary.

In the figure 4.1 case it is clear that for all SNR:s bias

dominates over variance. Bias as function of azimuth when
the emitter moves across the sector is shown in figure 6.1.
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V. A THEORY FOR THE REMOVAL

      OF MAPPING BIAS

In this section we will derive general principles that govern
the magnitude of DOA mapping bias. The result is achieved

by giving a geometrical interpretation to the error terms in a
Taylor expansion of the DOA estimator cost function. The

condition for zero bias is condensed into the orthogonality

criterion (5.6) and verified in Section 6 by simulations.

A. The character of mapping bias

It is obvious that in directions where the residual of (4.1) is

zero the mapped manifold equals the virtual and no DOA
bias due to the mapping will occur. This is the case where

   DA T A A 0( ) ( ) ( )q q q= - =*
r v                           . . .   (5.1)

Due to the deterministic nature of the problem, for given

manifolds, DOA estimator and T, the difference DA(qqqq)

contains enough information to calculate the angular bias

that results. In principle the bias therefore can be pre-

calculated for each qqqq  and stored in a look-up table.

A relevant UCA-ULA example is shown in figure 5.1. The

arrays have 8 elements separated 2l and l/2 respectively.

-20 -15 -10 -5 0 5 10 15 20
-40

-30

-20

-10

0

10

20

30

40

Calibration sector off-set (deg)

A
zi

m
ut

ha
l b

ia
s

GWSF: DOA bias as function of calibration sector off-set

Left emitter
Right emitter

UCA  to  ULA  MAPPING
Two fixed emitters
Moving calibration sector

MAPPING DATA:
Matched sector (deg): +/- 15
Calib. point sep. (deg): 3
Number of calib. points: 11
Normed residual (dB):  -8

ARRAY DATA, UCA: 
Number of elements: 8
Element sep./lambda: 2
Array radius/lambda: 2.5465
p

rand
: 25 %

ARRAY DATA, ULA: 
Number of elements: 8
Element sep./lambda: 0.5

SCENARIO DATA: 
Emitter Az: -2 and 2 (deg)
SNR = 20 dB;  N =100

Figure 5.1: UCA-ULA mapping bias when two

emitters spaced 100 move across and somewhat

outside the +/- 150 wide mapping sector. As seen bias

for both emitters increases sharply as soon as one

falls outside the calibrated sector.

A calibration sector of +/- 150 is used and T is calculated

according to eq. (4.1) using a 10 spaced grid of calibration
directions. Each point is based on 100 GWSF5 runs.

                                                  
5 Generalized Weighted Subspace Fitting. See Jansson et. al. [10]

The bias originates in the rather dissimilar array shapes and

is magnified by the 2l element spacing of the UCA. At

lower frequencies the bias would be acceptable in many
applications, it is the possibility to extend the bandwidth

and use wide-spaced array configurations for better
resolution that motivates the development of bias removal

techniques.

As seen there is also interaction between the two DOA

estimates. Compare with figure 6.1 where only one emitter
moves across the sector.

B. The gradient with respect to complex vectors

In the analysis below we will need gradients of real scalar

functions with respect to complex vectors. We will use the

following convention introduced by Brandwood [11]:

Let J(e) be a scalar function of the complex vector e  and its
conjugate. Furthermore, let ek be the k:th component of e
and let xk and yk be the real and imaginary part of ek,

respectively. Then the k:th component of the gradient
vector is defined as

  —[ ] = ∂
∂

- ∂
∂

Ê
ËÁ

ˆ
¯̃e k

k k

J
J

x
j

J

y
( )

( ) ( )
e

e e1

2
   . . .   (5.2)

With this convention, the differential of J(e ) will be

dJ J de
T

( ) Re ( )e e e= —[ ]{ }2 . For the special case of

relevance6 here, J(e)=e*R e, where R is any Hermitian
matrix independent of e , we get — =e J( )e Re  and

dJ dT( ) Ree e R e= { }2

C. An analytical description of mapping bias

For all DOA estimators  that use a scalar cost function

V(qqqq), the maxima or minima of which correspond to the

searched directions, the bias situation can be illustrated as

in figure 5.2. The variance of the estimates is determined by
the curvature ("sharpness") of the cost function, i. e. the

slope in the derivative in figure 5.2. This "sharpness" is a
feature that is described by the second derivatives and, in

zero bias cases, lower bounded by the CRB.

The bias Dq is described by the off-set in the position of the

maximum., or the zero of the (first) derivative in figure 5.2.

                                                  
6 Many subspace based DOA estimator cost functions have this structure
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Figure 5.2: A linear approximation of the cost

function derivative is sufficient to catch the bias, that

is the horizontal displacement Dq .

For a general, enough differentiable cost function V(qqqq) the

maxima or minima occur where the derivatives with respect

to the searched parameter qi equal zero. Analysing the zeros

of the derivatives of V(qqqq ) rather than its extremes is

equivalent. This entity will henceforth be denoted ˙ ( )V qq  and

the corresponding second derivatives ˙̇ ( )V qq .

In the sequel we will analyse one DOA error at a time, then
˙ ( )V qq  and ˙̇ ( )V qq  are scalars and since they also depend on

the (complex) vectors in the signal subspace we will use the
notation ˙ ( , )V sq E  and ˙̇ ( , )V sq E  respectively.

For scalar DOA errors Dq, a first order Taylor expansion of

˙ ( ˆ, ˆ )V sq E  around the true DOA  q and the vectors in the true

signal subspace Es  takes the form, Brandwood [11],

   

˙ ( ˆ, ˆ ) ˙ ( , ) ˙̇ ( , )

Re ( ˙ ( , ))

V V V

V rem

s s s

i s
T

i
i

d

q q q q

q

E E E

E ee

= + ◊ +

+ —{ } +
=

Â

D

D

K

K 2
1

 . . .    (5.3)

where — ei  is the complex gradient along vector ei  in the

signal subspace Es. and De i are the signal eigenvector

mapping errors. The remainder term ‘rem’ is at least

quadratic in D q  and DEs and can be neglected if ˙ ( )V qq
behaves “well” and the amount of bias Dq is limited.

We now observe that ˆ ˆq and sE  are estimated at the

extremes of the cost function, i. e. where the scalar entities
˙ ( ˆ, ˆ )V sq E  and  ˙ ( , )V sq E  both equal zero. Hence, using (5.3)

we can express the modulus of the bias Dq as

D Dq q q£ [ ] ◊ —{ }-

=
Â˙̇ ( , ) Re ( ˙ ( , ))V Vs i s

T
i

i

d
E E ee

1

1
2      (5.4)

an entity that we want to minimise. The leading Hessian
inverse is difficult to manipulate but the second term with

the gradients and the signal eigenvector mapping errors
offers a possibility that now will be exploited.

Inside the Re operator each term can be interpreted as the
inner product between the conjugate of the gradient of V̇

along the i:th signal eigenvector, and the mapping error in
that particular signal eigenvector. This geometrical

interpretation will now be used to form a criterion that

errors of all kinds must fulfil in order not to result in
systematic DOA errors, i. e. bias.

C. A criterion for zero mapping bias

In view of the structure of (5.4) we conclude that a

sufficient condition for zero bias  is

     g e
( )

, , ..,
i

i i d^ Œ{ }D 1   . . .   (5.5)

where  g Ee
( ) ˙ ( , )
i

MU si
V= —

D
q .

This means that in a given mapping scenario, for each
signal eigenvector of R the mapping matrix T should have

the property to leave signal eigenvector mapping errors that
are orthogonal to the conjugate of the gradient of the cost

function V̇  in that particular signal eigenvector direction.
Where this is the case, the mapping errors do not effect the

cost function and hence do not cause bias. This holds for all

errors Dei that are small enough for the Taylor expansion

(5.3) to be valid.

For a full rank signal covariance matrix and high SNR, at
each true DOA we have for the two ranges ¬ :

   ¬{ } = ¬{ }*T A Er s
ˆ   . . .   (5.6)

and likewise for the virtual array ¬{ } = ¬{ }A Ev s . In

addition, at each true (bias free) DOA g E( ) ( )i
s
i^ . Hence, if

we design T so that ¬{ } = ¬{ }*T A Ar
i

v
i( ) ( ) , the mapping

error DA( )( )q i  can be used in stead of Dei  in (5.5). This is

because the error vectors DA( )( )q i  and Dei  then become

parallel.

We can now reformulate the condition (5.5) into the

following more useful requirement:

-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Derivative of a typical criterion function

Direction of arrival

D
Dq
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  DA g( ) , , ,( ) ( )q i i
cali N^ " = 1 K                 . . .    (5.7)

Generally if DAπ0, by maintaining the orthogonalities (5.7)

in some directions, bias can be made arbitrarily small in

those directions.

Condition (5.7) holds for all types of errors, not only

mapping errors. It will now be used across large sectors
where Ncal > mr and a least square compromise for T has to

be found. This case is of interest in signal surveillance such

as the SESAM application where the DOAs initially are
completely unknown and we need to combine omni-

dirctionality (the circular real array) with processing speed
(the ULA based root estimators).

D. A design of T for minimum bias

At each of the Ncal calibration directions in the sector the
response vector matrix mapping error is

   DA T A A( ) ( ) ( )( ) ( ) ( )qq qq qqi
opt r

i
v

i= -*                    . . .   (5.8)

where i=1,..., Ncal. Since bias is created by the part of

DA( )( )qq i that falls within ¬{ }g( )q  an optimal transfor-

mation matrix T should minimize the real part of all Ncal

scalar products g A( ) ( )( ) ( )q i i◊D qq  across the sector.

Taking this into account and introducing the weighting
constant k, 0£k£1, the following cost function for the

design of T is proposed

  

T T A A

T A A

T

g g

opt
k

r v F

i T
r

i i T
v

i

Fi

N

k

k
cal

* *

*

=

= - ◊ - +{
+ ◊ -{ } ¸

˝
Ǫ̂

*

◊Â

arg min ( ) ( ) ( ) ...

Re ( ) ( )

,

( ) ( ) ( ) ( )

1
2

2

1

q q

q q
     (5.9)

It consists of the original manifold matching expression in

(4.1) plus one penalty term for each calibration direction.

The latter terms penalize non-orthogonalities in (5.6) to an
amount proportional to k.

At this point the weighting constant k is unknown. Its

optimum value depends on the two array manifolds, the
SNR and other parameters in the scenario. Initially it

therefore has to be chosen empirically, see figure 6.3.

The minimization problem (5.9) can be solved in many

ways. One approach is to apply the vec operator to both
terms inside each Frobenius norm and solve for a

vectorized version t of  Topt
* . Then we first reverse order

between terms in (5.9) by taking Hermitian transpose

  

T A T I A

A T A

T

g g

opt r v F

r
i i

v
i i

i

Ncal

k

k

*
*

* *

* *

=

= -{ ◊ ◊ -

+ ◊ ◊ ◊ -{ } ¸
˝
Ô
Ǫ̂

Â

arg min ( ) ( ) ( )

Re ( ) ( )( ) ( ) ( ) ( )

1
2

2

1

q q

q q
    (5.10)

and thereafter apply the vec operator to get

T I A T A

A T A

T

g g

opt r v F

i
r

i
v

i i

i

Ncal

k vec vec

k vec vec

*
*

* *

* * *

=

= -{ ƒ - +

+ ◊ -{ } ¸
˝
Ô
Ǫ̂

ƒÂ

arg min ( ) ( ) ( ) ( ( ))

Re ( ) ( ) ( ( )( ) ( ) ( ) ( ) )

1
2

2

1

q q

q q

                                     . . .   (5.11)

In (5.11) we have used that for any matrices A, B and C,

   vec vecT( ) ( )ABC C A B= ƒ                             . . .   (5.12)

where ƒ is the Kronecker product. The first norm in (5.9)
contains a term of dimension mvNcal x 1, whereas all the

penalty terms have dimension mv x 1.

Introducing the short hand notation

   M I A1 1= - ◊ ƒ *k r ( )q                               . . .   (5.13)

of size mvNcal x mv mr,

   m A2 1= - ◊ *k vec v( ( ))q                               . . .   (5.14)

of size mvNcal x 1,

  M Ag3
( ) ( ) ( )( )i i

r
ik= ◊ * *ƒ q                              . . .   (5.15)

of size 1 x mv mr, and finally

  m A g4
( ) * ( ) ( )( ( ) )i

v
i ik vec= ◊ q                            . . .   (5.16)

of size 1 x 1, we get from (5.11) by stacking terms
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            (5.17)

Using the further short hand notation

   T M t m
T

opt
*

*
= ◊ -arg min 2  . . .   (5.18)

for (5.17), with obvious definitions for M, t and m , the
searched transformation matrix is obtained from the least

square solution

   t
T

T
M m=

{ }
{ }

È

Î
Í

˘

˚
˙ = ◊

vec

vec

(Re )

(Im )
†                                . . .   (5.19)

It involves calculating the Moore-Penrose pseudoinverse of
a large (full rank) matrix of size (2mv +1)Ncal x 2mvmr. If, as

a typical example, mv=mr=8 and Ncal=15, the size of the

matrix is 255 x 128.

This size will not slow down real time operation of a DF7

system however, since all mapping matrices, one for each

sector, can be calculated in advance in conjunction with a
calibration process.

Note that in the above derivation of the expression (5.10)
no restrictions on the cost function V were made other than

the existence of the necessary derivatives. Hence we
conclude (5.10) to be applicable for all DOA estimators that

are based on cost functions of this class.

Also note that if the virtual array in combination with the

used DOA estimator is exactly bias free, then
A gv

i i i* = "( ) ,( ) ( )q 0 and (5.10) can be somewhat

simplified. Since this is the usual case8 we see that we

                                                  
7 Direction Finding
8  This generally presumes that finite sampling effects are negligible, see
Xu & Buckley [2] for reference.

cannot allow k=1 for then T=0 would be an obvious, but

not wanted, solution to (5.10).

Finally, if the antenna elements are modeled through their
phase lags only and k is close to 1, then the degrees of
freedom in the two spaces that Topt

*  shall match are few.

Simulations show that in such cases we can drop the Re
operator in (5.10). This appreciably reduces the size of the

equation system that solves (5.9) and may therefore be

preferable.

 Despite the fact that we now require T to minimize both

the real and imaginary parts of the scalar products

g T A( ) ( )( )i T
r

i◊ * q , a sufficiently good solution will be

found anyway. This will also robustify the propsed
algorithm in that it becomes insensitive to unintentional
rotation of the (complex) numbers g T A( ) ( )( )i T

r
i◊ * q  in the

complex plane.

Such unintentional rotations can be caused by f. ex. the
omitted rest terms in the Taylor expansion (5.2). These rest

terms become important when the linear term is reduced

imposing the orthogonality criterion (5.5).

E. The weighting constant k

The scalar product between the manifold mapping error DA

and the gradient g , a product the real part of which we

want to minimize, can be made small via two mechanisms:

( i)  Orthogonality between the two involved      
vectors

(ii)    Small length for at least one involved vector

The sum term in (5.10) secures (i) and the manifold

matching term (ii). The weighting constant k thus provides
a possibility to find a suitable mix between (i) and (ii).

To illustrate the problem of picking the optimal k we
consider the calibration process (which is carried out
against one emitter at a time). Then both the gradient g  and

the mapping error DA are mr x 1 vectors, see figure 5.3 for

a 2D illustration.

From figure 5.3 we conclude that using a k-value near 1,
which puts less emphasis on minimizing the length of the

manifold mapping error DA, requires good accuracy in the

orthogonality if bias is to be kept down.
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gradient   

DA2  kª0

DA1  kª1

ª  bias

Figure 5.3: For a given acceptable bias (scalar

product between  g , and DA), the larger the k, the

less control over the size of the mapping error DA but

the more perfect an orthogonality we enforce. Above

DA1 corresponds to a large k and DA2 to a small one.

As a consequence, the higher k-value we want to use, the
better SNR we need. For the extreme case where k=1, i. e.

all requirements on manifold match are dropped, we can

expect running into numerical problems, especially if a
bias-free DOA estimator is used so that |T] approaches

zero. On the other extreme, i. e. k=0, we can only achieve

zero bias where the manifold mapping is perfect, DA=0. For

dissimilar arrays this generally requires the DOA to be

known.

If the two arrays are dissimilar, f. ex. UCA-ULA mapping

and we want to design a T for a finite sector, both extremes
will be sub-optimal and the best k is somewhere in

between. See figure 6.3 for an illustrative example.

VI. VERIFYING SIMULATIONS

A. Root-MUSIC and UCA-ULA mapping

In the usual MUSIC power spectrum

   PMU
n n

=
*

* *
a a

a E E a

( ) ( )

( ) ( )

qq qq
qq qq

   . . .  (6.1)

the null spectrum in the denominator

 
VMU s

n n s s

( , ˆ ) ˆ ...

( ) ( ) ( ) ( ) ( )

qq

qq qq qq qq

E

a E E a a I E E a

=

= = -* * * *
         . . .   (6.2)

can be used as the cost function. We can equivalently study
the off-set in the zeros of its derivative, see (5.3),

and therefore form the new cost function, Brandwood [11]

 ˙ ( , ˆ ) ˆ
( , ˆ )

Re ( )( ) ˙( )V
V

MU s
MU s

s sq q
q

q qE
E

a I E E a= ∂
∂

= -{ }* *2

                                                                                . . .   (6.3)

The derivative in the second term of the Taylor expansion

(5.4) becomes

  ˙̇ ( , ) ˙ ( ) ( ) ˙( )VMU s s sq q qE a I E E a= ◊ - ◊* *2               . . .   (6.4)

where ȧ*  denotes the Hermitian transpose of the derivative

of a  with respect to q . Furthermore the gradient of
˙ ( , )VMU sq E  with respect to the eigenvector ei  becomes

 — = - -* *
e E a e a a e a

i MU s i iV̇ ( , ) ˙ ( ) ( ) ( ) ˙( )q q q q q      . . .   (6.5)

Hence, for MUSIC the zero bias condition (5.8) is the real

part of the orthogonality relation

   
g E

a e a a e a e

e
( )

( ) ( ) ( ) ( )

ˆ ˙ ( , )

˙ ( ) ( ) ( ) ˙( ) , ( , )

_________________
i

i i i i

i
V

i N

MU s

i i i cal

= — =

+ ^ Œ* *

q

q q q q D 1

  . . .   (6.6)

In the simulations to follow a single emitter that sweeps a
300 wide calibration sector was used. The sector has 15

equispaced calibrated directions and it is assumed that

calibration is performed against one emitter at a time. The
15 calibration response vectors are used in the calculation

of T according to (5.10), and, for reference, also (4.1).

The number of snapshots was 100 and SNR per array
element rather high to highlight mapping effects. Bias

values are generated as the difference between the true

directions and estimates from the mapped data. Each such
estimate uses 400 standard root-MUSIC Monte Carlo runs.

In figures 6.1-6.2 the real array is an 8 element UCA spaced

at 4l i. e. well in excess of the usual l/2 limit. It thus

possesses slight, but due to the circular shape, not full
ambiguities and is therefore also more prone to generating

bias. The virtual array is an 8 element ULA spaced at l/2

and oriented perpendicular to the bisector of the calibration

sector.
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Figure 6.1: At k=0.99 maximum bias is reduced 50-

100 times by the proposed design of the trans-

formation matrix as compared to the pure manifold

matching design. See fig. 6.2 for a magnified version.
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Figure 6.2. The scenario as in figure 6.1 but magnified to

highlight the small bias that results from the proposed

algorithm (5.9). The bias reduction is ueful even at SNR =

10 dB.

B. The weighting constant k

Influence on the mapping bias of the weighting constant k

is illustrated in figure 6.3 for 8 to 8 element UCA-ULA

mapping. The UCA is spaced 4l and the ULA l/2. The

figure shows the r.m.s. of all the bias values inside the

calibration sector for 0£k£1 with the parameter values SNR

10 and 40 dB.

Again it is seen that only at the highest SNR is it possible to
stress the orthogonality condition (5.6) to the extreme by

picking a k near 1. However, if we refrain from this the
value of k is not critical. This shows a certain amount of

robustness for the proposed bias reduction mapping

algorithm.
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Figure 6.3: R.m.s. of the all the mapped DOA bias

values inside a 300 wide sector as function of the

weighting constant k with SNR as parameter. The

reference line corresponds to pure manifold match,

i. e. k=0.

VII. MINIMIZING BOTH BIAS AND VARIANCE

The  total mean square DOA errors (mse) consists of both

bias and variance so a natural boundary condition on any

bias reduction method is that it must not increase variance
to an extent where the total mse increases.

Andersson [3] has given the following two conditions for

the DOA estimate variance to attain its Cramér-Rao Bound,

CRB, under mapping

PP qq qq
T

A A
opt
* =( ) ( )0 0                             . . .   (7.1)

PP PP qq PP qq
T A AD D

opt r r r*
^ ^=( ) ( )0 0   . . .   (7.2)

where the response vector derivatives

     D
a a= ∂
∂

∂
∂

È

Î

Í
Í

˘

˚

˙
˙= =

( )
, ,

( )
( ) ( )

q
q

q
qq q q q0

1
0

K
Ncal

       . . .   (7.3)

In (7.1) and (7.2) the projector on the range space of Topt  is
P

T
T T T T

opt
opt opt opt opt* = * - *( ) 1  and the above condition essen-

tially says that the mapping matrix T must retain all the
dimensions needed for Ar  and its derivatives D. Otherwise

the Cramér-Rao limit for the unmapped DOA estimate

variance will not be attained.
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A. The condition of the mapping matrix

A general problem with sector mapping is the condition of
the mapping matrix. The response vectors from the

different calibration directions will often get linearly
dependent, see figure 7.1

Uniform circular array
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  20
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30

210

60

240

90

270

120

300

150

330

180 0

UCA with 8  elements separated 4 lambda

Figure 7.1.With 4 wavelengths of UCA element

separation a 45o sector can barely encompass m

linearly independent response vectors. m is the

number of antenna elements.

If these vectors are used to calculate the mapping matrix,
said matrix will be of poor condition and the estimated

DOAs will suffer added variance. With 4 wavelengths of
UCA element separation a 45 deg sector can barely

encompass m linear independent response vectors. m is the
number of antenna elements.

The maximum number Nrv of (sufficiently) independent
response vectors inside a certain sector of width  Sw can be

approximated by Sw/Bw where Bw  is  the array beamwidth.
To solve the equation system (5.18) we should have Nrv≥m,

were m is the number of array elements. Strict inequality is
to prefer since it leads to a numerically more robust least

square solution for the best mapping matrix.

Taking a uniform l/2 spaced circular array UCA as an

example we roughly have

  B m
mw = =l l

p
p

/ ( )
2

1 2
. . .    (7.4)

The above unequality Nrv≥m  then becomes

   N S B S
m

mrv w w w= = ≥/ / ( )
2p

. . .   (7.5)

which yields S mw ≥ "2p ( !). Since this is impossibly

wide for a good circular to linear match we must increase

the element spacing. In Hyberg [1] it is shown that up to 4l

is quite feasible for an UCA, and this would yield

Bw=p/(4m) and Sw≥p/4 respectively.

This situation is plotted in figure 7.1 and is numerically
much easier to handle. As a compromise between linear

dependence and mapping errors a sector width of 300 can be
used.

Hence we see that sector mapping always has to be
performed with some linear dependence among the used

calibration steering vectors. This leads to increased
variance and is a general drawback for the UCA-ULA

mapping approach.

The above problem motivates the development of

techniques to reduce this extra variance while at the same
time keeping bias small. This will be the scope of a future

companion report.

B. A multi-step procedure

If the array manifold matrix A r is ill conditioned the

calculated T will also get ill conditioned since this
calculation is based on Ar. This means that some of the m

dimensions are poorly spanned and the CRB retainment
condition (7.1) & (7.2) will not be fully met.

We can use dimension reduction and remove those
directions (eigenvectors) of T that correspond to the

smallest singular values, in order to improve the condition,
but this in principle requires knowledge of the true DOA.

Since the DOA is unknown we therefore have to use a
multi-step procedure involving successive sector width- and

dimension reduction (mv<mr):

( i)  Use a calibrated sector, f. ex. 3 00 wide and
algorithm (5.8) to get the preliminary DOAs.
Select one of these

(ii)  Shrink the sector around this DOA down to a
fraction  of the beamwidth

(iii) Reduce the number of elements in the virtual

array until T Topt opt
*  constructed through (5.8)

becomes full rank.

(iv)  Perform the mapping

(v) Use any efficient algorithm to estimate the DOA
from the mapped data
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Step (iii) means projecting away those dimensions in the
space spanned by T Topt opt

*  that correspond to the smallest

singular values, Andersson [3]. Thus the main dimensions
are retained and the requirements (7.1) and (7.2) met as

well as possible.

VIII. CONCLUSIONS

Antenna array mapping is a powerful tool in that it allows

fast DOA estimation algorithms usually requiring ULAs to
be used on any array shape. One attractive application is

signal reconnaissance where the need for omni-
directionality requires a circular array and the simultaneous

need for processing speed requires a linear. Finding an

optimal mapping procedure therefore is of great interest.

This work has shown that when mapping the output data
vector from one (real) array onto the output data vector of

another (virtual) array, the usual least square fitting of the
spaces spanned by the two sets of response vectors, is not

optimal. Apart from increased variance, bias will occur, a

bias that can dominate over variance, especially in broad
band applications when element spacing can be large

compared to l/2. It was also shown that such wide element

spacing is needed to avoid linear dependence among the
response vectors comprising a mapped sector.

It was found that this bias can be substantially reduced by

adding a sequence of penalty terms to the usual manifold

matching criterion. The decisive key property of the
improved criterion is that it takes orthogonality between the

gradients of the estimator cost function and the mapping
errors into account. A bias reduction factor of up to 100 or

more has been demonstrated in this report.

The role of these orthogonalities was unveiled using a

Taylor expansion of a general DOA estimation cost
function. Their importance is illustrated by a rather high

weighting factor for the penalty terms in an optimally
designed cost function for the transformation matrix.

The exact values of the optimal weighting factor k was
found not to be critical, indicating a robustness of the

proposed method. However, using a k near 1 requires a
rather high SNR.
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