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Chapter 1

Introduction

1.1 Background

The use of wireless communications increases rapidly both in the civilian and
military society. The ongoing transformation of the Swedish Armed Forces to-
wards a Network Based Defence (NBD) will lead to an increased amount of
equipment for wireless communications and information processing on, and in
the proximity of, military platforms. Combined with reduced defense budgets
this transformation is anticipated to increase the use of civilian electronics in
military applications. The emission specifications for civilian electronics, such
as computers and printers, allows considerably higher emission levels than for
military specified equipment. With this foreseen increase of radiating equip-
ment in the vicinity of radio receivers, it is obvious that intersystem interference
is destined to increase. At the same time, the need for reliable communications
increases, since the distribution of information collected at different platforms
to those who need the information (the right information at the right place and at
the right time) is a critical part of the NBD concept. Wireless communications
will continue to play an important role in future military communication net-
works. In many scenarios it is the only feasible communications solution, e.g.
for airplanes, ships, and for the so-called last tactical mile. Hence, it is impor-
tant to develop efficient tools in order to judge the effect on radio receivers due
to intersystem interference. We must be able to analyze an intersystem interfer-
ence situation, or to plan a co-location of different systems, so that the level of
intersystem interference remains manageable.

FOI-R–1053–SE
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10 Chapter 1. Introduction

The computations necessary to determine the performance degradation on
a radio receiver, caused by intersystem interference, are often quite compli-
cated. Thus, simplified methods, with low computational complexity, are de-
sired in computer-based tools for intersystem interference analysis. One com-
monly used simplified method is to approximate the interfering signal as ad-
ditive white Gaussian noise (AWGN); however, it is often difficult to evaluate
the quality of the AWGN-approximation. The AWGN-approximation has pre-
viously been shown to perform fairly well for modulated interference signals,
i.e. interference caused by other transmitters [6, 8]. However, it should be used
with caution for pulsed interference signals since it can lead to large underesti-
mations of the resulting bit error probabilities (BEP) in the radio receiver. Also,
a higher-order statistics (HOS) measure, the kurtosis, has shown to be useful
when attempting to distinguish between modulated and periodic pulsed inter-
ference [5, 6]. This opens the possibility to use HOS in computer-based tools
for intersystem interference analysis.

1.2 Contributions

In this report we show that it is possible to use higher-order statistics (i.e. the
kurtosis) to determine if the use of the AWGN-approximation for a pulsed inter-
ference leads to an over- or underestimation of the bit error probability (BEP).
This has previously been shown for periodic pulses with fixed amplitude and ar-
rival time [5, 6]. Here we show that this is also the case for pulses with randomly
distributed amplitude and arrival time. The kurtosis for these pulsed signals is
also estimated, both analytically and through simulations.

Furthermore, a low complexity method for estimating the impact of in-
tersystem interference on digital radio systems is proposed. It is intended for
use in computer-based intersystem interference analysis tools. In the method,
we propose to use a kurtosis measure as a threshold to decide if the AWGN-
approximation can be used or not. For kurtosis values close to zero, the AWGN-
approximation can be used safely. For higher kurtosis values, two other approx-
imate methods are used. For periodic pulses, with constant amplitude, that are
longer in duration than the bit time, it is possible to estimate the resulting BEP
in the receiver with use of the estimated kurtosis value. Finally, when the pulse
is shorter than the bit time we also need to estimate the relationship between
the pulse repetition time and the bit time in order to estimate the BEP. All the
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methods need to know both the average ratio between the desired signal and the
noise and the average ratio between the desired signal and the interference.

1.3 Outline

The outline of the remainder of this report is given here. In Chapter 2, the ef-
fects of intersystem interference on a binary phase-shift keying (BPSK) receiver
is described. Also, the validity of the additive white Gaussian noise (AWGN)
approximation is discussed. Thereafter, in Chapter 3, a short introduction to the
basics of higher-order statistics is given. This theory is then used, in Chapter 4,
in order to derive analytical expressions fort he kurtosis for various pulsed in-
terference sources. The kurtosis is derived for periodic pulses or for pulses with
Poisson distributed arrival times, as well as for pulses with constant amplitude
or with a uniformly distributed amplitude. In Chapter 5, the performance degra-
dation for an uncoded coherent BPSK-receiver caused by pulsed interference is
shown. The main result is that the AWGN-approximation can be used for prac-
tical purposes for pulsed interference with low kurtosis values. However, for
pulsed interference with high kurtosis values, the AWGN-approximation may
yield unacceptably large underestimations of the resulting bit error probabilities.
Based on these results, we derive a low-complexity kurtosis-based intersystem
interference analysis method in Chapter 6. The proposed method is of interest
for use in, for instance, computer-based intersystem interference analysis tools.
Finally, the main conclusions are summarized in Chapter 7.
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Chapter 2

Intersystem Interference in
Digital Communication Systems

In a wireless communication scenario, the antenna typically receives the de-
sired signal as well as noise and various interfering signals. These undesired
signals may originate from various wireless communication transmitters, for
example from other military radio systems that are sharing the same frequency,
from co-located military radio systems using adjacent frequency bands, or from
out-of-band emissions from civilian wireless systems. These intersystem inter-
ference signals generally consist of modulated signals and they can sometimes
be received at relatively large distances.

Other intersystem interference sources are different kinds of electronic equip-
ment, such as computers, faxes, and micro-wave ovens. All electronic equip-
ment unintentionally emits electromagnetic energy. These intersystem interfer-
ence sources are relatively weak, but they can seriously deteriorate the perfor-
mance of radio receivers if they are placed in the vicinity of the receiver. The
performance degradation caused by intersystem interference can, for example,
result in a decreased capacity or a reduced operating range [4].

FOI-R–1053–SE
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Information
user

Information
source BPSK-modulator

BPSK-demodulator

Interference

Noise

Figure 2.1: The BPSK receiver is subjected to the desired signal, interference
signals, and additive white Gaussian noise.

2.1 The Effects of Intersystem Interference on a BPSK
Receiver

In Figure 2.1 a typical intersystem interference scenario can be found. The
binary phase-shift keying (BPSK) receiver is subjected to the desired signal, in-
terference signals, and additive white Gaussian noise (AWGN). To describe this
scenario we use the signal-to-noise ratio, SNR, and the signal-to-interference
ratio, SIR.

The BPSK receiver used in this report is a coherent receiver optimized for
AWGN. Also, the information is memoryless and the decisions are made bit-
by-bit. Furthermore, no error-correcting codes are used.

BPSK is a basic modulation scheme and other popular modulation schemes
such as minimum-shift keying (MSK) and quadrature phase-shift keying (QPSK)
are based on decision-making algorithms that can be related to the decision-
making algorithms of BPSK. Finally, the performance degradation (in terms of
BEP) in a BPSK-receiver, due to interference, does not differ much from other
modulation schemes. Although the absolute performance in terms of BEP differ
for different modulation schemes their general behavior in the presence of in-
terference are similar. Hence, conclusions made on results for BPSK can often
be extended to other related schemes.

For a digital radio receiver, the bit error probability (BEP) is a widely used
measure of the receiver’s performance. For AWGN interference there exist well-
known equations that can be used to determine the BEP. In other cases it is
necessary to calculate the BEP through a comprehensive analysis of the digital
radio receiver. This can be difficult and the assumption commonly used to make



2.2. The AWGN-approximation
FOI-R–1053–SE

15

these calculations easier is to model the noise, or interfering signal, as AWGN
with the same mean power as the interference. This simplifies the calculations,
but this approximation is not always valid. Furthermore, it is often difficult to
evaluate the reliability of the AWGN-approximation.

When estimating the BEP, the SNR and SIR are important. However, the
SNR and SIR are not sufficient as the waveform of the interfering signal can be
of great importance for the impact on the receiver.

2.2 The AWGN-approximation

It has previously been shown, in [6], that when approximating the interfering
modulated signals as AWGN, the BEP is overestimated. Furthermore, it is better
to make an overestimation of the BEP, rather than underestimating the BEP,
since that could lead to serious communication problems. Hence, the AWGN-
approximation is valid, for practical purposes, for modulated signals.

In [8] it is shown, through a comprehensive theoretical analysis, that the
AWGN-approximation is valid also for an MSK receiver when subjected to an
interfering MSK signal.

However, the AWGN-approximation cannot be used safely for periodic pulsed
signals, i.e. without risking an underestimation of the BEP. Previously, in [5, 6],
it was shown that a higher-order statistics measure, the kurtosis, could be used to
indicate the reliability of the AWGN-approximation for periodic pulsed interfer-
ence with fixed amplitude. This type of pulsed interference with kurtosis values
close to zero could be approximated as AWGN without seriously underestimat-
ing the BEP. However, for higher kurtosis values the AWGN-approximation
could result in large underestimations of the resulting BEP [5, 6].

As man-made noise in many cases do not have fixed parameters, it is desir-
able to see if the kurtosis can be used also for a more general pulsed source, i.e.
with randomly distributed amplitude and arrival time. In this report we continue
the work in [6] by investigating pulsed interference where the arrival times are
given by a Poisson process and the amplitudes are uniformly distributed.
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Chapter 3

Higher-Order Statistics Theory

Higher-order statistics (HOS), also known as cumulants, are an important tool
in many different fields; e.g. image reconstruction, time-delay estimation, adap-
tive filtration, array processing, blind equalization and modulation classification
[7]. The interested reader is referred to [1, 2, 3] for comprehensive introductions
to the field of HOS. The first-order cumulant is the mean and the second-order
cumulant is also known as the covariance function. If a random process is sym-
metrically distributed its third-order cumulant equals zero [2]. Communication
signals are generally symmetrically distributed; therefore, the fourth-order cu-
mulants are used in communications applications. The kurtosis measure is an
example of a forth-order cumulant. The kurtosis can be interpreted as the size
of the distribution’s tail. Hence, the kurtosis characterizes the shape of the dis-
tribution of the signal [7]. The impact of an interfering signal on a digital radio
receiver depends on the distribution of the interfering signal. This is the motiva-
tion for examining the potential use of kurtosis-based measures in intersystem
interference applications.

3.1 Cumulants

The kth-order cumulant can be defined in terms of a weighted sum of joint
moments of orders up to k, see [3] for a definition of the cumulant-generating
function. For a set of zero-mean, real-valued random variables ���� ��� ��� ���

FOI-R–1053–SE
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the first-, second-, third- and fourth-order cumulants are [1]

cum���� ������ � � (3.1)

cum���� ��� �������� (3.2)

cum���� ��� ��� ���������� (3.3)

cum���� ��� ��� ��� ������������
���������������
���������������
����������������

(3.4)

3.2 Cumulants of Stationary Processes

The cumulants of stationary processes are most easily understood for real-valued
stationary processes and these will be described herein. However, in commu-
nication applications the received data is normally complex-valued (baseband
data with I- and Q-channels). Therefore, the cumulants for complex-valued sta-
tionary processes are also defined.

3.2.1 Real-Valued Stationary Processes

If ���� is a real-valued stationary random process and its moments up to order
k exists, then the cumulants depend only of the time differences [3]

������ ��� � � � � ����� � cum������ ���� ���� � � � � ���� ������� (3.5)

Hence, for stationary processes, the kth-order cumulants are only functions of
the lags ��� ��� � � � � ����.

Furthermore, by assuming that the (real-valued) process is zero-mean and
setting �� � �� � �� � � we get [3]

�� � �� � ������� � � (mean) (3.6)

�� � ����� � �������� (variance) (3.7)

�� � ����� �� � �������� (skewness) (3.8)

�� � ����� �� �� � �������� � �����
� (kurtosis)� (3.9)
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In order to make the kurtosis value independent of the power of the signal the
kurtosis is normalized by the variance of the signal, i.e.

�� �
��

�����
� (3.10)

3.2.2 Complex-Valued Stationary Processes

For a complex-valued zero-mean stationary random process 	��� the second-
order moments can be defined in two different ways depending on placement of
conjugation. The variance can be defined as [1]

��� � ��	����� (3.11)

��� � ���	������� (3.12)

Similarly, the kurtosis measure can be defined in three ways

��� � cum�	���� 	���� 	���� 	����

� ��	����� � ����	����� (3.13)

��� � cum�	���� 	���� 	���� 	�����

� ��	����	����� � ���	��������	������ (3.14)

��� � cum�	���� 	���� 	����� 	�����

� ���	������ � ���	������� � �����	������� (3.15)

These three different versions of the kurtosis describe the complex process in
different ways. For our application ��� is the most interesting measure, since it
can be used in order to distinguish between modulated and pulsed signals.

3.3 Sample Estimates

In practice, the cumulants must be estimated from a finite set of sample data.
The sample average is removed before the cumulant estimation in order to get a
zero-mean process. The sample estimates of the correlations (with zero-lag) of
a zero-mean complex-valued process, 	���� � � 	� �� � � � � 
 , can be calculated
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as [7]


��� �
	




��
���

	����� (3.16)


��� �
	




��
���

�	������ (3.17)

where
denotes the sample average estimate. Similarly, the fourth-order cumu-
lants can be expressed in three different ways, depending on the placement of
conjugation [7]. One of the three kurtosis estimates, from (3.15), is


��� �
	




��
���

�	����� � � 
����� � � 
��
��� (3.18)

The normalized kurtosis estimate is


��� �

���


��
��

� (3.19)

The normalized kurtosis has a low computational complexity, of order N.



Chapter 4

Kurtosis for Pulsed Interference

In this chapter we will derive expressions for the normalized kurtosis for several
different types of pulsed interference. We start by deriving a general expression
for pulses with an arbitrary arrival process, an arbitrary distributed amplitude,
and a uniformly distributed phase. From that we then derive expression for peri-
odic pulses and pulses that arrive according to a Poisson process, with constant
or uniform amplitude.

4.1 General Expression for the Kurtosis

Depending on the pulse length and the arrival process there can be several ex-
cited pulses at the same time. We let the discrete random variable ���� denote
the number of active pulses at time �. Furthermore, we model each excited
pulse, �, as having a random amplitude, denoted 
� , and a random phase, de-
noted ��. Finally, we assume that the 
�:s are independent and identically
distributed real random variables, that the ��:s are independent and uniformly
distributed on the interval ��� ���, and that 
� , �� and ���� are independent.
We can now write the resulting signal 	��� as

	��� �

�����
���


��
��� � (4.1)
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First we make two observations that will be useful:

�
�
����

�
�

	

��

� ��

�
��� ��

�
	

��

�
���

�

���
�

� �� (4.2)

and

�
�
�����

�
�

	

��

� ��

�
���� ��

�
	

��

�
����

��

���
�

� �� (4.3)

As we recall from (3.15) ��� can be written as

��� � ���	������ � ���	������� � �����	������� (4.4)

and therefore we need expressions for these three moments.
We start with the moment ��	�����, which can be written as a sum of

conditional expected values given ���� � � as

�
�
	����

�
�

��
���

�����
�
	����

������ � �
�
� (4.5)

where ���� is the probability that ���� � � and

�
�
	����

������ � �
�

� �

��
	


� ��

���


��
���

�



���
�

�
��
���

��
	��

�
�

��

���
	�
���
�
� (4.6)

Since all variables are independent we can write the terms in the last sum (4.6)
as

�
�

��

���
	�
���
�
�

�
� �
���

�
����

�
� �
	��

�
����

�
for � �� �

�
�

�
�

�
�
�
�����

�
for � � ��

(4.7)
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With Eqs. (4.3) and (4.2) we see that all terms in the sum are zero. Hence

�
�
	����

������ ��
�
� �� (4.8)

and consequently
�
�
	����

�
� �� (4.9)

We use the same method for ���	������ and get

�
�
�	�����

�
�

��
���

�����
�
�	�����

������� � �
�
� (4.10)

where ���� is the probability that ���� � � and

�
�
�	�����

������� � �
�

� � �	���	��������� � ��

� �

��
	


� ��

���


��
���

�




� ��

���


��
����

�


��
�

�

��
���

��
	��

�
�

��

���
	�
����

�
� (4.11)

Since all variables are independent we can write the terms in the sum as

�
�

��

���
	�
���
�
�

�
� �
���

�
����

�
� �
	��

�
�����

�
for � �� �

�
�

�
�

�
�
�
���������

�
for � � ��

(4.12)
Equation (4.2) gives that all terms for � �� � are zero, whereas the terms for
� � � are non-zero and equal to �

�

�
�

. This results in

�
�
�	�����

������� � �
�
�

��
���

�
�

�
�

�
� �

�

�
�
� (4.13)

and by inserting into (4.10) we get

�
�
�	�����

�
�

��
���

�����
�

�
�
�� (4.14)
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Finally, for ���	������ we get

�
�
�	�����

�
�

��
���

�����
�
�	�����

������� � �
�
� (4.15)

where ���� is the probability that ���� � � and
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Since �
�
����

�
and �

�
�����

�
are zero (see Eq. (4.2) and (4.3)) the only non-

zero terms are terms with the following structures 
�����
��
����
��

���
��
����

and 
��
���
��

����

�
���

�

���� , which gives �
�

�
�

and
�
�
�

�
���

re-
spectively. There are � of the first type and ���� � 	� of the second type.
This together with Eq. (4.15) gives
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4.2 Periodic Pulses

Periodic pulses can be characterized by a pulse time (pulse duration) �	, a pulse
repetition time �
, and an amplitude 
. The pulsed interference is compared
to the communication signal in Figure 4.1, where �� denotes the bit time for
the communication system. We will consider pulses for which the pulse time is
shorter than the pulse repetition time. Periodic pulses with this constraint can at
most have one active pulse and the probability for a pulse is �	��
. Thus, the
probability density function for ���� is

���� �

���
�	
	� �	��
 � � �

�	��
 � � 	

� otherwise

� (4.18)
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Figure 4.1: Pulse time, �	, bit time, ��, and the (average) repetition time, �
.

With (4.18), (4.14), and (4.17) we can write the non-zero moments as

�
�
�	�����

�
� �

�

�
� �	
�

� (4.19)

and

�
�
�	�����

�
� �

�

�
� �	
�

� (4.20)

By inserting (4.19) and (4.20) into (3.15) we get ��� for periodic pulses as

��� � �
�

�
� �	
�


� �

�
�
�

�
� �	
�


��

(4.21)

By dividing (4.21) with (4.19) squared we get the normalized kurtosis for peri-
odic pulses as

��� �
�
�

�
�

�� �
���� �
�

�	

� �� (4.22)

4.2.1 Constant Amplitude

If the amplitude is constant we can assume 
 � 	, since normalized kurtosis is
invariant to amplitude scaling, and we get

��
�� � ��
�� � 	� (4.23)
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Inserting (4.23) into (4.22) yields the normalized kurtosis for periodic pulses
with constant amplitude as

��� �
�

�	

� �� (4.24)

4.2.2 Uniform Amplitude

If the amplitude is uniformly distributed we can assume that it is distributed on
the interval ��� 	�, since normalized kurtosis is invariant to amplitude scaling,
and we get ��
�� as

�
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� (4.25)

and ��
�� as

�
�

�
�

�

� �

�
	 � �� ��
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�
� (4.26)

By substituting (4.25) and (4.26) into (4.22) we get the normalized kurtosis for
periodic pulses with uniform amplitude distribution as

��� �



�
� �

�	

� �� (4.27)

4.3 Poisson Arrivals

Now we will study a more stochastic interference where pulses arrive according
to a Poisson process, with intensity �. As before, the pulses are characterized
by a pulse time �	 and an amplitude 
.
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Since the pulses arrive according to a Poisson process the random variable
���� is Poisson distributed with parameter ��	. Hence, the probability density
function for ���� is given by

���� � �����
���	�

�

��
� (4.28)

By inserting (4.28) in (4.14) we can calculate ���	������ as

�
�
�	�����

�
�

��
���

�����
���	�

�

��
�
�

�
�
�

� �
�

�
�
�����

��
���

�
���	�

�

��

� �
�

�
�
��	� (4.29)

where we use the fact that
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By substituting (4.28) into (4.17) and we can write ���	������ as
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where we use (4.30) and the fact that
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Inserting (4.29) and (4.31) into (3.15) gives ��� for pulses that arrive ac-
cording to a Poisson process as

��� � �
�

�
�
��	� (4.33)

By dividing (4.33) with (4.29) squared we get the normalized kurtosis for pulses
that arrive according to a Poisson process as

��� �
�
�

�
�

�� �
���� � 	

��	
(4.34)

4.3.1 Constant Amplitude

If the amplitude is constant we can, as with periodic pulses, assume that 
 � 	,
thus the relevant moments are given by (4.23). Inserting (4.23) into (4.34) yields
the normalized kurtosis for pulses with constant amplitude that arrive according
to a Poisson process as

��� �
	

��	
� (4.35)

4.3.2 Uniform Amplitude

If the amplitude is uniformly distributed we can, as with periodic pulses, assume
that the amplitude is distributed on the interval ��� 	�, thus the relevant moments
are give by (4.25) and (4.26). Inserting (4.25) and (4.26) into (4.34) yields the
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normalized kurtosis for pulses with uniform amplitude that arrive according to
a Poisson process as

��� �



�
� 	

��	
(4.36)
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Chapter 5

Interfering pulsed signals

The effect of pulsed interference on a (uncoded) coherent BPSK-modulated (bi-
nary phase-shift keying) digital communication receiver has been simulated in
ACOLADE (Advanced COmmunication Link Analysis and Design Environ-
ment). The results for different kinds of pulsed interference are shown in Figures
5.1 to 5.4. In the figures the bit error probability (BEP) is shown as a function of
the signal-to-interference ratio (SIR). The signal-to-noise ratio (SNR) is 10 dB.
The amplitude of the interfering pulses is normalized so that the mean power
of the interference is equal for all cases. We investigate four different types of
pulsed interference, where we have either a periodic pulse or Poisson distributed
arrival time, and where the amplitude is constant or uniformly distributed. We
have investigated pulses with an average time between consecutive pulses, �
,
which are the same as the bit time, 10 times the bit time, or 50 times the bit time,
i.e. �
 = �� , �
 = 10 ��, or �
 = 50 ��. The pulse duration is 10% of the bit
time, i.e. �	 � ��	�� in all cases. The performance for additive white Gaussian
noise (AWGN) is also shown as comparison.

In Figure 5.1, the interference consists of periodic pulses with constant am-
plitude. In Figure 5.2 we see the results for periodic pulses with uniformly
distributed amplitude. Pulsed interference with constant amplitude and Pois-
son distributed arrival times is examined in Figure 5.3. Since the arrival times
are random, pulses can overlap each other, which results in a larger impact on
the receiver. This effect can be seen in Figure 5.3 for �
 = �� where the BEP
is slightly higher for some values of SIR than the corresponding cases in Fig-
ure 5.1 and 5.2. Finally, in Figure 5.4, the interference pulses have uniformly
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Figure 5.1: BEP for a BPSK-receiver, as a function of SIR, when subjected to
periodic pulsed interference with constant amplitude.

−10 0 10 20 30 40
10

−6

10
−4

10
−2

10
0

SNR = 10 dB. Random amplitude

SIR [dB]

B
E

P

AWGN
T

r
 = T

b
T

r
 = 10*T

b
T

r
 = 50*T

b

Figure 5.2: Simulated BEP for a BPSK-receiver, for periodic pulsed interference
with random amplitudes.
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Figure 5.3: Simulated BEP for a BPSK-receiver, for pulsed interference with
random arrival times and constant amplitudes.
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Figure 5.4: Simulated BEP for a BPSK-receiver, for pulsed interference with
random amplitudes and arrival times.
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Figure 5.5: The estimated normalized kurtosis, 
���, for pulsed interference,
with different average times between pulses.

distributed amplitudes and Poisson distributed arrival times.

For all the different pulsed signals the BEP reaches a maximum value for
low values of SIR, governed by the ratio ����
, since the interferece is so strong
that the BEP in the disturbed bits are 0.5. For high SIR values the BEP reaches
a minimum value, which depends on the SNR at hand.

From Figure 5.1 to 5.4 we can see that the AWGN-approximation cannot be
used for these types of pulsed interference when the average time between con-
secutive pulses, �
, is significantly larger than the bit time. Depending on the
SIR and the ratio ����
, the BEP can be largely over- or underestimated. For
low values of SIR the AWGN-approximation yields an overestimation. How-
ever, for moderate to high SIR it results in an underestimation of the BEP, which
can have serious consequences for the communication system.

The sample estimate of the normalized kurtosis, for various types of pulsed
interference, is shown in Figure 5.5, for different average times between pulses,
�
. The pulse length is 10% of the bit duration. The normalized kurtosis in-
creases when the average time between consecutive pulses, �
, increases. From
Figures 5.1, 5.2, 5.3, and 5.4 it is clear that interference with large �
��� differs
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Pulse type �� � �� �� � ���� �� � ����

��



�� �� 
��


�� �� 
��



�� ��
Periodic 8.00 8.20 2.50 98.00 98.05 0.05 498.00 499.25 0.25
U. amp. 16.00 16.28 1.72 178.00 174.40 2.02 898.00 896.34 0.19
Po. ar. 10.00 9.75 2.48 100.00 100.76 0.76 500.00 476.46 4.71
Po. ar. U. amp. 18.00 17.77 1.29 180.00 176.41 1.99 900.00 846.19 5.98

Table 5.1: Normalized kurtosis (���), estimated normalized kurtosis ( 
���) and
relative error in percent (��) for periodic pulses with constant amplitude (Pe-
riodic), periodic pulses with uniformly distributed amplitude (U. amp.), pulses
with constant amplitude that arrive according to a Poisson process (Po. ar.), and
pulses with uniformly distributed amplitude that arrive according to a Poisson
process (Po. ar. U. amp.).

from the AWGN-approximation concerning the BEP performance. Hence, the
normalized kurtosis value can be used to estimate the receiver performance, i.e.
a large kurtosis value means a large impact on the receiver, in the form of an
increased BEP. The kurtosis value of AWGN is zero, as well as all other HOS-
measures of order higher than two. Hence, HOS is blind to Gaussian noise.
The kurtosis also gives an indication on the size of the errors in the AWGN-
approximation.

The normalized kurtosis values in Figure 5.5 were estimated on the same
interference signals as the BEP were simulated. In the case with �
 � ����,
the kurtosis is estimated on a sequence that is only 400 �
 long, and the kurtosis
estimates, when having random time and/or amplitude, will vary for different
realizations. In Table 5.1 we have tabulated the normalized kurtosis, estimated
normalized kurtosis and the relative error for the different pulses. There we see
that pulses with random arrival time and/or amplitude have a larger relative error
than the more deterministic pulses. However, it is worth noting that, in order to
give a quality measure on the AWGN-approximation, the order of magnitude of
the kurtosis value is fully sufficient.
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Chapter 6

Low-Complexity Intersystem
Interference Method

As discussed earlier, the ability to judge the effects from intersystem interfer-
ence is becoming more and more important as the amount of wireless equip-
ment increases. Unfortunately, the computations necessary to determine the
performance degradation on a radio receiver, caused by intersystem interfer-
ence, are often quite complicated. Thus, simplified methods, with low com-
putational complexity, are desired in computer-based tools for intersystem in-
terference analysis. One commonly used simplified method is to approximate
the interfering signal as additive white Gaussian noise (AWGN); however, the
AWGN-approximation cannot be used for all kinds of signals. It has previously
been shown to perform fairly well for modulated interference signals, i.e. in-
terference caused by other transmitters [6, 8]. However, it should not be used
for pulsed interference signals since it can lead to large underestimations of the
resulting bit error probabilities (BEP) in the radio receiver. Also, the kurtosis,
has shown to be useful when attempting to distinguish between modulated and
periodic pulsed interference [5, 6].

The goal of the low-complexity methods, for high kurtosis values, is to
give a better estimate of the resulting bit error probability than the AWGN-
approximation. We know that the BEP can be underestimated several magni-
tudes with the use of the AWGN-approximation. The proposed method isolates
some of these cases and also yields a better estimation of the BEP. An estimation
error within one order of magnitude is often deemed as acceptable when using
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Figure 6.1: Schematic of the proposed method.

an approximate method in an intersystem interference tool. If a higher degree
of accuracy is desired it might be necessary to analyze the interference signal
more thoroughly.

In Figure 6.1 a schematic of the low-complexity method is shown. We pro-
pose to use the kurtosis as a threshold to decide if the AWGN-approximation
can be used or not. For kurtosis values close to zero, the AWGN-approximation
can be used safely. For higher kurtosis values, two other approximate methods
are used. For periodic pulses, with constant amplitude, that are longer in dura-
tion than the bit time, it is possible to estimate the resulting bit error probability
(BEP) in the receiver with use of the estimated kurtosis value. However, when
the pulse is shorter than the bit time we need to estimate the relationship be-
tween the pulse repetition time and the bit time in order to estimate the BEP.
Apart from the kurtosis, the mean SIR and SNR must be estimated for all three
methods.

We derive the methods for a pulsed interference for a periodic pulsed signal,
but the method could be used even for other sorts of pulsed interference, but with
a larger uncertainty in the estimated BEP. However, the proposed method yields
a better estimate of the BEP for these signals than the AWGN-approximation
does, which might be the only practical alternative if it is not possible to derive
the BEP analytically.
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6.1 AWGN-approximation

For the cases where the AWGN-approximation can be used the interfering signal
is treated as AWGN with spectral density 
�. For a BPSK receiver the bit error
probability is

�� � �

��
���


� �
�

�
� �

��
� � �
� � ���
�
�� ���

�
� (6.1)

where �� is the energy per bit and 
� is the spectral density of the noise. The
signal-to-noise ratio is �
� � ���
� and the signal-to-interference ratio is
��� � ���
�.

6.2 Long pulse

When the interfering signal is pulsed we can examine the bit error probability for
the disturbed information bits and the BEP for the non-disturbed bits separately.
We assume that when a pulse is present it disturbs the entire bits. The wanted
BEP is then the weighted sum of the BEP for the disturbed and the non-disturbed
bits. For a pulsed interference with a pulse time, �	, larger than the bit time,
��, the fraction of disturbed bits is �	��
, where �
 is the pulse repetition time.
The signal-to-interference ratio (SIR) in a disturbed bit is �	��
 of the average
SIR, i.e. the spectral density of the pulse in a disturbed bit is �
��	 higher than
its average spectral density. The BEP can be calculated as
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(6.2)

For a periodic pulse with fixed amplitude (4.24) we have that �	��
 � 	�� 
����
��.
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6.3 Short pulse

When the pulse time is short compared to the bit time the BEP can be derived in
a similar way. Here we assume that a pulse only disturbs one bit. The fraction
of disturbed bits is ����
 and the signal-to-interference ratio in a disturbed bit
is ����
 of the average SIR. The bit error probability is the weighted sum of the
BEP for the disturbed bits and the BEP for the non-disturbed bits, i.e.

�� �
��
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�
�

�
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�


�
��
��

� � �
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�

(6.3)

In this method we also need to estimate the ratio ����
 .

6.4 Results

The BEP for a pulse with pulse duration longer than a bit time is shown in
Figure 6.2. The BEP is calculated according to Equation (6.2), and the AWGN-
approximation is also shown and is calculated with (6.1).

The BEP for a pulse with pulse duration shorter than a bit time is shown in
Figure 6.3 and 6.4. The BEP is calculated according to (6.3), and the AWGN-
approximation is also shown as a reference. In Figure 6.3 the pulse duration is
10% of the bit time and in Figure 6.4 it is 40%. From Figure 6.3 and 6.4 we can
see that even when the kurtosis value is the same the BEP is different. Hence,
we have to estimate the ratio between the pulse repetition time and the bit time,
i.e. �
���. In Figure 6.3 the BEP from simulations with a periodic pulse with
fixed amplitude is compared to the BEP calculated with the proposed method.
As can be seen in the figure, there is a good agreement between the simulated
and calculated BEP.

For small values of kurtosis the AWGN-approximation is applicable even
for pulsed interference, which can be seen in Figure 6.2 - 6.4. However, if a
too large kurtosis value is used as a threshold, then the AWGN-approximation
might be used in situations where it yields an estimation error above the desired.
Hence, it is important to choose the kurtosis threshold value carefully.

The methods for pulsed interference are derived for a periodic pulsed signal,
but the BEP shows the same behavior for different kinds of pulsed signals, as



6.4. Results
FOI-R–1053–SE

41

−10 −5 0 5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR = 10 dB

SIR [dB]

B
E

P

AWGN
T

r
 =  6 T

b
, C

42
 =  1

T
r
 = 60 T

b
, C

42
 = 28

T
r
 = 300 T

b
, C

42
 = 148

Figure 6.2: Calculated BEP as a function of SIR for a pulse with duration longer
than the bit time, �	 � ���.

can be seen in Figures 5.1 to 5.4. Hence, the proposed methods can be used for
other sorts of pulsed interference, but with a larger uncertainty in the estimated
BEP. However, the proposed method still yields a better estimate of the BEP
for these signals than the AWGN-approximation does, which might be the only
practical alternative if it is not possible to derive the BEP analytically.
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Figure 6.3: BEP as a function of SIR for a pulse with duration shorter than
the bit time, �	 � ��	��. Solid lines represents simulations with a periodic
pulse with fixed amplitude, while dotted lines are calculated with the proposed
method.
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Figure 6.4: Calculated BEP as a function of SIR for a pulse with duration shorter
than the bit time, �	 � �����.



Chapter 7

Conclusions

In this report we have studied the effects on a coherent uncoded BPSK receiver
from intersystem interference. We have shown that, for pulsed interference it
is possible to use a higher-order statistics based measure, namely the kurtosis,
to quantify the impact on the communication receiver. The kurtosis value is
estimated for different kinds of pulsed signals, both analytically and through
simulations. The agreement between simulated and analytical values is good.

Furthermore, we use the kurtosis measure to create a method where the BEP
for different kinds of interference is estimated. The method is designed to han-
dle both modulated interfering signals as well as pulsed interference. With use
of the kurtosis value for the interfering signal the method can decide whether
the interfering signal can be approximated as AWGN without largely underes-
timating the BEP or not. Typically, for small values on kurtosis the AWGN-
approximation can be used to estimate the resulting BEP, without making a
large underestimation of the BEP. An underestimation of the BEP may have se-
rious consequences for a communication system. For large values of kurtosis
the AWGN-approximation may not be used without risking underestimating the
BEP. The interfering signal is typically a pulsed signal when we have a large
kurtosis value. For pulsed interference two methods to calculate the BEP are
proposed, depending on if the pulse duration is longer or shorter than the bit
time. All the methods need the kurtosis value and the estimated SNR and SIR
to calculate the BEP. However, when the pulse is short compared to a bit we
must also estimate the ratio between the pulse repetition time and the bit time.

In summary, the proposed simple low-complexity method combines the kur-
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tosis measure and the AWGN-approximation in order to obtain a better esti-
mation of the BEP in a digital radio receiver. The comparison of BEP from
simulations and calculated with the proposed method, shows a good agree-
ment. Hence, the presented approximative method can for example be used in
computer-based intersystem interference analysis tools where low-complexity
methods are needed.
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