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1 Introduction
Models for scattering and diffraction of electromagnetic waves from ran-
dom rough surfaces have developed during the last two centuries and the
scientific interest in the problem remains strong today. Advances in the
theory of physical optics, improved numerical methods and the availabil-
ity of high performance computers have resulted in major advances in re-
cent years. Areas of application include remote sensing, oceanography,
communications, computer graphics, optics and material science. Reliable
and flexible models for scattering of light in the ultraviolet (UV), visible
and infrared (IR) wavelengths are useful in signature management and in
development, optimization and assessment of camouflage.

An important parameter in simulation of the IR signature from objects
is the angle-resolved reflectance, usually expressed in terms of the bidirec-
tional reflectance distribution function (BRDF), for the surface materials
in the object. Some infrared scene (and target) simulation software used
in simulation of infrared signatures use a parametrized BRDF as input.
One of the main objectives of modelling scattering of light from rough
surfaces would be to calculate (predict) the BRDF from the surface hight
statistics (or the topography) and the material parameters of the rough sur-
face. These predicted BRDFs can then be used as input to IR scene/target
simulation software to evaluate the effect of surface topography on the IR
signature of an object. The rough surface scattering models can therefore
be used to study, and therefore also in some cases improve or optimize, the
influence of surface roughness on optical signatures. Although the appli-
cations we have in mind for the present survey of models are in the UV,
visible and IR wavelength bands, many of the models are also applicable
in for instance microwave theory (radar) and acoustics.

Models for scattering of electromagnetic waves from random rough
surfaces can roughly be categorized into analytical models, numerical sim-
ulation methods and combinations of numerical and analytical methods.
However, this division is by no means unambiguous since many of the
analytical models require numerical calculations and since some of the nu-
merical methods rely on analytical approximations. In this survey we will
consider all three categories but our main emphasis will be on the analyti-
cal methods. We will present four analytical methods in more detail: The
Kirchhoff Approximation Method, The Small Perturbation Method (SPM),
The Integral Equation Method (IEM) and The Small Slope Approximation
(SSA). The Kirchhoff method and the SPM represent early approaches to
scattering which are still much used and the latter two represent more mod-
ern approaches which have larger domains of validity. These methods have
been found to be amongst the most common in the literature and many of
the other methods found in the literature are based on or have much in
common with these approaches. In Section 2 we begin by giving a brief
presentation of the scattering problem and introduce some concepts and re-
sults from the theory of electromagnetic fields which are often used in the
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scattering models. In Section 3 we give a brief presentation of the usage
of the Kirchhoff’s approximation in surface scattering models. In Section
4 we will present the integral equation method and in Section 5 we give a
brief presentation of the small perturbation method. In Section 6 we give
a brief survey of the Small Slope Approximation. In Section 7 we will
list some other methods, including numerical methods, for scattering from
rough surfaces, without presenting any details. In Section 7 we will also
say a few words about volume scattering and scattering in multiple layer
systems. Finally, in Section 8 we will attempt to draw some conclusions
on how useful the different models are for applications in modelling of IR
(and visible) signatures and also give some suggestions for further evalua-
tion of the models.
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2 Some concepts from the theories
of electromagnetism and radiometry

In this section we will give a brief presentation of some concepts and re-
sults from the theories of electromagnetism, optics and statistical charac-
terization (description) of surfaces which are often used in models for scat-
tering of electromagnetic radiation from random rough surfaces. We will
also try to define the problem of scattering of light from rough surfaces
and give a definition of the bidirectional reflectance distribution function
(BRDF) and its relation to other quantities used to describe angle resolved
scattering.

2.1 Maxwell’s equations and the scalar ap-
proximation

We begin by presenting Maxwell’s equations and some other concepts and
results from the theory of electromagnetism.

Maxwell’s equations: The basic laws of classical (i.e. not quantum field
theory) electromagnetism are given by Maxwell’s equations [1] which
for linear isotropic media can be written:

∇× H − ε
∂E

∂t
= J, (1)

∇× E + µ
∂H

∂t
= 0, (2)

∇ · εE = ρ, (3)
∇ · µH = 0, (4)

where E is the electric vector, H is the magnetic vector, ε is di-
electric permittivity, µ is the magnetic permeability, J is the electric
current density and ρ is the charge density. Maxwell’s equations
together with boundary conditions give a boundary value problem
with a unique solution. In rough surface scattering, the surface en-
ters into the boundary conditions (see Eqs. (10)–(13)). Furthermore,
boundary conditions have to be supplied at infinity by specifying the
incident field and the scattered field at infinity. The incoming field
can be a plane wave or a directed beam and the scattered fields decay
with increasing distance from the surface.

Helmholtz equations: From Maxwell’s equations in Eqs. (1) and (2) and
the constitutive relations it is easy to show that the fields E and H
satisfy wave equations in the form of vector inhomogeneous Helmholtz
equations. If we assume a monochromatic field such that

9
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E(r, t) = exp(−iωt)E(r) the wave equation for the electric field
vector can be written:

∇×∇× E − k2E = iωµJ (5)

where the squared wave number k2 = ω2µε.

Plane, time-harmonic waves: Most analytical methods for scattering from
random rough surfaces assumes that the electromagnetic wave inci-
dent on the rough surface is a plane wave. We consider a monochro-
matic, linearly polarized, plane wave with electric field:

Ei(r) = p̂E0 exp[i(ki · r)] (6)

where ki = k̂ik, k = ω
√

εµ, p̂ is the unit polarization vector and E0

is the amplitude. Furthermore, the time dependence, which is of the
form exp(−iωt), is omitted in Eq. (6) as it will be in the following
equations.

Magnetic field: The magnetic field associated with the electric field is
given by:

Hi(r) = k̂i × (Ei)/η (7)

where η =
√

µ/ε is the wave impedance in the medium.

Poynting vector and irradiance: The Poynting vector associated with an
electromagnetic field, denoting power flow per unit area is given by:

S =
1

2
Re(E × H∗) =

| E |2
2η

k̂ (8)

Irradiance, I is defined as radiant power incident per unit area upon
a surface (units Watts per square meter). The irradiance on a surface
orthogonal to k̂i is therefore given by I =| S |=| E |2 /(2η).

Scalar approximation: Although the boundary value problem for Maxwell’s
equations often can be formulated quite easily, solving it (by for in-
stance numerical methods) is in many cases extremely difficult or
computationally expensive. Therefore, approximations and simpli-
fications are often introduced. A simplification that is sometimes
used in scattering problems is the use of a scalar wave-field U(r, t),
the spatial part of which (monochromatic field is assumed) satisfies
Helmholtz inhomogeneous equation [2]:

∇2U + k2U = −ρ, (9)
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The scalar wave function U which approximates the electric field de-
fines the irradiance, I ∝ |U(r)|2. The range of validity of the scalar
approximation is not obvious but, as is stated in [2], for problems
with no depolarization and no multiple interactions it is possible to
characterize the electric field by a scalar field. More information
about the validity of the scalar approximation can be found in [2]
and references therein.

2.2 Integral theorems and other results used
in scattering models

We will now present some (exact) results for electromagnetic fields which
are often used as a starting point in analytical models for scattering from
rough surfaces. These equations are approximated and simplified using
different methods and assumptions in the analytical methods for scattering
from rough surfaces. We will not show how the equations in this section
are derived but derivations can be found in the references.

Consider an electromagnetic field incident on a rough surface as shown
in Figure 1.

Figure 1: Scattering of electromagnetic field on surface separating two
media

11
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Boundary conditions: Across any surface interface, the electromagnetic
field should satisfy continuity conditions given by [1]:

n̂ × (E − E2) = 0 (10)
n̂ × (H − H2) = Js (11)
n̂ · (εE − ε2E2) = ρs (12)
n̂ · (µH − µ2H2) = 0 (13)

where n̂ is the unit normal to the rough surface (pointing into Region
1). The electric surface current density, Js, and the charge density, ρs

at the rough surface interface are zero unless the scattering surface
(or one of the media) is a perfect conductor (see e.g. [2]).

Huygen’s principle and the extinction theorem: Using the fact that the
fields satisfy Helmholtz wave equation, Eq. (5), it can be shown that
the fields in region 1, E and H, satisfy Huygen’s principle and the
extinction theorem [3]:

Ei(r) +

∫
ds′{iωµ1G(r, r′) · [n̂ × H(r′)] (14)

+∇× G(r, r′) · [n̂ × E(r′)]} =

{
E(r), z > f(x, y)
0, z < f(x, y)

where G is the dyadic Green function (to the vector Helmholtz equa-
tion) which is represented by

G(r, r′) =
1

4π

(
I +

∇∇
k2

)
G(r, r′) (15)

Here I is the unit dyadic and G is the Green function to Helmholtz
equation, represented by the outgoing spherical wave,

G(r, r′) =
eik|r−r′|

|r − r′| (16)

In the same way the fields in Region 2, E2 and H2, satisfy

−
∫

ds′{iωµ2G2(r, r
′) · [n̂ × H2(r

′)] (17)

+ ∇× G2(r, r
′) · [n̂ × E2(r

′)]} =

{
0, z > f(x, y)
E2(r), z < f(x, y)

12
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Scattered field: The scattered field, Es can be obtained from Eq. (14) [3]:

Es(r) =

∫
ds′{iωµ1G(r, r′) · [n̂ × H(r′)]

+ ∇× G(r, r′) · [n̂ × E(r′)]} (18)

If the observation point is in the far field region, the Green function
in Eq. (18) can be simplified and the scattered field can be written
[4]:

Es(r) =
ik

4πr
exp(ikr)(I − k̂sk̂s) (19)∫

[k̂s × (n̂ × E) + η(n̂ × H)] exp[−i(ks · r)]ds

where ks = k̂sk.

Green’s function on spectral form It is sometimes convenient to use a
spectral (plane wave) representation of the Green function in Eq. (16)
and its derivative [3, 5]:

G =
1

2π

∫
dudv

i√
k2 − u2 − v2

(20)

exp[iu(x − x′) + iv(y − y′) + i
√

k2 − u2 − v2 | z − z′ |]

∇′G =
1

2π

∫
dudv

x̂u + ŷv ± ẑ
√

k2 − u2 − v2

√
k2 − u2 − v2

(21)

exp[iu(x − x′) + iv(y − y′) + i
√

k2 − u2 − v2 | z − z′ |]

Using these equations, the dyadic greens function can also be given
in a spectral representation. The dyadic spectral Green function can
be found in [3].

Tangential surface fields: The tangential surface fields n̂×E and n̂×H
can be determined by using Eqs. (14) and (17) but we will also use
the following expressions given by Poggio and Miller [5, 6]:

n̂ × E = 2n̂ × Ei − 2

4π
n̂ ×

∫
[E ]ds′ (22)

and
n̂ × H = 2n̂ × Hi +

2

4π
n̂ ×

∫
[H]ds′ (23)

where

E = jkη(n̂′ × H′)G − (n̂′ × E′) ×∇′G − (n̂′ · E′)∇′G (24)

H =
jk

η
(n̂′ × E′)G + (n̂′ × H′) ×∇′G + (n̂′ · H′)∇′G (25)

13
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2.3 Rough surfaces and their characterization
Roughness is a measure of the topographic height variations on the surface
[7]. The roughness can arise from for instance polishing marks, machining
marks, marks left by rollers, dust or other particles. Rough surfaces can be
observed with microscopes such as electron microscopes, scanning probe
microscopes and confocal scanning optical microscopes (see [7] for more
information).

There are basically two categories of methods which are being used
to measure surface roughness. The roughness can either be determined
directly from surface profile measurements, or it can be calculated using
some theory which relates scattering measurements to surface roughness.
Here we will not enter more deeply into the different measurement meth-
ods for determining the surface roughness but a good general overview is
found in [7].

In some cases, such as comparisons with experimental measurements
for fixed, real surfaces, the scattered fields from deterministic rough sur-
faces are useful. However, in comparison with measurements the angular
resolution of the detector and the accuracy of surface topography used in
the simulation should be considered (see [7, 8]).

More commonly than considering a deterministic surface description,
one would like to obtain the stochastic scattering properties of an ensem-
ble of surfaces with a given statistical distribution. A random rough surface
can be characterized either by joint probability density functions (PDF) or
by the statistical moments (which are associated with the PDFs), or by a
combination of the two. For instance, a rough surface described by z =
f(x, y) with first-order PDF, p(z), and second-order PDF, pz1,z2(z1, z2),
where zi = z(xi, yi), i = (1, 2), has a mean (first order moment) given by
m = 〈z〉 =

∫ ∞
−∞ zp(z)dz and an autocovariance function (second order

moment) given by B = 〈(z1 − m)(z2 − m)〉 =
∫ ∞
−∞

∫ ∞
−∞(z1 − m)(z2 −

m)pz1,z2(z1, z2)dz1dz2. The autocovariance function is a measure of the
length scales over which the hight changes over the surface. The related
autocorrelation function is given by C = 〈z1z2〉, i.e. the autocovariance
function for zero mean. In general, to completely describe a rough surface,
the PDF of all orders or the statistical moments of all orders have to be
known but often the random rough surface is only characterized by a sur-
face height probability distribution and the surface hight autocovariance
function [7, 8]. For more information on random processes, see for in-
stance [9]. The Fourier transform of the autocovariance function is called
the Power Spectral Density Function (PSD) and it is often used due to its
occurrence in smooth surface models for angle resolved scattering [7].

The Gaussian distribution plays a central role in models for scattering
from random rough surfaces because it is encountered under a great num-
ber of different conditions and because Gaussian variates have the unique
property that the random process is entirely determined by the height prob-
ability distribution and the autocorrelation. All higher order correlations

14
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can be expressed in terms of the (second order) autocorrelation function
which simplifies modelling of the scattering process. A simple and often
used form for the autocorrelation is a Gaussian function but other forms
have also been studied [8].

We will here denote the surface root mean square (RMS) height (or
the standard deviation) by σ. If the surface is homogeneous and isotropic,
the autocorrelation function is of the form C(x − x′, y − y′) = C(ξ),
where ξ =

√‖(x − x′, y − y′)‖. The roughness spectrum at n’th power of
the autocorrelation function, W (n), which often enters in results for rough
surface scattering, is given by the Fourier transform

W (n)(u, v) = (1/2π)

∫
Cn(x′, y′)ej(ux′+vy′)dx′dy′ (26)

Some often used forms (see for instance [5]) of the autocorrelation
function is the Gaussian correlation function, the exponential correlation
function, combinations of the gaussian and exponential functions and the
so called 1.5-power correlation function. For all these, the roughness spec-
trum at n’th power can be evaluated analytically (see [5]). For instance, the
single parameter Gaussian correlation function (normalized to the surface
height variance), C(ξ) = exp(−ξ2/L2), has an n’th power roughness spec-
trum W (n)(K) = exp(−K2L2/(4n)), where L is the correlation length
of the surface, which monitors the typical distance between two different
bumps on the surface.

One more quantity sometimes used to characterize a random rough sur-
face is the RMS slope. The RMS slope is a measure of the mean slope of
the "bumps" on the rough surface. It’s obtained by taking the average of
the gradient of the surface height function and for an isotropic surface with
a stationary Gaussian height distribution it is given by [3]:

σs =
σ
√

2

L
(27)

In Figure 2 we illustrate the influence of RMS height and correlation
length on the surface profile for surfaces with Gaussian statistics.
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Figure 2: Examples of two one-dimensional, computer generated rough
surfaces with Gaussian statistics. The upper figure shows surface height
versus position on surface and the lower figure shows the rough surface
slope versus position on surface. Note that the surface with shorter cor-
relation length, L has higher rough surface slopes. These surfaces have
been generated using the freeware code in [10].

2.4 Angle resolved scattering, BRDF and bistatic
scattering coefficient

We consider a (polarized) electromagnetic wave, with electric vector Ei,
incident on a rough surface that varies about the (x, y)-plane, Π. The scat-
tering geometry is illustrated in Figure 3. The corrugation of the rough
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surface is given by the equation z = f(r⊥) where r⊥ = (x, y). We denote
the electromagnetic vector of the scattered field by Es.

Figure 3: Scattering geometry for an electromagnetic field incident on a
rough surface.

A special expression has become popular to present results from scat-
tering measurements. This quantity is the Bidirectional Reflectance Dis-
tribution Function (BRDF), f r, which has the unit [sr−1]. In radiometric
terms the BRDF is defined as the scattered surface radiance divided by
the incident surface irradiance. The BRDF is therefore given by (see for
instance [7] or [11]):

f r
qp(θi, φi, θs, φs) =

S

I
=

dP/A

Pi/A
· 1

dΩ cos θs

=
1

Pi

dP

dΩ cos θs

(28)

In this expression, dP is the light flux scattered into a solid angle dΩ, A
is the illuminated area on the sample, θs is the scattering angle and Pi is
the incident light flux on the surface. We have also added the indices p and
q to include polarization effects. Here p is the incident polarization and
q the scattered polarization, where p and q denote either vertical (v-pol or
s-pol) or horizontal polarization (h-pol or p-pol). In Eq. (28) there is also
a dependence on the wavelength, which is suppressed in the notation.

It should be noted that the BRDF in Eq. (28) is not enough to describe
scattering of electromagnetic waves with arbitrary polarization. For in-
stance it does not account for elliptic polarization. The general polarimet-
ric case is usually treated by introducing a 4 × 4 matrix called the Müller
matrix and 4-dimensional vector, called the Stokes vector with components
having the dimension of radiance. This general polarimetric formulation
is presented in for instance [5]. However, in measurements of angle re-
solved scattering, in the IR, visible and UV regions of the electromagnetic
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spectrum, it is usually the BRDF in Eq. (28) that is measured. To simulate
these experiments it is therefore enough to have a model for Eq. (28).

The BRDF is usually assumed to be reciprocal for linear and isotropic
media. This means that the BRDF is unchanged if the roles of scattering
and incident angles, and the incident polarization and the scattered polar-
ization, f r

qp(θi, φi, θs, φs) = f r
pq(θs, φs, θi, φi) are interchanged. A discus-

sion of the reciprocity of BRDF can be found in [12].
An analogous description to the BRDF for reflected light can be ap-

plied to transmitted light and in this case the commonly used quantity
is called Bidirectional Transmittance Distribution Function (BTDF). To
describe the combined result from angle dependent transmittance and re-
flectance measurements the quantity Bidirectional Scattering Distribution
Function (BSDF) is often used. The BSDF is just a combination of the
BRDF and the BTDF. For more information on BSDF and BTDF see [7]
and references therein.

A quantity, closely related to BRDF (and BTDF and BSDF), which
is often used in models and measurements of scattering in the microwave
region is the Bistatic Scattering Coefficient, σ0. The bistatic scattering co-
efficient is defined [5] as the (statistically averaged) scattered irradiance
to the average incident irradiance over the surface of a sphere with ra-
dius r, where r is the distance from the scattering point to the receiver.
Since the irradiance, I is related to the amplitude of the electric field by
I = 1

2
ε0c | E |2, the bistatic scattering coefficient can be expressed as

σ0 =
〈| Es |2〉

A | Ei |2 /(4πr2)
(29)

where r is the distance to the receiver.
By comparing Eq. (28) and Eq. (29) we see that the BRDF and the

bistatic sacttering coefficeint, σ0 are related by f r = σ0/(4π cos θs cos θi).
In deriving this relation we make use of the realtions dP = dAI s, Pi =
A cos θiI

i and dΩ = dA/r2.
An important special case of the BRDF is the case where the surface

is completely smooth. In this case we only have reflection in the specular
direction and the BRDF takes the form [11]:

f r(θi, φi, θs, φs) =
δ(θs − θi)δ(φs − φi)

2π sin θs

1

2
(Rh + Rv)

where Rh and Rv are the Fresnel reflection coefficients for horizontally
and vertically polarized waves, respectively:

Rv =
n2 cos θi − n1

µ1

µ2
cos θt

n2 cos θi + n1
µ1

µ2
cos θt

(30)

Rh =
n1 cos θi − n2

µ1

µ2
cos θt

n1 cos θi + n2
µ1

µ2
cos θt

(31)
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Here n1 and n2 are the indices of refraction in medium 1 and 2, respec-
tively. The index of refraction is given by n =

√
(εµ)/(ε0µ0) where ε

is the electric permittivity in the surface medium and the medium, µ is the
magnetic permeability in the medium and ε0 and µ0 are the vacuum permit-
tivity and permeability. Furthermore, the transmission angle, θt, is related
to the incident angle, θi by Snell’s law: n1 sin θi = n2 sin θt.

2.5 Relation between BRDF and emissivity
A quantity of great importance in radiometry and optical signatures is the
emissivity, ep of a surface. The emissivity of an object can be defined
as the ratio of its emitted radiance to the radiance of a blackbody at the
same temperature [5]. The emissivity is related to the bistatic scattering
coefficient and the BRDF through (see for instance [5])

ep(θ, φ) = 1 − 1

4π

∫ 2π

0

∫ π/2

0

(σ0
pp(θ

′, φ′; θ, φ)

+ σ0
qp(θ

′, φ′; θ, φ))
sin θ′

cos θ
dθ′dφ′ = (32)

= 1 −
∫ 2π

0

∫ π/2

0

(f r
pp + f r

qp)(θ
′, φ′; θ, φ) sin θ′dθ′dφ′

As was the case for BRDF we have suppressed the dependence on wave-
length in this equation. The emissivity for unpolarized light, e is easily
obtained from the polarized emissivities through e = (ev + eh)/2 (see e.g.
[13]).
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3 The Kirchhoff approximation
In this section we shall consider the Kirchhoff (also sometimes referred to
as the tangent plane approximation) approach to light scattering by rough
surfaces, which was one of the first methods applied to rough surface scat-
tering. We will consider surfaces with random surface profiles (i.e. not
periodic surfaces) and within the context of the vector theory (i.e. not the
scalar approximation as in Eq. (9), we will discuss the Kirchhoff approx-
imation. We will here consider the case of scattering from 2-dimensional
dielectric surfaces. We will present results for the case of a surface which
can be characterized as a Gaussian random process but we will also men-
tion works for non-Gaussian surfaces. We will also mention some exten-
sions of the Kirchhoff approximation and in the text give references to
further reading about the Kirchhoff’s approach. The reference list is by
no means complete, since the literature on the Kirchhoff approximation is
vast.

A more thorough introduction to Kirchoff’s approximation in diffrac-
tion theory can be found in [1] and good presentations of Kirchoff’s method
in scattering from rough surfaces can be found in for instance [2, 3, 4, 5].

3.1 Formulation of the scattering problem
The geometry of the scattering problem we consider is shown in Figure 3.
We consider a monochromatic, linearly polarized, plane wave with electric
and magnetic fields:

E(i)(r) = p̂E0 exp[−j(ki · r)] (33)

H(i)(r) = k̂i × (p̂Ei)/η (34)

where ki = k̂ik, k = ω
√

εµ, p̂ is the unit polarization vector, E0 the
amplitude and η =

√
µ/ε the wave impedance in the medium above the

scattering surface. Furthermore, the time dependence, which is of the form
exp(−iωt), is omitted.

It can be shown, similarly to Eq. (19), that the far zone scattered field,
Es

qp, can be written in terms of the tangential surface fields, n̂×Ep and n̂×
Hp, in the medium above the scattering surface as (Stratton-Chu integrals)
[2, 14]

Es
qp = − jk

4πR
exp(−jkR)

∫
[q̂ × k̂s · (n̂ × Ep) (35)

+ ηq̂ · (n̂ × Hp)] exp[j(ks · r)]ds

where

ks = kk̂s = x̂kxx + ŷkyy + ẑkzz = (36)
= k(x̂ sin sin θs cos φs + ŷ sin θs sin φs + ẑ cos θs).
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The incident polarization, p can in our presentation either be horizontal,
ĥ = φ̂ or vertical, v̂ = −θ̂. In the same way the receiving polarization, q
may be horizontal, ĥs = −φ̂s or vertical, v̂s = −θ̂s.

What needs to be calculated are the tangential surface fields in Eq. 35.
In Eqs. (22)–(25) we presented integral equations for the tangential sur-
face fields in the medium above the scattering dielectric surface. It should
be noted that these expressions are exact. However, they cannot in gen-
eral be solved analytically and therefore approximations have to be intro-
duced. Below we will show that by introducing an approximation called
the tangent plane approximation (or the Kirchhoff approximation), closed
analytical solutions can be obtained to the scattering problem.

3.2 The tangent plane approximation and the
Kirchhoff fields

In the Kirchhoff approach, the fields at any point of the surface are ap-
proximated by the fields that would be present on an infinitely extended
tangent plane at that particular point on the surface. Thus, the Kirchhoff
approximation amounts to assuming that the reflection at each point of the
surface takes place by approximating the profile around this point by its
tangent plane. The reflection is therefore considered to be locally specu-
lar. It is due to this fact that the Kirchhoff approximation is also referred
to as the tangent plane approximation. The Kirchhoff approach requires
a relative large radius of curvature of the surface roughness relative to the
wavelength of the incident light to be valid.

The Kirchhoff approximation for the surface fields is obtained by re-
placing Eqs. 22 and 23 with [5]

n̂ × E = (n̂ × E)K = n̂ × (Ei + Er) (37)

and

n̂ × H = (n̂ × H)K = n̂ × (Hi + Hr) (38)

Here the subscript K stands for the Kirchhoff approximation and Er and
Hr are the fields reflected on the tangent plane at a point on the rough
surface, propagating along the reflected direction, k̂r. For instance, if the
incident electric field has vertical polarization, Ei = v̂Ei, the field locally
reflected on the tangent plane is given by Er = RvE

i, where Rv is the
Fresnel reflection coefficient for vertical polarization given in Eq. (30) and
the angle of incidence is the local angle of incidence with respect to the
tangent plane.

The way to proceed from here is in most presentations of the Kirchhoff
method to express the tangential fields under the Kirchhoff approximation
in terms of the incident electric field components and the local Fresnel re-
flection coefficients, as was mentioned above. The local Fresnel reflection
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coefficients depend on the local angles of incidence. This results in expres-
sions which can be handeled more easily. However, in these expressions
there is still a dependence on the spatial variables (slope and angles), which
complicates the calculation of the scattered field in Eq. (35). Various ap-
proximations have been applied in the literature to simplify this problem.

One way to remove the dependency on local variables is to expand the
integrand about zero slope and then perform an integration by parts and
discard the edge terms. This approach is presented for second order slope
corrections in [4].

Here we will show the results presented by Fung in [5]. In [5] the
Kirchhoff tangential fields are first simplified by assuming that the sum
Rh + Rv of the local Fresnel reflection coefficients is small (compared
with other terms). For perfectly conducting surfaces, Rh + Rv = 0 (using
the sign convention for the fields as in [5]) renders this approximation ex-
act. The dependency on local angles in the Fresnel coefficients is removed
by approximating the local incidence angle in the Fresnel reflection coef-
ficients by the incident angle, θi, for surfaces with small scale roughness
and by the specular angle, θsp, cos(θsp) = −k̂r · k̂i, for surfaces with large
scale roughness. The regions where these two choices of Fresnel reflection
coefficients are valid will be discussed in the context of the Integral Equa-
tion Method (see Section 4) and the criterion (kσ)(kL) < 1.2

√
ε is sug-

gested for using the incident angle in the Fresnel coefficients and a limit
kL > 5 (assuming Gaussian correlation function) for using the specular
angle. The final approximation which is performed by Fung is to remove
the dependence on spatial variables in slope terms in the scattered field by
integrating by parts and discarding the edge terms.

The result, after performing the approximations briefly mentioned above,
is that the scattered field can be written as:

Es
qp = − jk

4πR
exp(−jkR)

∫
fqp exp[j(ks − ki) · r]ds (39)

where the fqp are independent functions of the spatial variables and for the
considered polarizations given by [5]

fvv =
2Rv

cos θi + cos θs

[sin θi sin θs (40)

−(1 + cos θi cos θs) cos(φs − φi)]

fhh = − 2Rh

cos θi + cos θs

[sin θi sin θs (41)

−(1 + cos θi cos θs) cos(φs − φi)]

fhv = (Rv − Rh) sin(φs − φi) (42)
fhv = (Rv − Rh) sin(φi − φs) (43)

What remains is to find expressions for the bistatic scattering coeffi-
cient (or BRDF) for a statistical ensemble of rough surfaces. This is usu-
ally made by separately considering the power that is scattered coherently
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(proportional to 〈Eqp〉〈Eqp〉∗, where ∗ denotes the complex conjugate) and
incoherently (proportional to 〈EqpE

∗
qp〉 − 〈Eqp〉〈Eqp〉∗). The bistatic scat-

tering coefficient can then be calculated, taking the statistical averages,
using Eq. (39). Here we only present the incoherent bistatic scattering
coefficient which is obtained for surfaces with small or moderate heights
compared with the wavelength for rough surfaces with Gaussian statistics.
In this case the bistatic scattering coefficient, σ0K

qp , can be written as the
infinite sum [5]:

σ0K
qp =

1

2
k2 | fqp |2 exp[−σ2(ksz + kz)

2] (44)
∞∑

n=1

[σ2(ksz + kz)
2]nW (n)(ksz − kx, ksy − ky)

n!

where W (n) is the roughness spectrum at n’th power of the autocorrelation
function (Eq. 26), kx = k sin θ cos φ, ky = k sin θ sin φ, kz = k cos θ,
ksx = k sin θs cos φs, ksy = k sin θs sin φs and ksz = k cos θs.

The solution in Eq. 44 is the main result for the Kirchhoff approach
to scattering from random rough surfaces. This solution is also sometimes
referred to as the "physical optics solution".

The coherent bistatic scattering coefficient can also be calculated. The
results for the coherent field can be found in for instance [4]. The coherent
field is only scattered in the specular direction.

The expansion in Eq. 44 can be evaluated for surfaces with small RMS
height, σ, compared with the wavelength. For surfaces with large heights
(very rough surfaces) an expression for the bistatic scattering coefficient
can be derived (Eq. (5.14) in [5]) which agrees with the geometric optics
solution [5].

3.3 On the range of validity of the Kirchhoff
method and shadowing effects

The tangent plane approximation, which considers the scattered field as a
specular reflection on the tangent plane at each point of the surface requires
that the local curvature be small compared with the wavelength and there-
fore that the local slope cannot be large. A criterion which is often used
is that the correlation length, L, is much smaller than the wavelength, λ.
In [15] a criterion for the validity of the Kirchhoff method (tangent plane
approximation) was given in the form:

kL > 6, Rc > λ (45)

where Rc is the mean radius of curvature of the surface. For instance a
surface with a Gaussian correlation function has Rc = (L2

√
π/(2σ

√
6).

Furthermore, as was mentioned at the end the previous subsection, the final
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analytical expressions for the mean scattered intensities are in the Kirch-
hoff method (usually) derived for either very rough surfaces (surfaces with
large heights), kσ large enough, or for slightly rough surfaces (surfaces
with small heights) kσ small enough. A rule of thumb for when a surface
can be viewed as very rough or slightly rough is given in [15] as:

kσ >

√
10

| cos θi + cos θs| (very rough) (46)

min σs < 0.25 (slightly rough) (47)

where min σs is the minimum of the mean surface slope (see Eq. 27) in
the x and y directions on the surface. The fact that the Kirchhoff approach
is progressively less accurate as the angle of incidence is increased (and
at larger departures of the scattering angle from the specular direction) is
incorporated in the criterion, Rc cos θi � λ/4π given by Brekhovskikh in
[16]. These criteria are also consistent with the results obtained in [17],
where it was found, by comparison with "exact" numerical methods ap-
plied to 1-Dimensional Gaussian rough surfaces, that the Kirchhoff ap-
proximation is valid for kσ � 1 and kL > 6, except for grazing angles.

The Kirchhoff method briefly described in this section does not account
for shadowing of the incident irradiance by the roughness of the surface.
Attempts to include corrections for shadowing have been made in the lit-
erature by multiplying the incident irradiance by a shadowing function,
S(θi, σs), where σs is the rough surface RMS slope. The existing shadow-
ing functions are unfortunately only accurate under the geometric optics
condition. An example of an often used shadowing function is given by
Smith in [18]. The usage of a shadowing function can extend the validity
of the Kirchhoff method to somewhat larger angles of incidence.

3.4 Some concluding remarks on the Kirch-
hoff method

As was mentioned in the previous paragraph, the Kirchhoff method does
neither in itself account for shadowing and nor does it (in the form de-
scribed here) account for multiple scattering on the surface. Due to the
lack of multiple scattering and shadowing in the Kirchhoff method energy
conservation is not satisfied in this method. The use of a shadowing func-
tion improves the accuracy of the method but does not ensure that energy
is conserved [4].

For the case of scalar (see Eq. (9)) rough surface scattering using the
Kirchoff method, Vernold and Harvey [19] use a re-normalization of the
scattered radiance which they claim assures conservation of energy.

Some work have been done to extend the Kirchoff method to account
for multiple scattering. Ishimaru et al. [20] have developed a method
which accounts for double scattering and is claimed to be applicable to
medium rough surfaces.
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In the literature, the surface height distribution is in most cases assumed
to be Gaussian. The reason for this is, as was mentioned in Section 2
that the surface roughness RMS height and the autocorrelation function
entirely determine the random process, and therefore the bistatic scattering
coefficient can be expressed in terms of these two quantities.

The Kirchhoff method has been applied to surfaces described by frac-
tal geometry. As an example we can mention that in [21] a band-limited
Weierstrass fractal function was used for modelling the rough surface.
In combination with the Kirchhoff method an analytical solution for the
bistatic scattering coefficient was obtained.
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4 The integral equation method
A relatively new method for calculating scattering of electromagnetic waves
from rough surfaces is the Integral Equation Method (IEM). The IEM has
been used extensively in the microwave region in recent years and it has
proved to provide good predictions for a wide range of surface profiles.
The method can be viewed as an extension of the Kirchhoff method and
the Small Perturbation Method (to be presented in Section 5) since it has
been shown to reproduce results of these two methods in appropriate limits.
The IEM is a relatively complicated method in its general form (including
multiple scattering) and it is beyond the scope of the present overview to
give a full presentation of the method. A more detailed, and easy to under-
stand, presentation of the IEM can be found in the book by Fung [5].

4.1 A brief presentation of the theory for the
IEM

In the IEM the equations for the tangential surface fields are solved iter-
atively. In the first iteration, the Kirchhoff approximation fields are used.
The tangential fields at the surface are represented as a sum of the Kirch-
hoff fields plus a complementary field. Then, integral equations are derived
for the complementary fields at the surface.

The starting point of the IEM is the Stratton-Chu integral for the scat-
tered field in Eq. (35). The tangential surface fields which enters the
Stratton-Chu integral are given in Eqs. (22)–(25). In the Kirchoff ap-
proach, the tangential surface fields are approximated using the tangent
plane approximation, replacing the complete tangential surface fields with
the Kirchhoff tangential surface fields in Eqs. 37 and 38. It is clear that the
Kirchhoff tangential surface fields cannot alone provide a good estimate
of the surface fields since the integral terms in Eqs. (22) and (23) are not
accounted for in the Kirchhoff approach. In the IEM, a complementary
term is included in Eqs. 37 and 38 to correct for this:

n̂ × E = (n̂ × E)K + (n̂ × E)C (48)

n̂ × H = (n̂ × H)K + (n̂ × H)C (49)

In these equations, the first terms on the right hand side are tangential
fields under the Kirchhoff approximation (discussed in section 3) and the
complementary fields are given by:

(n̂ × E)C = n̂ × (Ei − Er) − 2

4π
n̂ ×

∫
[E ]ds′ (50)

(n̂ × H)C = n̂ × (Hi − Hr) − 2

4π
n̂ ×

∫
[H]ds′ (51)
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The Kirchhoff tangential fields are simplified in the way briefly de-
scribed in Section 3. For the complementary tangential surface fields a set
of integral equations can be found by combining Eqs. (22) and (23) with
the corresponding expression for the surface fields in the scattering surface
medium (see [5] for these expressions). The complimentary tangential sur-
face fields are simplified, in a way similar to the Kirchhoff method, in order
to remove dependencies on spatial variables. This means that the Fresnel
reflection coefficients are introduced in the complementary tangential sur-
face fields but in contrast to the case for the Kirchhoff term, the angle in
the Fresnel reflection coefficients is always chosen as the incident angle
(never the specular angle) in the complementary term. The resulting ap-
proximated complementary tangential surface field equations (electric and
magnetic surface field equations for horizontal, vertical and cross polar-
ization) can be found in for instance [5]. Here we only show the equation
for the electric field for vertical polarization to illustrate the form of the
equations

(n̂ × Ev)C ≈ − 1

4π
n̂ ×

∫
[(1 − Rv)Ev + (1 + Rv)Evt]ds′ (52)

where Evt is given by an equation similar to Eq. (24) for the surface fields
in the scattering surface medium, which can be expressed in the surface
fields in the upper medium through the material parameters (see [5]).

The simplified tangential surface fields can then be inserted in the Stratton-
Chu integral and by writing the scattered field in the far zone as Es

qp =
EK

qp + EC
qp where EK

qp is the scattered field from the Kirchhoff component
and EC

qp is the scattered field from the complementary component of the
tangential surface fields given by Eq. (35). In the same way, the scattered
field from the complementary component can be written as

EC
qp = − jk

32π3R
exp(−jkR)

∫
Fqp exp[ju(x − x′) (53)

+jv(y − y′) + (ks − ki) · r′]dxdydx′dy′dudv

where the field coefficients Fqp are functions of the complementary tan-
gential surface fields (as in Eq. (52)). To calculate the field coefficients,
the Green function and its gradient in E and H (and the corresponding
quantities for the transmitted fields) are taken in a spectral representation
as in Eqs. (20) and (21). In [5] the | z − z ′ | terms and the term with the ±
sign is dropped in the spectral representation of the Green function and its
gradient in order to simplify the calculations. However, in [22] these terms
are kept in the analysis. Also, as was the case in the Kirchhoff method in
Section 3, Fung [5] removes the dependence on spatial variables in slope
terms in the scattered field by integrating by parts and discarding the edge
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terms. An analysis where the edge terms are kept (i.e. not discarded) has
been performed in [22].

Once the approximate scattered fields have been obtained, it is possi-
ble to calculate the average scattered irradiance and from this the bistatic
scattering coefficients for the random rough surface given as a stochastic
function. Since the scattered field consists of two terms (the Kirchoff term
and the complementary term), the scattered irradiance and therefore the
bistatic scattering coefficient, σ0

qp, will contain three terms:

σ0
qp = σ0K

qp + σ0KC
qp + σ0C

qp (54)

where σ0K
qp is the contribution from the Kirchhoff term, σ0C

qp the contri-
bution from the complementary term and σ0KC

qp the contribution from the
cross term. The term σ0K

qp in Eq. (54) is given by Eq. (44) in Section 3.
As was mentioned in Section 3, the Kirchoff terms only contribute to

single scattering from the rough surface. The complementary term will on
the other hand contribute to multiple scattering (to the second order) as
was shown in [5].

In Section 3 we mentioned that the effect of shadowing must be in-
cluded separately in the Kirchhoff approach. This is also true for the IEM.
In [5] the shadowing functions derived by Smith in [18] are used.

The final expressions for the bistatic scattering coefficients in IEM are
rather lengthy expressions, especially when multiple scattering is included.
Furthermore, separate expressions are derived for surfaces with small or
moderate surface heights (defined as kσ < 2 in [5]) and surfaces with large
roughness heights (corresponding to the geometrical optics limit in Section
3). The complete expressions for the bistatic scattering coefficients in IEM
can be found in [5] and [22]. In the multiple scattering contributions to
the bistatic scattering coefficients, a double integral over pairs of surface
spectral components and these integrals have to be evaluated numerically.
The pair of spectral components can be seen as the interaction between two
points on the surface, although in the spectral representation. Therefore the
double integral is likely to at least represent double scattering.

4.2 Validity of the IEM
The main assumption (approximation) in the IEM is that the unknown tan-
gential fields in the integral terms of the expressions for the total tangential
surface fields can be approximated by the corresponding Kirchhoff tangen-
tial fields. In the formulation given in [22], the major additional simplify-
ing approximations are that terms in the tangential field expression involv-
ing the sum of Rh and Rv are discarded. Furthermore, the dependency on
local angles in the Fresnel coefficients is removed by approximating the
local incidence angle in the Fresnel reflection coefficients by the incident
angle for surfaces with small scale roughness and by the specular angle
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for surfaces with large scale roughness. An attempt to find a transition
model between the two choices of angle in the Fresnel reflection coeffi-
cient has been made in [23]. The exact range of validity of IEM is not
known. However, as a rule of thumb, supported by validation and based
on the different choices of angle in the Fresnel reflection coefficients men-
tioned above, Fung [5] suggest the following criteria for surfaces with a
Gaussian correlation function:

(kσ)(kL) < 1.2
√

εr (slightly rough surface) (55)
kL > 5 (very rough) (56)

where Fung gives the criterion kσ < 2 for a slightly rough surface but a
criterion for very rough surfaces is not given.

The validity of the IEM against measurement and/or more accurate nu-
merical methods has been studied in for instance [5], [22], [24], [23]. Since
the tangent plane approximation is used in the IEM, the method gives less
accurate results for small kσ and kL, and the method is also less accu-
rate for grazing incidence. However the comparisons show that results
calculated using IEM, in general, compare very well to experiments and
numerical calculations. Furhermore, the IEM can be used in the region
of moderately rough surfaces where neither the Kirchhoff method nor the
small perturbation method (see Section 5) can be used. Another advan-
tage of the IEM is that it can predict enhanced backscattering which is a
consequence of multiple scattering, see [25].
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5 The small perturbation method
The Small Perturbation Method (SPM) belongs to a large family of pertur-
bation expansion solutions to the wave equation. The approach is based
on formulating the scattering as a partial differential equation boundary
value problem. The basic idea is to find a solution in terms of plane waves
that match the surface boundary conditions, which state that the tangen-
tial component of the field must be continuous across the boundary. The
surface fields are expanded in a perturbation series, E = E0 + E1 + ...
where Ei depends on the n-th power of the surface elevation and its gra-
dient. In the expansion E0 would be the surface field if the surface was
flat. The philosophy behind this approach is that small effective surface
currents on a mean surface replace the role of the small-scale roughness.
So this method applies to surfaces with small surface height variation and
small surface slopes independently of the radius of curvature of the sur-
face roughness. Therefore, the surface need no longer be approximated by
planes. The small-scale roughness is expanded in a Fourier series and the
contributions to the field are therefore analyzed in terms of the different
wavelength components.

Here we will only give a very brief presentation of the SPM in order
to give some idea of its construction. A more detailed description of SPM
can be found in [2] and, in particular, in [4].

5.1 A Brief Presentation of the SPM
For the present discussion of SPM we consider the case of a dielectric
scattering surface. The perfect conductor case can be found in for instance
[2] and [4]. As in previous sections we consider an incident plane wave
given by Eq. (6). The basic equations which are used as a starting point
are Eqs. (14) and (17) in Section 2. A spectral plane wave representation
is used for the dyadic Green function in these equations (see Section 2 and
[4]). Using the continuity conditions for the electric and magnetic fields,
Eqs. (10) and (11) in Section 2 surface field unknowns, a(r⊥) and b(r⊥),
can be defined as [4]:

dsηn̂ × H(r) = dr⊥a(r⊥) = dsηn̂ × H2(r) (57)
dsηn̂ × E(r) = dr⊥b(r⊥) = dsηn̂ × E2(r) (58)

where r⊥ = xx̂ + yŷ, i.e. a point in the "mean height plane" of the rough
surface, and η is the wave impedance (see Section 2). Once a(r⊥) and
b(r⊥) have been determined, the surface fields are also known through
Eqs. 57 and 58. Using the spectral representation it can be shown that
Eqs. (14) and (17) can be expressed as [4] (see Figure 4 for an explanation
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of the symbols):

Ei(r) =
1

8π2

∫
dk⊥eik⊥·r⊥e−ikzz k

kz

∫
dr′⊥eik⊥·r′⊥e−ikzf(r′⊥) (59)

× {[ĥ(−kz)ĥ(−kz) + v̂(−kz)v̂(−kz)] · a(r⊥)′

+ [−v̂(−kz)ĥ(−kz) + ĥ(−kz)v̂(−kz)] · b(r′⊥)}
0 =

1

8π2

∫
dk⊥eik⊥·r⊥e−ikzz k

kz

∫
dr′⊥eik⊥·r′⊥e−ikzf(r′⊥) (60)

× {[ĥ(−kz)ĥ(−kz) + v̂(−kz)v̂(−kz)] · a(r′⊥)

+ [−v̂(−kz)ĥ(−kz) + ĥ(−kz)v̂(−kz)] · b(r⊥)′}

where f(r′⊥) is the surface height. The definition of the horizontal unit po-
larization vectors is ĥ(±kz) = (x̂ky − ŷkx)/kρ and kρ =

√
k2

x + k2
y . The

vertical polarization vectors are given by v̂(±kz) = ∓kz(x̂kx−ŷky)/(kρk)+
ẑkρ/k.

Figure 4: Illustration of polarization vectors and wave vectors.

In the same way, the scattered field in Eq. (18) can be written in spectral
representation as:

Es(r) = − 1

8π2

∫
dk⊥eik⊥·r⊥eikzz k

kz

∫
dr′⊥e−ik⊥·r′⊥e−ikzf(r′⊥) (61)

× {[ĥ(kz)ĥ(kz) + v̂(kz)v̂(kz)] · a(r′⊥)

+ [−v̂(kz)ĥ(kz) + ĥ(kz)v̂(kz)] · b(r′⊥)}

It should be noted that the above equations are exact and Eqs. (59)
and (60) are used to solve for the surface fields (i.e. the unknowns a and b
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defined in Eqs. (57) and (58)). Next, Eq. (61) is used to obtain the scattered
field.

To solve for the surface fields, the SPM makes use of series expansions:

a(r′⊥) =
∞∑

m=0

a(m)(r′⊥) (62)

b(r′⊥) =
∞∑

m=0

b(m)(r′⊥) (63)

and

e±ikzf(r′⊥) =
∞∑

m=0

[±ikzf(r′⊥)]m

m!
(64)

where m denotes the mth order solution.
By using the continuity relations in Eqs. (57) and (58) and expressing

the local surface normal, n̂ in derivatives of the surface height f(r′⊥), the
following relations are obtained between the components of the surface
field unknowns:

a(0)
z (r⊥) = b(0)

z (r⊥) = 0

a(m)
z (r⊥) =

(
x̂

∂f

∂x
+ ŷ

∂f

∂y

)
a

(m−1)
⊥ (r⊥) (65)

b(m)
z (r⊥) =

(
x̂

∂f

∂x
+ ŷ

∂f

∂y

)
b

(m−1)
⊥ (r⊥)

In SPM, the surface height, f(r′⊥) and its derivatives are regarded as
small parameters. Thus it is not only the RMS heights that are assumed to
be small but also the surface slopes. The basic underlying assumptions for
the SPM are therefore

kzf(r′⊥),
∂f

∂x′ ,
∂f

∂y′ � 1 (66)

The way to proceed from the equations given above is to substitute
the series expansions in Eqs. (62)–(64) into Eqs. (59) and (60). Next, by
using the relations in Eq. (65), terms of the same order can be equated. In
this way the surface fields to the zeroth-order, first-order, and so on can be
calculated. When the surface fields have been obtained, the scattered fields
of different orders can be obtained from Eq. (61). A detailed derivation of
the fields up to second order can be found in [4].

The zeroth order solutions are just the reflected fields of a flat surface
which can be expressed as

E0
s = {Rh[ĥ(−kiz) · q̂]ĥ(kiz) + Rv[v̂(−kiz) · q̂]v̂(kiz)}eiki·r (67)
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where Rh and Rv are the Fresnel reflection coefficients. The zeroth order
scattered field is therefore purely coherent and reflected in the specular
direction.

The first order solution gives the lowest order correction to the inco-
herent scattered irradiance. The lowest order incoherent bistatic scattering
coefficient can therefore be calculated by taking statistical averages of the
first order field solution. The lowest order incoherent bistatic scattering
coefficient, assuming a gaussian surface height distribution, can be written
as [4]:

σ0
qp =

k2cos2θs

4π
W (1)(k⊥ − ki⊥)|f 1

qp|2 (68)

where W (1) is the roughness spectrum to the first power given in Eq. 26.
The coefficients f 1

qp can be found in [4] and here we only give the coeffi-
cient f 1

hh:

f 1
hh =

(k2
2 − k2)2kiz

(kz + k2z)(kiz + k2zi)
cos(φs − φi) (69)

The cross polarized coefficient, f 1
hv and f 1

vh both have a factor sin(φs−φi).
This implies that first order SPM does not predict depolarization in the
plane of incidence (i.e. for φs = φi(±π)).

The second order perturbative solution and the corresponding bistatic
scattering coefficients can be found in [4]. The second order solution gives
the lowest order correction to the coherent reflection coefficients. Further-
more, depolarization in the plane of incidence is manifested in the second
order solution.

5.2 Some remarks on the range of validity of
SPM

The basic criterion for the SPM to be applicable is that the rms heights
and the surface slopes are small. This means that the SPM is applicable
in the small roughness regime. Since the zeroth-order field in the SPM
series corresponds to the coherent field scattered from a flat surface, the
accuracy of the mean irradiance calculated by means of the first terms of
the perturbative series requires that the diffuse component is small. Due
to the increasing difficulty in analytically calculating higher order terms
in the perturbative series, the convergence and accuracy of the perurbative
series is in general very difficult to assess [2]. As a rule of thumb, a surface
with Gaussian correlation function can be considered to be in the small
roughness regime (slightly rough) when [15]:

kσ < 0.3 and kL >
√

2kσ/0.3 (70)

The SPM has been compared to more accurate numerical simulations
by Thorsos and Jackson in [17, 26] for one-dimensional rough surfaces
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with a Gaussian roughness spectrum. Under these conditions Thorsos and
Jackson show that the first-order SPM give accurate results for kσ � 1
and kL ≈ 1. The results obtained by Thorsos and Jackson show that for
kσ � 1 and kL > 6, the sum of the first three orders of SPM is required
to obtain accurate results.

It has been argued that the SPM does account for multiple scattering
up to the order of the perturbative expansion [27]. This means that the
first order perturbative solution does not account for multiple scattering but
that some multiple scattering effects can be observed in the higher order
solutions.
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6 The small slope approximation
The small slope approximation (SSA), introduced by Voronovich in the
mid-1980s [28], is a very promising method for modelling wave scattering
from rough surfaces. In the general formulation of SSA, the roughness
slope is the only parameter required to be small. This smallness parameter
differs from those used in classical perturbation theory and in Kirchhoff
approximation because it is independent of wavelength. When the first two
terms of the series are retained, the theory reduces to perturbation theory,
which is intrinsic to the formulation, and to the Kirchhoff approximation
under appropriate conditions.

6.1 Theory in brief
The small slope approximation is a rather complex method and here we
only present some of the main features of the method. In particular, we dis-
cuss the most important mathematical and physical approximations used.
A more detailed presentation of SSA can be found in for instance [28] and
[29].

We once more consider a plane wave incident on a dielectric rough sur-
face. We follow the conventions and notations used in [28], where the in-
cident plane electromagnetic wave is taken to travel in the positive z direc-
tion in dielectric Medium 1 towards the rough surface (dielectric Medium
2). The scattering geometry in cross section is illustrated in Figure 5. For

Figure 5: Schematic illustration of scattering geometry (cross section)
used in the SSA model.

simplicity we also assume that the magnetic permeabilities of both media
can be set equal to one (i.e. µ1 = µ2 = 1 ), which is almost always a valid
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assumption when considering scattering in the optical (IR, visible and UV)
region of the electromagnetic spectrum. The incident electric field vector
is then given by (compare with Eq. (6)):

E(i)(r) = q̂E
α0

(ki
z)

−1/2 exp[i(ki
⊥ · r⊥ + ki

zz)] (71)

where (ki
⊥, ki

z) are the horizontal and vertical projections of the incident
wavevector with wavenumber ki =

√
εω, so that ki

z =
√

(ki)2 − (ki
⊥)2.

The factor (ki
z)

−1/2 is introduced for normalization purposes. The sub-
script, α0 = 1, 2, in the unit polarization vectors, q̂E

α0
, is the index de-

scribing vertical and horizontal polarization, respectively (q̂E
1 = v̂ and

q̂E
2 = ĥ). These polarization vectors can be expressed in terms of the com-

ponents of the wave vector, ki in the same way as we did for Eqs. (59) and
(60) in Section 5. The incident magnetic field associated with the incident
electric field is then given by Eq. (7).

It follows from the linearity of Maxwell’s equations, analogously to the
spectral representation of Green’s functions in Eq. (20), that a plane wave
expansion can be used to write the scattered electromagnetic wave, E(s)

and H(s), as [29]:

E(s) =
∑

α

∫
q̂E

α k−1/2
z exp[i(k⊥ · r⊥ − kzz)]S11

αα0
(k⊥,ki

⊥)dk⊥ (72)

where kz =
√

(k)2 − (k⊥)2. The value, S11
αα0

is one element of the so
called scattering amplitude matrix, SNN0

αα0
, where N , N0 = 1, 2, represent-

ing a wave incident from Medium N0 and propagating in Medium N . The
subscripts, α, α0 = 1, 2, on the unit polarization vectors and the scatter-
ing amplitude are the indices describing vertical and horizontal polariza-
tion, respectively. Notice that the polarization vectors depend on k⊥. The
scattering amplitude matrix components are defined by Eq. (72), Eq. (74)
below and by analogous equations, to be found in [28], for the remaining
combinations of incident and propagating fields.

In the same way as for the electric field, the scattered magnetic field
can be expressed as:

H(s) =
√

ε1

∑
α

∫
q̂H

α k−1/2
z exp[i(k⊥ · r⊥− kzz)]S11

αα0
(k⊥,ki

⊥)dk⊥ (73)

Similar equations can be written for the transmitted fields by intro-
ducing the elements S12

αα0
and S21

αα0
of the scattering amplitude. For the

transmitted electric field, E(t), (see Figure 5) we have [28]:

E(t) =
∑

α

∫
q̂E(2)

α (k(2)
z )−1/2 exp[i(k⊥ · r⊥ + k(2)

z z)]S21
αα0

(k⊥,ki
⊥)dk⊥

(74)
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where we have added a superscript (2) on the unit polarization vectors and
on the z-component of the transmitted wave vector to indicate that they are
defined for the transmitted field in Medium 2.

The expressions in Eqs. (72)–(74) are general (exact) solutions of the
Maxwell equations. To determine the scattering amplitude, one must then
use the continuity conditions for the tangential fields over the rough sur-
face boundary in Eqs. (10)–(13).

The form of the equation which serves as a staring point for the SSA
relies on transformation properties of the scattering amplitude. The physics
(for instance the scattered irradiance) must be invariant under a translation
of the rough surface in the horizontal or vertical directions. As follows
from geometrical arguments (see [29]), the scattering amplitude picks up a
phase factor so that [28]:

f(r⊥) → f(r⊥ − d) ⇒ SNN0
αα0

(k⊥,ki
⊥) → SNN0

αα0
(k⊥,ki

⊥)e−i(k⊥−ki
⊥)d(75)

f(r⊥) → f(r⊥) + H ⇒ SNN0
αα0

(k⊥,ki
⊥) → SNN0

αα0
(k⊥,ki

⊥)e−i(kz−ki
z)H(76)

where r⊥ = xx̂ + yŷ, f(r⊥) is the rough surface height function and
d = dxx̂ + dyŷ.

In order to fulfil the transformation properties in Eqs. (75) and (76) the
scattering amplitude is in SSA written as:

SNN0
αα0

(k⊥,ki
⊥) =

∫
dr⊥

(2π)2
exp[−i(k⊥ − ki

⊥) · r⊥ (77)

+i(kz + ki
z)f(r⊥)]ΦNN0

αα0
(k⊥,ki

⊥; r⊥; [f ])

where ΦNN0
αα0

is an arbitrary functional, which for smooth functionals can
be expanded in terms of an integral power series:

ΦNN0
αα0

(k⊥,ki
⊥; r⊥; [f ]) = (ΦNN0

αα0
)(0)(k⊥,ki

⊥) + (78)∫
(ΦNN0

αα0
)(1)(k⊥,ki

⊥; ξ)f(ξ)eiξ·r⊥dξ +∫
(ΦNN0

αα0
)(2)(k⊥,ki

⊥; ξ)f(ξ1)f(ξ2)e
i(ξ1+ξ2)·r⊥dξ1ξ2 + . . .

Notice that Eq. (78) contains an integral power series. This is in contrast to
the SPM in Section 5 where the fields were expanded in an ordinary Taylor
expansion.

Voronovich [28] now proceeds by inserting Eq. (78) into Eq. (77).
Furthermore, by using the transformation properties of the scattering am-
plitude, Eqs. (75) and (76), integration by parts shows that any of the terms
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(ΦNN0
αα0

)(n) in the expansion can be transferred to terms of order (n − 1)
and order (n + 1). For details see [28, 29]. This procedure shows that the
n’th term in the expansion is proportional to |∇r⊥f(r⊥)|n, which also is
a consequence of the integration by parts. This means that n terms in the
expansion in Eq. 78 can be chosen so that the accuracy of the scattering
amplitude is of O((∇f)n+1).

The preceding discussion indicates that SSA can be used when ∇f
is sufficiently small, which means that the local surface slopes must be
small everywhere on the surface. In fact, Voronovich [29] states that, if the
coefficients in an expansion of the field are known, the range of validity
for SSA is:

∇f � 1 (79)

This means that the slopes of the irregularities on the surface should every-
where on the surface be much smaller than one.

The coefficients, (ΦNN0
αα0

)(m), in Eq. (78) are still unknown and have to
be determined. To arrive at expressions for the coefficients, the continu-
ity conditions for the tangential fields over the rough surface boundary in
Eqs. (10)–(13)have to be used. The unknown coefficients are in SSA de-
termined by comparing the integral expansion in Eqs. (77) and (78) with a
known expansion of the scattering amplitude. Usually the known expan-
sion of the scattering amplitude is based on SPM (see Section 5), although
other expansions could also be used [29]. It can be shown that the scatter-
ing amplitude in SPM can be written as [28, 29]:

SNN0
αα0

(k⊥,ki
⊥) = (80)

V NN0
αα0

(k⊥,ki
⊥)δ(k⊥ − ki

⊥)

+2i(k(N)
z ki(N0)

z )1/2BNN0
αα0

(k⊥,ki
⊥)f(k⊥ − ki

⊥)

+(k(N)
z ki(N0)

z )1/2

∞∑
m=1

∫
(BNN0

αα0
)(m+1)(k⊥,ki

⊥; ξ1, ..., ξm)

×f(k⊥ − ξ1)...f(ξm − ki
⊥)dξ1...dξm

where f(k⊥) =
∫

exp[i(k⊥ · r⊥)]f(r⊥)dr⊥/(2π)2, i.e. the Fourier trans-
form of the surface height f(r⊥). The explicit expressions for the coeffi-
cients V NN0

αα0
and (BNN0

αα0
)(m+1) can be found in [28, 29].

The SPM scattering amplitude in Eq. (80) is an expansion in powers of
f . As was mentioned in Section 5, SPM requires k|f | � 1. If we by the
procedure mentioned above exclude the coefficient (ΦNN0

αα0
)(1) in Eq. (77),

the accuracy of the scattering amplitude is of order O((∇f)2). For small
f , the exponential in Eq. (77) can be expanded in powers of f and we can
identify terms of different orders of f in the SPM and SSA expansions of
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the scattering amplitude. For instance, if we look at terms up to the first
order in f we find [28]:

(ΦNN0
αα0

)(0)(k⊥,ki
⊥) = −2(k

(N)
z k

i(N0)
z )1/2BNN0

αα0
(k⊥,ki

⊥)

(−1)Nk
(N)
z + (−1)N0k

i(N0)
z

(81)

In [28] the coefficients are also determined up to second order in f for
surfaces with Gaussian height statistics. For this case Voronovich gives
the following estimate for the range of validity of SSA:

∇f � kz

k⊥
(82)

This means that the slopes of the irregularities should be small enough and
at least smaller than the grazing angles of the incident and the scattered
waves.

For rough surfaces with gaussian statistics, the statistical moments of
the scattering amplitude can be calculated [28] and from these the bistatic
scattering coefficient can be determined. In [28], the bistatic scattering
coefficients up to second order are determined. The form of the bistatic
scattering coefficient that corresponds to the first order of SSA is given by:

σqp = (2kzk
i
z)

2 | Bqp(k⊥,ki
⊥) |2 (83)∫

A0

e−i(k⊥−ki
⊥)·r⊥e−Q2σ2

(
exp(Q2σ2ρ(r⊥)) − 1

Q2

)
dr⊥

(2π)2A0

where σ is the surface height RMS value, W is the correlation function and
Q = −kz − ki

z. The integral in Eq. (83) can be calculated numerically.

6.2 Other methods and measurements related
to SSA

The region of validity of SSA for surfaces with Gaussian height statis-
tics and coefficients determined up to second order in height is given by
Eq. (82). Only a few works on validating the SSA have been found in the
literature. In [30] a comparison of SSA with BRDF measurements per-
formed on an anodized Aluminium surface at wavelengths 10.6 µm and
3.39 µm has been performed using the first order SSA (with coefficients
determined using SPM). The results show good agreement for scattering
angles less than ±45o which is consistent with the validity range for low
order SSA above. In [31], a comparison between the lowest order SSA and
an more exact numerical method is performed for backscattering in the mi-
crowave region from ocean-like surfaces. This comparison also show that
the SSA follow the more exact numerical results quite well but at gracing
angles of incidence the error of the SSA predictions increase. A compari-
son between the SSA model, to first and second order, and an maybe exact
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numerical method (Method of Moments) has also been performed for the
backscattering case in [32]. It is again found that the lowest order SSA
model gives good predictions for low incident angles but that the error in-
crease for larger angles of incidence. For the second order SSA model the
prediction is found to be good also for higher angles of incidence.

The SSA method with coefficients determined by (low order) SPM
does not account for multiple scattering (see e.g. [33]). A method which
is related to the SSA method is the Non Local Small Slope Approximation
(NLSSA) [33, 34]. This method takes multiple scattering into account, but
requires an extra integration in the expression for the scattering amplitude.
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7 Other surface scattering methods
and volume scattering

In this section we will very briefly present some methods and models for
scattering from rough surfaces which have not been mentioned in previ-
ous sections. We only present some examples of models and we have
made no attempt to do a complete survey. These methods include the nu-
merical methods, some of which are numerically exact, facet models in
geometrical optics and empirical parameter models. All these models and
the models presented in previous sections are models for scattering from a
two-dimensional rough surfaces but in this section we will mention a few
references to models for scattering from multiple layers and models for
scattering in the bulk (volume scattering).

For further details of the models in this section and the reader is re-
ferred to the references for more details.

7.1 Numerical methods
We mentioned already in the introduction (Section 1) that methods for
calculating scattering of electromagnetic fields from rough surfaces can
broadly be categorized into approximate, analytical methods and numeri-
cal simulation methods. Numerical simulation methods for rough surface
scattering have become increasingly popular in the last few decades. Early
works on numerical simulation of rough surface scattering were mostly fo-
cused on one-dimensional rough surfaces but over the previous decade, as
computational resources have increased, attention in the numerical simu-
lation has turned more to simulation of scattering from two-dimensional
rough surfaces. The analytical theories, some of which were presented in
Sections 3 to 6), are often quite accurate but a problem is the lack of a
precise characterization of their domain of validity. The numerical simula-
tion methods can therefore be used to validate the approximate scattering
models. The numerical simulation methods sometimes require long com-
putation times and large computer memories. However, some of the more
advanced approximate methods also require heavy computation to calcu-
late high order expansion terms. In such cases the numerical simulation
methods could be a better choice.

Many numerical simulation methods for rough surface scattering, and
applications of these, can be found in the literature. Up-to-date reviews on
numerical simulation methods can be found in for instance [8] and [35].
An example of a book that presents some of the most common numerical
simulation methods for rough surface scattering in more detail is the book
by Tsang, Kong, Ding and Ao [36].

Numerical methods for scattering from rough surfaces can roughly be
classified into three categories: (a) those based on approximations; (b) inte-
gral equation methods; and (c) differential equation methods. The first type
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of methods solve some approximation of Maxwell’s equations, whereas
the other two groups of methods solve Maxwell’s equations in differential
form or in an equivalent integral representation. Below we briefly discuss
two numerical methods based on approximations, the geometrical optics
approximation with ray tracing and the physical optics method, one exam-
ple of an integral equation method, the Method of Moments (MoM), and
one example of a differential equation method, the Finite-Difference Time-
Domain method (FDTD). As was mentioned in Section 3, the analytical
Kirchhoff method is sometimes called the physical optics method, and a
geometrical optics solution can also be obtained from the analytical Kirch-
hoff method in the very rough surface limit or by using a statistical facet
model as will be described briefly in Section 7.2. The difference between
these analytical results and the corresponding numerical geometrical optics
and physical optics methods lays mainly in the manner the rough surface is
described. In the analytical methods the random rough surfaces are treated
statistically, and in the corresponding numerical methods a deterministic
(geometrical) description of an individual rough surface is needed.

Most numerical methods for scattering from rough surfaces make use
of the Monte Carlo method to average the deterministic scattered fields due
to individual surfaces over an ensemble of realizations [37]. The scattered
fields are calculated for each individual surface. Then the average scattered
radiance or amplitude is calculated.

Geometrical optics - Ray tracing
The geometrical optics, or ray optics approximation, can be used with very
rough surfaces whose typical length scales, as the RMS height, are larger
than the wavelength. The numerical technique of ray tracing is imple-
mented by launching a large number of incident rays on the surface and
each ray is traced through its reflections on the surface until it finally es-
capes. The energy scattered in a given direction is calculated by counting
the number of rays that leave the surface in that direction. For a presen-
tation of the ray tracing technique in rough surface scattering, see for in-
stance [38].

We would also like to mention that the ray tracing technique is a method
used in some computer graphics and computer scene simulation software.
An example of such a software for simulation of scenes (terrain, sky and
objects) in the infrared and visible regions of the spectrum is CameoSimTM

[39, 40]. Codes like CameoSimTM also makes it possible to apply
parametrized BRDF functions on surfaces in the scene. In order to com-
bine the angle dependent reflectance described by the BRDF with the ray
tracing technique, a Monte Carlo technique is usually used [41].

Physical optics - Kirchoff approximation
The physical optics approach is based on numerical computation of the
scattered fields from the Kirchhoff approximation (see Section 3) for the
surface current on the surface, which only requires a direct integration
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over the surface. The analytical statistical averaging used in the analyti-
cal Kirchhoff method is therefore not performed in the numerical physical
optics method. For a presentation of the physical optics method, see for
instance [42]. The physical optics method has the same limitations (re-
gion of validity) as the analytical Kirchhoff approach. It should also be
mentioned that physical optics is a traditional method for computing radar
cross sections.

Method of moments The Method of Moments (MoM) is a numerical
method that solves Maxwell’s equations in an integral form (see also Sec-
tion 2). In the case of a dielectric surface, a coupled pair of surface integral
equations are used. Since MoM solves Maxwell’s equations, the errors
produced by this method comes from numerical errors (or from errors in
the characterization of the surface, including material parameters). The
MoM [36, 43, 44] is a procedure for discretizing an integral equation by
expanding the unknown surface currents in a linear combination of a set
of basis functions having support on the surface. A set of test functions
is also introduced for the fields received from the radiating surface basis
functions. This produces a finite dimensional linear equation system, the
solution of which can be used to calculate the scattered field. The rough
surface is generally discretized in a surface mesh (a facetted surface) and
the average mesh length, compared with the wavelength, determines the
accuracy of the method. For surfaces with many facets, i.e. small mesh
length, the method can be expensive on memory and computing time.

Since the MoM can calculate the scattered fields with high accuracy,
it is sometimes used to validate approximate analytical models (see for in-
stance [32]). The MoM is commonly used for scattering problems in the
microwave region.

Finite-difference time-domain method
The Finite-Difference Time-Domain method (FDTD) is a method which
solves Maxwell’s equations in differential form. It is based on approximat-
ing the derivative operators in Maxwell’s equations by using the values of
the electromagnetic fields on the nodes on a grid. The discretized equations
are used to calculate the values of the electromagnetic fields. The fields at
different times are calculated incrementally by calculating the field values
at a given time from the field values obtained in previous time steps. For
details about FDTD see [36, 45] and references therein. An advantage of
FDTD, being a time-domain method and not a frequency-domain method,
is that broadband (an interval in wavelength) information about the scat-
tering can be obtained directly. As for MoM, FDTD can be expensive on
memory and computing times if scattering from rough surfaces which are
not translationally invariant in one direction is considered.

Since FDTD solves Maxwell’s equations it can provide very accurate
results. It is therefore sometimes used for validation of approximate ana-
lytical models. An example of this is given in [46]. FDTD is a very general
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method, and is therefore applied to a wide range of problems in the optical
as well as microwave and radio frequency regions.

7.2 Facet and empirical models for BRDF
The methods for calculating scattering from random rough surfaces which
we briefly presented in Sections 3 to 6 are all models based on reasonably
well understood approximations of Maxwell’s equations. These models,
at least to some extent, accounts for the wave nature of electromagnetic
fields. In the literature one can also find parametric (empirical) models
and statistical (facet) models based on geometrical optics for describing
BRDFs.

The empirical parametric models can in some cases be pure mathe-
matical functions with free parameters which are curve fitted to measured
BRDF data. Other parametric models are to some extent based on physi-
cal principles or the knowledge of the form of the solution to an analytic
model like for instance the Kirchhoff approach or the SPM. An example
of a "parametric type" model is the OPTASM BRDF model [47], in which
the angular characteristics are specified by a number of Lorenzian shaped
peaks. The "parametric" models for BRDF are often used in computer
codes for three-dimensional graphics (visualization) and scene simulations
to account for angle dependent reflection and emissivity.

The statistical (facet) models, based on geometrical optics, are of course
applicable for very rough surfaces whose typical length scales, in particu-
lar, the RMS height, are greater than the wavelength. In these models the
rough surface is usually considered to be composed of facets with a known
distribution. Light is reflected specularly from these facets and sometimes,
like in the model by Torrance and Sparrow [48], a diffuse component is
also added to account for multiple scattering and/or internal scattering. A
further development of the model by Torrance and Sparrow, where the ef-
fect of roughness on the diffuse component is included was given by Gin-
neken et al. in [49]. These models are also popular in computer graphics
applications. An example of a statistical model, based on geometric optics,
which accounts for multiple scattering and shadowing effects is [50].

7.3 Other analytical methods
In Sections 3 to 6 we gave brief introductions to four approximate, analyt-
ical methods for calculating the scattering of electromagnetic waves from
rough surfaces. Of these methods, the ordinary Kirchhoff approach and
the method of small perturbations (at low order) can be viewed as early
(classical) approaches to surface scattering. The integral equation methods
and the small slope approximations are more recent methods, developed
as attempts to extend the theories to larger domains of validity than the
Kirchhoff approach and the method of small perturbations.

46



FOI-R--0988--SE

When there are two relevant scales in the surface roughness spectrum
(one large and one small) a method or procedure called the Two-Scale
(Composite or Hybrid) Model [51, 52, 53] is sometimes used. In the liter-
ature, the two-scale model has primarily been used to calculate scattering
from sea surfaces in the microwave region. Two different models are used
for the small scale and the large scale roughness. The results from the
small scale roughness model model can be used by incoherently averaging
the effective incidence and scattering angles with the large scale slopes.
This is usually done in four steps:

1. The surface height fluctuation is divided into a large scale and a small
scale fluctuation, each with its own spectrum. The total spectrum is
the sum of the two spectra.

2. The small scale spectrum is used to compute the bistatic scattering
coefficient, σ

(SPM)
pq (θ, θs, φs), using the method of small perturba-

tions (see for instance Eq. (68) in Section 5).

3. By using the large scale statistics tilting angle statistics (Ω), through
the probability distribution function P (Ω), the SPM bistatic scatter-
ing coefficient is averaged,
σ(SPM)

pq (θ, θs, φs) ≡
∫

dΩ P (Ω) σ
(SPM)
pq (RΩ[θ, θs], φs), where

RΩ[θ, θs] stands for the local incident and scattering angles after ro-
tation to the locally tilted reference frame.

4. Finally,using the large scale portion of the spectrum the Kirchhoff
approximation bistatic scattering coefficient, σ

(k)
pq , (see Section 3) is

added to the SPM bistatic scattering coefficient to account for the
specular part missing in the SPM: σ

(total)
pq = σ(SPM)

pq + σ
(k)
pq .

One of the problems with the two-scale model approach is that the real sur-
face is not correctly described by two scales, and some ad hoc method must
be used to divide the spectrum. Furthermore, some more recent methods,
like IEM (see Section 4), can in some cases predict scattering from two-
parameter, Gaussian correlated surfaces better than the two-scale model
[5].

Although the methods presented in Sections 3 to 6 seem to be amongst
the most common (and popular) in the literature, a number of other ana-
lytical methods for calculation of scattering from rough surfaces can also
be found in the literature. Here we essentially limit ourselves to provid-
ing the names of a few methods and give one reference to each of these.
These methods, like the SSA method and the IEM, are attempts to extend
the region of validity of the ordinary Kirchhoff approach and the SPM.

Examples of perturbation theory extensions are the phase perturbation
technique [54] and the unified perturbation method [55]. The smoothing
method [56] is also an extension of the small perturbation method but in
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contrast to the previously mentioned methods it is an operator based ap-
proach. In operator based approaches the field quantities are taken to be
random variables before application of the integral scattering operators. A
method which results in an expansion of the scattering amplitude in pow-
ers of quasi-slopes is the quasi-small-slope approximation [57]. In this
respect the quasi-small-slope approximation method resembles the SSA
method. This method has been shown to provide a continuous transition
from the results of SPM to the results of the Kirchhoff method by con-
tinuously changing the wavelength. Examples of other analytical theories
for scattering from rough surfaces found in the literature are the heuristic
scattering model [58], mean field theory approaches [59], the tilt-invariant
scattering theory [60] and local spectral expansions [61].

The methods presented in Sections 3–6 and the methods mentioned above
calculate the scattered field from the incident field, the surface topogra-
phy (using a statistical characterization) and material parameters (dielectric
permittivity and magnetic permeability). However, methods have also been
developed for solving the inverse problem, which amounts to calculating
the surface characteristics (topography) from known scattering properties.
Examples of such methods can be found in for instance [62, 63].

7.4 Scattering in multi-layer systems and vol-
ume scattering

In the present overview of scattering models we have focused on the prob-
lem of scattering of electromagnetic waves from a random rough surface
interface (boundary) between two media. However, in some situations
there could be a cascade of rough surface layers on which the electro-
magnetic fields are scattered, as is schematically illustrated in Figure 6.
Materials designed for low signature purposes in the infrared region are
sometimes built up from more than one layer. This could for instance be
a paint on a metal surface or several layers of paint on a surface. This
situation would involve calculating the scattered radiance from a cascade
of layers with rough surface interfaces. We will not describe the differ-
ent models and theories for treating multi-layer systems but many of these
models are based on the knowledge of a solution for scattering from a sin-
gle rough surface through for instance one of the methods mentioned in
previous chapters. A few approaches to scattering in multi-layer systems
can be found in [4, 5, 64] and the references therein.

Another important case for scattering of electromagnetic waves, often
encountered in real cases is scattering in the bulk, or volume, of the ma-
terial. This could be some kind of particles enclosed in a homogenous
medium on which the electromagnetic radiation is scattered. Paints for
instance often consists of color pigments (flakes or particles) enclosed in
some binding (matrix) material. We could also have the case that we have
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Figure 6: Schematic illustration of scattering from three-layered rough sur-
faces.

a random medium for which the scattering originates from permittivity (or
refractive index) fluctuations which can not be described as particles. The
classical example of this is the scattering of light in a turbulent medium
where the permittivity fluctuations originates from the variation in density,
temperature and so forth in a turbulent medium. Although modelling of
volume scattering is important for many practical applications we will not
present these theories here. Some of the more popular methods for volume
scattering of electromagnetic waves are presented in [4] and the references
therein.

It should also be mentioned that it is in some cases possible to treat vol-
ume scattering by homogenization of the heterogeneous medium [65, 66].
Examples of such methods are effective medium theories, mixing formulas
and mathematical homogenization. A common restriction of such methods
is that the particles should be much smaller than the wavelength, although
there are exceptions to this limitation.
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8 Summary and conclusions
We have presented the results from a literature search of models for scatter-
ing of electromagnetic waves from random rough surfaces. In particular,
we have focused on the calculation of the bidirectional reflectance distri-
bution function (BRDF) (or the related quantity bistatic scattering coeffi-
cient). We have remarked that the BRDF is the quantity usually used in
IR and visible signature prediction (IR scene simulation) software to ac-
count for scattering of IR light from a rough surface. Therefore, methods
for calculating the BRDF from surface topography and material parame-
ters can be of great use in IR signature modelling and assessment. Models
for rough surface scattering can be used, in combination with signature
simulation software, to study, predict and optimize the influence of rough
surface characteristics on optical signatures.

The present literature search has shown that several analytical mod-
els for scattering from random rough surfaces can be used for calculation
and prediction of BRDF in the optical (IR, visible and UV) region of the
electromagnetic spectrum. Much of the work on application and valida-
tion of these methods has been performed in the microwave region but the
models themselves are not limited to the microwave region. The ranges
of validity of the models are determined by the wavelength compared with
parameters describing the surface roughness topography. For rough sur-
faces which are described statistically, examples of such parameters are
the root mean square surface height, the correlation length and the root
mean square surface slope.

The methods for calculating scattering of electromagnetic fields from
rough surfaces which have been found in the literature can broadly be cat-
egorized into approximate, analytical methods, and numerical simulation
methods. In this report we have mainly focused on four different analytical
methods which have been found to be amongst the most studied and com-
mon in the literature. These four methods (or actually classes of methods)
are: The Kirchhoff Approximation, The Method of Small Perturbation, The
Integral Equation Method and The Small Slope Approximation. Of these,
the first two, are amongst the early approaches to scattering from rough
surfaces which however are still much used in applications. The latter two
methods are examples of more recent approaches which have been devel-
oped as attempts to extend the validity of the former methods. In the fol-
lowing we will very briefly summarize some of the main features of these
four methods.

The methods which have been studied have all a region of validity in
which they can be considered valid. These regions of validity can in gen-
erally not be determined exactly. However, a number of criteria for each
method can be found in the literature and therefore some rules of thumb
can be used to determine if the model is applicable for a particular case. In
Table 1 we have summarized some of the criteria (rules of thumb) for the
different models and for the case of Gaussian height statistics and Gaussian
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correlation function. These criteria have been obtained for rough surfaces
with Gaussian height distribution and Gaussian correlation function. The
criteria in Table 1 should not be taken as unconditionally true. There may
be situations where these criteria can be exceeded and the methods still
give satisfactory results. Also, even though the criteria are satisfied, it does
not always ensure sufficient accurate results. In the same way, the crite-
ria for different models cannot be compared unconditionally since they do
not tell the whole story about the validity and since they have been ob-
tained in different ways. However, it is clear, from the criteria in the table,
from comparisons with measurements and from the theory of the meth-
ods, that the IEM and the SSA in general have larger ranges of validity
than the Kirchoff method and (low order) SPM. Many real surfaces have
surface roughness statistics and optical constants which lie within the re-
gion of validity of one or several methods but in the end it is the validation
of the model against measured data that determines the range of validity.
Although some comparisons with measured data can be found in the lit-
erature, it is of interest to implement the models and compare them with
measurements. It is of course also of interest to mutually compare results
obtained with the various methods and to compare the analytical models to
more exact numerical methods.

Of the four models that have been studied in detail, the IEM and the
SSA have the largest ranges of validity. In fact their ranges of validity can
be said (with some minor exceptions) to cover the ranges of validity of the
Kirchhoff approach and the SPM. However, the SSA and IEM are more
complex methods which are more difficult to implement and therefore the
other two methods are still of value. Although the methods themselves
do not assume a particular surface height statistics, the analytical expres-
sions which have been derived for the mean scattered intensity and the
bistatic scattering coefficient (or BRDF) are for rough surfaces with Gaus-
sian height distribution. Works on other types of surface height statistics
can also be found in the literature but in those cases a numerical method is
most often used (see e.g. [25]). Another common limitation in the consid-
ered methods is that they all are less accurate for grazing incidence.

The Kirchhoff approximation
In the Kirchhoff approximation approach to scattering from rough surfaces
the electromagnetic fields at any point of the surface are approximated by
the fields that would be present on an infinitely extended tangent plane at
that particular point on the surface. The Kirchhoff approximation (also
called the tangent plane approximation) therefore amounts to assuming
that the reflection at each point of the surface takes place by approximat-
ing the profile around this point by its tangent plane. The reflection is
therefore said to be locally specular. This means that the assumption for
the Kirchhoff approximation is that the incident and scattered fields from
an infinitely large surface are related (linearly) through the Fresnel reflec-
tion coefficient, which is a function of the local incidence angle and polar-
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ization. In this way the integral equations from which the scattered field
can be calculated are reduced to integration of the incident field over the
surface. For rough surfaces with gaussian height statistics, analytical ex-
pressions for the mean scattered field and the BRDF can be obtained for the
cases of either very rough surfaces or slightly rough surfaces. Due to the
tangent plane approximation, the basic limitation of the Kirchhoff method
is that the local curvature (and therefore the local slope) on the surface
must be small compared with the wavelength (see also Table 1 at the end
of this section). The ordinary Kirchhoff method does not by itself account
for multiple scattering or shadowing effects on the surface. Although shad-
owing can partially be accounted for by introducing a shadowing function,
the Kirchhoff method is increasingly less accurate for increasing angles of
incidence.

The small perturbation method (SPM)
The Small Perturbation Method (SPM) belongs to a family of perturbation
expansion solutions to the wave equation. The basic idea is to find a solu-
tion in terms of plane waves that match the surface boundary conditions.
The surface fields are expanded in a perturbation series, E = E0 +E1 + ...
where Ei depends on the n-th power of the surface elevation and its gra-
dient. The underlying assumption of the SPM is therefore that the surface
heights and the surface slopes are small compared with the wavelength. In
the expansion E0 would be the surface field if the surface was flat. So this
method applies simultaneously to surfaces with small surface height vari-
ations and small surface slopes, independently of the radius of curvature.
Therefore, the surface need no longer be approximated by planes as in the
Kirchhoff approach. Using this method, the mean scattered field and the
BRDF can be obtained, at a given order of the perturbative expansion, for
rough surfaces with gaussian height statistics. The complexity of deriving
expressions for the BRDF increases with increasing order in the perturba-
tive expansion. In practice only the fist few orders of the expansion can be
calculated.

The integral equation method (IEM)
In the Kirchhoff approximation described earlier, the tangential fields on
the rough surface are expressed in terms of the incident field by using the
tangent plane approximation. In the integral equation method it is noted
that the exact tangential fields can be written as a sum of the tangential
field obtained in the Kirchhoff approximation plus a complementary term,
which is an integral over the surface of the fields and their derivatives. This
gives a set of integral equations for the surface fields. To be able to cal-
culate these integrals a number of approximations and simplifications are
made. It turns out that the contribution from the complementary terms to
the scattered field can be expressed in terms of the Fresnel reflection coef-
ficients and normal and tangential components of the surface fields. These
normal and tangential surface fields can then be expressed in terms of the
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incident field by using the Kirchhoff approximation. This makes the inte-
gral equation method an iterative method: The tangential surface fields are
expressed as a sum of the Kirchhoff fields plus a complementary term and
the complementary term can be calculated by using the Kirchhoff approx-
imation on tangential field components. The basic, underlying, assump-
tion of the integral equation method is therefore that the tangential surface
fields can be approximated by the tangent plane approximation. However,
it should be noted that it does not give the same result as the Kirchhoff
approximation since it is an iterative method where the tangent plane ap-
proximation is used in the iteration. Since the Kirchhoff approximation
is used in IEM, shadowing effects have to be accounted for by separately
introducing a shadowing function.

For surfaces with gaussian statistics, expressions can be derived for the
mean scattered field and for the BRDF. Separate expressions are derived
for very rough surfaces, and for slightly or moderately rough surfaces. IEM
has a range of validity which cover, and exceeds, the ranges of validity of
both the ordinary Kirchhoff method and the (low order) SPM (see also Ta-
ble 1). Furthermore, IEM does account for multiple scattering which the
ordinary Kirchhoff method does not do.

The small slope approximation (SSA)
In the SSA, the scattered field is expressed in terms of a plane wave expan-
sion where the coefficient function in the expansion is called the scattering
amplitude. Once the scattering amplitude has been determined, the scat-
tered field can be calculated. The scattering amplitude is written in a form
which is consistent with known transformation properties of the scattering
amplitude. It turns out that the scattering amplitude, or rather coefficient
functions entering the expression for the scattering amplitude, can be writ-
ten as an expansion in the surface slope. In the general formulation of SSA,
the roughness slope is the only parameter required to be small. The coeffi-
cient functions in the expansion can be determined by identifying terms of
different order in surface height in the SSA with terms of different orders
of the surface height in the small perturbation method (SPM). It should
be noted that the SSA expansion is in terms of the surface slope and not
the surface height which is used to determine the unknown coefficients in
the expansion in slope. For the first order SSA, the criterion for SSA can
be stated as (see Table 1): The slopes of the irregularities should be small
enough and at least smaller than the grazing angles of the incident and the
scattered waves. This means that the SSA becomes less and less accurate
for increasing incident and scattering angles. This has been verified by
comparison with measured data and numerical methods.

The smallness parameter in the SSA, the surface slope, differs from
those used in classical perturbation theory and Kirchhoff approximation
since it is independent of wavelength. The SSA theory gives a reduction
to perturbation theory which is intrinsic to the formulation, and it reduces
to the Kirchhoff approximation under the appropriate conditions when the
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Method Slightly rough sur-
faces

Rougher surfaces Comments

Kirchhoff kL > 6,
kL > 4.17

√
kσ and

σ
√

2 < 0.25L
(k=wavevector,
L=correlation
length, σ=RMS
height)

kL > 6,
kL > 4.17

√
kσ and

kσ >
√

10
| cos θi+cos θs|

(θi =incident angle,
θs = scattering
angle)

The Kirchhoff
method becomes
less accurate
for grazing in-
cidence due to
shadowing.

SPM kσ < 0, 3 and
0.3kL >

√
2kσ

(first order SPM)

Underlying
criterion:
k|f(x, y)| � 1,
|∇f | � 1

IEM (kL)(kσ) < 1.2
√

εr,
kσ < 2 (εr =relative
dielectric
permittivity)

kL > 5 (probably
not a complete
criterion)

The method be-
comes less accu-
rate for grazing
incidence due to
shadowing.

SSA kL � √
2σ/ cos θ

(θ is the incident or
scattering angle)

kL � √
2σ/ cos θ Underlying crite-

rion is |∇f | �
kz/k. Meaning:
Slopes of irregu-
larities should at
least be smaller
than the grazing
incidence and the
scattering angles.

Table 1: A list of "rule of thumb" criteria found in the literature for the
Kirchhoff method, SPM, IEM, and SSA.

first two terms of the series are retained. The SSA extends the range of
validity of the SPM to rough surfaces with larger heights (i.e. rougher
surfaces).
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