
 
                                                                   Sensor Technology             Systems Technology  

                                                                    SE-581 11 Linköping           SE-172 90 Stockholm 
 

FOI-R--1171--SE 

April 2005 

ISSN 1650-1942 

Scientific report 

Ingvar Nedgård 

A comparison of analysis methods for vehicle 
classification by laser vibrometry 

 

 



 

 

SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1171--SE 

April 2005 

ISSN 1650-1942 

Sensor Technology          Systems Technology 

SE-581 11 Linköping       SE-172 90 Stockholm 

Scientific report 

Ingvar Nedgård 

A comparison of analysis methods for vehicle 
classification by laser vibrometry 

 



2 

 
Issuing organization Report number, ISRN Report type 

FOI – Swedish Defence Research Agency FOI-R--1171--SE Scientific report 

Research area code 

4. C4ISR 

Month year Project no. 

April 2005 E3059/E3965 

Customers code 

5. Commissioned Research 

Sub area code 

Sensor Technology 

SE-581 11 Linköping 

 

Systems Technology 

SE-172 90 Stockholm 

42. Surveillance Sensors 

Author/s (editor/s) Project manager 
Ingvar Nedgård  Tomas Chevalier/Dietmar Letalick 

  Approved by 
  Lena Klasén 

  Sponsoring agency 
  Swedish Armed Forces 

  Scientifically and technically responsible 
  Anna Linderhed 

Report title 

A comparison of analysis methods for vehicle classification by laser vibrometry 

Abstract (not more than 200 words) 

In this report laser vibrometry data from six different vehicles are analysed by four different analysis methods. The 
vehicles are the track-laying vehicles Bv206, Strf90, T72, Strv121, and on wheels Tgb11 and Tglb30. The data is 
collected at tree different test sites, and in various conditions. The frequency modulated data is first preprocessed by 
peak detection, and transient reduction. Features are extracted from power spectral density spectra (PSD), 
autoregressive model parameters (AR), Morlet wavelet spectra, and by empirical mode decomposition (EMD), and 
Hilbert spectra.  Six elements are used in each feature vector. The feature vectors of each vehicle are divided in  
reference data and test data.  The test data is classified by Mahalanobis classification and associated to the nearest 
reference data class. All together 222 measurements are used. Best result is achieved by the EMD-method and  
62% of the test signals are assigned to the right reference class in the six class case, without regard to differences in 
the engine rpm or surfaces illuminated. Feature vectors of dimension five are also classified. The best result is again 
achieved by the EMD-method but here only 56% of the test signals are assigned to the right reference class in the 
six class case. The focus here is primarily on the comparison of the analysis methods and it is suggested that a 
higher classification percentage could be achieved by testing one feature vector at a time leaving the rest to a better 
estimation of the mean and the covariance matrix of the reference class. Feature vector element values are not 
included in the appendices of the report but are available as a supplement. 

Keywords 

Time-frequency analysis, EMD, Morlet, AR, PSD, vibrometry, laser radar, Doppler, classification 

Further bibliographic information Language English 

 

ISSN 1650-1942 Pages 32 p. 

 Price acc. to pricelist 



3 

 
Utgivare Rapportnummer, ISRN Klassificering 

Totalförsvarets Forskningsinstitut - FOI FOI-R--1171--SE Vetenskaplig rapport 

Forskningsområde 

4. Spaning och ledning 

Månad, år Projektnummer 

April 2005 E3059/E3965 

Verksamhetsgren 

5. Uppdragsfinansierad verksamhet 

Delområde 

Sensorteknik 

581 11 Linköping 

 

Systemteknik 

172 90 Stockholm 

42. Spaningssensorer 

Författare/redaktör Projektledare 
Ingvar Nedgård  Tomas Chevalier/Dietmar Letalick 

  Godkänd av 
  Lena Klasén 

  Uppdragsgivare/kundbeteckning 
  FM 

  Tekniskt och/eller vetenskapligt ansvarig 
  Anna Linderhed 

Rapportens titel (i översättning) 

En jämförelse av analysmetoder för fordonsklassificering med laservibrometri 

Sammanfattning (högst 200 ord) 

Mätdata från sex olika fordon insamlade med laser vibrometer analyserades med fyra olika analysmetoder. 
Fordonen är de fyra bandfordonen Bv206, Strf90, T72, Strv121 och de två hjulfordonen Tgb11 ochTglb30. Mätdata 
insamlades vid tre olika platser och under varierande förhållanden. De frekvensmodulerade signalerna 
“demodulerades” genom detektion av maximala frekvenstoppen i spektrum från konsekutiva tidsfönster och signalen 
rensades sedan från transienta störningar. Karakteristiska egenskaper extraherades från effekttäthetspektra (PSD), 
autoregressiva modellparametrar (AR), Morlet vågformspektra och empirisk moduppdelning (EMD) följd av Hilbert 
spektra. Sex komponenter användes i varje särdragsvektor. Särdragsvektorerna för varje fordon delades upp I en 
grupp med referensdata och en grupp med testdata. Klassificeringen utfördes med Mahalanobis klassificering och 
testdata associerades till närmaste klass av referensdata. Totalt användes 222 mätsignaler. Bästa resultatet erhölls 
med EMD-metoden där 62 % av testsignalerna tilldelades rätt referensklass i fallet med sex fordonsklasser. Ingen 
uppdelning gjordes avseende variation av motorvarvtal eller vilka ytor på fordonet som belystes, och inte heller 
avseende infallsvinkeln mellan laserstrålen och fordonet. Klassificering utfördes också med fem komponenter i 
särdragsvektorerna. Bästa resultatet erhölls åter igen med EMD-metoden men då bara med 56 % av testsignalerna i 
rätt klass för fallet med sex fordonsklasser. Här har vi fokuserat på jämförelsen mellan analysmetoderna, men 
förmodligen kan en högre klassificeringsprocent uppnås om en särdragsvektor i taget testas då medelvektorn och 
covariansmatrisen för klassen kan bestämmas med högre noggrannhet. Särdragsvektorernas komponentvärden 
har ej tagits med i rapporten, men kan erhållas som bilaga. 

Nyckelord 

Tids-frekvensanalys, EMD, Morlet, AR, PSD, vibrometri, laserradar, Doppler, klassificering 

Övriga bibliografiska uppgifter Språk Engelska 

 

ISSN 1650-1942 Antal sidor: 32 s. 

 

F
O

I1
0
0
4
  
U

tg
å
v
a
 1

1
  

2
0
0
2
.0

2
  
w

w
w

.s
ig

n
o
n
.s

e
  
S

ig
n
 O

n
 A

B
 



 4 

Contents 
 
Introduction ................................................................................................................................ 5 
Physical signal model................................................................................................................. 5 
Data preprocessing ..................................................................................................................... 5 
Analysis methods ....................................................................................................................... 8 

Power Spectral Density (PSD) ............................................................................................... 8 
Autoregressive (AR) model ................................................................................................... 9 
Morlet Wavelet....................................................................................................................... 9 
Empirical Mode Decomposition (EMD).............................................................................. 10 

Classification............................................................................................................................ 12 
Results ...................................................................................................................................... 12 
Discussion ................................................................................................................................ 26 
References ................................................................................................................................ 27 
Appendix A .............................................................................................................................. 29 
Appendix B .............................................................................................................................. 30 
Appendix C .............................................................................................................................. 31 
Appendix D .............................................................................................................................. 32 

 



 5 

Introduction 
 
Identification of military ground vehicles is an important issue in peace keeping and war 
situations. Many different techniques have been used to gain information about what is on the 
battlefield. Some work previously published at FOI involves images of vehicles from passive 
IR-sensors, and active 3D laser radar [17], and identification by seismic sensors [6]. Here we 
will concentrate on laser vibrometry, another interesting technique that has been reported to 
be promising for vehicle identification [4, 16]. 
 
The aim of this report is to briefly compare some analysis methods on real data from six 
different vehicles, four track-laying vehicles Bv206, Strf90, T72, Strv121, and two vehicles 
on wheels Tgb11 and Tglb30. The vehicles are illuminated by coherent laser radar at 1.55 µm 
and the returning signal is mixed down using an acoustic-optical heterodyne method. Then the 
carrier frequency only consists of the Doppler induced frequencies [13]. The data was made 
available by Dr. Dietmar Letalick and his group at the Division of Sensor Technology at the 
Defence Research Agency in Linköping. The measurements are conducted at different 
distance, at different illumination angle, on different surfaces on the vehicles and with the 
engine running at different revolutions per minute. Only measurements with the vehicles 
stationary are used. Some short data records, records with system error logged, and 
measurements at distance 1900 m where the laser probably missed the target, are excluded. 
The distance is determining the amount of the transmitted signal returned from the vehicle 
compared to the returned signal from the surroundings. Several surfaces can also be 
simultaneously illuminated and vibrate in different modes causing a lower signal-to-noise 
ratio [12]. The angle of incidence on the surface as well as the reflection property of the 
surface will have an impact on the reflected signal [8]. All together 222 measurements are 
used. The data is collected at tree different test sites, Kvarn May 2-3, 2002, Skövde June 12-
13, 2002, and Älvdalen October 10, 2002. 
 
 
 

Physical signal model 
 
The engine force the body of the vehicle in vibration and an illuminated surface will lower 
and raise the frequency on the returning signal as the surface move away and toward the laser. 
Consequently, we will receive a frequency modulated (FM) return signal. A displacement of 
one millimeter per second will result in a frequency shift of the order 1 kHz. An additional 
trend in frequency shift will occur if the vehicle moves in a radial direction toward or away 
from the laser. This will result in larger frequency shift up to several MHz. A sinusoid model 
of the harmonically vibrating surface and the mixed down frequency modulated carrier signal 
is given in [13]. 
 
 

Data preprocessing 
 
The traditional band pass/limiter can not be used here since there is an unstable carrier 
frequency in the mixed down signal [1]. 
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Instead, the mixed down signal is divided into segments, windows each of the length 1024 
samples and with no overlap. This is equivalent to a time segment of 0.4 ms for the T72 
vehicle data and 1ms for data from the other vehicles. In every segment the power spectral 
density (PSD) is estimated via Welch's method [20]. 
 
 Figure 1 shows a spectrogram from the mixed down signal of a Russian T72 tank. The signal 
is divided in segments of window length 1024 samples with no overlap. The frequency 
contents in the segments are determined in sequence by a length 1024 discrete Fourier 
transform. 
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Figure 1. Spectrogram from the signal of a Russian T72 tank, NFFT=1024. 
 

The instantaneous frequency of the mixed down signal is estimated from the PSD in each 
segment by peak detection [13] of the maximum power per unit frequency. Figure 2 shows 
the tracked time-frequency demodulated signal of the T72 tank from figure 1 with the mean 
frequency removed. 
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Figure 2. The time-frequency demodulated signal of the T72 tank with the mean frequency 
removed. 
 

The sampling rate Fs of the mixed down signal, the size of the FFT transform and the 
associated frequency resolution in the Doppler shift is given in table 1 for the data from the 
different vehicles. 
 

Vehicle Test Site Fs 
[MHz] 

NFFT Resolution 
[Hz] 

Tgb11 Skövde 1.0 16384 61 
Tglb30 Älvdalen 1.0 8192 122 
Bv206 Älvdalen 1.0 8192 122 
Strf90 Skövde 1.0 2048 488 
T72 Kvarn 2.5 2048 1220 
Strv121 Skövde 1.0 2048 488 

 

Table1. Vehicle measurements sampling rate and resolution. 
 
The length of the demodulated signals is 1953 samples (number of segments). The sampling 
frequency of the demodulated signals is 2441 Hz for the T72 vehicle signal and 977 Hz for 
the other vehicles. That is 0.8 second data records from the T72 tank and 2.0 second data 
records from the other vehicles. Transient disturbances in the demodulated signal are 
observed in some data files. Large transient values exceeding three standard deviations of the 
signal are replaced by the preceding sample.  
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Analysis methods 
 
Four different feature extraction methods are used in analyzing the demodulated signals. The 
first is the power spectral density method which is the reference method we will compare to 
the other methods. The other methods are the autoregressive model, the Morlet wavelet and 
the empirical mode decomposition. The features of the last two methods are presented in more 
versions. 

Power Spectral Density (PSD) 

 
The laser radar is previously tested in a laboratory with two speakers used as targets [1] and 
up to a distance of 200 m. The speakers were vibrating at 85 Hz and at 125 Hz. The noise is 
not a large problem at this distance. However, as the distance increase the reflected signal 
energy will decrease and finally generate erroneous results. Analysis of the system limits due 
to noise is given by T. Carlsson and D. Letalick [2]. 
 
At the test sites a camera is used to direct the laser to the target. There are no accelerometer 
measurements on the vehicles to identify the features at the source, and therefore the “blind” 
analysis depend on the level of the returned target signal. The six largest peaks in the power 
spectral density of the demodulated signals are extracted to identify pattern of common 
frequencies in the classes. Figure 3 shows the peak pattern from Bv206. There are 34 
demodulated signals each contributing their six largest peaks which means 204 observations. 
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Figure 3. Peak pattern from Bv206, six largest peaks from each signal. 
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Typical frequencies are found for Bv206 at 24 Hz, 36 Hz, and 71 Hz. A summary of the most 
typical frequencies occurring for the vehicles are given in table 2. 
 
 
 
 
 
 

Vehicle Frequencies [Hz] 
Tgb11 4-5, 26-34 
Tglb30 2.5, 7.5, 23, 45 
Bv206 24, 35-36, 71 
Strf90 44-45, 89 
T72 30-34, 60-65 
Strv121 21, 41 ,82 

 
Table 2. Most typical frequencies from PSD peaks. 
 
The six frequencies of the largest PSD peaks in descending order are used as feature vector 
elements of the PSD method. 
 

Autoregressive (AR) model 

 
A six order AR model of the demodulated signal is estimated by the modified covariance 
method (forward-backward approach) [9, 11]. The autoregressive (AR) model is given by, 

 

( ) ( )neinya
i

i =−∑
=

6

0

 

  
where ia is the parameters of the model, ( )ny  is the demodulated signal and ( )ne  is the 

generating white stochastic process. 
 
The six AR-parameters are used as feature vector elements of the AR method. 
 

Morlet Wavelet 

 
The demodulated signal caused by the vibrating surfaces is not known but it can be described 
by sinusoid transients of different frequencies and duration (see figure 2). This makes the 
wavelet transform with the Morlet base especially suitable for vibrometry signals [14]. 
 
The Morlet base is obtained from the function of a plane wave modulated by a Gaussian 
function, 
 

( ) 2/4/1
0

2
0 ηηωπηψ −−= ee

i  

 
where η  is a nondimensional ”time” parameter and 0ω is the nondimensional frequency. 
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A MATLAB program from the University of Colorado [18] is used in the wavelet analysis. 
The spacing between discrete scales is 0.01 and the wave number parameter is 6. 
 
The frequency corresponding to the time/scale indices are determined and the marginal 
frequency magnitudes are calculated as mean over time for each fixed frequency. 
Numerical differentiation and zero crossings are used to calculate the maxima of the marginal 
spectra. The maxima are sorted in descending magnitude order and the frequencies of the six 
largest peaks are selected as characteristic parameters. The frequencies are also used as 
feature vector elements sorted in descending frequency order. 
 

 

 

Empirical Mode Decomposition (EMD) 

 
The Fourier spectral analysis requires the system to be linear and the data must be strictly 
periodic or stationary. If not the resulting spectrum will make little physical sense. In practice, 
these assumptions are only approximations. Spurious harmonics and a wide frequency 
spectrum can occur when many Fourier components are added to simulate the non-stationary 
nature of the data. Empirical Mode Decomposition [7] is an analysis method that in many 
aspects gives a better understanding of the physics behind the signals. Because of its ability to 
describe short time changes in frequencies that can not be resolved by Fourier spectral 
analysis it can be used for nonlinear and non-stationary time series analysis. The method is 
based on a technique to divide the signal in its Intrinsic Mode Functions (IMF). 
 
 An IMF satisfies two conditions: 
 

1. In the whole data set, the number of extrema and the number of zero crossings must 
either equal or differ at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the 
envelope defined by the local minima is zero. 

 
The process used in EMD is called the sifting process. 
The decomposition is based on the assumptions: 
 

1. The signal has at least two extrema – one maximum and one minimum. 
2. The characteristic time scale is defined by the time lapse between the extrema. 
3. If the data were totally devoid of extrema but contained only inflection points, then it 

can be differentiated once or more times to reveal the extrema. Final results can be 
obtained by integration(s) of the components. 

 
The sifting process is an iterative process and it can be described as follows: 
 

• Identify the local maxima and minima. 
• All the local maxima are connected by a cubic spline line as the upper envelope. 
• All the local minima are connected by a cubic spline line as the lower envelope. 
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The upper and lower envelopes should cover all the data between them. Their mean is 
designated as 1m , and the difference between the data and 1m  is the first component, 1h  i.e. 

 
( ) 11 hmtX =−  

 
There might still be negative local maxima and positive minima suggesting riding waves. 
If 1h  is not an IMF we repeat the procedure with 1h instead of the data. We can repeat the 

sifting procedure k  times, until kh1  is an IMF, that is 

 

( ) kkk hmh 1111 =−−  

 
Then, the first IMF component from the data is designated as 
 

khc 11 =  

 
We can separate 1c  from the rest of the data by, 

 
( ) 11 rctX =−  

 
We finally obtain, 

( ) n

n

i

i rctX +=∑
=1

 

where the signal is decomposed into n-empirical modes, and a residue, nr  which can be either 

the mean trend or a constant. 
 
The different modes might contain oscillations of the same scale, but signals of the same time 
scale would never occur at the same locations in two different IMF components. Now, we can 
apply the Hilbert transform to each IMF component and compute the instantaneous frequency 
and the instantaneous amplitude from the analytic signal. The instantaneous amplitude and 
frequency are distributed over time and the amplitude density is a measure of the frequency 
presence in a time interval.  
 
Serious problems of the spline fitting can occur near the ends and corrupt especially the low-
frequency components. Huang et.al. [7] have devised a numerical method, adding two 
characteristic waves at either end, to eliminate these end effects. The Hilbert transform also 
have end effects and again characteristic waves can be used to eliminate these end effects. 
These attached waves begin at the slightly enlarged data set with zero, and likewise end it 
with a zero level. Another complication is that the envelope mean may still be different from 
the true local mean for nonlinear data no matter how many times the data are sifted. The 
choice of stop criteria in the sifting process will also determine the time of computation. 
 
A MATLAB-program from Laboratoire de Physique, Lyon, France [15] is used in the EMD 
analysis. The characteristic parameters are computed from the median of the instantaneous 
frequency obtained from the first six modes. These frequencies are used as feature vector 
elements sorted in descending frequency order and in descending marginal median amplitude 
order. 
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The demodulated signal is also divided in windows each of length 400 samples. The Hilbert-
Huang-Transform is applied as above on each window and the mean of the median of the 
instantaneous frequencies obtained are used as feature vector elements. These are only sorted 
in descending frequency order. 

Classification 
 
Signal detection and signal classification can both be regarded as hypothesis tests [19]. In 
detection [5] we decide if a signal is present or not and in classification we decide if some 
feature parameters belong to one class or not. A comparison of the ability of the different 
analysis methods to separate the vehicles in different classes is made by Mahalanobis  
classification [10, 3]. 
 
The Mahalanobis distance r from the feature vector x  to the mean vector xm  is given by, 

 

( ) ( )xx

T

x mxCmxr −−= −12  

 
where xC  is the covariance matrix for x. One can use the Mahalanobis distance in a 

minimum-distance classifier as follows. Let 1m , 2m , … , cm  be the means for the c classes, 

and let 1C , 2C , … , cC  be the corresponding covariance matrices. We assign a feature vector 

x  to the class for which the Mahalanobis distance is minimum. 
 
The feature vector data from each vehicle is divided in two groups, one containing the 
reference data and the other containing the test data. For every test vector x the distance to the 
mean reference vector xm  of each class is calculated and x is assigned to the nearest class. 

This procedure is performed on all the analysis methods. 
 
Let n  be the number of reference vectors in a class and let d  be the number of elements in 
the feature vector. If 1+< dn , the matrix C  is singular. This is very bad since we need to 
invert C to form the Mahalanobis distance. 
 
Even if 1+> dn  we should not expect to get a good estimate for C  until our number n of 
reference vectors in the class gets close to the number ( ) 2/1−dd  of independent elements in 

C (symmetric). The classification is performed for 6=d  ( n  close to 15) and 5=d  ( n  close 
to 10). 

Results 
 
Altogether, 222 measurements are used in this report distributed on Tgb11 (42), Tglb30 (21), 
Bv206 (34), Strf90 (21), Strv121 (48) and T72 (56). The same data files are used by all 
analysis methods. Tables of the extracted frequencies by the PSD analysis method is given in 
appendix A. The frequencies are collected in a vector for each vehicle and frequencies up to 
400 Hz are presented as histograms of bin width 1 Hz in figure 4. 
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Figure 4.  Number of frequency peaks in 1 Hz interval from the PSD analysis. 
 
 
 
Tables of the parameters of the AR method and the extracted frequencies by the Morlet 

wavelet analysis method is given in appendix B. The mean of the Morlet wavelet amplitude 
for the Tgb11 vehicle versus frequency is given in figure 5. We observe a concentration of 
energy at 30-35 Hz that might be due to surface vibration on the vehicle. 
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Figure 5.  Morlet wavelet, marginal frequency magnitude versus frequency (Tgb11). 
 

 
The mean of the Morlet wavelet amplitude for the Tglb30 vehicle versus frequency is given in 
figure 6. Two distinct peaks at 23 Hz and 45 Hz are observed that might be due to surface 
vibration on the vehicle.  
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Figure 6.  Morlet wavelet, marginal frequency magnitude versus frequency (Tglb30). 
 
 
 
The mean of the Morlet wavelet amplitude for the Bv206 vehicle versus frequency is given in 
figure 7. Frequency peaks at 36 Hz and 71 Hz that might be due to surface vibration on the 
vehicle are clearly seen. 
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Figure 7.  Morlet wavelet, marginal frequency magnitude versus frequency (Bv206). 
 
 
The mean of the Morlet wavelet amplitude for the Strf90 vehicle versus frequency is given in 
figure 8. Two distinct peaks at 44 Hz and 88 Hz are observed that might be due to surface 
vibration on the vehicle. 
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Figure 8.  Morlet wavelet, marginal frequency magnitude versus frequency (Strf90). 
 
 
The mean of the Morlet wavelet amplitude for the T72 vehicle versus frequency is given in 
figure 9. We observe a concentration of energy at 34 Hz and 67 Hz that might be due to 
surface vibration on the vehicle. 
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Figure 9.  Morlet wavelet, marginal frequency magnitude versus frequency (T72). 
 
 
The mean of the Morlet wavelet amplitude for the Strv121 vehicle versus frequency is given 
in figure 10. Frequency peaks at 41 Hz and 82 Hz that might be due to surface vibration on 
the vehicle can be observed. 
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Figure 10.  Morlet wavelet, marginal frequency magnitude versus frequency (Strv121). 
. 
 
 
Two methods are used to analyse the signals by EMD and the Hilbert spectrum: 
 

1. Analyse the whole demodulated signal. Marginal frequencies and marginal amplitudes 
are calculated as median of the distribution. 

2. Analyse consecutive 400 sample windows without overlap. Marginal frequencies and 
marginal amplitudes are calculated as median of the distribution in each window. The 
mean of the marginal frequencies and the mean of the marginal amplitudes are then 
calculated. 

 
Tables of the extracted frequencies of the EMD method 1 is given in appendix C and the 
extracted frequencies by the EMD analysis method 2 is given in appendix D. 
 
The highest frequency that can be extracted by the EMD methods for the 0.8 second data 
records of the T72 vehicle is 610 Hz, and the lowest frequency is 1.25 Hz for method 1 and 
6.10 Hz for the window method 2. 
 
The highest frequency that can be extracted by the EMD methods for the 2 second data 
records of the other vehicles is 244 Hz, and the lowest frequency is 0.5 Hz for method 1 and 
2.44 Hz for the window method 2. 
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The result of the classification by the different methods is shown by assignment matrices. The 
classification is first performed with feature vectors of dimension  6=d  and then with 
feature vectors of dimension 5=d  to see if any improvement can be made in the estimate of 
the covariance xC . The result of course depends on the number of classes used, the number of 

elements in the feature vector; the elements target significance, and the number of reference 
feature vectors available to calculate the covariance matrix. The mean window EMD-method 
with the feature vector elements in descending frequency order 6=d is shown in table 3. 
 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 15 2 1 0 4 3 
Tglb30 0 2 0 1 2 2 
T72 0 0 27 0 0 0 
Strf90 1 2 0 5 2 4 
Strv121 2 3 0 4 15 4 
Bv206 3 1 0 0 1 4 

∑ 21 10 28 10 24 17 
 
Table 3. Mean window EMD-method frequency order 6=d . 
 
This method assigns 68 out of the 110 test signals (62 %) to the right reference class. Out of 
the two vehicles on wheels 19 of the 31 test signals (61 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 66 of the 79 test signals (84 %) are assigned to the 
track-laying vehicles. 
 
The EMD-method on the whole demodulated signal with the feature vector elements in 
descending amplitude order, 6=d is shown in table 4. 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 9 5 0 4 2 4 
Tglb30 5 3 1 0 0 4 
T72 0 1 26 0 0 0 
Strf90 1 0 0 1 4 1 
Strv121 4 0 1 4 16 7 
Bv206 2 1 0 1 2 1 

∑ 21 10 28 10 24 17 

 
Table 4. EMD-method amplitude order 6=d . 
 
This method assigns 56 out of the 110 test signals (51 %) to the right reference class. Out of 
the two vehicles on wheels 22 of the 31 test signals (71 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 64 of the 79 test signals (81 %) are assigned to the 
track-laying vehicles. 
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The EMD-method on the whole demodulated signal with the feature vector elements in 
descending frequency order, 6=d is shown in table 5. 
 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 12 2 1 2 2 3 
Tglb30 2 4 0 3 4 0 
T72 0 0 27 0 0 0 
Strf90 0 0 0 0 0 0 
Strv121 3 3 0 3 14 3 
Bv206 4 1 0 2 4 11 

∑ 21 10 28 10 24 17 

 
Table 5. EMD-method frequency order 6=d . 
 
This method assigns 68 out of the 110 test signals (62 %) to the right reference class. Out of 
the two vehicles on wheels 20 of the 31 test signals (65 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 64 of the 79 test signals (81 %) are assigned to the 
track-laying vehicles. 
 
The AR-method on the whole demodulated signal with the AR-parameters (leading 1 
excluded) as feature vector elements, 6=d is shown in table 6. 
 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 11 3 9 1 3 1 
Tglb30 1 5 0 0 2 2 
T72 4 0 14 0 1 0 
Strf90 0 0 0 5 0 0 
Strv121 2 0 0 3 13 1 
Bv206 3 2 5 1 5 13 

∑ 21 10 28 10 24 17 

 
Table 6. AR-method 6=d . 
 
This method assigns 61 out of the 110 test signals (55 %) to the right reference class. Out of 
the two vehicles on wheels 20 of the 31 test signals (65 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 61 of the 79 test signals (77 %) are assigned to the 
track-laying vehicles. 
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The Morlet-method on the whole demodulated signal with the feature vector elements in 
descending amplitude order, 6=d is shown in table 7. 
 

 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 10 6 7 2 7 5 
Tglb30 0 0 0 0 0 0 
T72 3 1 19 0 2 3 
Strf90 1 0 1 6 2 4 
Strv121 3 2 0 2 11 1 
Bv206 4 1 1 0 2 4 

∑ 21 10 28 10 24 17 

 
Table7. Morlet-method amplitude order 6=d . 
 
This method assigns 50 out of the 110 test signals (45 %) to the right reference class. Out of 
the two vehicles on wheels 16 of the 31 test signals (52 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 58 of the 79 test signals (73 %) are assigned to the 
track-laying vehicles. 
 
The Morlet-method on the whole demodulated signal with the feature vector elements in 
descending frequency order, 6=d is shown in table 8. 
 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 6 3 1 2 2 3 
Tglb30 0 0 0 0 0 0 
T72 4 2 19 3 9 4 
Strf90 4 0 1 4 2 3 
Strv121 3 5 3 1 7 1 
Bv206 4 0 4 0 4 6 

∑ 21 10 28 10 24 17 

 
Table 8. Morlet-method frequency order 6=d . 
 
This method assigns 42 out of the 110 test signals (38 %) to the right reference class. Out of 
the two vehicles on wheels 9 of the 31 test signals (29 %) are assigned to the wheel class, and 
out of the four track-laying vehicles 71 of the 79 test signals (90 %) are assigned to the track-
laying vehicles. 
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The PSD-method on the whole demodulated signal with the feature vector elements in 
descending energy density order, 6=d is shown in table 9. 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 9 6 5 6 1 4 
Tglb30 0 1 1 0 0 0 
T72 3 1 15 2 7 6 
Strf90 1 0 1 0 1 0 
Strv121 3 2 2 0 11 1 
Bv206 5 0 4 2 4 6 

∑ 21 10 28 10 24 17 

 
Table 9. PSD-method 6=d . 
 
The PSD-method assigns 42 out of the 110 test signals (38 %) to the right reference class. Out 
of the two vehicles on wheels 16 of the 31 test signals (52 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 62 of the 79 test signals (78 %) are assigned to the 
track-laying vehicles. 
 
The mean window EMD-method with the feature vector elements in descending frequency 
order 5=d is shown in table 10. 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 11 2 1 0 3 2 
Tglb30 2 2 0 1 3 1 
T72 0 0 27 0 0 0 
Strf90 3 2 0 5 2 4 
Strv121 2 2 0 4 13 6 
Bv206 3 2 0 0 3 4 

∑ 21 10 28 10 24 17 

 
Table 10. Mean window EMD-method frequency order 5=d . 
 
This method assigns 62 out of the 110 test signals (56 %) to the right reference class. Out of 
the two vehicles on wheels 17 of the 31 test signals (55 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 68 of the 79 test signals (86 %) are assigned to the 
track-laying vehicles. 
 
The EMD-method on the whole demodulated signal with the feature vector elements in 
descending amplitude order, 5=d is shown in table 11. 
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Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 10 6 1 4 1 5 
Tglb30 2 3 0 0 0 1 
T72 4 1 27 1 6 3 
Strf90 0 0 0 2 6 1 
Strv121 4 0 0 3 11 7 
Bv206 1 0 0 0 0 0 

∑ 21 10 28 10 24 17 

 
Table 11. EMD-method amplitude order 5=d . 
 
This method assigns 53 out of the 110 test signals (48 %) to the right reference class. Out of 
the two vehicles on wheels 21 of the 31 test signals (68 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 67 of the 79 test signals (85 %) are assigned to the 
track-laying vehicles. 
 
The EMD-method on the whole demodulated signal with the feature vector elements in 
descending frequency order, 5=d is shown in table 12. 
 

 
Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 9 2 1 1 1 3 
Tglb30 4 4 0 2 7 1 
T72 0 0 27 0 0 0 
Strf90 0 1 0 1 1 0 
Strv121 4 2 0 4 12 6 
Bv206 4 1 0 2 3 7 

∑ 21 10 28 10 24 17 

 
Table 12. EMD-method frequency order 5=d . 
 
This method assigns 60 out of the 110 test signals (55 %) to the right reference class. Out of 
the two vehicles on wheels 19 of the 31 test signals (61 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 63 of the 79 test signals (80 %) are assigned to the 
track-laying vehicles. 
 
 
The AR-method on the whole demodulated signal with the AR-parameters (leading 1 
excluded) as feature vector elements, 5=d  is shown in table 13. 
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Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 9 2 9 0 5 1 
Tglb30 2 5 2 2 6 4 
T72 3 1 12 1 1 0 
Strf90 1 0 0 6 0 0 
Strv121 2 0 0 0 10 1 
Bv206 4 2 5 1 2 11 

∑ 21 10 28 10 24 17 

 
Table 13. AR-method 5=d . 
 
This method assigns 53 out of the 110 test signals (48 %) to the right reference class. Out of 
the two vehicles on wheels 18 of the 31 test signals (58 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 50 of the 79 test signals (63 %) are assigned to the 
track-laying vehicles. 
 
The Morlet-method on the whole demodulated signal with the feature vector elements in 
descending amplitude order, 5=d is shown in table 14. 
 
 
 

Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 9 7 6 1 6 5 
Tglb30 0 0 0 0 0 0 
T72 3 1 18 0 4 3 
Strf90 1 0 1 3 1 4 
Strv121 3 2 0 4 11 1 
Bv206 5 0 3 2 2 4 

∑ 21 10 28 10 24 17 

 
Table 14. Morlet-method amplitude order 5=d . 
 
This method assigns 45 out of the 110 test signals (41 %) to the right reference class. Out of 
the two vehicles on wheels 17 of the 31 test signals (55 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 61 of the 79 test signals (77 %) are assigned to the 
track-laying vehicles. 
 
The Morlet-method on the whole demodulated signal with the feature vector elements in 
descending frequency order, 5=d is shown in table 15. 
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Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 8 3 1 2 3 3 
Tglb30 0 2 0 0 0 0 
T72 3 0 19 2 4 1 
Strf90 4 0 1 4 1 3 
Strv121 3 3 3 2 8 3 
Bv206 3 2 4 0 8 7 

∑ 21 10 28 10 24 17 
 
Table 15. Morlet-method frequency order 5=d . 
 
This method assigns 48 out of the 110 test signals (44 %) to the right reference class. Out of 
the two vehicles on wheels 13 of the 31 test signals (42 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 70 of the 79 test signals (89 %) are assigned to the 
track-laying vehicles. 
 
The PSD-method on the whole demodulated signal with the feature vector elements in 
descending energy density order, 5=d is shown in table 16. 

 
Test =>  

Reference 

Tgb11 Tglb30 T72 Strf90 Strv121 Bv206 

Tgb11 14 7 6 6 3 6 
Tglb30 0 1 1 0 0 0 
T72 2 2 14 2 5 4 
Strf90 1 0 2 0 1 0 
Strv121 1 0 1 1 11 1 
Bv206 3 0 4 1 4 6 

∑ 21 10 28 10 24 17 
 
Table 16. PSD-method 5=d . 
 
The PSD-method assigns 46 out of the 110 test signals (42 %) to the right reference class. Out 
of the two vehicles on wheels 22 of the 31 test signals (71 %) are assigned to the wheel class, 
and out of the four track-laying vehicles 57 of the 79 test signals (72 %) are assigned to the 
track-laying vehicles. 
 
 

Discussion 
 
In a simplified model a surface on a vehicle can be regarded as a forced oscillator. The 
surface is forced to oscillate at the same frequency as the engine and the amplitude of the 
surface vibration depend on the number of revolutions. This means that the magnitude of the 
demodulated signal will fluctuate depending on the engine frequency. The mean window 
EMD-method and the EMD-method frequency order are the best of these methods to deal 
with this situation. Both methods assigned 62 % of the test signals to the right reference class 
with feature vectors of dimension 6=d  in the six class case. All methods but Morlet-method 
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frequency order and PSD-method performed better with 6=d compared to 5=d  in the six 
class case. 
 
If we reduce the classification to a two class problem we observe from table 3 (mean window 
EMD-method) that 61% of the vehicles on wheels are assigned to the wheeled class and 84% 
of the track-laying vehicles are assigned to the track-laying class. As might be expected for all 
methods the track-laying vehicles have a higher classification rate. 
 
In more detail 71% of Tgb11, 40% of Tglb30, 96% of T72, 90% of Strf90, 75% of Strv121, 
and 71% of Bv206 are assigned to the right class in the two class problem. We can see that 
the motor lorry Tglb30 is mistaken for a track-laying vehicle. 
 
The number of significant feature elements in the target feature vector is estimated from the 
power spectral density (see figure 3). No separate noise measurements are made.  
 
Note that the analysis is made at different engine rpm, different illumination angle, different 
illuminated surface, and different distance to the vehicle. These circumstances contribute to 
divergence in the feature elements and influence the classification result. In the case when the 
number of feature vectors is few the estimation of the covariance matrix also can be done in a 
bootstrap manner. However, the main goal here is to compare the analysis methods and the 
elements of the feature vectors. The result is in favour for the EMD-method which has been 
reported to perform better on non-stationary signals than methods based on the periodic or 
stationary condition. 
 
If the number of feature vectors is large a neural network can be trained to separate the 
vehicles in different classes. 
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Appendix A 
 
Power Spectral Density: The table contains a vehicle identifier, date and time when the data 
is collected followed by the frequencies in Hz for the six largest peaks and their relative 
magnitude. 
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Appendix B 
 
Autoregressive model and Morlet Wavelet: The table contains a vehicle identifier, date and 
time when the data is collected followed by the frequency of the maximal Morlet Wavelet 
peak in Hz. On the same row the six AR-parameters are given without the leading one. The 
next row contains the marginal frequencies of the six largest Morlet Wavelet peaks sorted in 
descending magnitude order. 
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Appendix C 
 
Empirical Mode Decomposition (of the whole signal): The table contains a vehicle 
identifier, date and time when the data is collected followed by the median frequency of the 
instantaneous frequency obtained from each of the first ten modes. The frequencies are sorted 
in descending marginal median amplitude order and the relative amplitudes are given on the 
second row. Zero frequency and amplitude indicates less than ten modes. 
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Appendix D 
 
Empirical Mode Decomposition (of 400 sample windows of the signal): The table contains 
a vehicle identifier, date and time when the data is collected followed by the mean value 
(from each of the first six modes) of the medians of the instantaneous frequencies obtained 
from the windows of the signal. The frequencies are sorted in descending mean frequency 
value order. The standard deviations are given on the second row. Zero mean frequency and 
standard deviation indicates less than six modes. 
 
 
 


