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1. Introduction

The present report is a revised and enlarged second edition of the report ‘Nonlinear
Filtering: Geometric Aspects’ (FOI-R–0766–SE), and it replaces the latter.

The additions in this edition are mainly the entirely new chapters on Statistical
Manifolds and on Numerical implementation of the filter techniques together with
corrections and enlargements of the other chapters. This work is an ongoing research
project, and the final edition of this report is scheduled for 2004.

Future military systems must meet new and higher demands on precision, safety,
economic and environmental concerns. The network based defense paradigm is but
one aspect of this general tendency towards high-tech and state of the art technology.

The general problem of vehicle guidance and control clearly illustrates this phe­
nomenon. The system is inherently nonlinear and has an intrinsic natural geometry.
This calls for general geometric methods in modeling, filtering, signal processing,
control and implementation.

A well implemented geometrical description of the relevant subsystems is crucial
for those synergy effects necessary for top performance in complex systems. This
report addresses one particular line of research, differential geometric filtering.

The report gives a picture of the present state of the research efforts in this area.
It will be followed by a more complete report next year.

The present work includes a generalization of the Zakai equation to systems with
more general measurement processes than has been considered heretofore. This is
an important but largely ignored aspect of modeling. It is however known that the
properties of a stochastic filtering problem heavily depend on the details of the noise
model. Another reason to generalize the Zakai equation is that this seems to be
necessary for a truly geometric theory with nontrivial transformational properties.

The report provides a rather lengthy introduction to differential geometry as such.
Several novelties are presented, such as a coordinate free construction of jets of map­
pings and a completely intrinsic construction of the geodesic spray of an affine connec­
tion. Many of the topics covered in this differential geometric survey are not explicitly
used in the other chapters, but are included as a preparation for future reports.

The report concludes with a chapter describing the so-called projection filters by
Brigo et.al. The presentation provides an alternative setup for these filters, deem­
phasizing the role of fractional densities. Some technical questions concerning the
necessity and sufficiency of certain conditions for these filters are addressed.

1





2. Nonlinear Stochastic Systems

In this first chapter we will treat stochastic processes in relation to nonlinear dynam­
ical systems. The main objective is to introduce notation and, at the same time, to
give a quick introduction to the basic concepts and constructs employed in order to
aid readers with a less complete background in probability and stochastic processes.
This presentation will be sketchy and we will not explain fully (or even define prop­
erly) all the entities used. We motivate this by the fact that the emphasis of the
report is geometric filtering, i.e. the geometric aspects of the equations for nonlinear
filtering. Indeed, once these equations have been derived there is little need for the
probability foundation on which they rest.

Good general references to the material covered here are [32] for the basic proba­
bility theory needed (abstract probability and conditional probability) and [18] for the
specifics on continuous time Martingales (such as the Wiener process and solutions
to stochastic differential equations).

2.1 Stochastic Processes and Dynamical Systems

2.1.1 Preliminaries on Probability and Stochastic Processes We discuss
here the basic entities in probability theory and stochastic processes to be used in
the following chapters. At the end of this chapter we shall briefly encounter some
connections with differential geometry (Lie derivatives). The reference material for
these parts is given in Ch. 4.

Probability Space, Stochastic Process In the sequel we will consider jointly
random variables and random functions (i.e. stochastic processes) indexed by “time,”
in the framework of the modern theory of semimartingale stochastic processes [18].
In order to do this, we must assume the existence of an “abstract” probability space
[32 , Ch. 1–2]

Ú̃ = (Ú, {Ft}t∈[0,T ],F ,P) (2.1)

where Ú is the basic set of outcomes, F is the largest sigma-algebra occurring in the
discussion; the one on which the probability measure P is defined and {Ft}t∈[0,T ] is
the basic filtration (a nested sequence if sigma-algebras). The different parts of this
construction will now be explained in a very informal manner.

Since we will only be considering stochastic processes indexed by a time interval
[0, T ] with values in Rk and with continuous paths, and random variables with values
in R`, for some k, ` ∈ N, it is here sufficient to think of Ú in (2.1) as a product space
C([0, T ],Rk)×R`. A stochastic process [18 , Ch. 1] η can then be thought of as a map

η : C([0, T ],Rk) × R` → C([0, T ],Rk), (2.2)

defined by
ηt((ω, ν)) = ωt, ω ∈ C([0, T ],Rk), ν ∈ R`

representing “one coordinate” of Ú, and likewise a random variable ξ can be thought
of as another map

ξ : C([0, T ],Rk) × R` → R`, (2.3)

3
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defined by
ξ((ω, ν)) = ν, ω ∈ C([0, T ],Rk), ν ∈ R`

representing another “coordinate” of Ú. For fixed t ∈ [0, T ] the object ηt(·) is a func­
tion of the “random outcomes” (ω, ν) ∈ Ú (actually only of ω), hence is a random
variable, and is traditionally written simply as ηt. For fixed (ω, ν) ∈ Ú the object
η(·)(ω, ν) is a continuous function of t ∈ [0, T ], called a path of η. In our later ap­
plications to dynamical systems the basic stochastic processes will be processes like
η which will represent the noise processes of the system and random variables like
ξ that will represent the initial conditions. All other random variables and stochas­
tic processes occurring in the discussion, such as the state and observation process,
will be be thought of as being derived from η, ξ , as different forms of functions or
“functionals.”

Sigma-algebra, Filtration A sigma-algebra [32 , Ch. 1] is a nonempty set of sub­
sets of Ú closed under the operations of complement and countable unions. In prob­
ability theory, sigma-algebras in general have the interpretation as the amount of
information about the basic outcomes on Ú gained by observing the values of some
random variables or processes at certain time points or over time intervals. The fil­
tration [18 , Ch. 1] {Ft}t∈[0,T ] in (2.1) is an increasing sequence of sub-sigma-algebras
of the basic sigma-algebra F , i.e. Ft1 ⊆ Ft2 ⊆ F , for tt ≤ t2, such that the events
(subsets of Ú) determined by observing the values of (ηs, ξ) during s ∈ [0, t] are always
sets in Ft. An example of a set A ∈ Ft could be

A = {(ω, ν) ∈ Ú : ηjt1 > 0,−1.3 < ηkt2 ≤ 0.2} for tt, t2 ∈ [0, t], (2.4)

where the superscripts j, k indicate components of a vector. A random variable ξ for
which all the sets A determined in a manner analogous to (2.4) belong to a certain
sigma-algebra G on Ú is said to be measurable with respect to G. 1 The smallest
sigma-algebra containing two sigma-algebras F and G is denoted F ∨ G. If a process
η and filtration {Ft}t∈[0,T ] are such that ηt is measurable with respect to Ft for every
t ∈ [0, T ] then η is said to be adapted to {Ft}t∈[0,T ]. When observing a particular
process η̃ on Ú̃ (such as certain components of η and no other variables) the minimal
filtration to which η̃ is adapted is called the filtration generated by η̃ and is denoted
{F (η̃)

t }t∈[0,T ]. If another stochastic process η̌ is adapted to {F (η̃)
t }t∈[0,T ] as well it can

(in general) be expressed as a certain form of function (or functional) [32 , Sec. 3.13] ,
[18 , Sec. 3.4.D] of the variables η̃s, s ∈ [0, t], for each t ∈ [0, T ].

Probability Measure, Conditional Expectation The last component of Ú̃, the
probability measure P [32 , Ch. 1] , describes how probable different events (or sets of
outcomes) in F are; it is a map from the members of F to [0, 1]. The (mathematical)
expectation [32 , Ch. 6] with respect to P of a random variable such as ηt is denoted
EP(ηt) and defined as the “abstract” integral

EP(ηt) =
∫
Ú

ηt
(
(ω, ν)

)
dP

(
(ω, ν)

)
. (2.5)

Given a set A ∈ F with P(A) > 0, determined for instance as in (2.4) by observing a
stochastic process over a time interval, one can construct a new probability measure
PA on (Ú,F) by

PA(B) =
P(B ∩A)

P(A)
, B ∈ F , (2.6)

1Technically, a map such as (2.3) will only qualify as a random variable if it is measurable with
respect to F .
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which is the conditional probability of B given A. One can then compute expectations
as in (2.5) using the probability measure PA instead, and obtain a conditional ex­
pectation [32 , Ch. 9]. (Expectations with respect to the basic measure P is usually
written without subindex as E(·).) For example, if ξ is a random variable taking only
a finite number of values on Ú, say

ξ =
N∑
j=1

βj1Bj
,

where βj ∈ Rk, the sets Bj are disjoint and 1Bj
is the indicator function 2 of Bj , then

EPA
(ξ) =

N∑
j=1

βjPA(Bj). (2.7)

However, the most important forms of conditional probability and expectation are
the “differential” forms obtained when (formally) letting P(A) in (2.6), (2.7) tend to
zero. If we were to do this, the left hand side of (2.6) would become a function on Ú
(a random variable) P̃(·)(B) such that∫

A

P̃(
(ω,ν)

)(B) dP
(
(ω, ν)

)
) = P(B ∩A) (2.8)

and similarly the left hand side of (2.7) would become a function Ẽ(·) on Ú such that

∫
A

Ẽ(
(ω,ν)

)(ξ) dP
(
(ω, ν)

)
=

N∑
j=1

βjP(Bj ∩A) =
∫
A

ξ
(
(ω, ν)

)
dP

(
(ω, ν)

)
. (2.9)

In fact, for any random variable ξ ∈ L1(P) and any sub-sigma-algebra G ⊆ F there
exists an integrable random variable Ẽ(·), measurable with respect to G, such that a
relation like the one (formed by the “outer ends of”) (2.9) holds for any A ∈ G. This
random variable, usually denoted EP(ξ|G), is the general definition of the conditional
expectation of ξ given G. (The conditional probability in (2.8) is a special case.) In
particular, if ξ is measurable with respect to G we have EP(ξ|G) = ξ. An important
property of EP(ξ|G) is that if also ξ ∈ L2(P) then EP(ξ|G) minimizes EP‖z − ξ‖2 over
all z ∈ L2(P) that are measurable with respect to G [32 , Sec. 9.4].

An important class of stochastic processes in the sequel are martingales. A pro­
cess η is a martingale [32 , Ch. 10] , [18] with respect to a filtration {Ft}t∈[0,T ] and
probability measure P if ηt (has finite expectation and) is adapted to Ft for all t and
EP(ηt|Fs) = ηs for s ≤ t. By the properties of the conditional expectation it follows
that EP(ηt − ηs|Fs) = 0 and a martingale η is thus an abstraction of a “fair game”
since the future increments of η are “not biased” based on the information in Fs. One
of the most important martingales is the Brownian motion, or Wiener process [18 ,
Ch. 2] , which is (formally) the time integral of “white Gaussian noise.”

Stochastic Integrals; Itô vs. Stratonovich In what follows we will study inte­
grals with respect to Wiener processes in two forms: Itô and Stratonovich [18 , Ch.
3]. 3 The two forms are equivalent in that there exists a simple (“invertible”) trans­
formation between the two (when the involved integrands satisfy conditions such that
both forms exist simultaneously) but each have advantages in different applications:
The Itô form is the preferred choice in most probabilistic calculations because the

21A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A.
3The reason one why one has to introduce these new notions of the integral is that the paths of

a Wiener process are of unbounded variation, hence they cannot be used as “distribution functions”
in a Stieltjes integral construction. (They do have bounded second variation, however.)
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resulting integral becomes a martingale. The Stratonovich form, on the other hand,
is the preferred choice in geometrical arguments because the integral satisfy a relation
which typographically looks like the fundamental theorem of (ordinary) calculus (for
Stieltjes integrals). Moreover, the Stratonovich form is the one obtained under gen­
eral conditions if one approximates the Wiener process with a process having paths
of bounded variation, which is natural in most real life modeling situations.

Returning to our setup in (2.2), (2.3), we assume that the probability space Ú̃
in (2.1) is large enough to host a Wiener process w and an auxiliary process z with
continuous paths, both with values in R and adapted to {Ft}t∈[0,T ] (we can e.g. take
k ≥ 2 in (2.2) and let w, z be two components of η). We assume also that z is
bounded over Ú. The first step in the construction of the stochastic integral 4 is to
fix an an arbitrary time point t ∈ (0, T ) and define a piecewise constant (in time)
approximation z(N) (N ∈ N) to z as 5

z(N)
s

(
(ω, ν)

)
= zτN (s)

(
(ω, ν)

)
, τN (s) =

T

N

⌊sN
T

⌋
, s ∈ [0, t].

The Itô stochastic integral I(w)
t (z(N)) of the approximating process z(N) with respect

to w , written as ∫ t

0
z(N)
s dws, (2.10)

is defined as a “forward Wiener increment” sum;

I
(w)
t (z(N)) =

∫ t

0
z(N)
s dws =

N−1∑
j=0

zjT/N (w(j+1)T/N − wjT/N ).

Because of the way I(w)
t (z(N)) is constructed, the sequence {I(w)

t (z(N))}∞
N=1 converges

in L2(P) (“in mean square”) to a random variable I(w)
t (z), which we write also as∫ t

0
zs dws.

The variable I
(w)
t (z) is called the Itô integral of the process z with respect to w.

The Itô integral I(w)
t (z) is Ft measurable and by letting t vary in [0, T ] we obtain a

process I(w)
(·) (z) which is an {Ft}t∈[0,T ] martingale. The Stratonovich integral Ĩ(w)

t (z)
of z with respect to w is defined similarly but using also backward Wiener increments
in the (“symmetrized”) approximation;

Ĩ
(w)
t (z(N)) =

N−1∑
j=0

1
2
(z(j+1)T/N + zjT/N )(w(j+1)T/N − wjT/N ).

Also the sequence {Ĩ(w)
t (z(N))}∞

N=1 converges to a limit Ĩ(w)
t (z) , but the convergence

here is “in probability” (which is a weaker topology than “in mean square”) i.e. we
have limN→∞ P(|Ĩ(w)

t (z(N)) − Ĩ
(w)
t (z)| > ε) = 0 for any ε > 0. The limit variable

Ĩ
(w)
t (z) is called the Stratonovich integral and is denoted∫ t

0
zs ◦ dws. (2.11)

(It does not define a martingale process.) Below we shall give a formula relating the
two forms of integrals in the case that the process z is a function of the solution to a
stochastic differential equation.

4The construction of the integral can be made in a much more general setting and, in particular,
the result will not be dependent on the sequence of approximating functions (as it may appear here).

5Here b·c denotes integer part (truncation).
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Since both the Itô and Stratonovich integrals were obtained by a limiting process it
is natural to ask what properties the limits have (apart from the martingale property
of the Itô integral), in particular do the integrals have continuous paths when regarded
as stochastic processes? It turns out that that the answer is affirmative [18 , Sec. 3.2B]
so that we remain in the realm of continuous path processes also after integration.

It is standard to use the shorthand differential notation

zt dwt, zt ◦ dwt

for the integrals in (2.10) and (2.11), respectively, and we will also use it frequently.
Likewise, for (Lebesgue) integrals with respect to time we will use the notation

zt dt.

In case z is a row vector process the notation zt dwt for the Itô differential is to be
interpreted as a formal vector-vector multiplication (i.e. a linear combination), and
this interpretation extends to the case where z is a matrix of such vector processes.
These generalizations carry over to the case of Stratonovich differentials zt ◦dwt (and
ordinary time differentials zt dt) as well.

Stochastic Differential Equations Consider two functions F0 : Rn → Rn, and
F = (F1, . . . , Fm), Fj : Rn → Rn, where we assume that F0, Fj are smooth (C∞)
bounded vector fields, 6 and consider the equation (in the process x)

dxt = F0(xt) dt+ F (xt) dwt,
x0 = ξ,

t ∈ [0, T ], (2.12)

where w is a Wiener process with values in Rm and ξ is a random variable in Rn. An
equation such as (2.12) is known as a (Itô) stochastic differential equation (SDE) [18 ,
Ch. 5]. The first term on the right on the first line of (2.12) is called the drift term
and the second the diffusion term. Later we shall also need the associated function
aF : Rn → Rn×n defined by

aF (x) = F (x)FT (x), x ∈ Rn, (2.13)

called the diffusion matrix. If both the initial variable ξ and the Wiener process
w are given (relative to Ú̃), and the object is to find a process x satisfying (2.12)
above we talk about a strong solution to (2.12). If none of ξ, w or x is given, only
the probability distribution of ξ and the specification that w is a Wiener process, we
talk about a weak solution. The object is then to find a triple (ξ, w, x) , defined on
some probability space Ú̃, such that (2.12) holds. An important difference between
these to forms of a solution is that in the case of a strong solution the process x will
be adapted to {F (ξ,w)

t }t∈[0,T ] = {F (ξ) ∨ F (w)
t }t∈[0,T ] so that, in view of the remarks

above, xt can be thought of as a function (or functional) of the variables ξ, ws for
s ∈ [0, t]. In the case of a weak solution such an interpretation is not possible but
weak solutions are nevertheless important since (i) one might only be interested in
the set of finite dimensional probability distributions (“the law”) of the process x and
(ii) they are intimately connected to so-called Girsanov transforms. Both of these
aspects will be illustrated below.

Starting with the vector fields F0, Fj , the Wiener process w and initial condition
ξ, one can also seek a (strong) solution x̃ to the SDE on Stratonovich form as

dx̃t = F0(x̃t) dt+ F (x̃t) ◦ dwt,
x̃0 = ξ.

t ∈ [0, T ], (2.14)

6In this report we will use the term vector field to denote both vector valued functions, such as
F0(x), and the associated “directional” differential operators (differential geometric context), such
as

∑n
j=1 F j

0 ∂/∂xj .
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A solution to (2.14) is equivalent to a solution to a related Itô SDE because if x̃ is a
(strong) solution to the Stratonovich (2.14) then x̃ satisfies the Itô SDE

dx̃t =
(
F0(x̃t) + CF (x̃t)

)
dt+ F (x̃t) dwt,

x̃0 = ξ,
t ∈ [0, T ],

where the vector field CF : Rn → Rn, called the correction term [18 , Sec. 5.2.D] is
given by 7

CF (x) =
1
2

m∑
j=1

n∑
k=1

F kj (x)
∂Fj(x)
∂xk

=
1
2

m∑
j=1

 LFj
F 1
j (x)
...

LFj
Fnj (x)

 , x ∈ Rn, (2.15)

and L denotes the Lie derivative (see Ch. 4). Vice versa, if x̃ satisfies the Itô SDE
(2.15) then it satisfies the Stratonovich SDE (2.14). By comparing (2.15) and (2.14)
we see that we have

F (x̃t) ◦ dwt = F (x̃t) dw + CF (x̃t) dt, t ∈ [0, T ]. (2.16)

The above moreover shows that also in the case of a Stratonovich SDE a strong
solution x̃ will be adapted to {F (ξ,w)

t }t∈[0,T ]. The relation (2.16) holds for any smooth
vector field F (not just the one occurring in (2.12), (2.14)) and therefore we have also

F (xt) ◦ dwt = F (xt) dw + CF (xt) dt, t ∈ [0, T ], (2.17)

where x is the solution to the Itô SDE (2.12). To conclude, the difference between the
Itô and Stratonovich solutions of an SDE can be expressed as a change in the drift
term.

Itô’s Formula In case a process x satisfies an Itô SDE like (2.12) (weak or strong
sense) and φ : Rn → R is a smooth and bounded function the “transformed” process
φ(x(·)) has a stochastic differential given by

dφ(xt) = (Aφ)(xt) dt+
(
∇φ(xt)

)T
F (xt) dwt

= (Aφ)(xt) dt+
(
(LF1φ)(xt), . . . , (LFmφ)(xt)

)
dwt, t ∈ [0, T ], (2.18)

where ∇φ(x) = (∂φ(x)/∂x1, . . . , ∂φ(x)/∂xn)T , the differential operator A is defined
by

(Aφ)(x) =
(
∇φ(x)

)T
F0(xt) +

1
2

n∑
i=1

n∑
k=1

ak,iF (x)
∂2φ(x)
∂xk∂xi

= LF0φ(x) − LCF
φ(x) +

1
2

m∑
j=1

L2
Fj
φ(x)

= L(F0−CF )φ(x) +
1
2

m∑
j=1

L2
Fj
φ(x), x ∈ Rn, (2.19)

and ak,iF is the k:th row, i:th column of the diffusion matrix in (2.13). Relation (2.18)
is the celebrated Itô formula [18 , Ch. 3.3] which in stochastic calculus plays a similar
role as the fundamental theorem of calculus does in ordinary calculus.

7To show this one needs to introduce the quadratic variation of a martingale, but this is one
technical point we have chosen to omit in this presentation.
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If we use the differential notation from (2.12) we can express (2.18) as

dφ(xt) =
(
∇φ(xt)

)T
dxt +

1
2

m∑
j=1

n∑
k=1

ak,jF (x)
∂2φ(xt)
∂xk∂xj

dt, t ∈ [0, T ]. (2.20)

We see that the differential for φ is not the same as would be obtained from ordinary
calculus since it contains also a second order term. The Stratonovich equivalent of
(2.18), however, is

dφ(xt) =
(
∇φ(xt)

)T (F0(xt) + CF (xt)) dt+ (∇φ(xt))TF (xt) ◦ dwt, t ∈ [0, T ],

which can be symbolically expressed as

dφ(xt) = (∇φ(xt))T ◦ dxt, t ∈ [0, T ]. (2.21)

(where thus the ‘◦ ’ only effects the diffusion part of dxt). This is the same form as
would be obtained from ordinary calculus. Moreover, this formula holds also if we
replace x by x̃, i.e. if we had started with the solution to the Stratonovich equation
(2.14) instead (which is clear since (2.21) doesn’t depend on the vector field F0).

Finally, for future reference, we note that if we had started with an SDE on the
Stratonovich form (2.14), then Itô’s formula (expressed using Itô differentials) will
read

dφ(xt) = (A+φ)(xt) dt+
(
∇φ(xt)

)T
F (xt) dwt, t ∈ [0, T ], (2.22)

where the differential operator A+ is defined by

A+ = A + LCF
= LF0 +

1
2

m∑
j=1

L2
Fj
. (2.23)

This result is immediate if we recall the transformation rule (2.16) for transformation
between Itô and Stratonovich solutions of an SDE; a change in the drift term.

2.1.2 A Generic Dynamical System We will consider stochastic dynamical
systems expressed on the Stratonovich differential form

dxt = F0(xt) dt+ F (xt) ◦ dwt, x0 = ξ

dyt = H0(xt, yt) dt+H(yt) ◦ dvt, y0 = 0,
t ∈ [0, T ], (2.24)

where F0 : Rn → Rn, F = (F1, . . . , Fm), Fj : Rn → Rn and H0 : Rn × Rp → Rp,
H = (H1, . . . ,Hp), Hj : Rp → Rp, and all these functions are smooth and bounded.
The diffusion matrix aF = FFT of the first equation is assumed to be (strictly)
positive definite. The vector valued stochastic processes w and v , with values in
Rn and Rp respectively, are two independent standard Wiener processes which are
independent of the initial condition x0 , all of which are specified with respect to
some underlying (‘filtered’) probability space (Ú, {Ft}t∈[0,T ],F ,P) where the filtration
{Ft}t∈[0,T ] satisfies the “usual conditions” [18 , p. 10]. 8 We assume that E‖x0‖2 < ∞
which, together with the conditions on the vector fields F0, Fj and H0,Hk is sufficient
to guarantee the existence of a unique global (nonexploding) strong solution (x, y) to
(2.24) [18 , Ch. 5.2] (since the two equations in (2.24) together form a system of the
same form as the first equation alone). We moreover assume that H(y) has bounded
first order derivatives and has an inverse H−1(y) for all y ∈ Rp such that the norm
‖H−1(y)‖2 is uniformly bounded in y.

In (2.24), the first equation is to be thought of as representing the “state” xt
which is to be estimated based on noise corrupted “observations” ys for s ∈ [0, t],

8For all filtrations “generated” by SDEs such as (2.24) we may always assume that the usual
conditions are satisfied, see e.g. [18 , Sec. 5.2.A].
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as described by the second equation. A large class of physical systems arising in
the applications can be modeled as a system of the form (2.24) with (intrinsically)
Gaussian noise, by an appropriate choice of F0, F and H0,H. In particular, systems
with explicitly time varying dynamics and colored noise acting on the physical state
variables can (by introducing additional “dummy” states) be rewritten on this form.

For later reference we note that the last term in the second equation in (2.24) can
be written

H(yt) ◦ dvt = H(yt) dvt + CH(yt) dt, t ∈ [0, T ].

where CH is a correction term defined as in (2.15). (This follows from the develop­
ments in Sec 5 since the two equations in (2.24) together form a system of the same
form as the first equation alone.) We also note that weak solutions [18 , Sec. 5.3]
to (2.24) are unique “in probability law” and therefore the (finite dimensional) joint
probability distributions of (x, y) are unique, in particular they are not dependent on
the specific Wiener processes w, v occurring in (2.24).



3. Nonlinear Filtering

It is now time to introduce the filtering problem and present the fundamental equa­
tions for its solution. We will focus on the (robust) Zakai equation, in particular the
form it takes when expressed in a differential geometric language. This will be the
basis for our future investigations on the geometric aspects of the nonlinear filtering
problem.

The (most) general formulation of the nonlinear filtering problem is to find the
conditional distribution of the state xt in (2.24) given the (noise corrupted) observa­
tions ys over the time interval [0, t], for t ∈ [0, T ]. This is equivalent to determining
the conditional expectation

πt(φ) = E(φ(xt)|F (y)
t ) (3.1)

where φ : Rn → R is an arbitrary (Borel measurable) function: 1 For φ = 1A, the
indicator function for some (Borel) set A ⊆ Rn, we obtain πt(φ) = P(A|F (y)

t ) , i.e.
the conditional probability of A given F (y)

t . Once the conditional expectation πt(φ) is
known, for arbitrary φ, one can compute different estimates of xt based on F (y)

t that
are optimal in different ways. For example, the minimum mean square error (MMSE)
estimate x̂t of xt given F (y)

t is, as mentioned in Sec. 1 , the conditional expectation
E(xt|F (y)

t ) which is obtained by taking, in succession, φ(x) = xj for j = 1 . . . n.

3.1 A Basic Filtering Problem

The solution to the general nonlinear filtering problem, as described by (3.1), that
we are going to give is based on a so-called change-of-measure technique. The first
step will be to derive a weak solution to the equations in (2.24) (and thus in effect
replace the system in (2.24) with an equivalent one, having the same probability
distributions). In doing so we shall introduce an auxiliary probability measure which
will also be used when we replace the basic relation (3.1) with one that is easier
to work with. The new relation is an unnormalized variant of (3.1) for which it is
straightforward to derive recursive “updating equations” driven by the observation
process y.

3.1.1 Change of measure. To begin with we therefore take one step back and
consider (2.24), but for a moment “forget” the basic probability measure P (and the
filtration {Ft}t∈[0,T ]) mentioned in connection with (2.24). Consider the first equation
in (2.24) and assume that in addition to the initial variable x0 and the process w there
is given another process ỹ, also defined on Ú. Assume moreover that there exists a
probability measure P0 on (Ú,F) such that under P0 the following holds; 2

1In most of what follows, however, φ will be a smooth (and bounded) function (to be thought of
as a “test” function).

2All of this is easy to accomplish by a product space setup as in (2.2), (2.3) using the product of
three spaces, one for each of x0, w and ỹ. Since w is Wiener with respect to {F(w)

t }t∈[0,T ], and x0

is independent of w, it follows that w is Wiener also with respect to {F(w)
t ∨ F(x0)}t∈[0,T ]. Using

this argument one more time we obtain a Wiener process ỹ which is also Wiener with respect to
{F(ỹ)

t ∨ F(x0,w)
T }t∈[0,T ].

11
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(i) x0 has the desired distribution,

(ii) w is a Wiener process with respect to {F (x0,w)
t }t∈[0,T ],

(iii) ỹ is a Wiener process with respect to {F (ỹ)
t ∨ F (x0,w)

T }t∈[0,T ],

(iv) x0, w and ỹ are independent.

Under these conditions we know ([18 , Sec. 5.2]) that (under P0) there exists a unique
strong solution x to the first equation in (2.24) and this solution will be adapted to
{F (x0,w)

t }t∈[0,T ]. (The process x here can indeed be identified with the one occurring
in (2.24).) Note that the conditions (i)–(iv) above imply that the processes x and ỹ
are independent (under P0). Define the process y (at this point not to be identified
with the one occurring in (2.24)) as the unique strong solution (under P0) to the Itô
SDE

dyt = H(yt) dỹt,
y0 = 0,

t ∈ [0, T ]. (3.2)

It follows that also the processes x and y are independent. From the definition of
y and properties of strong solutions it follows that y is a martingale with respect
to {F (ỹ)

t }t∈[0,T ] and that F (y)
t ⊆ F (ỹ)

t . Hence, y is a martingale also with respect
to {F (y)

t }t∈[0,T ] and so is the integral 3 with differential H−1(yt) dyt. However, by a
step-function approximation argument (similar to the one used in the construction of
the Itô integral) we have that H−1(yt) dyt = dỹt and therefore F (ỹ)

t ⊆ F (y)
t . Therefore

we can conclude that
F (y)
t = F (ỹ)

t , t ∈ [0, T ]. (3.3)

To proceed, let H0,H be as in the second equation of (2.24) and define the (“like­
lihood”) process Ó by

Ót = exp
( ∫ t

0
hT (xs, ys)dỹs − 1

2

∫ t

0
‖h(xs, ys)‖2

2 ds
)
, t ∈ [0, T ] (3.4)

where the first integral is an Itô integral and we have introduced h : Rn × Rp → Rp
as

h(x, y) = H−1(y)
(
H0(x, y) + CH(y)

)
, x ∈ Rn, y ∈ Rp. (3.5)

It is well-known [18 , Sec. 3.5] that (since h(xs, ys) is bounded) we have EP0Ót ≡ 1
and we can define a family of probability measures Pt on (Ú,F) by

dPt = Ót dP0, t ∈ [0, T ],

i.e. we use Ót as a probability density. Define then the measure P by P = PT . Under
P, the following holds (see appendix A): 4

• The process v defined by dvt = dỹt − h(xt, yt) dt is a standard Wiener process
with respect to {F (ỹ)

t ∨ F (x0,w)
T }t∈[0,T ].

• The processes v is independent of x0, w.

• The pair (x0, w) has the same (finite dimensional) probability distributions as
under P0 (and thus the process x the same probability distributions as under
P0).

3This integral is a generalization of the Itô integral with respect to a Wiener process described in
Sec. 2 , see [18 , Ch. 3].

4This is basically an application of Girsanov’s Theorem [18 , Sec. 3.5]. Girsanov’s Theorem can be
viewed as an infinite dimensional extension of the change-of-measure by change-of-means property
of Gaussian random vectors in RN .
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By a step-function approximation argument it follows that the process y in (3.2)
satisfies

dyt =
(
H0(xt, yt) + CH(yt)

)
dt+H(yt) dvt,

= H0(xt, yt) dt+H(yt) ◦ dvt, t ∈ [0, T ].

Further, by the remark (3.3) it follows that v is also a Wiener process with respect
to {F (y)

t ∨ F (x0,w)
T }t∈[0,T ]. Hence, if we let our basic filtration {Ft}t∈[0,T ] be {F (y)

t ∨
F (x0,w)
T }t∈[0,T ] and take P as our basic measure we have in (x, y) here a weak solution

to the overall system in (2.24). Moreover, by the remark in Sec. 2.1.2 about uniqueness
in probability law for such solutions we know that the joint probability distributions
of (x, y) here (under P) will be the same as those occurring in (2.24). This is all we
need in order to compute a solution to our filtering problem. 5

3.1.2 A Bayes’ formula The basic filtering problem of determining πt(φ) in
(3.1) for the system (2.24) can now be addressed using the following Bayes’ formula
(a version of the so-called Kallianpur-Striebel formula)

πt(φ) =
EP0

(
φ(xt)Ót|F (y)

t

)
EP0

(
Ót|F (y)

t

) , (3.6)

which follows straightforwardly from the properties of xt, yt,P0 and P (see appendix
B). If we for smooth bounded φ̃ : Rn × Rp → R define the process σt(φ̃) by

σt(φ̃) = EP0

(
φ̃(xt, yt)Ót|F (y)

t

)
(3.7)

we see that it is sufficient to compute σt(φ) (with φ as in (3.1)) in order to find πt(φ)
since we have

πt(φ) =
σt(φ)
σt(1)

. (3.8)

For obvious reasons, σt(φ) is known as the unnormalized estimate of φ. In what follows
we shall frequently consider the case where φ and φ̃ are in fact vector valued functions,
in which case we interpret the definitions of π and σ as being applied componentwise
so that π, σ become vectors of the corresponding dimensions.

3.2 Recursive Filters

The nonlinear filtering problem outlined in the previous section can be considered
to be solved if we find an equation (which can be solved by some practical means)
for the quantity σ(φ) occurring in (3.8). (Indeed, in an abstract sense, the formulas
(3.8)–(3.6) taken together is a solution to the filtering problem.) If this equation is in
the form of a stochastic differential such that the solution σt(φ) depends only of σs(φ)
and ys for s ∈ [0, t] we have moreover a recursive solution. Next we shall proceed to
find such recursive filters.

3.2.1 The Zakai Equation. By expanding the product φ(xt)Ót (where x is the
solution to (2.24) and Ó is defined in (3.4)) using Itô’s formula and the properties
of conditional expectation it is not very hard to arrive (see appendix C) at the Dun­
can-Mortensen-Zakai equation, or Zakai equation for short, on Itô form as 6

dσt(φ) = σt(A+φ) dt+ σt
(
φhTH−1) dyt,

σ0(φ) = E
(
φ(x0)

)
,

t ∈ [0, T ], (3.9)

5We can use the pair (x, y) occurring here as a “model” for the corresponding pair in the “system”
(2.24); all we need to do is to reproduce the correct probability distributions.

6Since H(yt) is measurable with respect to F(y)
t we have moreover σt

(
φhT H−1)

= σt
(
φhT

)
H−1.
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where A+ is the operator in (2.23) and h is the function in (3.5). The Zakai equation
will be the basis for our developments on finite dimensional filters. In the present
setting it can be shown that 7

σt
(
φhTH−1) ◦ dyt = σt

(
φhTH−1) dyt + σt(γφ) dt, (3.10)

where γ : Rn × Rp → R is a certain function of (xt, yt) (an explicit expression for γ
is given in appendix C). In the important case H0(x, y) = H0(x),H(y) = I (I being
the identity matrix) considered below the function γ becomes

γ(x, y) =
1
2
‖H0(x)‖2

2, x ∈ Rn, y ∈ Rp.

In all cases we may thus express the Zakai equation on Stratonovich form as

dσt(φ) = σt(Âφ) dt+ σt
(
φhTH−1) ◦ dyt,

σ0(φ) = E
(
φ(x0)

)
,

t ∈ [0, T ], (3.11)

where the operator Â is given by

Â = A+ − γ = LF0 +
1
2

n∑
j=1

L2
Fj

− γ,

and γ is the function in (3.10). The properties of the operator Â and its adjoint Â∗,
given by

Â∗ = A∗
+ − γ

= −tr(∇FT0 ) − LF0 − γ

+
1
2

m∑
j=1

((
tr(∇FTj )

)2 + 2tr(∇FTj )LFj
+ LFj

tr(∇FTj ) + L2
Fj

)
, (3.12)

will be in the center of our subsequent investigations on the geometrical aspects of
nonlinear filtering.

3.2.2 Density form of the Zakai equation. It is a standard fact (cf. [18 ,
Sec. 5.3]) that the map A 7→ P(A|F (y)

t ) on the Borel sets of Rn given by (3.1) for
φ(x) = 1A(x) defines, for almost all (under P) paths y(·), a probability measure.
In case this probability measure has a Lebesgue density then so has the measure
A 7→ EP0(1AÓt|F

(y)
t ) (and vice versa). If the density of the latter measure is denoted

q
(y)
t we thus have

σt(φ) = EP0

(
φ(xt)Ót|F (y)

t

)
=

∫
Rn

φ(x)q(y)t (x) dx. (3.13)

The function q
(y)
t is known as the unnormalized density of the filtering problem. By

an approximation argument (see appendix D) it follows that if φ̃ is as in (3.7) we
have moreover

EP0

(
φ̃(xt, yt)Ót|F (y)

t

)
=

∫
Rn

φ̃(x, yt)q
(y)
t (x) dx (3.14)

7Note that the Zakai equation is not an SDE of the form (2.12) (so we cannot use the formulas
(2.16), (2.17)); it is merely a stochastic differential representation for σt(φ).
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and (3.9) implies (by “duality”) the following Itô stochastic partial differential equa­
tion (SPDE)

dq
(y)
t (x) = A∗

+q
(y)
t (x) dt+ q

(y)
t (x)hT (x, yt)H−1(yt) dyt,

q
(y)
0 (x) = q0(x),

t ∈ [0, T ], x ∈ Rn, (3.15)

where q0 is the initial density (“unconditional” unnormalized probability density for
the state x0, before any observations have been made). Likewise, (3.11) implies the
Stratonovich SPDE

dq
(y)
t (x) = Â∗q

(y)
t (x) dt+ q

(y)
t (x)hT (x, yt)H−1(yt) ◦ dyt,

q
(y)
0 (x) = q0(x),

t ∈ [0, T ], x ∈ Rn. (3.16)

It is well-known (see e.g. [7] , [25]) that (at least) for φ̃ = φ (with φ as in the previous
section, i.e. no explicit y dependence in φ̃) and q0 = δx0 (Dirac delta) the SPDE in
(3.16) (or equivalently (3.15)) has a unique solution q

(y)
t (nonnegative) for t ∈ (0, T ]

which is of class C2 and rapidly decaying for ‖x‖ → ∞.

3.2.3 Robust Version of the Zakai Equation. The path y(·) enters into (3.16)
in a way which is not continuous in the sup-norm. In real-life time (and space)
discretized implementations of the solution to the filtering this might be a problem and
therefore it is preferable to express (3.16) on a “robust” form where the dependence on
the path is continuous. By introducing a change of variables (“gauge transformation”)

ς
(y)
t (x) = exp

(
− h̃(x, yt)

)
q
(y)
t (x)

where h̃ : Rn × Rp → R is function such that

∇yh̃(x, y) =
(
H−1(y)

)T
h(x, y), y ∈ Rp (3.17)

and applying Itô’s formula, one obtains after some straightforward calculations (see
appendix E)

dς
(y)
t (x) = exp

(
− h̃(x, yt)

)
Â∗ exp

(
h̃(x, yt)

)
ς
(y)
t (x) dt,

ς
(y)
0 (x) = exp

(
− h̃(x, 0)

)
q0(x),

t ∈ [0, T ], x ∈ Rn,

(recall that y0 = 0 in (2.24)) or equivalently

( ∂
∂t

− Ãt

)
ς
(y)
t = 0,

ς
(y)
0 (x) = exp

(
− h̃(x, 0)

)
q0(x),

t ∈ [0, T ], x ∈ Rn, (3.18)

where the (time dependent) operator Ãt is given by

Ãtφ(x) = exp
(

− h̃(x, yt)
)
Â∗ exp

(
h̃(x, yt)

)
φ(x),

t ∈ [0, T ], x ∈ Rn, (3.19)

for smooth φ : Rn → R. The positive definiteness of the diffusion matrix aF ensures
that equation (3.18) is a parabolic partial differential equation (PDE) and thus has
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all the well-known properties of such equations. 8 The big difference between (3.16)
and (3.18), however, is that in the latter equation the path y(·) enters “functionally”
(as a “parameter”) rather than in terms of its increments (in a stochastic integral).
Thus, the solutions to (3.18) depend continuously on the path and therefore (3.18)
represents a robust solution to the filtering problem.

3.2.4 Lie Form of the (Robust) Zakai Equation If we define the differential
operator L(1)

t by
L

(1)
t φ(x) = h̃(x, yt)φ(x), t ∈ [0, T ], (3.20)

(where h̃ is the function in (3.17)) and for ease of notation also put

L
(0)
t = Â∗ (3.21)

(where Â∗ is the operator in (3.12)) then the operator Ãt in (3.19) can be written

Ãt = exp
(

− L
(1)
t

)
L

(0)
t exp

(
L

(1)
t

)
.

Now, if we define the related operator Ù by

Ù(τ) = exp
(

− τL
(1)
t

)
L

(0)
t exp

(
τL

(1)
t

)
, τ ∈ R,

we have Ù(1) = Ãt and by differentiation we obtain

d

dτ
Ù(τ) = exp

(
− τL

(1)
t

)(
− L

(1)
t L

(0)
t + L

(0)
t L

(1)
t

)
exp

(
τL

(1)
t

)
= exp

(
− τL

(1)
t

)
[L(0)
t , L

(1)
t ] exp

(
τL

(1)
t

)
.

Repeated differentiation gives

dk

dτk
Ù(τ) = exp

(
− τL

(1)
t

)
adk

L
(1)
t

L
(0)
t exp

(
τL

(1)
t

)
, k ∈ N,

where adk
L

(1)
t

is defined recursively by

adk+1
L

(1)
t

L
(0)
t = [adk

L
(1)
t

L
(0)
t , L

(1)
t ], k ∈ N,

with ad0
L

(1)
t

being the identity. This shows that the map τ 7→ Ù(τ) is C∞ and since

L
(1)
t is a differential operator of degree 0, and L

(0)
t is a (linear) differential operator

of degree 2, it follows that (see e.g. [13 , pp. 22–23])

adk
L

(1)
t

L
(0)
t = 0, k > 2. (3.22)

Hence, the Taylor series for Ù(τ) contains only three terms and we have

Ãt = Ù(1)

= Ù(0) +
d

dτ
Ù(τ)|τ=0 +

1
2
d2

dτ2Ù(τ)|τ=0

= L
(0)
t + [L(0)

t , L
(1)
t ] +

1
2
[[L(0)

t , L
(1)
t ], L(1)

t ].

8This is the only place where this condition on the diffusion matrix is used. A standard case where
the condition would be violated is when some of the vector fields F0, F1, . . . , Fm and H0, H1, . . . , Hp

are time-varying, and this is modeled by adding an extra state variable representing time. In this
case the diffusion matrix would however have an upper left block satisfying the condition and we
would still get a parabolic PDE, albeit with time-varying coefficients.
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The robust form (3.18) of the Zakai equation can now be expressed on Lie form as

dς
(y)
t (x)
dt

= L
(0)
t ς

(y)
t (x) + [L(0)

t , L
(1)
t ]ς(y)t (x) +

1
2
[[L(0)

t , L
(1)
t ], L(1)

t ]ς(y)t (x),

ς
(y)
0 (x) = exp

(
− h̃(x, 0)

)
q0(x),

t ∈ [0, T ], x ∈ Rn. (3.23)

It is worth noting here that by the same argument that was alluded to in connection
with (3.22) above the operator [L(0)

t , L
(1)
t ] is a first degree (linear) differential operator

and [[L(0)
t , L

(1)
t ], L(1)

t ] is an operator of degree zero, i.e. a (possibly time-varying)
smooth function (in x).

3.3 Finite Dimensional Filters

The unnormalized density q
(y)
t in (3.16), and its transformed version ς

(y)
t in (3.23),

are both objects in L1(Rn), which is an infinite dimensional vector space. Thus,
direct solution of (3.16) or (3.23) is in general not feasible, at least not in real-time.
However, if there exists a smooth manifold M with a differential equation

dξ(t)
dt

= b(ξ(t), yt),

ξ(0) = ξ̃,

t ∈ [0, T ], (3.24)

where b is a smooth vector field on M × Rp, and a smooth “output” function θ :
M × R × Rn → R such that

θ(ξ(t), t, x) = ς
(y)
t (x), t ∈ [0, T ], x ∈ Rn,

then we say that we have a robust 9 finite dimensional filter (FDF) for the filtering
problem in (3.1). The number of examples for which an FDF is known is relatively
small; it includes the Kalman filter, the Beneš filter and a few other cases.

A special case of (3.24) that will be of particular interest to us in the following is
when b can be factored as (for some k > 0)

b(p, y) =
k∑
j=1

cj(y)bj(p), p ∈ M, y ∈ Rp,

where bj : M → R are smooth vector fields and cj : Rp → R are smooth functions.
When b is on this form the so-called Wei-Norman technique can (sometimes) be
applied to explicitly construct FDFs.

3.4 Observations in additive “white noise”

For the special case
H0(x, y) = H0(x), H(y) = I, (3.25)

(I being the identity matrix) the question of existence, characterization and conditions
for FDFs has been given a fairly complete answer (see e.g. [26] and the references
therein). In the case (3.25) we can take h̃ in (3.17) as

h̃(x, y) = HT
0 (x)y, x ∈ Rn, y ∈ Rp

9If we instead have an SDE on M analogous to (3.24) with an output function θ producing the
values of q

(y)
t we say that we have a finite dimensional filter.
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and the operator L(1)
t in (3.20) can be represented in terms of a sum

L
(1)
t =

p∑
j=1

yjtLj

where Lj is defined as

Ljφ(x) = Hj
0(x)φ(x), x ∈ Rn, j = 1, . . . , p,

for smooth φ : Rn → R. The operator L(0)
t in (3.21) also simplifies in the case (3.25);

it reduces to the (time invariant) operator L(0) given by

L(0) = Â∗ = A+.

The Lie form of the (robust) Zakai equation (3.23) can therefore for the case (3.25)
be written as

dς
(y)
t (x)
dt

= L(0)ς
(y)
t (x) +

p∑
j=1

yjt [L
(0), Lj ]ς

(y)
t (x)

+
1
2

p∑
j=1

p∑
k=1

yjt y
k
t [[L

(0), Lj ], Lk]ς
(y)
t (x),

ς
(y)
0 (x) = q0(x),

t ∈ [0, T ], x ∈ Rn. (3.26)

Again, since L1, . . . , Lp are differential operators of degree zero the operator [L(0), Lj ]
is of first degree and the operator [[L(0), Lj ], Lk] is of degree zero. Moreover, all the
operators L(0), L1, . . . , Lp here are deterministic and time invariant; the time varying
and stochastic parts of the right hand side of (3.26) are confined to ς(y)t and yt.

For the setting in (3.26), Brockett’s conjecture is that a necessary condition for the
existence of an FDF is that the estimation algebra E , defined as the Lie algebra gen­
erated by the differential operators L(0), L1, . . . , Lp, is finite dimensional. Brockett’s
conjecture has been verified in a number of cases, including the Kalman and Beneš
cases mentioned above.

3.4.1 The Wei-Norman Technique The Wei-Norman technique for construct­
ing explicit solutions to linear differential equations on a manifold can be applied to
obtain a concrete representation of an FDF. We shall here briefly sketch how this is
done; a more detailed account can be found in [29].

Assume that the estimation algebra E of the system (2.24), for the special case
in (3.26), is finite dimensional and has a basis consisting of the differential operators
E0 = L

(0)
t and E1, . . . , Ek (for some k > 0), the latter of the form

n∑
j=1

αi,jDj + βj ,

where
Dj =

∂

∂xj
− F j0 ,

and the αi,j ’s are constants and the βj ’s polynomials in the components of the state
variable x, and zero degree differential operators Ek+1, . . . , E` (for some (` > k)).
Moreover, assume that [Ei, Ej ] is a constant for i ≥ 1, 1 ≤ j ≤ k, and that all
the zero degree differential operators in E are in the span of Ek+1, . . . , E`. Then the
(robust) Zakai equation on Lie form (3.26) can be represented as

ς
(y)
t (x) = exp

(
r`(t)E`

)
· · · exp

(
r1(t)E1

)
exp(tE0)q0(x), t ∈ [0, T ], x ∈ Rn,

where rj : [0, T ] → R and the rj ’s satisfy ordinary differential equations.



4. An algebraic approach to geometry

In this chapter some basic differential geometric concepts and notation are quickly
introduced, leaving aside many points of rigor and finer details. For a comprehensive
presentation of this material, see [30] , [1] , [12] , [13] , [23]. The main point made in
this chapter is that all relevant constructions can be made without explicit use of any
coordinate system.

4.1 Differentiable Manifolds

An n-dimensional topological manifold is a (second countable Hausdorff) topological
space M such that every point in M has a neighborhood homeomorphic to an open
set in Rn. The family of such local diffemorphisms (‘coordinate systems’ or ‘charts’)
is called a topological atlas for M . A differentiable manifold is a topological manifold
together with a preferred subatlas (a ‘differentiable atlas’) being such that the tran­
sition mapping from one coordinate system to another is smooth (C∞). A mapping
M → R is then said to be smooth whenever it is represented by a smooth function in
every coordinate system belonging to the preferred subatlas. Denote by C∞(M) the
algebra of smooth mappings M → R. One refers to the subatlas, or alternatively the
algebra C∞(M) , as a differential structure of the topologial manifold M .

There are similar definitions of Ck manifolds and real-analytic (Cω) manifolds,
but much of the algebraic approach given below does not work in the case of Ckand
Cω manifolds.

4.2 Basic constructions

One approach to coordinate-free differential geometry consists in regarding the alge­
bra C∞(M) as the basic object. Everything else, including the manifold M itself and
its topology, may then be reconstructed from the algebra structure of C∞(M) alone.

4.2.1 Reconstruction of the function algebra structure The points of M
are identified with the maximal ideals of C∞(M) , viz. the point p ∈ M is identified
with the maximal ideal Ip = {ϕ ∈ C∞(M) |ϕ(p) = 0}. The maximal ideals all have
codimension one, and C∞(M) = Ip⊕ (C∞(M)/Ip) where C∞(M)/Ip = R is iden­
tified with the constant functions, i.e. the subalgebra of C∞(M) generated by its
identity element.

The value ϕ(p) of a function ϕ is equal to the element ϕ/Ip in R. The ‘abstract
algebra’ C∞(M) is thereby realized as an algebra of functions, and the topology
of M is recovered as the topology generated by those functions’ preimages of open
intervals. In particular, the subalgebra C∞

0 (M) of functions with compact support is
well defined from the algebra structure of C∞(M) alone. (The support suppφ , is the
closure of the set of points where the value of φ differs from 0.)

4.2.2 Smooth mappings A mapping Ò : M → N is said to be smooth (Ò ∈
C∞(M,N)) if the composition φ ◦Ò ∈ C∞(M) for every φ ∈ C∞(N). For a smooth
mapping Ò : M → N , the pull-back mapping Ò∗ : C∞(N) → C∞(M) defined by
composition is an algebra homomorphism, and conversely any algebra homomorphism

19
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C∞(N) → C∞(M) is the pull-back of a smooth mapping. The smooth mapping
Ò : M → N is called a diffeomorphism if it is invertible and if the inverse is smooth.
This is the case if and only if Ò∗ is an algebra isomorphism.

4.2.3 Product manifolds The product manifold differential structure C∞(M ×
N) can be characterized in terms of the differential structures C∞(M) and C∞(N)
through the condition that C∞(M × N) is the largest function algebra on M × N
such that the product mapping ÒM × ÒN : P → M × N is smooth whenever its
components ÒM : P → M and ÒN : P → N are smooth.

4.2.4 Tangent vectors A tangent vector at p ∈ M is an linear operator Xp :
C∞(M) → R satisfying

Xp(ϕψ) = ϕ(p)Xp(ψ) + ψ(p)Xp(ϕ) (4.1)

The set of such tangent vectors forms a vector subspace of the space of real valued
linear operators on C∞(M). This subspace is called the tangent space of M at p ,
and is is denoted by TpM . The (disjoint) union of all tangent spaces of M is denoted
by TM . The projection mapping πTM : TM → M associates elements of the different
TpM to their respective base points p.

A vector field on M is a derivation X of the algebra C∞(M), i.e. a mapping
X : C∞(M) → C∞(M) such that

X(ϕψ) = ϕX(ψ) + ψX(ϕ) (4.2)

The space of vector fields on M is denoted by X(M). If X and Y are vector fields,
then their commutator

[X,Y ] = X ◦ Y − Y ◦X (4.3)

is also a vector field. (The fact that the commutator of two derivations is a derivation
holds for any commutative algebra.)

Let X ∈ X(M). For every p ∈ M , the mapping ϕ 7→ X(ϕ)(p) satisfies (4.1) and
thus defines an element in Xp ∈ TpM . In this way the vector field X defines (and
may in fact be identified with) a mapping X : M → TM such that πTM ◦X = idM .
Now define C∞(TM) as the algebra of real valued functions on TM such that ψ ∈
C∞(TM) if and only if ψ◦X ∈ C∞(M) for all X ∈ X(M). This provides ‘the tangent
bundle’ TM with a differential structure.

4.2.5 Fiber bundles A fiber bundle πP : P → M over a manifoldM is a manifold
P together with a smooth surjective mapping πP : P → M such that P is locally
diffeomorphic to a product manifold, i.e. every p ∈ M has an open neighborhood U
such that π−1

P (U) is diffeomorphic to U × π−1
P (p). In particular, the fibers π−1

P (p)
are diffeomorphic manifolds.

Let πP : P → M be a fiber bundle. A smooth mapping σ : M → P such that
πP ◦σ = idM is called a (smooth) section of the bundle. The set of such is denoted by
Ð (M,P ). Note that C∞(M) = C∞(M,R) = Ð (M,M × R). The differential structure
C∞(P ) may also be characterized by the space of smooth sections Ð (M,P ) through
the condition that ψ ∈ C∞(P ) if and only if ψ ◦ φ ∈ C∞(M) for all φ ∈ Ð (M,P ).

If the fibers are (finite dimensional) vector spaces, the fibre bundle is called a
vector bundle. The tangent bundle is a vector bundle.

If πE : E → M is a vector bundle, the dual vector bundle πE∗ : E∗ → M is
the (disjoint) union of the dual vector spaces together with the obvious projection
mapping. The differential structure of E∗ is implicitly defined by demanding that for
any a ∈ Ð (M,E) and any α ∈ Ð (M,E∗) , the evaluation mapping α(a) ∈ C∞(M).
(The evaluation mapping maps the point p ∈ M to the number αp(ap) , where αp and
ap belong to the dual vector spaces that are fibers of E and E∗ over the point p.)
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4.2.6 Pullback and push forward Let Ò : M → N be smooth. Recall the
pull-back mapping Ò∗ : C∞(N) → C∞(M) defined by composition. The tangent
mapping (‘push-forward’ or ‘differential’) of Ò is the smooth mapping Ò∗ : TM →
TN characterized by

Ò∗Xp (φ) = Xp (Ò∗φ)

identically in φ ∈ C∞(N).*
Note that the pullback mapping acts on sections while the push-forward mapping

acts on the fiber bundle itself. The pullback and push-forward mappings also behave
differently with respect to composition: if Ò = Ò2 ◦ Ò1 , then Ò∗ = Ò2∗ ◦ Ò1∗ but
Ò∗ = Ò∗

1 ◦Ò∗
2.

4.2.7 Jet bundles The k-jet of a function φ ∈ C∞(M) at the point p ∈ M is the
element jkpφ = φ/Ik+1

p in the jet space J k
p (M) = C∞(M)/Ik+1

p . The jet space over
p , being the quotient of an algebra by an ideal, has a natural algebra structure and
in particular it has the structure of a real vector space. The (disjoint) union J k(M)
of the J k

p (M) , p ∈ M has a natural projection mapping πJk : J k(M) → M , which
maps the elements of the different J k

p (M) on the corresponding p.
The k-prolongation of a function φ ∈ C∞(M) is the mapping jkφ : M → J k(M)

which maps p on jkpφ.
A mapping Ù : J k(M) → R is said to be smooth whenever all its composition

with k-prolongations belong to C∞(M). This provides J k(M) with a differential
structure such that the projection πJk is smooth, and hence πJk : J k(M) → M is a
vector bundle over M , which is called the k-jet bundle.

It follows from the construction that there are surjective mappings J `(M) →
J k(M) , whenever ` ≥ k.

Dual jet bundles Let Ò : M → N and be smooth and φ ∈ C∞(N). It follows
directly from the definition of the k-prolongation, that jkpÒ∗φ at p ∈ M depends on
φ only through the value of jkÒ(p)φ , and hence that there is a well-defined pullback
mapping Ò∗ : Ð (N,J k(N)) → Ð (M,J k(M)) such that

Ò∗ ◦ jk = jk ◦Ò∗

holds as an identity of operators on C∞(N).
Dually, there is a push-forward mapping Ò∗ : J k ∗(M) → J k ∗(N) on the dual

bundles J k ∗(M) of the jet bundles given by

Ò∗Lp (K) = Lp (Ò∗K)

as an identity in p ∈ M , Lp ∈ J k ∗
p (M) and K ∈ Ð (N,J k(N)). The restriction of

this push-forward mapping Ò∗ to J k ∗
p (M) is called the k-jet of the mapping Ò and

is also denoted by jkpÒ. As usual for push-forward mappings (Ò2 ◦Ò1)∗ = Ò2∗ ◦Ò1∗
or in another notation

jk(Ò2 ◦Ò1) = jkÒ2 ◦ jkÒ1

4.2.8 Cotangent vectors For a function φ ∈ C∞(M) , the element φ − φ(p) ∈
C∞(M) sits in Ip and defines uniquely an element (dφ)p of Ip/I2

p , called the (exterior)
derivative of φ (at p). It follows from (4.1) that Ip/I2

p is the dual space of TpM and
that Xp(φ) = (dφ)p(Xp). The space Ip/I2

p is called the cotangent space of M at p
and is denoted by T ∗

pM . The cotangent spaces are naturally identified with the fibers
of the cotangent bundle πT∗M : T ∗M → M , defined as the the bundle dual to the
tangent bundle.
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4.3 Tensor algebra

As will be verified in the next chapter, the dimensions of the tangent spaces and the
cotangent spaces coincide with the dimension of the manifold itself. From the tangent
and cotangent vector spaces (TpM and T ∗

pM respectively) at the point p ∈ M , the
space T (k,`)

p M of (k, `)-tensors p may be constructed as

T (k,`)
p M = TpM ⊗ ..⊗ TpM ⊗ T ∗

pM ⊗ ..⊗ T ∗
pM

where there are k factors TpM and ` factors T ∗
pM . These spaces form the fibers of the

corresponding tensor bundles. Elements of T (k,0)M are pushed forward by mappings,
while sections of T (0,`)M are pulled back.

Completely skew-symmetric (0, `)-tensors form a subbundle (later to be denoted
by Ó`M) of T (0,`)M . The sections of this subbundle may be identified with the
differential forms defined in another way below.

4.3.1 Exterior algebra For a general n-dimensional real vector space V , we
define Ó`V as the space of skew symmetric multilinear mappings

V × ..× V → R

(k factors V ). There is a bilinear operation ∧ : ÓaV × ÓbV → Óa+bV defined by

α ∧ β (v1, .., va+b) =
1
a!b!

∑
σ∈Sa+b

sgn (σ) α
(
vσ(1), .., vσ(a)

)
β

(
vσ(a+1), .., vσ(a+b)

)
where v1, .., va+b ∈ V and Sa+b is the symmetric group (i.e. the permutation group).

With this definition the wedge product ∧ becomes

• associative, α ∧ (β ∧ γ) = (α ∧ β) ∧ γ ,

• graded commutative, α ∧ β = (−1)ab β ∧ α

In particular, associativity is due to our choice of normalization factors.
It is readily seen that the dimension of the space ÓaV is the binomial coefficient
n!

a!(n−a)! , so that ÓnV is 1-dimensional and the ÓmV are trivial for m > n.
There is also an algebraic operation, the interior product, iAα ∈ Óa−1V , between

an element A ∈ V and an element α ∈ ÓaV. This operation is uniquely characterized
by the following properties

iAα = 0 when a = 0
iAα = α (A) when a = 1

iA (α ∧ β) = iAα ∧ β + (−1)a α ∧ iAβ
iA ◦ iA = 0

We will use exterior algebra only in the case V = TpM , the sections of the
corresponding bundle Ó`M then being referred to as differential forms.

4.3.2 Fractional density algebras Consider a 1-dimensional vector space V
(later V = ÓnpM). From this space, two important families of 1-dimensional vector
spaces may be formed,

• V k with k ∈ Z and

• |V |κ with κ ∈ R.
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Since the trace mapping
tr : V ⊗ V ∗ → R

is an isomorphism in the case of a 1-dimensional V , the tensor space V (k+1,`+1) is
naturally isomorphic with the tensor space V (k,`) , and hence we may unambiguously
write V k−l for V (k,`). With this convention V a ⊗ V b = V a+b holds for integer a and
b of arbitrary signs.

The 1-dimensional vector space V a has a natural orientation when a = 2k is even;
a nonzero element α of V 2k constitutes a positively oriented basis whenever it can be
represented as β ⊗ β with β in V k.

Let κ be real and denote by |V |κ the linear space of mappings ψ : V ∗ → R
satisfying ψ (z u) = |z|κ ψ ( u) identically in z ∈ R and u ∈ V ∗. This family is
closed under tensor products if we identify the element ψ1 ⊗ ψ2 of |V |κ1 ⊗ |V |κ2 with
the product of ψ1 and ψ2 as functions, which is a function in |V |κ1+κ2 . We refer
to the family |V |κ (κ ∈ R) as the fractional density algebra generated by V , but
the exponents κ need by no means be rational numbers. The vector spaces |V |κ all
come with a natural orientation; a nonzero element α of |V |κ constitutes a positively
oriented basis whenever it is a positive function on V ∗. The space of oriented scalars
constructed from V is the space RV = V ⊗ |V |−1.

There are then natural identifications

V 2k = |V |2k

V 2k+1 = RV ⊗ |V |2k+1

These constructions are of interest in differential geometry with the particular
1-dimensional vector space V = ÓnpM .

4.3.3 Tensor bundles Via the constructions above, vector bundles like T (k,`)M ,
Ó`M and RÓmMM are formed by fiberwise algebraic operations (tensor products
etc.). Alternatively one may consider the corresponding algebraic operations on the
spaces of sections. These two approaches give the same resulting bundles, as has
been verified in [14].

4.4 Analysis on manifolds

4.4.1 Linear differential operators A linear differential operator of order 0
on C∞(M) is by definition (multiplication by) an element of C∞(M). Differential
operators of higher order are defined recursively: a linear mapping L : C∞(M) →
C∞(M) is a differential operator of order at most k if the commutator [L, χ] is a
differential operator of order at most k−1 for every differential operator χ of order 0.
A linear differential operator is said to be ‘pure’ if it vanishes on constant functions.
Thus, a pure first order linear differential operator is the same thing as a vector field,
and a general first order linear differential operator is uniquely decomposed as the
sum of a vector field and a zeroth order operator. For linear differential operators of
order k > 1 , there is however no natural decomposition into terms of ‘exact order’
` = 0, 1, ..k. (Such decompositions will depend on the choice of a coordinate system
or, more generally, on the choice of an affine connection.)

Linear differential operators are local in the sense that if L is a linear differential
operator on C∞(M) , then

suppLφ ⊆ suppφ
for every φ ∈ C∞(M). (This property in fact characterizes linear partial differential
operators on a compact manifold. On a non-compact manifold it is still true that a
local operator is locally given by a differential operator, but there may be no global
bound on the order.)

The support, suppL , of the linear differential operator L is defined as the closure
of ∪φ∈C∞(M)suppLφ.
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4.4.2 Jet bundle characterization of differential operators A linear differ­
ential operator L : C∞(M) → C∞(M) of order k also has the interpretation as
a fiberwise linear form on J k(M) , and is hence a section in the dual jet bundle
J k ∗(M). It is easily verified that the support, suppL , as defined above coincides
with the support of L considered as a section of J k ∗(M).

4.4.3 Principal symbols Let χ be a zeroth order differential operator. The
commutator mapping ad−χ = [·, χ] maps order ≤ k differential operators L on order
≤ k−1 differential operators [L, χ] and consequently adk−χL is a zeroth order operator.
Due to the Jacobi identity, ad−χ1 ad−χ2 .. ad−χk

L is completely symmetric in χ1 , χ2 ,
.. χk . It is also clear that it depends on χ1 only via its differential dχ1. From this
follows that adk−χL = σL(dχ) , where σL, the principal symbol of L , is a k:th order
homogeneous polynomial function on T ∗M . The differential operator L is said to be
elliptic if σL 6= 0 away from the zero section of T ∗M .

4.4.4 Exterior calculus Differential operators between vector bundles are de­
fined analogously to scalar differential operators, in terms of commutators. There
is a natural linear differential operator d on differential forms, mapping sections of
ÓkM to sections of Ók+1M (for every k) which is characterized by the conditions that
d|Ó0M =ordinary differential and

d (α ∧ β) = dα ∧ β + (−1)a α ∧ dβ
d ◦ d = 0

(where a is the order of α). The operator d is known as the exterior differential.

4.5 Flows and Lie derivatives

4.5.1 Topology on C∞(M) The algebra C∞(M) has a natural topology given
by the seminorms φ 7→ sup |Lφ| , where L ranges over linear differential operators
with compact support.

This topology is complete, and all linear differential operators are continuous with
respect to it, as are pull-backs etc.

4.5.2 The flow of a vector field Let X be a vector field. A one-parameter
family of diffeomorphisms Øt : M → M , (t ∈ R) , with Ø0 = idM , is said to be a
(global) flow of X if the following equation holds

dØt∗

dt
= X ◦ Øt∗

The derivative on the left hand side of this equation is defined in terms of the
C∞(M)−topology defined above. Whenever a vector field has a flow, it is unique,
and the existence of a flow is guaranteed if X has compact support. The flow of X
is denoted by ØtX (another popular notation is exp(Xt) )

4.5.3 Lie derivatives The pullback operator Øt∗X is well defined for other objects
than scalar functions, e.g. for vector and tensor fields, jet bundle sections etc. The
Lie derivative along X is the generic differential operator LX acting on such objects
such that

dØt∗

dt
= LX ◦ Øt∗

holds identically. In particular
LXY = [X,Y ]



25 FOI-R--1074--SE

for a vector field Y and
LXα = diXα+ iXdα

for a differential form α.

4.5.4 Riemannian and subriemannian structures A subriemannian struc­
ture on a manifold M is a section g of T (2,0)M such that g considered as a bilinear
function on T ∗M is symmetric and nonnegative. The subriemannian structure is
riemannian if it is positive definite.

4.6 Affine Connections

An affine connection on a manifold M is a vector field valued bilinear operator ∇ on
the space of vector fields X(M) satisfying

∇fX+Y Z = f∇XZ + ∇Y Z

∇Z(fX + Y ) = f∇ZX + ∇ZY +X iZdf

identically in X,Y, Z ∈ X(M) and f ∈ C∞(M).
Let ∇ be an affine connection. Then the expressions

T∇ (X,Y ) = ∇XY − ∇YX − [X,Y ]

and
K∇ (X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z

are both C∞(M)-linear in each argument X,Y, Z ∈ X(M) and thereby define ten­
sorial quantities T∇ and K∇ , the torsion and curvature, respectively, of the affine
connection ∇.

4.6.1 Covariant derivatives An affine connection ∇ and a vector field X thus
give rise to a differential operator ∇X on (the sections of) TM , the covariant deriva­
tive in the direction X. This differential operator is extended to vector bundles other
than TM by postulating the following product rules

∇X (S ⊗ T ) = ∇XS ⊗ T + S ⊗ ∇XT

iXd (iY α) = i∇XY α+ iY (∇Xα)

In particular this gives a meaning to the Hessian H∇ (f) satisfying

iXH
∇ (f) = ∇Xdf

which is a bilinear form on TM. The Hessian H∇ (f) is symmetric for all f if and
only if the connection is torsion free.

4.6.2 Geodesic spray Let ∇ be an affine connection. There is then a naturally
defined vector field Z∇ defined on TM (considered as a 2n-dimensional manifold).
The vector field Z∇ is characterized by the following properties

LZ∇ (π∗
TMf) = df

LZ∇ (df) = H∇ (f)

for every f ∈ C∞(M). In these formulas, df and H∇ (f) are identified with the
corresponding polynomial functions on TM. The vector field Z∇ is called the geodesic
spray of ∇ , if it has a globally defined flow, the connection is said to be geodesically
complete. The projections on M of the integral curves of Z∇ are called the geodesics
of the connection.
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4.6.3 Levi-Civita connection Let g be a Riemannian structure on M . There

is then a unique torsionfree connection
(g)
∇ , called the Levi-Civita connection, that

satisfies
(g)
∇ g = 0.



5. The coordinate approach to geometry

In this chapter we collect coordinate expression for the different constructs of the
preceding chapter.

5.1 Tangent vectors, tensors

Locally the manifold M is described in terms of coordinates x1, ..xn. By Taylors
theorem, a function f ∈ C∞(M) may be written

f
(
xi

)
= f (0) + xihi (x)

where from now on the summation convention is followed: xihi (x) is short hand for
n∑
i=1

xihi (x) , summation being tacitly understood over all repeated indices. From the

Taylor theorem representation it is readily seen that the tangent vectors at the origin
are the operators of the form Xi ∂

∂xi . Similarly, a vector field has the general form

X = Xi (x)
∂

∂xi

The dimension of the tangent spaces therefore coincide with the dimension of the
manifold itself. The component functions Xi (x) are simply the result of letting the
vector field act as a differential operator on the coordinate functions. The coordinate
vector fields ∂

∂xi constitute a basis for the tangent vectors and the differentials dxiof
the coordinate functions constitute the dual basis for the cotangent vectors. Under a
change of coordinates

xi = xi (x̄)

the components transform as

Xj =
∂xj

∂x̄i
X̄

and similarly the components of a tensor

t = ti1..iIj1..jJ

∂

∂xi1
⊗ ..⊗ ∂

∂xi1
⊗ dxj1 ⊗ ..⊗ dxjJ

transform as

tk1..kI

l1..lJ
= t̄i1..iIj1..jJ

∂xk1

∂x̄i1
..
∂xkI

∂x̄iI
∂x̄j1

∂xl1
..
∂x̄jJ

∂xlJ

5.2 Jets and differential operators

The 1-jet of a mapping Ò : M → N

yα = Òα(x)

is simply the list (
xi, yα(x),

∂yα

∂xi

)

27
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and similarly for higher jets.
The flow of a vector fieldXj (x) is the solution to the system of ordinary differential

equations
dxi(t)
dt

= Xi (x(t))

A linear scalar differential operator of order m has the representation

L =
m∑
k=0

ai1..ik
∂k

∂xi1 ..∂xik

and its principal symbol is the function σL = ai1..imξi1 ..ξim , where (x, ξ) are the
induced coordinates on T ∗M .

5.3 Affine connections

An affine connection ∇ is characterized by its action the coordinate fields.We intro­
duce the notation ∂k = ∂

∂xk and write

∇∂k
∂j = Ð ijk∂i

The coefficients Ð ijk are known as the connection coefficients or Christoffel symbols
of the connection. Generally it then holds that

∇XY = Xi

(
∂Y j

∂xi
+ Ð jliY

l

)
∂j

H∇ (f) =
(

∂2f

∂xi∂xj
− Ð kij

∂f

∂xk

)
dxi ⊗ dxj

The difference between two connections
(2)
∇ and

(1)
∇ is a tensor t

(2)

Ð kij −
(1)

Ð kij= tkij

and conversely any connection
(2)
∇ may be expressed as the sum of any other connection

(1)
∇ and their difference tensor t.

The torsion and curvature tensors are given by(
T∇)i

jk
= Ð ijk − Ð ikj(

K∇)i
j kl

=
∂Ð ijk
∂xl

−
∂Ð ijl
∂xk

+ Ð imlÐ
m
jk − Ð imkÐ

m
jl

respectively.
The geodesic spray of ∇ is the vector field Z∇

Z∇ = ξl
∂

∂xl
− ξjξkÐ ljk

∂

∂ξl

defined on TM . Here (x, ξ) are the the coordinates on TM , induced by the coordinates
x on M , so that a tangent vector at a point of M with coordinates x and components
ξ w.r.t. the induced basis ∂

∂x , is the point in TM represented by the coordinates
(x, ξ).

The geodesics of ∇ are the projections onto M of the integral curves of Z∇.
In induced coordinates, the integral curves of Z∇ are the solutions of the system

of differential equations
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dxi(t)
dt

= ξi(t)

dξi(t)
dt

= −Ð ijk (x(t)) ξj(t)ξk(t)

Eliminating the ξi(t) , we see that the geodesics are the solution to the system of
second order differential equations

d2xi(t)
dt2

+ Ð ijk
dxj(t)
dt

dxk(t)
dt

= 0

An affine connection is said to be flat if the torsion and curvature tensors both
vanish. This is the case if and only if there is a coordinate system such that the
corresponding connection coefficients identically vanish.

Most affine connections in stochastic differential geometry are either torsion-free,
but having nonvanishing curvature or vice versa , curvature-free, but having nonvan­
ishing torsion. The latter kind of connections are closely related to the concept of a
moving frame.

A moving frame is an ordered set of pointwise independent vector fields F1 ,.., Fn

spanning TM . Any moving frame F uniquely defines an affine connection
(F )
∇ through

the conditions
(F )
∇ FA = 0

Another moving frame G defines the same connection if and only if GA = CBAFB
with constant coefficients CBA . Affine connections arising in this manner have vanish­

ing curvature but in general nonvanishing torsion. The torsion of
(F )
∇ is characterized

by (
T∇)i

jk
F jAF

k
B = − [FA, FB ]i

which follows directly from the definition of torsion T∇ (X,Y ) = ∇XY −∇YX−[X,Y ]

and the condition that
(F )
∇ FA = 0.

The Levi-Civita connection of a riemannian structure g = gij∂i ⊗ ∂j is given by
the formula

Ð ijk =
1
2
gil

(
∂glj
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

)
where gkl dxk ⊗ dxl is the riemannian metric dual to the riemannian structure g =
gij∂i⊗∂j . The Levi-Civita connection is torsion-free, but in general has nonvanishing
curvature.

Several different affine connections are of interest in the differential geometric
filtering theory:

• Flat connections associated with coordinate systems (in classical Itô theory)

• Curvature-free connections related to moving frames (in noise modeling)

• The symmetric part of a curvature-free connection. (This part has curvature
but is torsion-free)

• The Levi-Civita connection corresponding to the noise covariance metric.

• The Levi-Civita connection corresponding to the Fisher information metric on
a statistical manifold.

• The Amari α-connections on a statistical manifold.
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Curvature and torsion both have simple geometric interpretations. Consider the
following control system

ẋi (t) = F iA (x (t)) v̇A (t)

where F iA (x) are the components of a moving frame and the controls , v̇A (t) , are
represented as the time derivative of a small closed trajectory in Rnv . The resulting
trajectory xi (t) in the manifold is in in general not closed, and to first order in the
enclosed v-area dAAB , the end point differs from the starting point according to the
formula

xi (tend) = xi (0) − 1
2

(
T∇)i

jk
F jAF

k
BdA

AB + o
(
dAAB

)
Consider now instead a small closed curve γ : t 7→ xi (t) in the manifold, and

an initial frame with components F jA (x (0)). Each of the basis vectors FA is parallel
transported along γ according to the formula

∇ẋi∂i
FA = 0

that is,
dF iA
dt

+ Ð ijkF
j
Aẋ

k = 0

so that FA (t) becomes a frame at the point x (t). At the endpoint of the closed curve,
the parallel transported frame FA (tend) in general differs from the initial frame, and
to first order in the enclosed x-area dAkl

F iA (tend) = F iA (0) +
1
2

(
K∇)i

j kl
F jA (0) dAkl + o

(
dAkl

)
These torsion and curvature formulas hold to the first order in the enclosed area for

closed curves of infinitesimal diameter. From them, the corresponding exact formulas
for finite closed curves may be obtained, but this requires the notion of multiplicative
integration.

5.4 Representation of differential operators

An affine connection may be considered as a differential operator

∇ : Ð
(
M,T (k,l)M

)
→ Ð

(
M,T (k,l+1)M

)
according to the identification

iX (∇A) = ∇XA

A general differential operator L of order k between the ‘geometric vector bundles’
πE : E → M and πF : F → M may be uniquely represented in the following form

Lψ =
∑
j≤k

(
Lj ,∇jψ

)
Here, ∇jψ is the result of applying the connection j times to ψ, the Lj is an F ⊗
E∗-valued symmetric T (0,j)-tensor, (·, ·) is the natural duality pairing, and finally, a
‘geometric vector bundle’ is one in which the affine connection makes natural sense
(namely direct sums of fractional density tensor bundles).

In this way a differential operator is split into terms of homogeneous order, each
term defining its own coefficient tensor via its principal symbol. The 1-1 correspon­
dence between the differential operator and the list of coefficient tensors depends on
the connection used. This is the underlying reason for the strange transformational
properties of the ‘drift vector field of an Itô diffusion’, when the concept of connections
is not properly acknowledged.



6. Stochastic calculus on manifolds

In this chapter the notion of stochastic differential equations on manifolds is ad­
dressed.

6.1 Itô’s rule and affine connections

The data for a manifold valued SDE consist of

• A drift vector field F0 = F i0
∂
∂xl

• An Rm valued standard Brownian motion wA

• a set of noise vector fields FA = F iA
∂
∂xl

• a geodesically complete affine connection ∇

We intend to give give meaning to a formal SDE of the form

d∇xi = F i0 (x (t)) dt+ F iA (x (t)) dwA

as an Itô SDE.
Put g =

m∑
A=1

FA ⊗ FA = F iAδ
ABF jB∂i ⊗ ∂j . This is the subriemannian structure

defined by the noise. By the left hand side of the equation is loosely speaking meant
the expression d∇xi = dxi + 1

2g
jkÐ ijkdt.

More precisely, the following property is postulated for the expression d∇xi

d(∇+T )xi = d∇xi +
1
2
gjkT ijkdt

If, furthermore, it is agreed to identify d∇xi with the Itô differential dxi in the case
when Ð ijk vanish identically in the coordinate system employed, the above formulas
are related to Itô’s rule in the following sense

• Itô’s rule shows that the equation association from the quadruple
(
F0, w

A, FA,∇
)

to the equation d∇xi = F i0 (x (t)) dt + F iA (x (t)) dwA (more precisely the Itô
equation dxi =

(
F i0 (x (t)) − 1

2g
jkÐ ijk

)
dt + F iA (x (t)) dwA ) is coordinate inde­

pendent.

• Itô’s rule itself is encoded in the formula d(∇+T )xi = d∇xi + 1
2g
jkT ijkdt

In this formulation, the ‘strange’ coordinate transformation rules of a traditional
Itô SDE is due to a simultaneous tacit change of connection, from the flat connection
of the first coordinate system to that of the second.

31
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6.2 Redundancy in the representation

It is clear from the above that the quadruple
(
F0, w

A, FA,∇
)

uniquely determines the
SDE. The representation is however redundant, since for any section T of T (1,2)M
and any mapping Q : M → SO (Rm) , the quadruple(

F i0 − 1
2
gjkT ijk, w

A, QBAFB ,∇ + T

)
defines the ‘same SDE’ (strongly equivalent if QAB ≡ δAB , otherwise weakly equiva­
lent).

6.3 Particular choices of connections

Certain choices of connections give rise to particularly interesting representations

6.3.1 Classical Itô equations The use of a particular coordinate system and
its corresponding flat connection gives us back the classical Itô SDE as it is usually
presented. When performing a nonlinear change of coordinates, together with the en­
suing change of corresponding flat connection, the drift vector field has to be corrected
according to the redundancy formula above.

6.3.2 Stratonovich equations Consider for simplicity the case when gjk is non­
degenerate (and m = n), the general case being only slightly more involved. By

using the curvature-free connection
(F )
∇ defined by the moving frame FA , one arrives

at the Stratonovich equation (written as an Itô equation). In other words, by the

convention of always using ∇ =
(F )
∇ in

(
F0, w

A, FA,∇
)

we arrive at the Stratonovich

interpretation of a formal SDE in terms of
(
F0, w

A, FA
)
. Recall that

(F )
∇ in general

has nonvanishing torsion.
When performing a nonconstant orthonormal change of the moving frame, to­

gether with the ensuing change of corresponding curvature-free connection, the drift
vector field has to be corrected according to the redundancy formula above. Observe
also that only the torsion-free part of the moving frame connection affects the SDE.

6.3.3 Geometric diffusion equations Consider again the case when gjk is non­
degenerate (and m = n). This time the condition is essential. To the riemannian

structure gjk is associated its Levi-Civita connection
(g)
∇ , which is torsion-free, but

in general has nonvanishing curvature. By the convention of always using ∇ =
(g)
∇

in
(
F0, w

A, FA,∇
)

we obtain an SDE which in the case of vanishing drift, F0 = 0,
reflects properties of the riemannian manifold (M, g) only. Its corresponding forward
Kolmogorov equation is the famous intrinsic heat equation of riemannian geometry.
This formulation is particularly useful, when the riemannian metric has simple prop­
erties, which is true in the case of Lie groups. Navigation filtering problems usually
involve Lie groups (SO (n) or SE (n) in dimensions n = 2, 3).

6.3.4 Driftless Stratonovich equations According to the redundancy formula,
the drift vector field is changed when the one moving frame connection is replaced
by another. It is natural to ask whether it is possible to select a moving frame, such
that the drift vector field is completely absorbed. This is impossible for generic drift
fields (in sharp contrast to the erroneous claim in Elworthy et al [20] , Theorem 2.1.1.
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p 31). The precise integrability conditions are particularly simple in two dimensions,
and for the flat case

dx1 = f1(x1, x2)dt+ dw1

dx2 = f2(x1, x2)dt+ dw2

we may use the moving frame

F1 =
(

cosα
sinα

)
F2 =

(
− sinα
cosα

)
whereby the drift is modified by the term(

∂α
∂x2

− ∂α
∂x1

)
from which it is clear that the drift vector field can be completely absorbed if and
only if it is divergence free

∂f1

∂x1 +
∂f2

∂x2 = 0

In higher dimensions, the integrability conditions on the drift vector field becomes
nonlinear.

6.4 Connections and the definition of SDEs

In the preceding section, it was noted that by adjoining the choice of an affine con­
nection to the list of data of an Itô SDE, we automatically incorporate the correct
transformational properties of such equations. However, no real insight into how the
connection enters the definition of the SDE was given. One way of achieving this is to
abandon additive integrals in the integral formulation of Itô SDEs. We may formulate
a multiplicative integral Itô equation thus

x (t) =
t=τ∏
τ=0

exp∇ (
F0 (x (τ)) dt+ FA (x (τ)) dwA

)
x(0)

Here the exponential mapping exp∇ is the composition of the flow of the geodesic
spray and the projection from the tangent bundle and the Ito product integral is

defined as the limit of finite products. The notation
t=τ∏
τ=0

(with the initial time value,

0 , at the right of the equality sign, and the final time value, t , at the left of the
equality sign) is meant to mean that later factors are put to the left of earlier factors,
and in particular that

t=τ∏
τ=0

exp∇ (...) =
t=τ∏
τ=t1

exp∇ (...)
t1=τ∏
τ=0

exp∇ (...)

In the case of Stratonovich equations the the exponential mapping coincides with
the vector field flow. It is our intention to return to this formulation in a later report.
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6.5 Geometric Invariants

Due to the high degree of redundancy in our formulation of SDEs, it is natural ask
which of its features are invariant, i.e. true properties of the process itself. From the
redundancy formula it is readily seen that the subriemannian structure is a candi­
date. This is indeed so, and it can in fact be shown that, with unit probability, the
subriemannian structure along a single trajectory is determined by the ‘size of its wig­
gles’. Hence, in the riemannian (= nondegenerate) case, the Levi-Civita connection
is well-defined standard choice of connection, and therefore an invariant. Finally, the
drift vector field, as defined using the Levi-Civita connection, is an invariant. These
invariants, in turn, determines the process up to weak equivalence, since all SDE data
are determined, except for an immaterial (for weak equivalence) choice of orthonormal
frame.

Another approach to reducing the redundancy is the concept of an Itô bundle. In
our terminology, the Itô bundle may be defined as the bundle of SDE data modulo
the group of redundancy transformations. This quotient bundle may alternatively
be constructed by means of explicit transition formulas between bundle charts. Such
a presentation, however, leaves obscure the close relation between SDEs and affine
connections.

6.6 Other geometric issues

In the literature, there are several differential geometric constructions aiming at the
definition of SDEs on manifolds. Due to Nash’ riemannian imbedding theorem, SDEs
on manifolds may be obtained as special cases of SDEs on euclidean spaces. In this
approach one has to check that the resulting SDE in no way depends on the imbedding
chosen, but on the intrinsic properties of the manifold (or rather its SDE data, as
above) only.

There are constructions making use of frame bundles. These formulations are in
fact close to ours.



7. Statistical Manifolds

In this chapter, a differential geometric oriented presentation of parametric models is
given, cf. [10] , [27].

7.1 Parametric models without parameters

A statistical model may be described as follows. Given the n-dimensional manifold
M , a subset, S of the smooth nowhere vanishing probability densities on M ( i.e.
elements φ of Ð (M, |Ón|M) satisfying φ > 0 everywhere and

∫
M
φ = 1 ) is a ‘para­

metric model’. If S is given a manifold structure (of dimension N , say) such that the
pointwise evaluations mapping ρSM

ρSM : S ×M → |Ón|M

is jointly smooth, then S is a statistical manifold , and the triple (M,S, ρSM ) is a
smooth parametric model. (The ‘parameters’ of the model are the local coordinate
functions on S).

Our aim is to understand such smooth ‘parametric’ models in a coordinate-free
fashion, so as to identify genuine properties of the triple (M,S, ρSM ) , irrespective of
any choice of coordinates on eitherM or S. In more technical terms, we look for invari­
ants of (M,S, ρSM ) under the actions of independent simultaneous diffeomorphisms
of S and M .

It turns out that the structure of smooth parametric models is so rich, that (gener­
ically) more or less unique standard parameterizations can be defined. Nevertheless,
it is often useful to restrict attention to smaller sets of invariants (of certain forms),
that do not suffice to determine canonical coordinate systems.

7.1.1 Examples 1) An ad hoc model on the unit circle S is given by

M = Sx(= Rx/2πZ)
S = Sx0

ρ (x0, x) =
2 + sin (x− x0)

4π
|dx|

We see that a simultaneous rotation of both circles M and S leaves the model invari­
ant. The formulas suggest that S may be identified with M via x ↔ x0 , and that
this would provide a preferred point estimate of x ∈ M , given x0 ∈ S. On the other
hand, by Moser’s theorem below, there exists a diffeomorphism of S whose pullback
of the density x0 ∈ S is 1

2π |dx| , which does not seem to single out any natural point
estimate. Hence, if the identification x ↔ x0 (or the corresponding point estimate)
has any invariant meaning at all, it is a property of the geometry of the whole model
(M,S, ρSM ) and not of any single density x0.

2) The one-dimensional normal family is given by
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M = Rx
S = Rξ × R+

σ

ρ (ξ, σ, x) =
e

−1
2σ2 (x−ξ)2

σ
√

2π
|dx|

Most of the discussion of the preceding example carries over to this one. This model is
an example of an exponential family, which implies a benign behavior. The property
of being exponential is invariant, and is related to the vanishing of the curvature of an
appropriate Amari connection. We shall return to this example in order to compute,
among other things, its Fisher information metric.

7.1.2 Moser’s theorem The following is a well-known theorem of differential
geometry: two nowhere vanishing volume forms on a compact, oriented manifold M
are equivalent via the pullback of a diffeomorphism, if and only if they have the same
total volume. This can be proved by a Lie transform method.

Apart from technicalities (compact and oriented manifold), this theorem tells us
that, generally, single probability densities on M have no individual properties. As
the second simplest invariants would be properties of pairs of densities , we turn our
attention to these.

7.1.3 Invariants of a pair of probability densities Let ρ1 and ρ2 be two
nowhere vanishing probability densities on the manifold M . Their quotient q

ρ2 = q ρ1

is a mapping q : M → R+. The push-forward of ρ1 (as a measure), q∗ρ1 , is a
probability measure on R+ , whose probability function, F ,

F : R+ → [0, 1]

is a function space invariant of the pair ρ1 and ρ2. It is our conjecture that there are
no further pair invariants. This would imply that any scalar pair invariant may be
written in the form ∫

M

f (q) ρ1

and it is clear that for every function f , this expression is an invariant.
For the special choice

f (q) = − ln q

this is the famous Kullback-Leibler divergence and for the choice

f (q) =
√
q

this is the scalar product of the fractional densities √
ρ1 and √

ρ2 as unit vectors in the
natural Hilbert space of square-roots of probability densities. The squared Hilbert
distance between √

ρ1 and √
ρ2, a.k.a. the Hellinger metric is

2 − 2
∫
M

√
qρ1
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7.1.4 Invariants of infinitesimally close pairs Let ε 7→ ρε be a smooth one-dimensional
family of densities, and consider the Taylor coefficients of

Iε =
∫
M

f (qε) ρ0

It holds that

Iε = f (1) +
ε2

2
f ′′ (1)

∫
M

(
ρ′
0
ρ0

)2

ρ0 +

+
ε3

6

f ′′′ (1)
∫
M

(
ρ′
0
ρ0

)3

ρ0 + 3f ′′ (1)
∫
M

(
ρ′
0
ρ0

) (
ρ′′
0
ρ0

)
ρ0

 +O
(
ε4

)
The family ε 7→ ρε is a curve on S. In terms of local coordinates θA, (A = 1..N) ,

the curve is given by ε 7→ θA(ε). Introducing the Fisher information metric

gAB =
∫
M

ρ′
A

ρ

ρ′
B

ρ
ρ

and the skewness tensor

TABC =
∫
M

ρ′
A

ρ

ρ′
B

ρ

ρ′
C

ρ
ρ

the above formula takes the form

Iε = f (1) +
ε2

2
f ′′ (1) gAB θ̇Aθ̇B +

ε3

2
f ′′ (1) gAB θ̇A

0
D θ̇B

dt
+

+
ε3

6

(
f ′′′ (1) +

3
2
f ′′ (1)

)
TABC θ̇

Aθ̇B θ̇C +O
(
ε4

)
where

0
Dθ̇

B

dt is the acceleration w.r.t. the Levi-Civita connection of the Fisher metric.
With the introduction of Amari’s α-connections

α

ÐABC =
0

ÐABC −α

2
gADTDBC

(α ∈ R)

where
0

ÐABC are the Christoffel symbols for the Levi-Civita connection, we may also
write

Iε = f (1) +
ε2

2
f ′′ (1) gAB θ̇Aθ̇B +

ε3

2
f ′′ (1) gAB θ̇A

−1
D θ̇B

dt
+

+
ε3

6
f ′′′ (1)TABC θ̇Aθ̇B θ̇C +O

(
ε4

)
where

−1
Dθ̇

B

dt is the acceleration w.r.t. Amari’s −1-connection.
Summing up, we see that any invariant measure of divergence, has anO

(
ε4

)
-expansion

in terms of the Fisher metric and the skewness tensor.
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7.2 Exponential families

In the important case, when the smooth parametric model (M,S, ρSM ) has the fol­
lowing properties

• S is an open subset of RNθ

• ρSM (θ, x) = eθ
AcA(x)−ψ(θ) |dnx| for some functions cA on M .

it is said to constitute an exponential family.
It is obvious that the this functional form is invariant under an affine change of

θA, and it is in fact elementary to show that no other reparametrization can preserve
this form. Put in other words, to the exponential family is associated a flat affine
connection. It turns out that this connection is the +1-Amari connection, which for
this reason is also called the exponential connection.

7.2.1 Examples Returning to our earlier examples, for the family we may

ρ (x0, x) =
2 + sin (x− x0)

4π
|dx|

compute the Fisher metric g =
(
1 −

√
3

2

)
dx0 ⊗ dx0 and the skewness T = 0. The

identification x ↔ x0 is the maximum likelihood point estimate. The
α

Ð -geodesic
coordinate x0 on S hence translates into a preferred coordinate x on M , so the given
parameterizations (x and x0) of M and S may be reconstructed from properties of
the model itself, up to a common additive term.

For the family

ρ (ξ, σ, x) =
e

−1
2σ2 (x−ξ)2

σ
√

2π
|dx|

we have

g =
1
σ2 (dξ ⊗ dξ + 2dσ ⊗ dσ)

T =
2
σ3 (4dσ ⊗ dσ ⊗ dσ + dξ ⊗ dξ ⊗ dσ + dσ ⊗ dξ ⊗ dξ + dξ ⊗ dσ ⊗ dξ)

The Fisher metric is that of the standard hyperbolic plane, while the nontrivial skew­
ness tensor in this case leads to a flat exponential connection, confirming that the
normal family is an exponential family. Affine coordinates for this family are

θ1 =
−1
2σ2

θ2 =
ξ

σ2

The Fisher metric is invariant under the full hyperbolic group, while only ξ-translations,
simultaneous rescaling of σ and ξ and combinations of these are symmetries for both
g and T .

7.3 Construction of a statistical manifolds

The Kalman filter is a finite dimensional exact filter. Its statistical manifold S is
the space of normal probability densities on the state space M , which in this case is
an affine space (with translation vector space V , say). The elements of this S are
identified by the location of their maximum ξ ∈ M (maximum likelihood estimate
w.r.t. the Lebesgue measure) and their covariance tensor P ∈ V ⊗ V . From this,
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it is seen that the manifold S of normal densities may be identified with the convex
conical subbundle of symmetric, nonnegative elements of T (2,0)M .

We now intend to reverse this construction, and associate to any manifold M,
endowed with an geodesically complete affine connection ∇ , a statistical manifold
S(M,∇) of densities that generalizes the normal densities. As a manifold, S(M,∇) is
a copy of the bundle of symmetric, nonnegative elements of T (2,0)M . Each element
(ξ, P ) of this bundle may be identified with the unique normal density on TξM , that
is centered around the origin and has its covariance matrix equal to P . This normal
density, considered as a probability measure on TξM , is pushed forward onto the
manifold M by means of the ∇-exponential mapping (the flow of the geodesic spray).
This gives a well-defined probability measure on M . There is, however, no guarantee
that these probability measures have smooth, nowhere vanishing densities.

7.3.1 Example Let M be the unit circle Sx , with the standard connection. Then
S(M,∇) will be the space of densities obtained by ‘winding’ a scalar normal density
around S. It may be parametrized by Sx0 ×R+

σ and the pointwise evaluation mapping
ρ becomes

ρ (x0, σ, x) =
1
2π
ϑ3

(
(x− x0) mod2π

2
, e

−σ2
2

)
where

ϑ3 (u, q) =
∞∑

n=−∞
qn

2
cos (2nu)

is one of the elliptic theta functions.





8. Differential geometric filtering

The subjects touched upon in this chapter will be elaborated in later reports. Here
only some definitions, ideas and programme statements will be given.

There are several good reasons to keep any geometric properties of a problem
intact throughout its solution. For one thing, if the solution is unique, then it will
enjoy any symmetry etc. of the problem.

8.1 Modeling issues

As has been discussed in earlier chapters, one and the same SDE may be written
in several ways using different connections and drift vector fields. For a given SDE,
the choice of representation in further investigations is entirely a matter of taste and
convenience. However, in theoretical modeling, noise is often added to a Siffre model,
and then the question arises, not only what covariance tensor the noise has, but
also by means of what connection the resulting SDE should be defined. When a
detailed noise model is given, and noise enters separately though different channels,
it is natural to express this by means of a corresponding moving frame, and to use
the frame’s own connection. This is tantamount to using the frame together with the
Stratonovich calculus, which is known to have good robustness properties w.r.t. noise
coloring. On the other hand, in a situation where only the net result of the noise is
known, it seems wise to express the noise in terms of the Levi-Civita connection. In
this case, it is straight forward to impose any possible symmetry requirements on the
noise model, which is hard if an ad hoc frame formulation is used. In any case, our
geometric formulation of SDEs is helpful in pinpointing exactly what assumptions are
hidden in any noise model.

8.2 Geometric filters

There exist a few differential geometrically motivated nonlinear filters

8.2.1 Exact finite dimensional filters These are the finite dimensional solu­
tions to the Zakai equation studied in earlier chapters. For such filters to exist, some
nongeneric integrability conditions have to be fulfilled. The case with a flat rieman­
nian metric has been thoroughly investigated by [33] Yau and others. We intend to
consider more general cases for the future report, particularly symmetric and homo­
geneous spaces. It is, however, important to realize that the integrability conditions
imply both local and global restrictions on the situations, where finite dimensional
exact filters are possible. Dynamics on the circle S may locally look like affine dy­
namics and thereby suggest the existence of a Kalman like filter. Nevertheless, there
is a global obstruction to the integrability conditions, so no finite dimensional filter
seems to exist even in this simple-looking case.

8.2.2 Intrinsic geometric filters These are the nonlinear filters of Darling.
They are defined in terms of an affine connection the corresponding notion of an
intrinsic location parameter. In this case, the system dynamics is time continuous,
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but the observations are time discrete. These filters produce point estimates, and (a
priori) no densities.

8.2.3 Projection filters These filters will be reviewed in the next chapter. The
basic idea is to project the Zakai equation onto a selected statistical manifold. By
identifying a probability density with the corresponding half-density (a fractional
density) which is an element of the unit sphere of a naturally defined L2-space, it
is clear that orthogonal projection (of the half-density) is a well-defined invariant
operation. Once this observation is made, there is no real need for half-densities
in the further development of the projection filter: the ‘projected Zakai equation’ is
nonlinear, regardless of whether written as an equation for the density or its square
root.

A promising line of development is the combination of geometric ideas from the
projection filter and modern Monte Carlo methods (particle filters).

8.2.4 Extended Kalman filters The popular extended Kalman filter (EKF), as
it is traditionally presented, depends in an ad hoc manner on the coordinate systems
chosen. The system dynamics is ‘linearized’ at each point, which for the nonequi­
librium points requires the choice of a connection. It is wise to consider EKF as
something produced by a dynamical system with a preferred or selected affine con­
nection. This opens up a possibility to construct natural and tailor made EKF filters
in geometric situations. This possibility will be investigated in later research.

The EKF yields a point estimate ξ together with a formal ‘measure of dispersion’
P , playing a role similar to the conditional covariance matrix of the genuine Kalman
filter. However, ξ and P might be considered as producing a probability density via
the naturally defined statistical manifold S(M,∇). By this construction, the EKF can
be compared to other filters taking values on statistical manifolds, and in particular
the quality of an EKF could be judged against how close its produced densities are
(expected to be) to the ones solving the Zakai equation. In this sense one might
hope for an optimal choice of connection, and in favorable cases, this optimal con­
nection might be determined from symmetry properties alone, but this is so far only
speculation.

8.3 Statistical geometry in geometric filtering

The filters discussed above provide stochastic processes on statistical manifolds. The
statistical manifolds are provided with (several) natural affine connections, and one
might expect that the filter SDE has particularly transparent properties when ex­
pressed in some of these natural connections.



9. The Projection Filter

We give here a short review of Brigo et. al. [8] , [9] on the projection filter and its
geometrical significance. We also review some results from Amari [2]. We will try to
clarify the basic assumptions and to tighten up the presentation somewhat.

The Kushner-Stratonovich equation defines a vector field in a space of probability
densities. By approximating the initial condition with a density in some given pa­
rameterized family regarded as a finite dimensional submanifold, and projecting the
vector field at each point of the manifold on the corresponding tangent space, one
ends up with a stochastic differential equation in the finite dimensional parameter
space of the given family — the projection filter.

9.1 The geometrical setting

We will be concerned with parameterized families of probability density functions on
Rn with respect to the Lebesgue measure dx that may be regarded as finite dimen­
sional differentiable manifolds (see [34] or [15] for standard definitions). The densities
in a family are all supposed to be strictly positive (almost everywhere) on Rn , that is
to say, the corresponding measures are mutually absolutely continuous (equivalent).

We will only consider local aspects and assume for simplicity that such a family
S = {p(·, θ)} admits an atlas consisting of a single chart (S, ϕÒ) , where ϕÒ is a
bĳection from S onto an open set Ò in Rm such that ϕÒ(p(·, θ)) = θ , i.e. the
parameters θ = (θ1, . . . , θm) constitutes a global coordinate system in S. From this
point of view, S is just an ordinary finite dimensional manifold, with coordinate
vectors { ∂

∂θi
}mi=1 spanning the tangent space TpS at each point p ∈ S etc.

In order to make contact with the properties of S as a set of functions, we would
like to view S as embedded in some space of functions. An infinite dimensional
manifold is defined in complete analogy with the finite dimensional case as a set M
covered by an atlas of compatible charts (Ui, ϕi) taking their values in a Banach space
E , ϕi : Ui → E ([1] or [34] give precise definitions). E is called the model space, and
the given set M is called a Banach manifold modeled on E. We need only consider
the trivial case where the set M is the Banach space E itself, covered by the single
chart (E, identity).

Recall further that the relevant concept of differentiability of a map f from one
Banach space E to another F is the Fréchet derivative Df ; the derivative Df |e at
a point e ∈ E is the unique bounded linear map E → F that approximates f in a
neighborhood of e. This defines also a formal derivative Df of a function f : M → N
between two manifolds modeled on E and F respectively in the following way. If
(U,ϕ) is a chart at m ∈ M and (W,ψ) a chart at f(m) , then the Fréchet derivative
D(ψ ◦ f ◦ ϕ−1)|ϕ(m) is called the representative of Df |m in the given charts.

A tangent vector v at a point m in an infinite dimensional manifold M is usually
defined formally as an equivalence class of curves γ through m (maps from an interval
I ⊂ R , 0 ∈ I and γ(0) = m) such that the derivatives D(ϕ ◦ γ)|t=0 exist and coincide
in some chart (U,ϕ). The object V = D(ϕ◦γ)|t=0 is by definition (of differentiability)
a vector belonging to the model space E and is called the representative of v in the
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chart (U,ϕ). 1 In less fancy terms, V is simply the “velocity” vector at ϕ(m) of
the curve (ϕ ◦ γ)(t) in E. Conversely, each element of E is the representative of a
tangent vector at m to some curve γ in M through m , so the tangent space (the
collection of formal tangent vectors) TmM at m is isomorphic to E itself. With this
isomorphism between the tangent space and the model space we see that the formal
derivative Df defined above of a map f from one manifold M to another N , may
be interpreted as a map Df |m : TmM → Tf(m)N , and is often referred to as the
tangent map. 2 Let S̄ denote the set S = {p(·, θ)} regarded as a subset of the Banach
space L1 (measurable functions with norm ‖f‖1 =

∫
|f(x)|dx < ∞) and let ι be the

corresponding inclusion map S → S̄ ⊂ L1. Recall that we assumed S to be covered
by a single chart (S, ϕÒ) and that L1 considered as a manifold is trivial in this sense
too. The tangent map Dι|p at p ∈ S maps the coordinate vectors ∂

∂θi
∈ TpS onto

tangent vectors ∂p(·,θ)
∂θi

∈ TpL
1 = L1. Its representation in the chart (S, ϕÒ) is given

by the Fréchet derivative D(ι ◦ ϕ−1
Ò )|θ = (∂p(·,θ)∂θi

) which, regarded as a row vector,
maps (velocity) vectors in Rm onto (velocity) vectors in L1. This map exists if we
assume the functions p(·, θ) to be smooth in θ. In order for S̄ to be a submanifold
of L1 , ι must be injective and the tangent map Dι|p injective for all p ∈ S , which
will be the case if the functions {∂p(·,θ)∂θi

} are linearly independent for all θ ∈ Ò and
thus span a m-dimensional subspace TpS̄ of L1 at each p ∈ S̄. 3 Note that the full
tangent space TpL1 at a point p ∈ L1 which is a probability density (‖p‖1 = 1) may
be thought of as a space of random variables (measurable functions on Rn). Amari
[2] therefore calls TpS̄ the ”random variable representation” of TpS , which is a nice
way of putting things.

Next, turn S̄ into a Riemannian manifold by defining a metric tensor gp(·, ·) , i.e.
an inner product on the tangent space TpS̄ at each point p ∈ S̄ , by the following
action on the coordinate vectors, i.e. components in θ coordinates

gij(θ) = gpθ
(
∂pθ
∂θi

,
∂pθ
∂θj

) =
∫
∂p(x, θ)
∂θi

∂p(x, θ)
∂θj

dx

p(x, θ)
. (9.1)

Here, we demand that the right hand side exists for each pθ := p(·, θ) ∈ S̄. This
integral may also be written as an expectation Ep{·} with respect to a density p ,
Epθ

{∂ log pθ

∂θi

∂ log pθ

∂θj
} , which is well known in statistics as the Fisher information matrix.

gp is obviously symmetric, and from the assumptions that pθ > 0 and {∂pθ

∂θi
} are

linearly independent follows that gp is positive definite. The Fisher information matrix
plays a fundamental role in statistics, e.g. its inverse gives a lower bound of the
covariance of any unbiased estimator θ̂ of the parameter θ (the Cramér-Rao theorem
[28]). It is obviously invariant under coordinate transformations in the sample space
Rn. Amari [2 , section 3.8] gives further interesting comments on the importance of
the Fisher information matrix from a statistics perspective.

In the statistical literature a parameterized family S of densities satisfying the
conditions stated so far is called a regular statistical model and is used for statistical
inference problems [2] , [3]. In that context the main concern seems to be the nature
of S as a finite dimensional manifold. For the purpose of defining the projection filter
however, there is a point in viewing S as embedded in a larger space of functions.
And to emphasize this we are using the rather pedantic separate notation “ S̄ ”.

1This definition is more concrete than the elegant definition of a tangent vector as a derivation
of functions at m , which is usually employed in the finite dimensional case. This latter definition is
unfortunately problematic in infinite dimensions [1 , p. 292 ff.]. In [34 , chapter III and VII] a nice
summary of different ways of defining tangent vectors can be found.

2Although we will not do so here, it is good to use a separate notation “f∗ ” for this tangent map
and reserve “Df ” for the Fréchet derivative.

3With terminology from [1] S̄ is called an immersed submanifold. If, in addition, the topology of
S̄ induced from Rm is the relative L1-topology, then the map ι ◦ ϕ−1

Ò : Ò → L1 is a homeomorphism
and is referred to as an embedding. This assumption will not be needed in our context however.
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9.2 A projection map

Let p ∈ S̄. Even though gp(u, v) is defined only for vectors u and v in the subspace
TpS̄ of L1 , the defining integral in (9.1) may exist as well for pairs of vectors z
and v , where v belongs to TpS̄ but z does not. Let us continue the pedantry and
denote by ḡp the tensor gp with the domain of the first argument extended to all
z ∈ L1 such that the defining integral exists with the second argument still in TpS̄.
This extended domain Dp is a linear subspace of L1 and may be characterized by
Dp = {z ∈ L1| zpθ

∂pθ

∂θ ∈ L1}.
Let g−1

p (·, ·) be the 2-contravariant inverse of gp , i.e. g−1
p (·, gp(v, ·)) = v is the

identity map on TpS̄. Denote by gij(θ) its components in θ coordinates, thus (gij)
is the inverse of the Fisher information matrix. By combining g−1

p with ḡp we get a
map z 7−→ Õp(z) := g−1

p (·, ḡp(z, ·)) , or explicitly in terms of θ coordinate vectors

Õθ(z) =
m∑

i,j=1

gij(θ) ḡpθ
(z,

∂pθ
∂θj

)
∂pθ
∂θi

=
m∑

i,j=1

gij(θ) [
∫
z(x)

∂p(x, θ)
∂θj

dx

p(x, θ)
]
∂pθ
∂θi

=
m∑

i,j=1

gij(θ) Epθ
{ z
pθ

∂ log pθ
∂θj

} ∂pθ
∂θi

, (9.2)

which may be interpreted as an orthogonal projection Dp → TpS̄. This is the map
which is used to define the projection filter.

The requirement for the right hand side in (9.1) to exist may be stated as 1√
pθ

∂pθ

∂θ ∈
L2. Brigo et al. assume Epθ

{( zpθ
)2} < ∞ , i.e. z√

pθ
∈ L2 , as a condition for the ap­

plicability of the map Õp (assumption “D” in [9 , p. 506]). By the Cauchy-Schwarz
inequality this implies z

pθ

∂pθ

∂θ ∈ L1 , i.e. z ∈ Dp , so this condition is sufficient but,
presumably, not necessary. In remark 4.3 of [8 , p. 15] Brigo et al. raises the ques­
tion (in the context of an exponential family of densities) whether the geometrical
interpretation of Õp still holds under the weaker condition z ∈ Dp. Our presentation
shows that this question is answered in the affirmative.

9.2.1 Remarks In our application, we are primarily interested in applying the
above projection map to vectors tangent to curves made up of probability densities.
Therefore, we would have liked to regard the set M of all probability densities on Rn
as a manifold per se and to have an intrinsic characterization of the tangent spaces
TpM. The finite dimensional family S would then be defined as a submanifold of M.
Unfortunately, it seems difficult to define a topology on M in order to get the notion
of differentiable curves in M. (This problem is touched upon in [2 , p. 93] , [9 , p. 498]
and [27 , p. 76] , see also the comment in [19 , p. 8].) For this reason, one is forced to
regard M as a subset of a larger space, as L1 above, and the full tangent space at a
point p ∈ M will then contain ”to many” vectors. Remember that a vector tangent
to a curve γ in M ⊂ L1 belongs to L1 by the very definition of differentiability of the
map γ : I ⊂ R → L1.

Another possibility to embed M in a larger space is given by the fact that the
square root √

p of a density is an element of L2 (square integrable functions on Rn).
M is thus represented by R := {2√

p | p ∈ M} as a subset of L2 (the factor 2 is
inserted for later convenience). A vector tangent to a curve in R ⊂ L2 is now by
definition (of differentiability) an element in L2.

If t 7→ 2√
pt is such a curve in R , differentiable at some t with tangent vector

v = ∂2√
pt

∂t = 1√
pt

∂pt

∂t ∈ L2 , the Cauchy-Schwartz inequality imply that pt ∈ M is a
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curve differentiable in L1 with tangent vector v√pt. However, the reverse implication
is not true: pt differentiable in L1 does not imply that √

pt is differentiable in L2.4
Thus, all vectors in L2 tangent to R are in this sense also tangent vectors to M in
L1 , but not the converse.

Consider again a family S of densities strictly positive a.e. Let p ∈ S̄ ⊂ L1

and denote by Bp the set of measurable functions u such that u√
p ∈ L2. As before,

Cauchy-Schwartz gives that Bp ⊂ L1. Bp is the maximal subspace of TpL1 (= L1)
to which the metric tensor gp defined in (9.1) may naturally be extended (in both its
arguments). Since p > 0 , the map u 7→ v = u√

p is a bĳection Bp → L2 , and the
extension g̃p of gp from TpS̄ × TpS̄ to Bp × Bp is simply the ordinary inner product
(·|·) turning L2 into a Hilbert space

g̃p(u1, u2) =
∫

u1(x)√
p(x)

u2(x)√
p(x)

dx

=
∫
v1(x) v2(x) dx = (v1|v2), (9.3)

where vi = ui√
p ∈ L2. Note that Bp ⊂ Dp , the domain of the projection map in (9.2),

but that Bp is defined without reference to the specific family S (apart from the single
point p).

The family S = {pθ}θ∈Ò may be embedded as a submanifold S̄1/2 := {2√
pθ}θ∈Ò

of L2 , if the derivatives ∂2√
pθ

∂θ exist in L2 for all θ ∈ Ò. The metric tensor induced on
S by the inner product in L2 is of course identical to gp. Considering this embedding
is effectively a handy way of restricting ones attention to vectors in the subspace Bp
of L1 , and the resulting natural access to the Hilbert space structure of L2 is con­
ceptually nice. Note that the previously explicitly made assumption, that the Fisher
information matrix should exist, is now ”hidden” in the assumption of differentiability
of the map θ 7→ 2√

pθ. The representation of the projection map Õp in (9.2) (restricted
to Bp) is obviously the orthogonal projection L2 → TpS̄

1/2 given by the inner product
in L2. This embedding is employed by Brigo et al. [8] , [9] for their derivation of the
projection filter. The result is of course the same in terms of θ coordinates of the
image vector, irrespective of the chosen embedding.

Amari [2] has introduced a whole family of so called α-representations of densities
strictly positive on Rn. Define a one parameter family of functions

Fα(p) =
{ 2

1−αp
(1−α)/2, α 6= 1

log p, α = 1
(9.4)

and consider the sets Rα := {Fα(p) | p > 0, p ∈ M}. (It is possible to consider other
equivalence classes of measures, i.e. densities with an arbitrary common support
X ⊂ Rn.) For α ∈ [−1, 1) , Rα may be regarded as a subset of the Banach space
Lq (measurable functions with norm ‖f‖q = (

∫
|f(x)|qdx)

1
q < ∞) with q ≡ 2

1−α ≥
1. A differentiable curve Fα(pt) in Rα ⊂ Lq , with tangent vector v = ∂Fα(pt)

∂t =
p

−(1+α)/2
t

∂pt

∂t ∈ Lq , is by the Hölder inequality also a differentiable curve pt in M
⊂ L1 (since 1

q + 1+α
2 = 1). It is possible to define an inner product < v,w >α:=∫

v(x)w(x)pα(x) dx in some subspace of the tangent space TfLq (= Lq), f = Fα(p) ∈
Rα , and this subspace is isomorphic to Bp ⊂ L1. As before, the metric tensor induced
by this inner product on a finite dimensional family S embedded via Rα , is identical
to the metric given by the Fisher information matrix.

4If the support of pt changes along the curve (pt becomes zero on a set of non-vanishing measure)
then this is not true for obvious reasons. In the case when the support is fixed along pt we are not
aware of any argument allowing us to reverse the implication. It is easy to give an example of a
function u ∈ L1 not tangent to M and a p ∈ M (p > 0) such that u√

p
does not belong to L2 , but we

need such a function u tangent to M in order to have a counter-example to the reversed implication.
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Amari uses these representations to define a family of connections (covariant
derivatives) on S , the α-connections, which is the starting point for endowing a
statistical model with some geometric structure [2]. Consider a 2-parameter set A
of functions fs,t in Lq , defined for s, t in some open neighborhood of 0 in R2. If
s, t 7→ fs,t is appropriately smooth, the derivatives ∂fs,t

∂t and ∂fs,t

∂s may be interpreted
as vector fields Y and Z respectively, with domain A. The second order derivative
∂2fs,t

∂s∂t may then be naturally regarded as the derivative of the vector field Y along
the curves s 7→ fs,t (whose tangent vectors are given by the field Z). This defines a
covariant derivative ∇ZY := ∂2fs,t

∂s∂t of Y in the direction Z on A (or the other way
round) and a natural flat connection on Lq (analogous to component-wise derivation
of vectors in Rn).

Let S̄α denote the embedding of S = {pθ} in Rα ⊂ Lq and let ei := ∂Fα(pθ)
∂θi

be
coordinate vector fields on S̄α. The representation of the projection map in (9.2) is an
orthogonal projection ÕFα(pθ)(z) =

∑
k,l g

kl(θ) < z, el >α ek onto the tangent space
of S̄α at Fα(pθ) , assuming that z, el belong to the domain of < ·, · >α. Applying
this projection to the vector field ∇ei

ej = ∂2Fα(pθ)
∂θi∂θj

defines a covariant derivative on
S̄α and thus on S. The ek-coefficients of the image are by definition the connection
coefficients Ð kij

Ð kij(θ;α) =
m∑
l=1

gkl(θ) < ∇eiej , el >α

=
m∑
l=1

gkl(θ)
∫
∂2Fα(pθ)
∂θi∂θj

∂Fα(pθ)
∂θl

pαθ dx. (9.5)

This is the family of α-connections on S introduced by Amari. They are defined when­
ever the integral in the right hand side exists (and may thus be contemplated without
indulging in the Lq spaces and their topologies). The case α = 0, i.e. the embedding
in L2 considered earlier, is again special since the 0-connection is the Levi-Civitá con­
nection corresponding to the Fisher information matrix (the Riemannian connection
given by the metric gp).

9.3 The filtering problem

Let {Xt}0≤t be a diffusion process in Rn , with drift vector ft(x) and diffusion matrix
at(x) , which is partially observed through a process {Yt}0≤t in Rd given by

dYt = ht(Xt) dt+ ρt dWt (9.6)

where {Wt}0≤t is a standard (”unit” variance) Brownian motion in Rq.
Assume that Rt := ρtρ

T
t is invertible for t ≥ 0 , that {Xt} and {Wt} are in­

dependent and E{
∫ t
0 |hs(Xs)|2R−1

s
ds} < ∞ for all t ≥ 0 , where we are using the

notation |h|2R−1 := hTR−1h. The filtering problem consists in integrating, for given
initial condition p = p0 , the Kushner-Stratonovich equation for the conditional den­
sity pt := pt(·|Yt) of the state Xt given observations Yt = σ{Ys, 0 ≤ s ≤ t} ,

dpt = L∗
t pt dt+ pt[ht − Ept{ht}]TR−1

t [dYt − Ept{ht} dt], (9.7)

where Ept
{·} as before denotes expectation with respect to pt , ht := ht(·) and the

forward diffusion operator L∗
t is given by

L∗
tφ = −

n∑
i=1

∂

∂xi
(f itφ) + 1

2

n∑
i,j=1

∂2

∂xi∂xj
(aijt φ). (9.8)
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By exercising the Itô-Kunita-Watanabe’s theorem [17 , theorem 17.11] we get (see
appendix F) the following Stratonovich version of equation (9.7)

dpt = L∗
t pt dt− pt

1
2 (|ht|2R−1

t
− Ept

{|ht|2R−1
t

}) dt

+
d∑
k=1

pt[(R−1
t ht)k − Ept{(R−1

t ht)k}] ◦ dY kt . (9.9)

Since the Stratonovich differential obeys the usual Newton-Leibniz calculus it is
the appropriate formulation in a geometric setting where we would like to interpret
the differential dp formally as a ”tangent vector”, or ”velocity”, and be able to define
the usual tangent map (see [11 , chapter 8] or [21]). The right hand side of (9.9) thus
defines, in some sense, a time dependent vector field in a space of probability densities
on Rn. By restricting this vector field to a given family of densities and apply the
projection map Õp defined in the last section, we will get a finite dimensional filtering
problem.

9.4 Projection filter, general case

Let S = {p(·, θ), θ ∈ Ò} be a family of probability densities, where Ò is an open
subset of Rm. Impose on pθ := p(·, θ) and ht the conditions

L∗
t pθ
pθ

∂pθ
∂θ

∈ L1

|ht|2R−1
t

∂pθ
∂θ

∈ L1 (9.10)

for all θ ∈ Ò and all t ≥ 0. They imply that the coefficients of dt and dYt in the
right hand side of the Kushner-Stratonovich equation (9.9), evaluated for an arbitrary
member p = pθ ∈ S , may be interpreted as vectors belonging to the domain Dθ of
the projection map Õθ defined in (9.2). 5 The image of z ∈ Dθ ,

Õθ(z) =
m∑

i,j=1

gij(θ) [
∫
z(x)

∂p(x, θ)
∂θj

dx

p(x, θ)
]
∂pθ
∂θi

, (9.11)

is a tangent vector to S̄ at pθ. Since {∂pθ

∂θi
} are the coordinate vectors, dpθ =

∑
i
∂pθ

∂θi
◦

dθi , their coefficients in (9.11) give the representative in Rm of this image vector.
Thus, by plugging the right hand side of (9.9) with pt = pθt

into (9.11) and noting
that Epθ

{∂pθ

∂θi
} = 0, we get the finite dimensional projection filter for the given family

S in vectorized notation as

dθt = g−1(θt) [
∫

L∗
t p(x, θt)

∂p(x, θt)
∂θ

dx

p(x, θt)
] dt

− g−1(θt) [
∫

1
2 |ht(x)|2R−1

t

∂p(x, θt)
∂θ

dx] dt

+ g−1(θt)
d∑
k=1

[
∫

(R−1
t ht(x))k

∂p(x, θt)
∂θ

dx] ◦ dY kt (9.12)

where θ and ∂pθ

∂θ := (∂pθ

∂θi
) are regarded as column vectors and g−1 = (gij) is a matrix.

There remains the question of how to map the given initial condition p0 onto a
starting point θ0 for the projection filter. Brigo et al. [8] suggests using the device
of minimizing the Kullback-Leibler information

∫
log[ p0(x)p(x,θ) ] p0(x) dx with respect to

5The second condition in (9.10) covers also the last terms in (9.9) as is shown by the following
schematic argument:

∫ ∣∣∣h ∂pθ
∂θ

∣∣∣ dx ≤
∫

h2
∣∣∣ ∂pθ

∂θ

∣∣∣ dx +
∫ ∣∣∣ ∂pθ

∂θ

∣∣∣ dx < ∞ , since both h2 ∂pθ
∂θ

, ∂pθ
∂θ

∈ L1.
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θ ∈ Ò. How this approximation is done does not seem to be very important however.
But on the other hand, how sensitive are the solutions of (9.12) to small changes in
the initial conditions? The best thing is, of course, if S is chosen in such a way that
p0 already belongs to S.

9.5 Projection filter for an exponential family

For a given function c(x) ∈ Rm on Rn define probability densities

p(x, θ) = exp[θTc(x) − ψ(θ)] (9.13)

with normalization factor

ψ(θ) = log
∫

exp[θTc(x)] dx (9.14)

and domain Ò0 = {θ ∈ Rm : ψ(θ) < ∞}.
For any open Ò ⊂ Ò0 , S = {p(·, θ), θ ∈ Ò} is called an exponential family of

probability densities. In order to interpret S as a m-dimensional manifold with
coordinates θ , the coordinate vectors {∂pθ

∂θi
} must be linearly independent. From

∂p(x,θ)
∂θi

= p(x, θ)(ci(x) − ∂ψ(θ)
∂θi

) follows that a sufficient condition for this is that the
collection of functions {1, c1, ..., cm} are linearly independent.

Assume that the conditions in (9.10) apply. By noting the relation
∫

L∗p(x, θ)
∂p(x,θ)
∂θ

dx
p(x,θ) =

∫
L∗p(x, θ)(ci(x) − ∂ψ(θ)

∂θi
)dx =

∫
p(x, θ)Lci(x)dx , where L is the ad­

joint of L∗ (the backward diffusion operator), the projection filter equation (9.12) for
the exponential family S becomes

dθt = g−1(θt) Epθt
{Ltc} dt

− g−1(θt) Epθt
{ 1

2 |ht|2R−1
t

(c− ∂ψ(θt)
∂θ

)} dt

+ g−1(θt)
d∑
k=1

Epθt
{(R−1

t ht)k(c− ∂ψ(θt)
∂θ

)} ◦ dY kt (9.15)

where ∂ψ(θ)
∂θ := (∂ψ(θ)

∂θi
) is regarded as a column vector.

The initial conditions for this equation may easily be obtained by minimizing the
Kullback-Leibler information as suggested in [8]; namely, for a given initial density
p0 find θ0 ∈ Ò such that

∂ψ(θ0)
∂θ

=
∫
c(x) p0(x) dx. (9.16)

9.5.1 Remarks Exponential families (“EF” in the following) are of special impor­
tance in statistics, both as a theoretical tool ([5] , [6]) and for modeling purposes in
statistical inference and estimation ([2] , [28 , section IV.C]). The ubiquitous family of
normal distributions is an example of an EF. EFs have some blessed computational
properties. Brigo et al. introduce, for example, an EF for which the coefficients of
the diffusion part in (9.15) (the coefficients of dY ) are independent of θt and thus
deterministic, which is a nice feature when solving the equation numerically.

Let us give some examples of the interesting analytical and geometrical properties
of EFs. In the statistical literature one defines the Laplace transform M(θ) for θ ∈ Rm
of a random vector c ∈ Rm on the probability space (Ú,F , P ) as

M(θ) = E{exp[θTc]} =
∫

exp[θTc(ω)]P (dω) (9.17)

with domain Ò0 = {θ ∈ Rm : M(θ) < ∞}. The cumulant transform is then defined
by ψ(θ) = logM(θ) which is a closed convex function on Rm , and if the covariance
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Cov(c) is positive definite, ψ(θ) is strictly convex on Ò0 [5]. Moreover, M(θ) is a
real analytical function in the interior of Ò0 (=: intÒ0) and is the moment generating
function of c (strictly speaking, only if 0 ∈ intÒ0). ψ(θ) is the generating function of
the cumulants of c [16].

The probability measures {Pθ, θ ∈ Ò0} given by densities pθ

pθ(ω) =
dPθ
dP

(ω) = M(θ)−1 exp[θTc(ω)] = exp[θTc(ω) − ψ(θ)] (9.18)

are called the exponential family generated by c and P . The Laplace transform of
c under Pθ is Epθ

{exp[ξTc]} = M(ξ + θ)/M(θ) which thus acts as the generating
function of the c-moments under Pθ.

By differentiating the identity
∫
pθdP = 1 once and twice with respect to θ , to­

gether with the definition of the Fisher information matrix gij(θ) = Epθ
{∂ log pθ

∂θi

∂ log pθ

∂θj
} ,

we get the useful relations

Epθ
{c} =

∂ψ(θ)
∂θ

(9.19)

Covpθ
(c) = (gij(θ)) = (

∂2ψ(θ)
∂θi∂θj

). (9.20)

When ψ(θ) is strictly convex we can ask for its Legendre transform L(η) = θTη−
ψ(θ) , where θ(η) is uniquely given by the equations

η =
∂ψ(θ)
∂θ

. (9.21)

The parameters η ∈ Rm are in view of (9.19) called the expectation parameters of
the EF and L(η) = Epθ

{θTc− ψ(θ)} =
∫
pθ log pθdP shows that L(η) is the negative

entropy of the density pθ(η) [2].
If the EF is regarded as a manifold S , the transformation θ 7→ η is just a change

of coordinates whose Jacobian matrix is given by ∂ηi

∂θj
= ∂2ψ(θ)

∂θi∂θj
= gij(θ). The Fisher

information defines a metric tensor on S according to < ∂
∂θi
, ∂
∂θj

>= gij(θ). The
relation between the coordinate vector fields of the two systems θ and η , written as
∂
∂ηi

= ∂θj

∂ηi

∂
∂θj

= gij(θ) ∂
∂θj

, shows that the inner product between two such coordinate
vectors is < ∂

∂ηi
, ∂
∂θj

>= gik < ∂
∂θk

, ∂
∂θj

>= gikgkj = δij , i.e. the coordinate systems
θ and η are mutually dual [2].

The projection filter equation (9.15) expressed in terms of the coordinates η be­
comes

dηt = g(θt) ◦ dθt = Epθ(ηt)
{Ltc} dt

− Epθ(ηt)
{ 1

2 |ht|2R−1
t

(c− ηt)} dt

+
d∑
k=1

Epθ(ηt)
{(R−1

t ht)k(c− ηt)} ◦ dY kt . (9.22)

By noting that η = Epθ
{c} and writing all expectations Epθ

{...} in (9.22) as (̂...) , one
immediately recognizes the resulting expression as the Fujisaki-Kallianpur-Kunita
equation for the moments ĉ (see equation (F.5) in the appendix, with φ = c). The
additional assumption in (9.22) is of course that the conditional probability density
a fortiori belongs to the expectation family S. As [8] points out, this brings about a
connection with the Stratonovich-based assumed density filter.

9.6 Numerical implementation

It is not clear how the exponential family S should be chosen. The choice is certainly
problem specific. Brigo et al. [8] presents the following simplifying situation. Suppose
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it is possible to write |ht(x)|2R−1
t

and the components of ht(x) as (time dependent)
linear combinations of the components of c(x) defining the exponential family, i.e.
suppose there are vectors λ0

t , λ
1
t , ..., λ

d
t ∈ Rmsuch that

1
2 |ht(x)|2R−1

t
= (λ0

t )
Tc(x)

hkt (x) = (λkt )
Tc(x), k = 1, ..., d. (9.23)

From (9.19) and (9.20) then follows that the filter equation (9.15) takes the form

dθt = g−1(θt) Epθt
{Ltc} dt− λ0

tdt+ ÓtR
−1
t dYt. (9.24)

where we have collected the vectors λ1
t , ..., λ

d
t in a matrix Ót = [λ1

t ...λ
d
t ]. The coeffi­

cients of dYt in the right side are now deterministic, which makes the equation easier
to solve numerically since the ordinary Euler scheme coincides with the Milshtein
scheme [22]. However, even in the simple case when the components of c(x) are poly­
nomials, the first term in the right hand side of (9.24) is exceedingly expensive to
calculate. Another drawback is the lack of any error bounds.





10. Filter Implementation

10.1 Particle Projection Filter: Background

For discrete-time observations

yn = hn(xtn) + εn, (10.1)

where 0 ≤ t1 < ... < tn < ... and {εn}n≥1 is a white random sequence in Rd inde­
pendent of {xt} with probability density qn(ε) , the filtering problem falls into two
parts. Prediction: between two observations at tn−1 and tn , the conditional density
pt = pt(·|Yn−1) of xt given the sequence of past observations Yn−1 = {y1, ..., yn−1}
evolves according to the Fokker-Planck equation

∂pt
∂t

= L∗
t pt, tn−1 ≤ t < tn.

Correction: the new observation at tn is incorporated by Bayes rule

ptn(x|Yn) =
Ùn(x)ptn(x|Yn−1)∫
Ùn(x)ptn(x|Yn−1)dx

=: (Ùn · ptn)(x) (10.2)

where Ùn(x) is the likelihood function, i.e. the conditional probability of observing yn
given xt , p(yn|xt = x) = qn(yn − hn(x)). The operator in the right hand side is the
projective product; note that the normalization of Ùn is arbitrary. Here we assume
that p(yn|xt, Yn−1) = p(yn|xt) , which follows from the mutually independence of
{εn}. In the Bayesian paradigm, ptn(x|Yn−1) is referred to as the prior distribution
and ptn(x|Yn) as the posterior distribution.

If we apply the projection filter to this case, the prediction step consists in solving
the ODE

dθt = g−1(θt) Epθt
{Ltc} dt (10.3)

for tn−1 ≤ t < tn with θt−1 = θn−1. If the observation noise is Gaussian, εn ∼
N (0, Rn) , and the exponential family S chosen such that the components of hn are
in the span of the components of c in the sense of (9.23), the correction step becomes
just a matter of updating the parameters θtn

θn = θtn − λ0
n + ÓnR

−1
n yn (10.4)

because Ùn is (with proper normalization) a member of S and an exponential family
of densities is closed under projective multiplication. Note the obvious connection
with the last terms in the right hand side of (9.24) (we will soon return to this fact).

This is the starting point for a paper by Azimi-Sadjadi and Krishnaprasad [4] ,
where they propose a combination of the classical particle filter with aspects from the
projection filter of Brigo et al. [8] , the projection particle filter.

53
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10.2 Particle Projection Filter: Implementation

Figure 10.1 to 10.4 shows the result of a simulation of a strongly nonlinear system

xk = 0.5xk−1 + 25
xk−1

1 + (xk−1)2
+ 8 cos(1.2k) + vk (10.5)

yk =
(xk)2

20
+ εk. (10.6)

The initial state is x0 = 0.1 and the noises given by vk ∼ N (0, 50) and εk ∼ N (0, 1).
The initial prior distribution for the filters is x0 ∼ N (0, 5). The generated true
trajectory and the observations are shown in figure 10.1. Figure 10.2 shows the EKF
estimate of the posterior mean. We can see that EKF has great difficulties tracking
the true state. Figure 10.3 shows the posterior mean estimated by the bootstrap
and the particle projection filter. The number of particles is 500 and the exponential
family S is simply the family of Gaussians. Both filters track the system pretty well.
Figure 10.4 shows an example of the empirical PDF generated by the bootstrap filter
at k = 8. Note the strong bimodal character of the distribution.

We have also simulated a linear system observed by a cubic sensor

xk = xk−1 + 8 cos(1.2k) + vk (10.7)

yk =
(xk)3

60
+ εk. (10.8)

Here, vk ∼ N (0, 10) , otherwise the same parameters have been used. Figure 10.5
shows the generated true trajectory and the observations. Figure 10.6 shows that
even the EKF behaves quite well in this case. Figure 10.7 shows a typical empirical
PDF (k = 20), which is more Gaussian like in this case.
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Figure 10.1: 50 point realization of the nonlinear reference model (black) and
quadratic observations (blue).
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Figure 10.2: EKF estimate of the posterior mean (circles), true state (solid line).
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Figure 10.3: Estimate of the posterior mean using the projection particle filter (dotted
line) and the bootstrap filter (stars), true state (solid line).
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Figure 10.4: The 500 particles of the bootstrap filter sorted in 100 equally spaced
bins giving an approximate representation of the conditional probability density at
k = 8.
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Figure 10.5: 50 point realization of a linear model (black) and cubic observations
(blue).
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Figure 10.6: Estimate of the posterior mean using EKF (circles), the projection par­
ticle filter (dotted line) and the bootstrap filter (stars), true state (solid line).
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Figure 10.7: The 500 particles of the bootstrap filter sorted in 100 equally spaced
bins giving an approximate representation of the conditional probability density at
k = 20.





A. Properties of x0, w, and v under the measures P
and P0

Define the filtration {Ft}t∈[0,T ] by Ft = F ỹ
t ∨ F (x0,w)

T . We can then apply Girsanov’s
formula [18 , Sec. 5.2] to obtain that under P the process v defined by dvt = dỹt −
h(xt, yt) dt is a Wiener process with respect to {Ft}t∈[0,T ]. Since v is a Wiener process,
vt is independent of F ỹ

0 ∨F (x0,w)
T = F (x0,w)

T , so v is independent of x0, w. This proves
the first two properties of x0, w, and v. As for the last, by the equality (3.3) and the
computations in (B.1) it follows that when restricted to F (x0,w)

T the measures P and
P0 coincide, which means that the pair (x0, w) has the same probability distributions
under P and P0.
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B. Derivation of the Bayes’ formula (3.6)

To begin with we note that since EP0Ót ≡ 1 the process Ó is a martingale under
P0 with respect to {F (ỹ)

t ∨ F (x0,w)
T }t∈[0,T ] (c.f [18 , Sec. 3.5.D]), and by (3.3) it is a

martingale with respect to {F (y)
t ∨ F (x0,w)

T }t∈[0,T ] as well. The martingale property
implies

∀A ∈ F (y)
t ∨ F (x0,w)

T : P(A) =
∫
A

dP =
∫
A

ÓT dP0 =∫
A

EP0(ÓT |F (y)
t ∨ F (x0,w)

T ) dP0 =
∫
A

Ót dP0 =
∫
A

dPt = Pt(A), (B.1)

and it follows therefore by a standard approximation argument that

∀B ∈ F (y)
t :

∫
B

E(φ(xt)|F (y)
t ) dP =

∫
B

E(φ(xt)|F (y)
t ) dPt

=
∫
B

E(φ(xt)|F (y)
t )Ót dP0 =

∫
B

E(φ(xt)|F (y)
t )EP0(Ót|F

(y)
t ) dP0.

This taken together with the relations

∀B ∈ F (y)
t :

∫
B

E(φ(xt)|F (y)
t ) dP =

∫
B

φ(xt) dP =
∫
B

φ(xt) dPt

=
∫
B

φ(xt)Ót dP0 =
∫
B

EP0(φ(xt)Ót|F (y)
t ) dP0

yields the formula in (3.6).
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C. Derivation of the Zakai Equation (3.9)

We shall here derive a slightly more general version of the Zakai equation in (3.9).
(The added degree of generality is needed in order to obtain the Stratonovich form in
(3.11).) All computations will be performed under measure P0.

C.1 Itô form

Let h be defined as in (3.5) and consider the vector stochastic process (xT , yT , zT )T
where x is the solution to the first equation in (2.24), y is the solution to (3.2) and z
is given by

dzt = hT (xt, yt) dỹt − 1
2
‖h(xt, yt)‖2

2 dt, z0 = 0, t ∈ [0, T ].

Note that all three processes x, y, z are semimartingales driven by the two (indepen­
dent) P0-Wiener processes w, ỹ. Let further φ̃ : Rn×Rp → R be smooth and bounded.
If we (after rewriting the differential for x on Itô form using the correction (2.16))
apply Itô’s formula (2.18) for semimartingales having Itô differentials to the product
φ̃(xt, yt)Ót = φ̃(xt, yt) exp(zt) we obtain

d
(
φ̃(xt, yt)Ót

)
= exp(zt)(A+φ̃)(xt, yt) dt+ exp(zt)

(
∇xφ̃(xt, yt)

)T
F (xt) dwt

+ exp(zt)
(1

2

p∑
j,k=1

dj,kH (yt)
∂2φ̃(xt, yt)
∂yj∂yk

dt
)

+ exp(zt)
(
∇yφ̃(xt, yt)

)T
H(yt)h(xt, yt) dt

)
+ exp(zt)

(
φ̃(xt, yt)hT (xt, yt) dỹt +

(
∇yφ̃(xt, yt)

)T
H(yt) dỹt

)
+ exp(zt)φ̃(xt, yt)

(
− 1

2
‖h(xt, yt)‖2

2 dt+
1
2
‖h(xt, yt)‖2

2 dt
)

= Ót

(
(A+φ̃)(xt, yt) + ∇yφ̃(xt, yt)

)T
H(yt)h(xt, yt) dt

)
+ Ót

(1
2

p∑
j,k=1

dj,kH (yt)
∂2φ̃(xt, yt)
∂yj∂yk

)
dt

+ Ót
(
∇xφ̃(xt, yt)

)T
F (xt) dwt

+ Ót

((
∇yφ̃(xt, yt)

)T
H(yt) + φ̃(xt, yt)hT (xt, yt)

)
dỹt, (C.1)

where dj,kH is the j:th row, k:th column of the diffusion matrix

dH(y) = H(y)HT (y), y ∈ Rp

and A+ is the operator in (2.23). (In (C.1) and henceforth we use the obvious exten­
sion of A+ to smooth φ̃ : Rn×Rp → R by letting A+ act only on the first n arguments
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of φ̃.) It follows that

φ̃(xt, yt)Ót = φ̃(x0, 0) +
∫ t

0
ÓsLφ̃(xs, ys) ds

+
∫ t

0
Ós

((
∇yφ̃(xs, ys)

)T
H(ys) + φ̃(xs, ys)hT (xs, ys)

)
dỹs

+
∫ t

0
Ós

(
∇xφ̃(xs, ys)

)T
F (xs) dws, t ∈ [0, T ], (C.2)

where L is the operator

Lφ̃(x, y) = (A+φ̃)(x, y) +
(
∇yφ̃(x, y)

)T
H(y)h(x, y) +

1
2

p∑
j,k=1

dj,kH (y)
∂2φ̃(x, y)
∂yj∂yk

. (C.3)

Since ỹ is Wiener and independent of x0 under P0, and x has the same probability
distribution under P0 as under P, we have using (3.3), that

EP0

(
φ̃(x0, 0)|F (y)

t

)
= EP0

(
φ̃(x0, 0)|F (ỹ)

t

)
= EP0

(
φ̃(x0, 0)

)
= E

(
φ̃(x0, 0)

)
. (C.4)

Similarly, since ỹ is Wiener (independent increments) and independent of x0, w it
follows using piecewise constant (in time) approximations of integrands (as in the
construction of the Itô integral in Sec. 2) that

EP0

( ∫ t

0
ÓsLφ̃(xs, ys) ds

∣∣ F (y)
t

)
= EP0

( ∫ t

0
ÓsLφ̃(xs, ys) ds

∣∣ F (ỹ)
t

)
=

∫ t

0
EP0

(
ÓsLφ̃(xs, ys)

∣∣ F (ỹ)
t

)
ds

=
∫ t

0
EP0

(
ÓsLφ̃(xs, ys)

∣∣ F (ỹ)
s

)
ds

=
∫ t

0
σs

(
Lφ̃(xs, ys)

)
ds, (C.5)

where we have again used (3.3) for the first and last equalities. Likewise,

EP0

( ∫ t

0
Ós

((
∇yφ̃(xs, ys)

)T
H(ys) + φ̃(xs, ys)hT (xs, ys)

)
dỹs

∣∣ F (y)
t

)
= EP0

( ∫ t

0
Ós

((
∇yφ̃(xs, ys)

)T
H(ys) + φ̃(xs, ys)hT (xs, ys)

)
dỹs

∣∣ F (ỹ)
t

)
=

∫ t

0
EP0

(
Ós

((
∇yφ̃(xs, ys)

)T
H(ys) + φ̃(xs, ys)hT (xs, ys)

)∣∣F (ỹ)
t

)
dỹs

=
∫ t

0
EP0

(
Ós

((
∇yφ̃(xs, ys)

)T
H(ys) + φ̃(xs, ys)hT (xs, ys)

)∣∣F (ỹ)
s

)
dỹs

=
∫ t

0
EP0

(
Ós

((
∇yφ̃(xs, ys)

)T + φ̃(xs, ys)hT (xs, ys)H−1(ys)
)∣∣F (y)

s

)
H(ys) dỹs =

=
∫ t

0
σs

((
∇yφ̃(xs, ys)

)T + φ̃(xs, ys)hT (xs, ys)H−1(ys)
)
dys. (C.6)

Finally, if s, τ ∈ R+ are arbitrary subject to s, s + τ ∈ [0, t] we have, by the
(in)dependence structure of ỹ, w, x0 (and (3.3) again), that

EP0

(
Ós

(
∇xφ̃(xs, ys)

)T
F (xs)(ws+τ − ws)

)
| F (ỹ)

t

)
=

EP0

(
EP0

(
Ós

(
∇xφ̃(xs, ys)

)T
F (xs)(ws+τ − ws)

)
| F (ỹ)

t ∨ F (x0,w)
s

)
| F (ỹ)

t

)
=

EP0

(
Ós

(
∇xφ̃(xs, ys)

)T
F (xs) EP0

(
ws+τ − ws | F (ỹ)

t ∨ F (x0,w)
s

)
| F (ỹ)

t

)
=

EP0

(
Ós

(
∇xφ̃(xs, ys)

)T
F (xs) EP0

(
ws+τ − ws | F (w)

s

)
| F (ỹ)

t

)
= 0.



65 FOI-R--1074--SE

By a simple approximation argument we therefore obtain

EP0

( ∫ t

0
Ós

(
∇xφ̃(xs, ys)

)T
F (xs) dws | F (y)

t

)
=

EP0

( ∫ t

0
Ós

(
∇xφ̃(xs, ys)

)T
F (xs) dws | F (ỹ)

t

)
= 0. (C.7)

Combining (C.2)–(C.7) yields the result

dσt(φ̃) = σt
(
Lφ̃(xs, ys)

)
dt+ σt

((
∇yφ̃

)T + φ̃hTH−1
)
dyt, t ∈ [0, T ], (C.8)

which, in case φ̃ = φ, (i.e. no y dependence) collapses to (3.9). This concludes the
derivation of the Zakai equation on Itô form.

C.2 Stratonovich form

We now turn to the Stratonovich form of the Zakai equation. Consider the martingale
part of (3.9). By Itô’s product rule [18 , p. 155] we have 1

σt
(
φhTH−1) dyt = σt

(
φhTH−1) ◦ dyt − 1

2

p∑
j=1

d〈σ(·)
(
φ
(
H−1)Th

)j
, yj(·)〉t,

t ∈ [0, T ]. (C.9)

To evaluate the last term on the right hand side we put φ̃ = φ(H−1)Th and apply
(C.8) to obtain the differential for σt

(
φ(H−1)Th

)
(only the martingale part is of

interest). It follows that

p∑
j=1

d〈σ(·)
(
φ(H−1)Th

)j
, yj(·)〉t =

tr
((
σt

(
φ∇T

y ((H−1)Th)
)

+ σt
(
φ(H−1)ThhTH−1))HHT

)
dt =

tr
(
σt

(
φ∇T

y ((H−1)Th)HHT
)

+ σt
(
φ(H−1)ThhTHT

))
dt

σt

(
tr

(
φ∇T

y ((H−1)Th)HHT + φ(H−1)ThhTHT
))
, t ∈ [0, T ], (C.10)

and the function γ in (3.10) is thus given by

γ =
1
2
tr

(
∇T
y ((H−1)Th)HHT + (H−1)ThhTHT

)
=

1
2
tr

(
∇T
y ((H−1)Th)HHT

)
+

1
2
‖h‖2

2,

which, in the special case H0(x, y) = H0(x),H(y) = I (so that h(x, y) = H0(x)),
becomes

γ(x, y) =
1
2
‖H0(x)‖2

2, x ∈ Rn, y ∈ Rp.

Combining (C.9), (C.10) and inserting the result in (C.8) gives the Stratonovich form
of the Zakai equation.

1The brackets 〈·, ··〉 denote (quadratic) covariation. The quadratic variation between two semi­
martingales is defined as the quadratic variation between their martingale parts, cf. [24 , Sec. 2.2].





D. Existence of the extended unnormalized density
(3.14)

Let φ̃ : Rn × Rp → R be smooth and bounded, say |φ̃| ≤ C. From basic calculus we
know that for any ε > 0 there exists a “piecewise constant” function ϕ : Rn×Rp → R
of the form

ϕ(x, y) =
N∑
j=1

fj(x)gj(y), x ∈ Rn, y ∈ Rp, (D.1)

where fj : Rn → R, gj : Rp → R are indicator functions of “rectangles,” such that

sup
x∈Rn,y∈Rp

|φ̃(x, y) − ϕ(x, y)| < ε.

Using (3.13) we see that the function ϕ moreover satisfies

EP0

(
ϕ(xt, yt)Ót|F (y)

t

)
= EP0

( N∑
j=1

fj(xt)gj(yt)Ót|F (y)
t

)
=

N∑
j=1

gj(yt)EP0

(
fj(xt)Ót|F (y)

t

)
=

N∑
j=1

gj(yt)
∫

Rn

fj(x)q
(y)
t (x) dx

=
∫

Rn

ϕ(x, yt)q
(y)
t (x) dx. (D.2)

It follows that for any A ∈ F (y)
t we have the following two bounds

∣∣ ∫
A

(
EP0

(
φ̃(xt, yt)Ót|F (y)

t

)
− EP0

(
ϕ(xt, yt)Ót|F (y)

t

))
dP0

∣∣ =∣∣ ∫
A

(
φ̃(xt, yt) − ϕ(xt, yt)

)
Ót dP0

∣∣ ≤∫
Ú

|φ̃(xt, yt) − ϕ(xt, yt)| dPt ≤ ε (D.3)

and ∣∣ ∫
A

(
EP0

(
ϕ(xt, yt)Ót|F (y)

t

)
−

∫
Rn

φ̃(x, yt)q
(y)
t (x) dx

)
dP0

∣∣ =∣∣ ∫
A

∫
Rn

(
ϕ(x, yt) − φ̃(x, yt)

)
q
(y)
t (x) dx dP0

∣∣ ≤∫
Ú

∫
Rn

|ϕ(x, yt) − φ̃(x, yt)| q(y)t (x) dx dP0 ≤ ε

∫
Rn

q
(y)
t (x) dx. (D.4)
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If we combine (D.2)–(D.4) we obtain

∀A ∈ F (y)
t :

∣∣ ∫
A

(
EP0

(
φ̃(xt, yt)Ót|F (y)

t

)
−

∫
Rn

φ̃(x, yt)q
(y)
t (x) dx

)
dP0

∣∣
≤

∣∣ ∫
A

(
EP0

(
φ̃(xt, yt)Ót|F (y)

t

)
− EP0

(
ϕ(xt, yt)Ót|F (y)

t

))
dP0

∣∣
+

∣∣ ∫
A

(
EP0

(
ϕ(xt, yt)Ót|F (y)

t

)
−

∫
Rn

φ̃(x, yt)q
(y)
t (x) dx

)
dP0

∣∣
≤ ε

(
1 +

∫
Rn

q
(y)
t (x) dx

)
.

Since A and ε are arbitrary, the result (3.14) follows.



E. Derivation of the robust Zakai equation

For fixed but arbitrary x ∈ Rn define the process ζ(y)(x) by

ζ
(y)
t (x) = exp

(
− h̃(x, yt)

)
q
(y)
t (x), t ∈ [0, T ], (E.1)

where h̃ : Rn × Rp → R is a function such that

∇yh̃(x, y) =
(
H−1(y)

)T
h(x, y), y ∈ Rp, (E.2)

and h is defined in (3.5). By Itô’s product rule we have (computing under P0)

dζ
(y)
t (x) = exp

(
− h̃(x, yt)

)
◦ dq(y)t (x)

+ q
(y)
t (x) ◦ d

(
exp

(
− h̃(x, yt)

))
. (E.3)

The rightmost factor of the last term on the right can be expanded using Itô’s
“C3-formula” (i.e. (2.21)) as

d
(
exp

(
− h̃(x, yt)

))
= − exp

(
− h̃(x, yt)

)(
∇T
y h̃(x, yt)

)
◦ dyt. (E.4)

Combining (3.16) with (E.2)–(E.4) now yields

dζ
(y)
t (x) = exp

(
− h̃(x, yt)

)
Â∗q

(y)
t (x) dt

+ exp
(

− h̃(x, yt)
)
q
(y)
t (x)hT (x, yt)H−1(yt) ◦ dyt

− exp
(

− h̃(x, yt)
)
q
(y)
t (x)

(
∇T
y h̃(x, yt)

)
◦ dyt

= exp
(

− h̃(x, yt)
)
Â∗q

(y)
t (x) dt

= exp
(

− h̃(x, yt)
)
Â∗ exp

(
h̃(x, yt)

)
ζ
(y)
t (x) dt.
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F. Stratonovich form of the Kushner-Stratonovich
equation

We will perform the exercise of transforming the Itô version (9.7) of the Kush­
ner-Stratonovich equation into its Stratonovich form (9.9). A very nice summary
of the stochastic calculus needed is given in [31].

Let φ be some test function defined on Rn. With the notation (̂...)t := Ept
{...} ,

the equation (9.7) formulated in terms of expectations (moments) φ̂t reads

φ̂t = φ̂0 +
∫ t

0
L̂φs ds+

∫ t

0
(φ̂sĥT

s R
−1
s ĥs − φ̂h

T
s R

−1
s ĥs) ds

+
∫ t

0
(φ̂hs − φ̂sĥs)TR−1

s dYs. (F.1)

This is sometimes referred to as the Fujisaki-Kallianpur-Kunita equation, often with
the notation πt(...) := Ept

{...} used instead. It is the last term (the local martingale)
that we will put on S-form. R is symmetric by assumption. Define a vector r := R−1h ,
so

∑
i r
iRik = hk. The last term in (F.1) may be written∑

i

∫ t

0
(φ̂ris − φ̂sr̂is) dY is . (F.2)

In order to convert this to S-form we need to calculate the covariation process [17 , p.
332]

[(φ̂rk − φ̂ r̂k), Y k]t. (F.3)

This is done by repeatedly using (F.1) and the Itô-Kunita-Watanabe’s theorem [17 ,
theorem 17.11] , each time noting that terms of locally finite variation do not contribute
to the covariation.

Begin by calculating from (9.6)

[Y i, Y k]t =
∑
j,l

[
∫ t

ρijs dW
j
s ,

∫ t

ρkls dW
l
s]

=
∑
j,l

∫ t

ρijs ρ
kl
s d[W

j ,W l]s

=
∑
j,l

∫ t

ρijs ρ
kl
s δ

jl ds =
∫ t

Riks ds

=⇒
d[Y i, Y k]t = Rikt dt. (F.4)

In the following we will not write out time indices for simplicity. Integration by
parts [31 , eq. (9.3)] gives

φ̂ r̂k = [φ̂, r̂k] +
∫
φ̂ dr̂k +

∫
r̂k dφ̂
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and the second term in (F.3) becomes

[φ̂ r̂k, Y k] =
∫
φ̂ d[r̂k, Y k] +

∫
r̂k d[φ̂, Y k].

Using (F.1), (F.2) and (F.4), the two differentials in the right hand side are given by

d[r̂k, Y k] =
∑
i

(r̂kri − r̂k r̂i) d[Y i, Y k] = (r̂khk − r̂k ĥk) dt

d[φ̂, Y k] =
∑
i

(φ̂ri − φ̂ r̂i) d[Y i, Y k] = (φ̂hk − φ̂ ĥk) dt.

The first term in (F.3) is calculated in the same manner as

[φ̂rk, Y k] =
∑
i

∫
(φ̂rkri − φ̂rk r̂i) d[Y i, Y k] =

∫
(φ̂rkhk − φ̂rk ĥk) ds.

The term to be added to (F.2) for its transformation to S-form is

1
2

∑
k

[(φ̂rk − φ̂ r̂k), Y k]t = 1
2

∫ t

0
( ̂
φ |h|2R−1 − φ̂h

T
R−1ĥ) ds

− 1
2

∫ t

0
(φ̂ |̂h|2R−1 − φ̂ ĥTR−1ĥ) ds− 1

2

∫ t

0
(ĥTR−1φ̂h− φ̂ ĥTR−1ĥ) ds

= 1
2

∫ t

0
( ̂
φ |h|2R−1 − φ̂ |̂h|2R−1) ds+

∫ t

0
(φ̂ ĥTR−1ĥ− φ̂h

T
R−1ĥ) ds.

The last term here is already present in (F.1) so the resulting Stratonovich version of
this ”FKK”-equation becomes

φ̂t = φ̂0 +
∫ t

0
L̂φs ds− 1

2

∫ t

0
( ̂
φ |h|2R−1s − φ̂s |̂h|2R−1s) ds

+
∫ t

0
(φ̂hs − φ̂sĥs)TR−1

s ◦ dYs. (F.5)

Under appropriate differentiability assumptions this may be written as the stochastic
partial differential equation (9.9) for the conditional density function pt.



G. Filter toolbox code

In this appendix we present implementations (as Matlab code) of three of the main
nonlinear filter techniques; the extended Kalman filter (EKF), the classical Bootstrap
(particle) filter and a variant of the Bootstrap filter using an an approximation of the
optimal importance function (due to Doucet). Moreover, we present an implementa­
tion of the projection particle filter.

%%%% MAIN

global STATEMODEL OBSMODEL

%============================
STATEMODEL = 1;
OBSMODEL = 1;

vsigma = sqrt(10);
nsigma = sqrt(1);

T = 50;
N = 250;
Nthres = 2*N/3;

X0mean = 0;
X0sigma = sqrt(5);
x0 = X0mean + X0sigma*randn; %0.1;

khist = {0};
%============================

%=== Simulate trajectory ====
x = zeros(T,1);
y = zeros(T,1);

x(1) = statedyn(x0,1) - vsigma*randn;
for k = 2:T

x(k) = statedyn(x(k-1),k) - vsigma*randn;
end
y = observ(x) + nsigma*randn(size(x));

%=== EKF ====================
xE = zeros(T,1);
PE = zeros(T,1);
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x1 = X0mean;
P1 = X0sigma^2;
for k = 1:T

[x2 F] = statedyn(x1,k);
[h H] = observ(x2);
P2 = P1*F^2 + vsigma^2;
K = P2*H/(P2*H^2 + nsigma^2);
x1 = x2 + K*(y(k) - h);
P1 = P2*(1-K*H)^2 + (nsigma^2)*K^2;
xE(k) = x1;
PE(k) = P1;

end

%=== Bootstrap ==============
xB = zeros(T,1);
Xboot = X0mean + X0sigma*randn(1,N);

for k = 1:T
Xboot = statedyn(Xboot,k) + vsigma*randn(1,N);
h = observ(Xboot);
W = gauss(y(k)-h,nsigma);
if sum(W)<=eps

disp(’Bootstrap spårar ur vid:’), k, j, break
end
W = W/sum(W);
xB(k) = W*Xboot’;
Xboot = mnomres(Xboot,W,N);
switch k case khist, figure, hist(Xboot, 100), end

end

%=== Doucet linearisation ===
xD = zeros(T,1);
XDouc = X0mean + X0sigma*randn(1,N);
W = ones(1,N)/N;

ii = 0;
for k = 1:T

f = statedyn(XDouc,k);
[XDouc pop] = optimport(f,vsigma,nsigma,y(k));
h = observ(XDouc);
W = W.*gauss(y(k)-h,nsigma).*gauss(XDouc-f,vsigma)./pop;
if sum(W)<=eps

disp(’Doucet spårar ur vid:’), k, j, break
end
W = W/sum(W);
xD(k) = W*XDouc’;
if 1/(W*W’)<Nthres

XDouc = mnomres(XDouc,W,N);
W = ones(1,N)/N;
ii = ii + 1;

end
end
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%procentDoucetSIR = 100*ii/T

%=== Proj ===================
xP = zeros(T,1);
XProj = X0mean + X0sigma*randn(1,N);

for k = 1:T
XProj = statedyn(XProj,k) + vsigma*randn(1,N);
pm = mean(XProj);
ps = sqrt(mean(XProj.^2) - pm^2);
XProj = rejnorm(pm,ps,y(k),nsigma,N);
xP(k) = mean(XProj);

end

%=== Output =================
figure
t = 1:T;
plot([0 t],[x0; x],’k’,t,y,’y’,t,xE,’mo’,t,xB,’b:’,t,xD,’g:’,t,xP,’r:’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [f, F] = statedyn(x, k)
%STATEDYN

global STATEMODEL

switch STATEMODEL
case 1

f = 0.5*x + 25*x./(1 + x.^2) + 8*cos(1.2*k);
if nargout==2

F = 0.5 + 25./(1 + f.^2) - 50*(f.^2)./((1 + f.^2).^2);
end

case 2
f = x + 8*cos(1.2*k);
if nargout==2

F = 1;
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h, H] = observ(x)
%OBSERV

global OBSMODEL

switch OBSMODEL
case 1
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h = x.^2/20;
H = x/10;

case 2
h = x;
H = ones(size(x));

case 3
h = x.^3/60;
H = x.^2/20;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function xs = mnomres(x, w, N)
%MNOMRES

xs = zeros(1,N);
R = length(w);
t = cumsum(-log(rand(1,N+1)));
q = cumsum(w);
t = t/t(N+1);
q = q/q(R);

i = 1;
for j = 1:R

while i<=N & q(j)>t(i)
xs(i) = x(j);
i = i+1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function xs = rejnorm(priorMean, priorSigma, y, nsigma, N)
%REJNORM

xs = zeros(1,N);
Max = gauss(0,nsigma);

for i=1:N
while 1

x = priorMean + priorSigma*randn;
if rand<=gauss(y-observ(x),nsigma)/Max, break, end

end
xs(i) = x;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [X, pop] = optimport(f, vsigma, nsigma, y)
%OPTIMPORT

vv = vsigma^2;
nv = nsigma^2;

[h H] = observ(f);

v = 1./(1/vv + H.^2/nv);
m = v.*(f/vv + H/nv.*(y - h + H.*f));

s = sqrt(v);
X = m + s.*randn(size(f));
pop = gauss(X-m,s);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = gauss(x, sigma)
%GAUSS

y = exp(-0.5*(x./sigma).^2)./sigma/sqrt(2*pi);
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