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1 Introduction

The development of RAYLAB is motivated by the need to simulate the propagation
of broadband acoustic signals in the seabed for sediment classification in real time.
The probing sonar system would be mounted on a tow-fish operating quite close to the
bottom. The transmitted pulses would be directed almost vertically and received by a
towed array some 20 — 100m behind the tow-fish. Extraordinary computational speed
is needed for inversion under transit. Forward modeling in a fraction of a second can
only be achieved by a ray model. RAYLAB is an implementation of classical ray theory,
in which computational speed has received a high priority. Features of importance for
inversion are bottom penetrating eigenrays, and the separation of transmission loss
into geometrical spread, absorption and reflection losses at sediment interfaces.

RAYLAB is limited to range-independent environments as opposed to many other ray
tracing codes. The computational simplifications offered in the range-independent case
are vast, as will be made evident in this work.

This report is a thorough account of the theoretical and numerical ray model in RAY-
LAB. Although most of the derivations can be found in the literature, it is convenient
to have a compiled documentation. The numerical technique of finding the eigenrays
is treated in more detail than is commonly done elsewhere. The topic is written in
mathematical terms, and it is mainly of interest for those who intend to develope wave
propagation models. Nevertheless it is also important to make a software tool like
RAYLAB accessible to practitioners of wave propagation models in sonar applications.
It should be recognized, that the design of the computational model, and how to use it
in the applied fields, are two quite different disciplines. Therefore we found it worth-
while to make a user oriented presentation of ray theory and the scope of RAYLAB.
Thus Sec. 2 is an outline of what a ray code can offer as a simulation tool in underwater
acoustics. It is done by means of a number of pictorial illustrations. Information on
the operational use of RAYLAB is given by the user’s guide, which is prepared as a
separate document.

2 Illustrative examples

2.1 An acoustic model for all ages

There is a variety of wave propagation models in acoustics. In practice the very simplest
one, sound propagation along a straight line from the source to the receiver, may be
better than anything else. To illustrate this point, I will tell a story from my childhood.

I grew up in a rural area which was plagued by thunderstorms in the summer. We
were a group of neighbor boys with a playground of wide fields and deep forests. Trees,
devastated by lightning, could be seen all around. Being far from home, we learned to
cope with the danger by keeping track of the thunderfront using the speed of sound.
At the view of a lightning all work stopped and turned into a unisonous count of the
seconds to the arrival of the boom. A boom within three counts was an emergency,
and we would run for life to the nearest barn. Standing in the middle of the barn, we
waited for the inferno to pass. Once one of the walls cracked by a strike of lightning.



The counting continued, but now for a reversed and equally important purpose. A
boom on three or more was a signal to return to the field activities. We had already
been halted too long.

The simple model of relating speed, time and distance along a straight line has also
been put to good use in professional applications like echo sounders and ultrasonic
imaging. However, there are many cases of practical interest in which the straight
line model is insufficient, because wave phenomena like refraction and diffraction are
neglected. A natural extension is ray theory, a classical discipline of both acoustics
and optics.

2.2 Fermat’s principle and Snell’s law

According to Fermat’s principle of least time, sound will take the fastest way between
a source and a receiver, which is not necessarily the same as the shortest one, that is,
the straight line. This distinction may be important when the speed of sound varies.
The sound waves will make a detour (refract) in a region of higher velocity before
turning towards the receiver. The straight line connection would be too slow. Whether
curved paths are important or not depends on how much the speed of sound varies
transversely to the direction of propagation.

When a sound wave encounters an interface between two different media, the wave
is partially reflected as well as transmitted. The angles of the incident, reflected and
transmitted waves 6;, 0, and ; with respect to the normal of the interface obey Snell’s
law

HZ- _ Gr and sin 0, _ sin gt’
G Ct

where ¢; and ¢; denote the speed of sound on either side of the boundary. Actually,

Snell’s law is a simplified model of a complicated wave interaction around the media

discontinuity. From a practical point of view though, Snell’s law is accurate enough

for a wide range of applications.

The wave phenomena as expressed by Fermat’s principle and Snell’s law are closely
related. Both are well reproduced in ray acoustics, as demonstrated in Sec. 2.4-6.



2.3 An example of a geoacoustic profile

In underwater acoustics the sea and bottom sediments often exhibit considerable vari-
ations of the speed of sound by depth. Figure 2.1 shows a sound speed profile from a
field trial in August 2002 in the Baltic Sea.
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Figure 2.1: The sound speed profile of the water (red), the top sediment (green) and
the bottom sediment (yellow). The velocity of the bedrock below a depth of around 40m
was set to 5200m/s.

The water depth (22.5 m) as well as the sound velocity of the water were measured. The
speed and thicknesses of the two bottom sediments were determined by an inversion
analysis [1] based on a wave propagation experiment. A strong reflector, most likely the
bedrock, was found at a depth of 17.3 m from the seabottom. The sediment consists
of two layers with thicknesses 6.6 and 10.7 m. The mean velocities of these layers were
estimated to 1425 and 1664 m/s. The velocity of the top sediment varies strongly by
depth. At the seafloor the velocity is 1390 m/s, while it could be as large as 1575
m/s at the interface with the deep sediment. The details of the velocity profile are
uncertain, and the linear profile in Fig.2.1 is free handed. The density and attenuation
of the top sediment were estimated to 1500kg/m?® and 0.15dB/), and of the bottom
one to 1700kg/m? and 0.10dB/ .



2.4 An example of almost horizontal rays

The sound speed profile of the water in Sec. 2.3 decreases from 1496 m/s at the surface
to 1444 m/s at the bottom. The rate of decrease is largest at the thermocline at a depth
of 10 m. The influence of the downward refracting profile is particularly strong when
the source is located at the thermocline and radiating horizontally. This situation
is depicted in Fig. 2.2. As can be seen, the ray dives into the sediment already
at a range of 100 m, where a reflected and a transmitted wave emerge. Because of
the the low impedance contrast at the water/sediment surface, most of the energy is
transmitted into the bottom. It is made clear by drawing the ray paths with a line
width proportional to intensity along the ray. The strong velocity gradient of the top
sediment makes the ray turn before reaching the deep sediment. Most of the energy
passes through the top sediment before returning to the water at the range 150 m.
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Figure 2.2: This ray diagram illustrates refraction and reflection/transmission at a
horizontal interface. The ray paths have been drawn with a line thickness proportional
to intensity.



2.5 An example of almost vertical rays

Figure 2.3 shows a ray diagram in which waves travel almost vertically. At a receiver in
the water quite close to the source in range, the strongest return comes from a reflection
at the bedrock interface some 18m down from the seabottom. Refraction effects are
weak for near vertical propagation, and straight rays would be good enough.

n)
-

3
w
-

0.5 1.0
range m

Figure 2.3: This ray diagram should be compared with the previous one. It illustrates
that refraction effects vary considerably depending on the direction of the wave in rela-
tion to the gradient of the velocity. Note that the horizontal scale is only 1m.

2.6 An example of eigenrays

The above pictures show how sound is propagated from a source which radiates in
a single direction. A ray represents a whole ray tube in which acoustic energy is
transmitted away from the source. To represent a real source a great number of rays is
needed. However, computing a fan of rays does not directly provide an answer to the
basic question in acoustic modeling, that is, to determine the response at the receiver
for a given source and a given environment. For this purpose eigenrays are more useful
than a bundle of rays. An eigenray is a ray path that joins two given points. In layered
media there is an infinite number of eigenrays joining two given points. Figure 2.4
shows five eigenrays between a source and a receiver.
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Figure 2.4: This ray diagram shows five eigenrays between a source and a receiver.

The most important parameters of each ray are listed in Table 1.1.

No Time,ms TL TLgeo TLref TLabs Angle ray id
1 67.07 45.3 45.3 0 0 -7.54 -1
2 67.66 41.1 41.1 0 0 -11.05 -11
3 71.23 61.9 38.7 23.2 0 14.57 11
4 74.55 43.3 39.6 0.5 3.2 21.05 1221
5 T77.74 49.2 43.2 0.9 5.1 36.48 123321

Table 1.1.  Fach ray is tabulated with arrival time, total transmission loss (dB), losses
due to geometrical spread, interfaces and absorption. The departure angle at the source
and layers traversed by the ray are also listed.

Columns 2 and 3 show the travel time and transmission loss (TL) at the end of the
ray. TL is the sum of three terms: the geometrical spread (TLgeo), losses due to
reflection/transmission at interfaces (TLref) and absorption (TLabs). TLabs is the
only loss term that depends on the frequency. In the present case the frequency is set
to 1 kHz. The grazing angle of departure (Angle) at the source is also listed. A minus
sign indicates that the ray is directed towards the sea surface. The last column is a
ray identifier. It is a sequence of digits, which indicates the layers being traversed by
the ray.

Supplemented by information of the phase, this table makes it possible to compute the
sound field at the receiver for both time-harmonic and transient sources. It is done
by summing the sound fields from each ray making use of both amplitudes and phases
in the frequency domain. Pulse propagation is accomplished by Fourier synthesis.
At short separation distances only a few rays are needed, because the amplitude of
multireflected rays decays rapidly as the angles get steeper.



3 The geoacoustic profile

Several assumptions of the geoacoustic profile is made in the model forming the basis of
RAYLAB. First, it is asumed that the sea and the sub-bottom layers are horizontally
stratified (range-independence). Second, we assume that the acoustics of the seabed
is the same as for a fluid medium. It means that the influence of shear elasticity is
neglected. In return these simplifications substantially reduce the computional effort
as will be explained later on.

3.1 The acoustic wave equation

Sound transmission in a fluid medium like air or water is governed by the acoustic wave
equation

2
S5 =V CY . (31)

where

p= p(x,t), acoustic pressure [Pa],

c= c¢(x), speed of sound [m/s],

p=p(x), density [kg/m?],

f = f(x,t), acoustic sources [Pa/m?],

x = (z,y,z), cartesian coordinates, [m)].

3.2 Environmental assumptions

We consider the wave equation in a horizontally stratified marine environment of sea-
water and a plane layered bottom, see Fig. 3.1.

x=0 X
layer 1
layer 2

Z layer N

Figure 3.1: A sea environment with N plane layers.

The deepest layer is assumed to be a half-infinite stratum of bedrock with constant
density and speed of sound.



The sea surface at z = 0 is assumed to be ideally flat and sound soft. Mathematically
this condition is expressed by the pressure release condition

p(z,y,0,t) =0, —o0<x,y<o0.

Physically it implies that the sea surface is perfectly reflective, and all sound transmis-
sion from the water into the air space or vice versa is neglected.

The absence of range variations implies that the speed of sound and density may depend
only on the depth coordinate z. In RAYLAB they are specified in each layer as two-
column tables of depth coordinates and velocity and density values. The profiles are
made continuous within each layer by a piecewise linear approximation based on tabular
values. In general there are jumps in velocities and densities at layer boundaries.

Due to media discontinuities at layer boundaries there is one wave equation (3.1) in
each layer. The solutions are tied at a layer interface z, by the boundary conditons

p(mv Y, 2p—, t) = p(.T, Y, Zb+7 t)a
10p (3.2)

for —oo < z,y < o0, t > 0. Here 2z, denote the limiting values on either side of the
boundary. Physically the conditions (3.2) imply that the pressure and normal particle
velocity are continuous at layer boundaries.

For pulse propagation we assume that the wave equation (3.1) is is to be solved for
t > 0 with the initial conditions

p(x,0) = w = 0. (3.3)

It means that the simulations start with quiescent conditions.

The acoustic source, represented by the forcing function f in the wave equation (3.1),
is assumed to be a simple monopole

f(x,t) =s(t)d(z — x5)0(y — ys)d(z — 25) (3.4)

where x; is the source position and s(t) is a time-dependent amplitude function.
Time-harmonic sources are of particular importance in all aspects of wave propagation.
In the time-harmonic case it is preferable to introduce a complex pressure v and a
complex source amplitude § according to

p(x,t) = Re(u(x)e "),
s(t) = Re(3e™™"),
w=2nf, f frequency in Hz.

By substituting the complex, time-harmonic quantities into the wave equation we ob-
tain the Helmholtz equation

pV(%VU) FR(x)u = —0(z — 2,)5(x)0(y), (3.5)



where for simplicity we have put § =1 and x, = y, = 0. The wavenumber k [m™}]

k(z) = (3.6)

o(z)

depends only on the depth coordinate in the horizontally layered case. It is common
to define a local wavelength A by

In an infinite and homogeneous medium (whole-space), the solution to the Helmholtz
equation (3.5) is given by

b R
) = TR (3.7)
R:(x2+y2+(z—z5)2) ;

=

The solution (3.7) is a spherically symmetric wave, whose amplitude decays by the
inverse of the distance to the source.

Wave attenuation due to absorption is introduced by adding an imaginary part to the
wavenumber according to
.a(z)In10

b= 0+ e (3.8)

where the absorption parameter a(z) is expressed in dB/\. By using the complex k
(3.8) in the fundamental solution (3.7), it is verified that the decay due to absorption
is @ dB in one wavelength.

The sound field from an omnidirectional point source in a range-independent medium
has cylindrical symmetry with respect to a z-axis through the source. The Helmholtz
equation in cylindrical coordinates (r, ¢, z) for solutions u(r, z) with azimuthal symme-
try is given by

10,6 0Ou 0 ,10u
——(r— — (=) + k? =———=0(2 — 24)- 3.9
The azimuthal symmetry implies that the solution needs to be computed only in two
coordinates (r, z), or equivalently, in a vertical plane through the cylinder axis. This
symmetry leads to huge computational savings.

All computations in RAYLAB are based on the two-dimensional Helmholtz equation
(3.9). However, from a user’s perspective, sources and receivers may be located freely in
a three-dimensional coordinate system suitably defined by the user. Computationally,
the total field is obtained by a summation over sources, each of which is radiating an
azimuthally symmetric field.



4 The ray model

The ray approach is said to be a high frequency approximation, although this phrase
is too vague, because the frequency is a dimensional quantity [s~!]. For example,
in a whole-space the ray solution is identical to the fundamental solution (3.7) inde-
pendently of the frequency. A more relevant condition is that the variations of the
media parameters or the geometry should be small over one wavelength. If the me-
dia changes gently, higher frequencies means smaller wavelengths and ultimately this
condition is fulfilled. However, when the spatial scale of media variations is compa-
rable to, or smaller than the wavelength, the notion of wavefront is lost and sound
is spread in different directions, the extent of which depends on the frequency. The
most well-known diffraction phenomenon is the bending of low-frequency sound around
obstacles. The most severe shortcoming of the ray model is the absence of diffraction.
To cope with this defiency a geometrical theory of diffraction was developed in [2].
More recent attempts to capture frequency dependent features are complex ray theory
[3] and Gaussian beams [4]. RAYLAB is an implementation of the classical ray model
without extensions. We proceed with an account of how the ray theory in [5] has been
applied. In addition, the derivations include density profiles.

4.1 Fundamental equations in ray theory

The basic ray equations are obtained by seeking a solution in terms of a high frequency
asymptotic expansion

u(r,z) = €7y " Ay (r, 2) (iw) ™ (4.1)

n=0

The expansion (4.1) is substituted into the Helmholtz equation (3.9) (without the
source term), and the sequence of coefficients of different powers of w are collected and
set to zero. The first term is the eikonal equation

GP+ 5 = 2

(4.2)

for the phase 7 (apart from the multiplying factor w). The next term is the transport
equation
2(876A0 87%)+<1g or 0,107

aror "oz a:)  \rarar) +p£(;a)) Ao =0 (43)

The subsequent terms are corrections to the amplitude, and they are omitted since their
importance diminish as w — 0o. As opposed to the amplitude, no further corrections in
powers of w™! appear for the phase. This fact indicates that the phase, or equivalently,
the travel time is very accurate in ray theory even at low frequencies. We also see from
the eikonal equation (4.2), that neither the density nor its variation affect the phase.

The equations (4.2) and (4.3) are solved in succession. Once the phase 7 has been
found from the eikonal equation, it is substituted into the transport equation, which
then becomes a linear partial differential equation for the leading term of the amplitude.

10



4.2 Solving the eikonal equation
4.2.1 Analytic formulas

The eikonal equation is a nonlinear partial differential equation, which can be solved
by the method of characteristics [6]. The essence of this approach is to keep track of
the wavefronts, which are curves of constant phase 7. The ray trajectories are curves
orthogonal to the wavefronts. It means that the tangent vector of the ray path is
parallel to the gradient vector V7. Let (r(s), 2(s)) be a parametrization of the ray,
where s is the arclength. Then the above condition implies that

dr 087' dz CBT
ds or' ds 0z
The normalization factor ¢ is a direct consequence of the eikonal equation (4.2) and

the unit length of the tangent vector. Looking at the ray ansatz (4.1), it is natural to
introduce a local wave vector k as

(4.4)

or or
k = (k. k) = (=—, —). 4.
(ke ) = (57, 2) (45)
From the eikonal equation it follows that
1
k=K = (] +42)2 = (46)

@a

which is consistent with the wave number £ of the Helmholtz equation (3.9). Here and
subsequently, the wave number is only for the frequency w = 1. It is a good convention
in dealing with the ray equations, because they are independent of the frequency. Only
in the very end, the phase including an imaginary part due to absorption needs to be
multiplied by the actual frequency w.

Next we consider waves propagating outwards from the source at (0, z;). Then

ke >0, +k, = +/k2(z) — k2, (4.7)

where the sign in front of £, > 0 indicate the vertical direction of the wave. The
equations (4.4) for the ray trajectory can now be written as

% = ck,, % =t/ k2(2) — k2. (4.8)
s s

To be able to solve these equations, an additional equation is needed for £, in terms of
c is needed. It is obtained by differentiation of k, along the ray path:

dk, _ i(a_T) _ Ordr + 0’1 dz
ds ds Or or2ds 0rdzds
o*ror  0°t Ot
or? or + oroz &)
1 0 or or
=30 (G G)
101
T 20re?

=c(
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The last equality follows from the assumption of range independence. Therefore the
horizontal wave number is a constant along the entire ray path. This result can also be
derived directly from the Helmholtz equation (3.9) using the method of separation of
variables. The invariance of &, also holds across layer boundaries, that is, the incident
and transmitted waves have the same k.. It is an alternative way of stating Snell’s
law, and it is also called the Snell invariant. It is the key to many computational
simplifications.

For a point source at (0, z;) the pair (4.8) of ordinary differential equations is solved
for s > 0 with initial conditions equal to

z(0) =0, 2(0) = z (4.10)

and a prescribed value of

ke, 0<k, < = k(zs) (4.11)

and sign of k,.

The grazing take-off angle 6 of the ray at the source is given by

k 7 s

0, = +cos H(——), —=<6,<= 4.12

s (k(zs)) 2 — Vs = 2 ( )
with positive angles for rays directed towards the bottom. The angle 6, is not used as
a ray parameter in RAYLAB. It more convenient to use k. and the sign of &,, simply
because k, is not related to the position of the source.

In practice the ray equations (4.8) are reduced to one equation by expressing the radial
distance of the ray path as a function of the depth coordinate according to

dr k, 2y L
e TP ap 1)

The equation (4.13) is solved piece by piece with one sign at a time corresponding to
waves traveling down (4) or up (-). The ray is traced until it encounters a turning
point (74, z;) defined by

k*(2) — k2 =0, (4.14)

or intersects a layer boundary at (rp, 25). At a turning point the ray path is horizontal
with k£, = 0. After the turning point three cases may be distinguished depending on

i) d(z)#0, 1) c(z)=0, ii4) nonexistant c'(z). (4.15)

In the first case, the ray direction is reversed after passage of (1, z,). If ¢ () = 0, the
ray exhibits a higher order contact with the horizontal line z = z;, after which it may
continue up or down depending on the sign of the first nonzero derivative of c at z;. If c
is nondifferentiable at the turning point, the ray may split into a multitude of rays. In
RAYLAB the first case is always assumed to hold. It is a practical means of avoiding
any pecularities of the sound speed profile around the turning point. The piecewise
linear approximation of data in RAYLAB hardly admits further sophistication.

12



When a ray intercepts a layer boundary at (74, 2), a choice is made whether to continue
with a backreflected or a transmitted wave. In RAYLAB this choice is done prior to
the ray tracing by specifying layers to be traversed. In any case, a new piece of the
ray is started at (7, 25). For a backreflected way, the sign of k, is changed, while
transmission requires a new k, according to

tk, = £/k2(z %) — k2 (4.16)

provided that k. < k(zy*). Radiation at the critical angle, corresponding to k, =
k(zt), is not within the realm of classical ray theory.

4.2.2 Numerical formulas

For a general sound speed profile, the equation (4.13) must be solved numerically by
a Runge-Kutta method for example. However, explicit solutions do exist for linear
profiles in ¢ or k% [5]. The latter case is adopted in RAYLAB. In each layer a piecewise
linear k2-profile is formed using the same sublayer points as the input sound speed
profile, that is,

2o (o L
(Zn, k (Zn)) = ( ns CQ(Zn))

where n ranges over the number of points of the profile. Thus if z € [z, z,.1], the
linear approximation

E*(2) = k?*(2n) + bu(2 — 2,),
where

k? (#ng1) — k? (%n)

Zn4+1 — 2n

b, =

(4.17)

is employed. With this approximation, the equation (4.13) can be integrated analyti-
cally. The result is

2k, |zp — 24|
kz(zb) + kz(za) (418)
ky(2) = Vk2(20) + bn(2 — 2,) — K2,

where z,, 2, are any two points such that

r(zp) = r(2q) +

Zn < 2a < 2 < Zpy1, downgoing ray,

or
Zn < 2p < 24 < Zpy1, UpgoIng ray.

If a turning point is encountered, then either £,(z,) or k,(2,) is zero. Such a point is
the starting point of a new piece of the ray in which the depth coordinate is traversed
in the opposite direction.

If the ray traverses the entire layer, the formula (4.13) is applied sublayer by sublayer, in
which z, and z, are the boundary points of the sublayers. It implies that computational
cost increases by the number of points of the sound velocity profiles of the water and
sediments.
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If the ray stays within the same layer, it will cycle up and down between two extremal
points in depth, which are the layer boundaries and/or turning points.

The phase 7 along the ray trajectory satisfies the equation

dr drdr dzdr or ., or ., 1
ds _dsdr dsdz W) T = TR 41
s~ asar Tasdr — ) TG = =G (4.19)

It implies that 7 is the travel time along the path. Using

k(z)
k. (2)

and the linear approximation of k2, analytic integration gives

ds = dz

T(ry, 2p) = T(Tay 24) + OT
2 k% (z) + k*(24) + ko (20) k2 (24) + K2 (4.20)
0T = =|2p — 24|
3 kZ(Zb) + kz(za)

for the points (r,, z,) and (rp, 2,) on the ray (4.18).

In the ray representation (4.1), the phase wr is simply obtained by multiplying the
travel time (4.20) by w. Media absorption is modeled by adding an imaginary part to
the phase. The increments of the real and imaginary parts of the phase between two
points (7,4, 2,) and (rp, 25) on the path (4.18) is computed as

Re(phase) = woT

4.21
In 10 a(zp) + (za) b, (4.21)
407 2

Im(phase) =

where 67 is given by (4.20), and «(z) is the absorption profile.

Additional phase changes due to reflection/transmission at layer boundaries and inter-
cepts with caustics will be discussed later on.

4.3 Solving the transport equation
4.3.1 Analytic derivations

The amplitude associated with each ray is determined by the transport equation (4.3).
It can be solved analytically along the ray path. Next we briefly review the derivation
given in [5] but adding density variations.

The first part of the transport equation can be written as

(8_7%4_@8140)_ 2 dA
or or 0z 0z’ c(2(s)) ds

(4.22)

using the equations (4.4) for the ray path. In order to evaluate the last term of
the transport on the ray path, consider the Jacobian of the transformation from the
ray coordinates (s, 05, ¢5) to the cylindrical coordinates (r, z, ¢5), where the subscript s
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refers to conditions at the source position. In case of azimuthal symmetry the Jacobian

is given by . .
r 0z z Or

9590,  9s 96,
By differentiation of the Jacobian along the ray path, it can be shown that

pd J)_10 or 0 10r
st(pc)_rar(rar)+p62(paz)'

= r( ). (4.23)

(4.24)

Using the identities in (4.22) and (4.24) the transport equation can be written as an
ordinary differential equation along the ray path:

2dAy pd, J
-——+—(—)A = 0. 4.2
c ds * st(pc) o(s) =0 (4.25)

By multiplying this equation by JAyp~!, it can be written as

i(Agi

=0. 4.2
s ch) 0 (4.26)

It means that . .
A2 g =(42=-J) (0 >0, 4.27
()@= (47) 0. s> (a.27
where the constant on the right is evaluated at the source. It is done such that the ray
solution is identical to the whole-space solution (4.22) in the vicinity of the source.

The physical interpretation of the identity (4.27) is that the energy flux along the ray
is invariant. The amplitude squared divided by the impedance pc is the intensity, while
J is a geometrical factor of dimension [m?]. When J is multiplied by df; it signifies
the transversal area swept out by the end points of two df-separated rays as they are
rotated around the cylinder axis.

4.3.2 Computing the amplitude

The evaluation of the derivatives of the Jacobian (4.23) on the ray path requires some
footwork. Let 6(s) denote the grazing angle of the ray path given by
dr dz

— =cosf(s), Is

I = sin 6(s).

The derivatives with respect to 6, express the rate of variation along the wavefront.
By inspection of the ray geometry we find that

0z cos @ Or

90,  sinf 8—95‘s:con5t’

or or (4.28)
8—05|s:const = Sinz 96—95|z=const-

Replacing the take-off angle 6, by k, as ray parameter, implies that

or or dk, . or
0.~ ok db. — —k(z) s1n056—kr.
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Subsequently, the derivative of the range of the ray with respect to £, is always under-
stood to be evaluated for a fixed depth coordinate.

When the above relations are substituted into the Jacobian (4.23), we obtain

or

Ok,

J =rk,sinf, sin 6

In the code the energy invariant (4.27) is applied piece by piece like the ray tracing

formula (4.18). For two successive points (g, 2,) and (7, 2,) on the ray, it implies that
k2 (20) |95 a

A2 = g2 P TeB%a) Lok, 10 4.99

P pa iy k() |22 (4.29)

where
k, = \/k*(z) — k2, sinf = +k,/k.

For a point source at (0, z5), the formula (4.29) is initialized by putting
1 or 1

Tazla

Aa = a = Ps, kz— a )
Pa="p T P

cosd,’

which corresponds to the whole-space solution (3.7) apart from the factor 4.

The formula (4.29) can also be continued after intersections with layer boundaries by
multiplying the amplitude by the magnitude of the reflection/transmission coefficient
according to plane wave analysis. The phase angle of a complex coefficient is added to
the accumulated sum of phase contributions along the path.

4.3.3 Evaluating the range derivative

It remains to evaluate the range derivative in (4.29). It warrants special attention,
because the range derivative may become infinite (turning points) or zero (caustics).
Consider the ray tracing formula (4.18) for a downgoing wave in a sublayer [z, z,11],
that is,

2k, (z — zn)
=7(2n) + T T 4.
r(z) = r(zn) + ) T () (4.30)

where .

— 2 _ — k2 =

k.(2) = VE2(2) + bn(2 — 20) — k2, Kk(zn) )

Differentiating (4.30) with respect to k, gives

dr(z) _ dr(zn) L5 dr

dk, dk, dk, (4.31)

dr 2(z—2z,) 1+ k2

dk, k. (2) + k,(2,) k. (2)k,(2,)
provided that k, > 0 in [z,, z]. This formula is used to update the range derivative
within a sublayer.
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If
kr < minOSzSZB k(Z),

where zp is the depth of the half-infinite bottom, then the range derivative remains
positive over the entire path, and r(z, k) is an increasing function of &, for any depth
point z.

If b, < 0, there may be a turning point 2, 2z, < 2; < z,41), defined by

Eo(2) = V/k2(20) + bn(2e — 2) — k2 = \/E2(2,) — k2 = 0.

Then it follows from (4.31), that

dr

0
dk,

— 00 as z = 2. (4.32)

However, when the range derivative is multiplied by k&, in the amplitude formula (4.29),
there is a limiting value

dr(z) k2

kz(Zt)W r

= (2 — zn)%

It implies that the amplitude is well defined at the turning point. After reversal of
direction at the turning point, the ray consists of two pieces:

r(z) = r(zg) + ez =),
(4.33)
(2) = () + 2l 2
r(z) =r(z 5.(2)
Differentiating with respect to k, give
d 2z — 2 1% %, d
Sl = (/?(z; : (H R0z )) k(2 )d—l?
T 4 n z n 4 n T (434)

dr 2(z — 2) k2 2k, dz
5O = | 4
" ThG ( T 20)) Tk dk,

where the subindices d, u refer to waves down and up. Since z; satifies the equation
E*(2) + bp(2t — 20) — k2 =0

we obtain
dZt . 2](5»,«

dk, b,

where b, is the gradient (4.17) of k% in [z, 2,11]. As a result we obtain

ﬂ\+6ﬁ| _2mmm) (RO, AR
dk, ' U dk " T ka(z) k2(zn) ) k(2n)bn

+%(z)<(zt—z)+g),
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where also the relation
kf(z) =by(z —2), by <O,

has been used. When multipling by k,(z), it can be verified that the ray amplitude
assumes the same limiting values on both sides of the turning point.

The dominant term in (4.35) as z — #; is the last one, for which

2k?
k,(2)by,

— —00 as z — z%.

However, the expression (4.35) for the increment of the range derivative is increasing
as z decreases, and it may happen that it becomes zero at some point (7, 2.). The
envelope of all points for which
dr(re, 2¢)
dk,

for a bundle of rays is a caustic. On the caustic the ray amplitude is infinitely large.
The caustic separates an insonified side from a shadow one. This boundary is sharp in
ray acoustics, while in reality it is more or less diffuse depending on the frequency. A
detailed study of both the sound field and the ray solution in the vicinity of caustics
is presented in [7].

=0

If the point (73, 25) = (e, 2.) would appear in the amplitude formula (4.29), it would
cause a division by zero. Although a direct hit on the caustic is an unlikely event in
numerical ray tracing, this situation should be guarded. It could be accomplished by a
slight move of the sampling point on the ray path. With this reservation, the amplitude
formula (4.29) can be applied both before and after the caustic.

It is well known that the wave undergoes a phase shift of —m/2 (time-advance) as
it touches the caustic. It is dealt with by checking the sign changes of the range
derivative.

5 Finding the eigenrays

5.1 The theoretical setup

For a given point source (0, z5) and receiver at (7, z.), and a given ray type, the eigenray
problem is to find all rays which connect the source and receiver. The direct ray is
the ray which has been reflected at neither the sea surface nor the bottom, nor has it
changed directions by the passage of a turning point. This ray is unique, if it exists. The
next type is the ray that has changed directions once, either by a reflection or a turning
refraction. It is called the surface (bottom) reflected or refracted ray. There may exist
several refracted rays of the same type. In RAYLAB each type of ray is specified by a
code of digits, where each digit corresponds to a single traversal of a layer, either up or
down. For example, the rays just mentioned possess the codes +1, +11, —11. The
plus sign implies that the ray is launched towards the bottom and minus is for upward
directed rays from the source. The subsequent digits in the order left to right denote
successive layer traversals, which may be incomplete if the ray direction is reversed at
a turning point. The first digit, a '1’ represents the ray piece from the source to the
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sea surface of bottom or a turning point within the water. A similar remark holds for
the last digit. A traversal of layer two, that is, the top sediment, is indicated by the
digit 2. For example, the ray with the code —11221 is first reflected at the sea surface
(or a turning point above the source), after which it returns to the sea bottom. It
penetrates the top sediment, where its direction is reversed either by a turning point
or a reflection at the interface with the next sediment. The last digit corresponds to
the ray piece from the sea bottom to the receiver.

In RAYLAB the eigenray finding is made an entirely independent task for each choice
of source, receiver and ray type. It also means that the computational cost is additive in
terms of number of ray types and the number of combinations of sources and receivers.

The mathematical formulation of the eigenray problem is as follows. Find the horizontal
wave numbers k., which satisfy the range equation

T(kraze) =Te (51)

where r(k,, z) is the range of the intersection point of the ray and the horizontal line
2z = 2. In general there are several such intersection points along the ray path. The one
being referred to is the intersection point after completion of all reversals of directions
as specified by the ray type. In the sequel, we use the notation r(k,) for the range
function in (5.1). It should be distinguished by the context from notation r(z) which
was used for the range of a single ray as function of depth.

The range r(k,) is computed by the formula (4.18) with 2, = 2z, and z, = z, or
Zq = 2p+1 depending on the arrival direction of the ray at the receiver. Prior to this,
the ray has been traced through all layers, except the very last sublayer, as specified
by the ray type. The range derivative dr/dk, is evaluated by the formulas (4.31) or
(4.35). The latter one is used for the passage of a turning point. The derivative is not
defined at the turning point itself, where it changes from +o00 to —oc.

5.2 Solving the range equation

The general approach of solving the range equation (5.1) is to find k* and k% which
bracket the range r, that is,

r(kF) < re < r(kf). (5.2)

In addition it must be ensured that r(k,) is a continuous function between k“ and kX.

The conditions imply that there is at least one root £, that is,

r(kX) =re (5.3)

r

within the bracket (5.2). Once the bracket and the continuity condition have been
established, it is easy to compute k. Since dr/dk, is available, Newton’s method can
be applied. If it fails, it is backed by the method of bisection. However, due attention
must be paid to the possibility of several roots within the bracket (5.2).

There are two major obstacles in finding a bracket (5.2). After the passage of a turning
point, the ray path with k. = k¢ may intersect a caustic at (r., 2.), where the range
derivative vanishes. Now if z. = z,, and k¢, 7, are within the bracket (5.2), the range
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function is not monotone when k, spans the interval between k* and k. In case there
are several intersection points between the caustic and the horizontal line z = z,, there
may exist a number of solutions within the bracket (5.2).

The second major difficulty is the presence of discontinuity points of the range function
(k). For example, consider two sublayers [z, 1, z,] and [z, z,.1] with velocities ¢,, >
cn—1 and ¢, > c,4+1 at the sampling points. Then a ray trace downwards will turn
upwards before reaching z, for k., = k, — ¢, while it continues downwards at z, for
k. = k, + €. It means that the ray path is discontinuous for &, = k,. Next we describe
a device by which discontinuity points are excluded from the search domain of £,.
Similar ideas were persued in [8].

5.2.1 Partitioning the wave number space

We divide the search space of k? into a number of intervals, each of which is associated
with a depth range:
kiy <kZ <kl

(5.4)
2j <z < Zjy1-

The purpose of such a decomposition is to make sure that the range function r(k,) is
continuous within each subdomain (5.4). Such a partition can be made prior to the
ray tracing by a pure inspection of the sound speed profile. The discontinuity points
of 7(k,) will be the boundary points k,; and k, 1, which are simply excluded from
the search domain (5.4) as indicated by strict inequalities. However, they may appear
as interior points of other subdomains with a different depth range. The k2-range
constitutes a sound channel in which all rays are confined to the depth range (2;, zj11)-
If z, and/or z is outside this range, then the search domain can be disregarded, because
there is no connecting ray between the source and receiver in this domain. The very
first subdomain to be searched is given by

0 <k? < mino< <.,k (2)

5.5
0 <z < 2, ( )

where zp is the depth of the bottom of the deepest layer of the ray under consideration.
The search domain (5.5) does not contain any turning points. It means that r(k,) is an
increasing function of k.. Therefore an eigenray, if it exists in this domain, is unique.
Furthermore the influence of variations of the sound speed profile is weak because of
fairly steep angles of propagation. A bracket can be found by using approximations
by isovelocity layers. It can be done without ray tracing using analytic expressions for
the range function. At the same time, the results of the isovelocity case determines
whether there is an eigenray or not. The latter point is important, because all search
domains are visited for all types of rays. In conclusion, whether there is an eigenray or
not, the treatment of the domain (5.4) does not pose any difficulties. The boundary
point k. = 0 corresponds to a ray going straight down or up. Then the ray formula
(4.18) is no longer applicable, and this case warrants a special treatment. To avoid
this inconvenience, k. = 0 is replaced by k, = €, where the number ¢ is chosen by some
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care so that the results become satisfactory. If the upper bound in (5.5) is assumed,
the ray would become horizontal at a layer interface. The corresponding lateral wave
is not part of the present ray model.

It remains to consider the remainder of the horizontal wave number space
minogzsszZ(z) <kl< maaEOSZSZBkQ(z). (5.6)
The domain is further restricted by the condition
k, < min{ks,k.}, (5.7)

since complex vertical wavenumbers (evanescent waves) are not allowed in classical ray
theory.

The aim of dividing the domain (5.6) into subdomains is to avoid ambiguities when
k, = 0 at a sublayer boundary point. Such a point has a special significance because the
sound speed profile is translated into a piecewise linear profile in k?(z) by putting k2 =
1/c% from tabular values of the velocity. The profiles of each layer are concatenated
into a single profile over the entire depth using double points at layer boundaries to
signify jumps in velocity. This is the representation being referred to by the notation
k% (2).

The general approach to create the desired decomposition is to let a vertical ruler
slide from right to left over the entire k2(z)- profile. It is stopped when a sound
channel, in the following called a well, can be identified. Furthermore, rays in the
well are not allowed to escape to a nearby well. The scheme to contain rays using
separators in k, space is made clear by the following example. Consider a section
n—1,n,n+1,..,n+m-+ 1 of the profile for which

2 2 2 2 2
kn S kn—l’ kn—f—m—{—l S kn < kn—{—m’
2 2 2
ki <kny <. <kn, (5.8)
2 2 2
by ms1 < bk < oo < ks

see Fig. 5.1.
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Zn+m+

Figure 5.1: The detachment of a well in kZ-space.

The speed of sound has a local minimum at the bottom point (2,4, k2 41) of the well.
A subdomain of the type (5.4) is now formed by

2 2 2
kn <kr < kr,n+l

z -z 5.9
% % . n+m-+1 n—+m 2 2 ( )
Zn <2< Zpims Rpam = Znt+m T+ K2 — k2 (kn - kn+m)

n+m+1 n+m

The vertical cut at k2 prevents rays from escaping out of it once in there. Mathemat-
ically it implies that the range function is continuous within the domain (5.9). This
domain need not be searched unless both z; and z, belong to the depth range in (5.9).

A new k?(z)-profile, called the ghost profile, is now created by moving all points n +
1,..,m + m to the vertical line between the endpoints in (5.9), that is, their k*-values
are set to k2. The new point (z},,,,k2) is also included. The procedure now restarts
from the right on the ghost profile. After a number of detachments of wells, the ghost
profile will eventually become a vertical line of points equal to the lower limit in (5.6),
which means that all conceivable wells have been extracted. It should be noted that
wells may be bounded by layer interfaces. If so, the ray is reversed by a reflection
rather than a turning point. The ghost profile is never used for any ray computations.
It is just a device of decomposing the wave number space such that r(k,) is smooth in

each domain (5.4).

5.2.2 The eigenray problem in a sound channel

It remains to solve the range equation (5.1) in a k? domain (5.4), in which the rays will
cycle up and down between two limits in depth. The minimum and maximum depth
points of the ray are layer boundaries or turning points. The lower and upper bounds
of all rays within the well are given by z; and z;1; in (5.4). In any case, the depths of
the extrema of a ray can be found directly from the ghost profile. The smallest and
largest depth range of all rays can be used to obtain an estimate of the smallest and
largest range of any ray within the well. It can be done as follows. The steepest angle
of a ray is determined by

(kZ)maz = k'?nam - kv%j’
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which is applied layer by layer. By using the steepest possible angle, and the smallest
cycling depth, an estimate of the shortest possible range can be estimated. If this range
exceeds 7., the well is void of eigenrays of the type under consideration. In the same
way one can estimate the largest possible range using the largest cycling depth, k2.,
and kfyj 4+1- These estimates, which are based on min and max speeds of layers, are
useful when k, is considerably smaller than k,,;,.

If the above estimates are inconclusive, r(k,) must be evaluated by ray tracing. It is
done in an adaptive manner as follows. The k.-interval is divided into a number of
subintervals, which are stored in a stack and processed one by one in a uniform way.
The stack grows and diminishes in a dynamic way, but ultimately it becomes empty
when all eigenrays, if any, have been found. Let dk, = [k”, kE] be a subinterval to be
searched. The first action is to evaluate the ranges at the endpoints, that is, r(k%)
and r(kF). If the bracket condition (5.2) is fulfilled, the combined Newton/bisection
method is applied to compute one root. Once done, a thin slice around the root is
cut off from dk,, and the remaining parts on each side of the cut are added to the
stack. In the other case, that is, with (k%) and r(kZ) on the same side of r., a cubic
Hermite interpolating polynomial p(k,) is formed using r(k%), dr(k%)/dk, and r(kE),
dr(k®)/dk,. The extrema

Pmin = p(k;nm) - mindkrp(kr)a
Prmax = p(k;nacc) = ma'mdkrp(kr)

are determined analytically. Assume that
r(kF) < r(kB) < re.

Now if prmar < 7(k), then dk, is declared void of eigenrays and removed from the stack.
If Prmas > 7(kR), then dk, is divided into two subintervals with k™ as a divider. They
are added to the stack, while the parent interval is removed.

The stack is initialized by three subintervals
[T(krj + 6)’ T(krj + 5]7 [T(ij + 5)’ T(kr,j-H - (5]7 [T(kT,j-Fl - (5)5 T(kTyj-Fl - 6]’

where
0 = 0.01(ky 41 — krj)

and € is a very small number to avoid possible singularities of the derivative of the
range function at the endpoints. This is also the reason for the choice of using small
subintervals around the endpoints.
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5.2.3 An example of a caustic

A common feature of acoustic wave propagation in inhomogeneous media is focusing.
In ray acoustics this phenomenon implies that nearby rays intersect and form a caustic
surface in space. A typical example of a caustic is shown in Fig. 5.2.

0

20 ' '
100 200 300

rangc m

Figure 5.2: This ray diagram shows the formation of a cuspoid caustic around 200 m
from the source. The caustic is an envelope to a bundle of converging rays.

A bundle of rays from a shallow source at (0,5)m are launched slightly upwards in a
sea with the bilinear sound speed profile

(0,1500), (12,1440), (50,1500), [(m,m/s)].

At the point (30,200) m in the depth-range diagram the rays converge to a needle
which splits into upper and lower boundaries. It is a caustic of the cuspoid family [9].
An expanded view of the caustic region is shown in Fig. 5.3.

The ray solution breaks down at the caustic, because infinite intensity is predicted.
The caustic is the locus of points in which the range derivative dr/dk, is zero. Figure
5.4 depicts the range function r(k,) versus a normalized k,-interval corresponding to
the search domain (5.4) for the depth 33m and the ray type —11 (surface-reflected or
refracted rays).
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210 220 230 240
range m

Figure 5.3: The caustic has the form of a cusp, whose interior is covered by crossing
rays giving rise to an interfering sound field of high intensity. The region outside the
cusp is a shadow zone.

There are two extrema of the range curve where the derivative is zero. The correspond-
ing ranges ~ 218m and =~ 223m are points on the caustic for the depth z = 33m. The
range interval between these points lies in the insonfied region.

When RAYLAB is called to compute the eigenrays of type —11 for a receiver at
(33,220)m, the result is given by Table 4.1.

No Time,ms TL TLgeo TLref TLabs Angle ray id
1 152.11 32.9 32.9 0 0 -3.99 -11
2 162.09 36.5 36.5 0 0 -9.89 -11
3 162.09 61.8 61.8 0 0 -10.66 -11

Table 4.1.  Fach ray is tabulated with arrival time, total transmission loss, losses due
to geometrical spread, interfaces and absorption. The departure angle at the source and
layers traversed by the ray are also listed.

The first two eigenrays correspond to the intersection points with the horizontal line
r = 220m and the range curve in Fig. 5.4. The third eigenray is a surface reflected
eigenray, which has nothing to do with the caustic. Its intensity is also quite small in
comparison with the rays that touch the caustic.

This example illustrates some of the difficulties that may arise in finding eigenrays.
Three eigenrays of the same type appear in a rather small k.-interval.

The total number of calls to the subroutine that evaluates the range function is a
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Figure 5.4: The range function r(k,) for z = 33m versus a normalized wave number
spanning the search domain in solving the range equation (5.1). The two peaks at the
ranges = 218m and =~ 223m lie on the caustic.

measure of efficiency of the eigenray solver. In the present example 48 ray traces were
done in order to find all three eigenrays.

6 Impedance calculations

In ray acoustics the sound field at a receiver is obtained by summing up complex
pressure amplitudes of all waves associated with the eigenrays. The type and number
of eigenrays needed must be decided prior to the run of RAYLAB. At short range only
a few eigenrays are needed because ray angles rapidly become steeper as the number
of reflections increases. Ultimately when the incident angle towards the half-infinite
bottom is steeper than the critical angle of total reflection, a portion of energy is
lost at each bottom bounce. At long range though, a comparatively larger number of
rays travel at shallow angles and they suffer little from reflections at interfaces of high
velocity layers. Then the computational cost, and the bookkeeping of all possible ray
paths in a multilayered seabed, become an unbearable burden already at ranges beyond
a few water depths. A sensible solution to this problem is to restrict the ray tracing
to the water layer, and to use an effective reflection coefficient at the water/sediment
surface. It is common to let this coefficient represent the combined wave response of
the entire bottom stratification. It also means that the reflection coefficient becomes
frequency dependent, since it embodies the characteristics of a multilayered bottom.
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This approach is also made an option in RAYLAB.

The computations of the reflection coefficent due to a multilayered bottom is accom-
plished by using the impedance. This technique can be explained in terms of the
depth-separated equation

0 ,10u
—(==) + (K*(2) — k®)a(z, k) = 0, 6.1
p5 g0 + () — Kz k) (61)
which is obtained by applying the Hankel transform to the Helmholtz equation (3.9)
[5]. In this section we restore the frequency dependence of the wave number, that is,
k = w/c(z). The impedance at the depth z for a solution 4 of this equation is defined

by

>

Z(2, k) = (6.2)

g2

1
p 0z
The impedance Z is continuous across layer boundaries, because it is the ratio of the
complex pressure and normal particle velocity (apart from a factor iw). Let 2, denote
the depth of the water. Then a downgoing wave incident on the bottom and the

backreflected wave can be written as

i(z, k) = A (expikz(zfzb) +R eprikz(zfzb))

di | |
a—u = ,LkZA (eXkaz(Z*zb) _R eXp*Zkz(zfzb)) ,
z

(6.3)

where

k. =k (z) — k2, Im,/— >0.

Here it is assumed that the media parameters p,,, ¢y, @y, of the water are homogeneous
in the vicinity of the bottom. Now by impedance matching at z;, we obtain by using
the relations (6.2) and (6.3)

1+ R
= Z(z, k,
or .
1— %z
R=-——Ptv_, 6.4
14 %7 (64)

It remains to compute the impedance of a stack of layers for an incoming wave from
the top. It can be done by a down-up approach starting with a known impedance of
the half-infinite bottom. The latter is obtained directly from the assumption of one-
way propagation towards +oo. In layers with constant parameters the solution can
be written in the form (6.3), and the formula (6.4) can be applied to find a reflection
coefficient one layer up. Once known, the impedance at the initial depth of the layer is
found. In this way the impedance is propagated upwards layer by layer in a repetitive
fashion. In layers with depth-dependent parameters, the expression (6.3) does not
apply. Then as before, we introduce a piecewise linear approximation in each sublayer
based on tabular data. The linearity of k? makes it possible to write the solution in
terms of Airy functions [10]. A slight complication arises if the density is a piecewise
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linear function of depth. This case is dealt with the transformation @ = ,/pt, for which
the equation (6.1) goes over into
62’17, 1 ,0” 3 ( pl)2

a4 (k%) — K2 £ _Z
RS A e

Yii(z, ky) = 0. (6.5)

The new wave number squared is now made a linear function in each sublayer by
dropping p”. By an additional scaling of the depth coordinate z the equation (6.5)
is transformed to the Airy equation. The Airy functions and their derivatives can be
evaluated by a recently developed code [11].

A compact way of displaying the reflection coefficient is shown in Fig. 6.1. It is a color
plot of the reflection loss in dB for the multilayered bottom described in Sec. 2.3.
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Figure 6.1: The reflection loss —20log(R) dB as function of frequency (Hz) and incident
angle for the 3-layered bottom in Sec. 2.3.

This map can be regarded as a geoacoustic signature of the bottom configuration. For
example, a notable feature is that bottom loss increases strongly for frequencies above
~ 1k Hz, except for waves with very small grazing angles.
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6.1 A comparison with JEPE

We shall consider a computational example in which the ray tracing is restricted to the
water, and the bottom is represented by an effective reflection coefficient. We also want
to evaluate the ray solution against a reference solution generated by JEPE, which is
a code based on the parabolic wave equation [12],[13]. In the present study it can be
regarded as a comprehensive model of high fidelity. The geoacoustic profile is the same
as before, that is, the one given in Sec. 2.3. A shallow source is placed at (0,5)m and
a receiver at (3000,20)m. The computational domain of JEPE was set to

0<r<3000, 0<2<00

with a transparent boundary condition at z = 50m [14]. The RAYLAB solution was
based on 60 eigenrays, which was found to be enough for a converged ray solution.
Transmission loss was computed for 230 frequencies in the range 100H z to 25k Hz. The
RAYLAB (black) and JEPE (red) solutions are depicted in Fig. 6.2. The computa-
tional time of the RAYLAB solution was 5s, while the JEPE solution was an overnight
run.
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Figure 6.2: Transmission loss as function of frequency (Hz) computed by RAYLAB
(black) and JEPE (red). The blue curve is a RAYLAB solution with only the direct
and surface reflected rays. The green curve is a MODELQOSS solution based on modes
with phase velocities in the range (1480, 1500)m/s.

There is a striking disparity in transmission loss (TL) in the range 1 — 4kHz, while
the ray solution is mostly acceptable outside this range. An explanation is offered
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by the blue and green TL curves. They show that the solution above =~ 1kHz is
determined by a few degrees of freedom. TL of the direct and surface reflected rays
amount to 97dB respectively 87dB for high frequencies (tables of TL are not shown
here). The influence of all other rays diminish by increasing frequencies. The reason is
that they hit the bottom at grazing angles larger then 15°, because of the downward
refracting profile and the shallow source. It means that they suffer a considerable
reflection loss according to Fig. 6.1. In order to understand the intensity drop of the
JEPE solution, it is helpful to look at the modal properties of the wave field. From
a table of horizontal wave numbers of the modes (not shown here) it is found that
only a few modes contribute to the field for frequencies larger than ~ 1kHz. This is
also confirmed by computing a mode solution composed of modes with phase velocities
in the narrow range (1480,1500)m/s (green curve). Their propagation angles, and
depth penetration into the top sediment, decrease gradually as the frequency increases.
At sufficiently large frequencies they suffer little from the absorption of the sediment
and the intensity becomes higher. Decreasing mode angles and sediment penetration
at higher frequencies is one manifestation of diffraction, and it has no counterpart
in the ray model. For frequencies in which the wave propagation is not dominated
by diffraction effects, there is a good agreement between the RAYLAB and JEPE
solutions.

7 Time series simulations

Basically RAYLAB is a frequency domain code, and receiver time series are synthesized
by an inverse Fourier transform of the product of the transfer function and the source
spectrum. The transfer function is obtained by adding complex pressure values for
the amplitude and phase of all eigenray solutions. It must be done for all frequencies
of the spectrum of the emitted pulse. However, the most expensive task, namely, the
computation of the eigenrays does not depend on the frequency, and the same ray
paths can be used for all frequencies.

In RAYLAB it is left to the user to specify what types of eigenrays to be included, as
well as to determine a time-window at the receiver. Both questions can be explored by
some trial and error calculations in the frequency domain prior to the time simulations.
The tables of travel times and losses make it easy to decide on a suitable set of eigenrays
and time-window. The possibilty to generate a time-series for any set of rays is a unique
feature of the ray model, which is helpful for the interpretation of measured data.

7.1 A comparison with MODELOSS

The following example has a double purpose. One objective is to compare the simulated
time-series of RAYLAB and MODELOSS [15], [16]. The latter program, which is based
on the method of normal modes, is a consolidated code being used for a long time.
Second, a sample run that illustrates the essential characteristics of inversion in the
time domain, is worthwhile.

The environmental description in Sec. 2.3 is used. The source and receiver are deployed
5m from the seabottom, that is, at the depth 17.5m. The separation distance is 25m.

30



The transmit pulse is a Ricker pulse with the center frequency 2k Hz having a duration
of ~ 1ms. The eigenrays selected were those depicted in Fig. 7.1.
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Figure 7.1: This ray diagram shows the most important rays when the source and
recetver are located bm above the seabottom.

The corresponding arrival times and loss factors are listed in Table 6.1.

No Time,ms TL  TLgeo TLref TLabs Angle ray id
1 17.20 28.0 28.0 0 0 -1.06 -11
2 18.59 49.1 28.4  20.7 0 21.31 11
3 23.42 48.2 30.5 13.8 3.9 42.04 1221
4 29.02 32.9 32.9 0 0 -55.24 -11
5 32.88 41.4 34.9 0.5 6.0 62.60 123321
6 34.90 49.5 34.4 15.1 0 61.39 111
7 34.92 49.5 34.4 15.1 0 -61.41 -111

Table 6.1. FEach ray is tabulated with arrival time, total transmission loss, losses due
to geometrical spread, interfaces and absorption. The departure angle at the source and
layers traversed by the ray are also listed.

Figure 7.2 shows the computed time-series at the receiver by RAYLAB (black) and
MODELOSS (red). The RAYLAB solution was obtained at immediate response, while
the processing time of MODELOSS amounted to three minutes. The predictions are
similar, except for the first arrival. The reason can be explained by the way the
sound speed profile is interpreted by the codes. The direct ray is curved due to a
slightly downward refracting profile at the depth of the source and receiver. A closer
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Figure 7.2: The simulated time-series of RAYLAB (black) and MODELQOSS (red).

look at the ray path (not shown here), reveals that this ray touches a caustic. As a
consequence the received pulse is a Hilbert tranform of the emitted one. MODELOSS
is less sensitive to fine variations of the sound speed profile for two reasons. The profile
is approximated by a staircase function, and diffraction effects due to finite frequency
are retained in MODELOSS. The first arrival of the MODELOSS solution resembles
a replica of the transmit pulse. Like the previous example in Sec.5.1, diffraction is
of concern for horizontal propagation, and it affects the fidelity of the ray model. It
should be noted though, that the prediction of arrival time is correct. Fortunately, the
inversion will be based on steep rays for which the agreement is excellent, as can be
seen from Fig. 7.2.

Next imagine that Fig. 7.2 is a measured signal at a site with unknown bottom
properties. The task is to predict sub-bottom parameters. The first thing to be noted
is that the peaks at the arrival times of the rays —11, 11, -—11, 111, -111in
Table 6.1 are easy to identify. These rays have only traversed the water layer in
which all propagation conditions are known. The direct ray at 17ms, and the surface
reflected ray at 29ms, are the stongest ones. The wave form of the latter is flipped due
to the reflection at the air/sea surface. Although these two arrivals do not contribute
information about the bottom, they set a time-frame for the inversion. In addition,
they can be utilized to determine the position of the receiver both in range and depth.
The hitherto unidentified arrivals at 23ms and 33ms must be interpreted as reflections
from sub-bottom interfaces. If similar reflections are observed at another receiver with
a different separation distance, we obtain two pairs of arrival times. This information
suffices to determine layer thicknesses and average speeds of two layers [1]. Once the
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speed of the top layer has been determined, its density could be estimated by the
amplitude of the bottom reflected arrival 11 at 18ms. The reflection loss 20.7dB in
Table 6.1 is available by subtracting the known geometrical loss from the total loss.
The density is now obtained by using the expression for the reflection coefficient. The
next targets are the absorption of the top sediment and the density of the bottom
sediment. They could be determined from 1221 arrivals at two receivers. The crucial
ingredient of this approach is the sorting of arrivals, and the decomposition of the total
loss into its constituents. It remains to find out how the wave forms could be exploited
for inversion. Inversion based on wave form analysis, rather than arrival times and
amplitudes, has recently been performed in marine electromagnetics [17].

8 Forthcoming work

The flashing speed of a ray code makes it a key tool in exploring sonar data in real time.
It should be remembered though, that certain loss of model fidelity has been traded
for speed. Diffraction effects tend to be more pronounced for horizontal propagation.
One specific shortcoming of importance for inversion is the absence of lateral waves
in the ray model. Lateral waves travel horizontally in the vicinity of layer interfaces.
They decay quickly by range, and they are excited only by radiation at critical angles.
However, once captured they carry rich information on media contrasts across the
interface. Incorporating lateral wave capabilities could be done with modest efforts as
opposed to a comprehensive treatment of diffraction.

Developing a computational module for a systematic search of all caustics is an interest
in its own. Maps of locations, types and stability properties with respect to media
parameters would enrich our understanding of sound fields. Probably it could also be
put to good use for inversion. There is much evidence that there is a strong velocity
gradient in the upper 10m of the seafloor . This is a prerequisite for a caustic, which
likely would appear in the water volume. Such a feature, if detected, would provide
information on the velocity profile of the bottom sediment.

Shear wave profiles may be introduced into the impedance calculations. It would
result in an effective reflective coefficient which embodies effects of partial conversion
of compressional waves to shear waves at sediment interfaces. One could also compute
eigenrays with shear wave segments in the sediments, although this would require a
considerably larger effort.

A major problem is how to model small scale heterogeneities of the sediments, whose
effects become more pronounced at higher frequencies. Amending the geoacoustic
profile with scattering features must be combined with experimental studies in order
to find an appropiate statistical description of sub-bottom scattering.

The rapid processing time of simulating time-series makes it possible to visualize wave
phenomena like refraction, focusing, wavefront progression etc. by moving pictures.
Such options could be added to simulation tools like COMBIS [18].

A sonar system for sediment classification under transit must be fully automated con-
cerning two-fish, transmitter and receiver positions, adaptive control of separation dis-
tances and pulse shapes with respect to varying bathymetry and sediment thicknesses,
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data acquisition and processing, inversion techniques and timing of operations. Each
block in turn may be broken into a number of subtasks. For example, RAYLAB would
be just one box of the flowchart of the software package for inversion. From a systems
perspective, most work lies ahead.
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