
 
Command and Control Systems 

SE-581 11 Linköping 
 

FOI-R--1277--SE

May 2004

ISSN 1650-1942

Technical report

Dennis Andersson
Christer Skagert

Managing Massive Datasets from
Distributed Tactical Operations

 



 



 

 
SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1277--SE

May 2004

ISSN 1650-1942

Command and Control Systems 
P.O. Box 1165 
SE-581 11 Linköping 

Technical report

Dennis Andersson 
Christer Skagert 

Managing Massive Datasets from 
Distributed Tactical Operations 

 



 



 1 

Acknowledgements 

 

We would like to thank our examiner Prof. Henrik Eriksson, our supervisor 
Pär-Anders Albinsson and our project leader Mirko Thorstensson for their 
valuable support, comments and criticism throughout the entire project. 

We would also like to thank Dr. Magnus Morin, Associate Prof. Johan 
Jenvald and Markus Axelsson from Visuell Systemteknik AB who assisted 
us with valuable comments and advisory during the project. 

Finally we would like to thank Mattias Johansson and Per-Ola Lindell at 
the Department of Systems Engineering and IT Security at the Swedish 
Defense Research Agency in Linköping, Sweden, for their assistance with 
the project. 

 



 2 



 3 

 

CHAPTER 1 INTRODUCTION 5 

1.1 BACKGROUND 6 
1.2 PROBLEM DESCRIPTION 9 
1.3 APPROACH 10 
1.4 STRUCTURE OF THIS REPORT 13 

CHAPTER 2 DATA MODEL FOR STORING MISSION HISTORIES 15 

2.1 RECONSTRUCTION AND EXPLORATION 15 
2.2 MODELING THE DATABASE 16 
2.3 BLOCK: MODELING DOMAIN 18 
2.4 BLOCK: RECONSTRUCTION AND EXPLORATION 26 

CHAPTER 3 SELECTION OF DATABASE MANAGEMENT SYSTEM 35 

3.1 RELATIONAL DATABASE MANAGEMENT SYSTEMS 35 
3.2 OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS 36 
3.3 OBJECT-RELATIONAL DATABASE MANAGEMENT SYSTEMS 36 
3.4 SELECTING CONCEPTUAL DATABASE MANAGEMENT SYSTEM 37 
3.5 REQUIREMENTS ON THE DATABASE MANAGEMENT SYSTEM 37 
3.6 IMPLEMENTATION OF THE DATABASE 41 

CHAPTER 4 THE APPLICATION FRAMEWORK 45 

4.1 DESIGN GOALS 45 
4.2 DESIGN MODEL 47 

CHAPTER 5 IMPLEMENTATION TECHNIQUES 51 

5.1 PROGRAMMING ENVIRONMENT 51 
5.2 INTEROPERABILITY 52 
5.3 DATABASE INTEGRATION 53 

CHAPTER 6 IMPLEMENTATION OF THE APPLICATION FRAMEWORK 55 

6.1 REQUIREMENTS 55 
6.2 DATA CENTRIC TIER 56 
6.3 USER CENTRIC TIER 57 
6.4 PRESENTATION TIER 58 
6.5 TESTING APPLICATIONS 59 
 



 4 

CHAPTER 7 APPLICATIONS 61 

7.1 GPS LOG IMPORTER 61 
7.2 MISSION SETUP TOOL 63 

CHAPTER 8 REVISIONS TO THE MIND FRAMEWORK 69 

CHAPTER 9 FUTURE WORK 73 

9.1 DATABASE 73 
9.2 APPLICATION FRAMEWORK 77 
9.3 APPLICATIONS 78 
9.4 MIND 80 

CHAPTER 10 SUMMARY AND CONCLUSIONS 83 

10.1 SUMMARY 83 
10.2 DATA MODEL 83 
10.3 DATABASE MANAGEMENT SYSTEM 83 
10.4 APPLICATION FRAMEWORK 84 
10.5 APPLICATION DEVELOPMENT 84 
10.6 GENERAL CONCLUSIONS 85 

CHAPTER 11 REFERENCES 87 



 5 

Chapter 1 
Introduction 

A Distributed Tactical Operation (DTO) involves a complex system of 
humans and artifacts that cooperate in a hierarchy to reach common goals 
with a given set of resources. To study DTOs we need to be able to deal 
with realistic environments – a valid context – to get insight into the socio-
technical aspects of command and control. The Swedish Defense Research 
Agency presented a reconstruction-exploration approach for DTOs (Morin, 
Jenvald & Thorstensson, 2000) that aims at taking on the challenge of 
using a real-world context as the basis for DTO research. The approach 
comprises four principal activities needed to reconstruct the complex 
course of events from a DTO; domain analysis, modeling, instrumentation 
and data collection. The ‘mission history’ resulting from the reconstruction 
is then used for the exploration phase, where collected data are presented 
and made available for manipulation and analysis. 

To handle and present the large amounts of data that are collected during 
field trials, the Swedish Defense Research Agency developed a computer 
supported framework called MIND (Morin, 2002a; Jenvald, 1999; Morin et 
al., 2000). The size of the mission history that holds all the collected data 
will vary depending on how detailed the conceptual models and 
instrumentation plans are. For large field trials the mission histories may 
become massive. Managing these massive datasets in the current solution 
which MIND is relying on now, a single file structure, may become an 
overwhelming task and a limiting bottleneck. 

In this report we present a solution to store mission histories using a 
database management system. The solution has been explored using two 
problem domains based on military tactical operations and fire rescue 
operations. We also present a framework for building applications 
connected to the database in order to facilitate developing a distributed 
system consisting of several applications operating simultaneously on the 
same database. Finally we describe applications needed to operate the 
database for reconstruction and exploration, the applications we 
implemented and how we modified the MIND framework to utilize of the 
database. 



 6 

We encountered some potential problems during the project which we 
discuss briefly. We also present a few suggestions on how to continue the 
work based on the insights gained during the project. 

1.1 Background 

Tactical operations are very complex and difficult to interpret. Since the 
environment is continuously shifting, no set of predefined rules will cover 
all situations. The decision maker must therefore rely on experience and 
personal judgment to make the best decisions based on what information is 
locally available and act according to it, even though the information is 
almost certainly incomplete, fragmented and sometimes even ambiguous. 
In many operations, military and rescue missions in particular, the 
consequences of an erroneous decision may be severe. (Morin, 2002a) 

Needless to say, there is a great need for understanding the work involved 
in DTOs to develop improvements and support. However, understanding 
complex socio-technical work, like DTOs, is a difficult challenge. To take 
on this challenge the Swedish Defense Research Agency describe an 
approach for creating and analyzing a mission history based on the 
reconstruction and exploration of the complex course of events of a DTO 
(Morin et al., 2000), see figure 1. This approach can be used to get a better 
understanding of the particular situation and thereby get a better 
understanding of DTOs. 

Reconstruction is described as the act of devising a conceptual model of an 
operational scenario and populating this model with data captured from an 
operation adhering to the scenario. The reconstruction phase consists of 
four distinguished steps: (1) domain analysis, (2) modeling, (3) 
instrumentation and (4) data collection. The mission history between the 
reconstruction and exploration steps is a composition of the conceptual 
model, the instrumentation plan and the collected data. Included in this 
history are data such as communication between actors in the operation, 
observation protocols created by observers, casualty reports, video clips 
and more. The exploration phase is described as the use of these 
multimedia models of tactical operations for reflection, discovery and 
analysis. 



 7 

To support the reconstruction of DTOs in field studies and the exploration 
of data with multimedia representations, MIND (Jenvald, 1999; Morin, 
2002a) was implemented. MIND is a component-based analysis framework 
that integrates domain models, data sources, data converters and 
presentation views. MIND has been used to demonstrate the applicability 
of methods and tools in several different domains including combat 
training with the Swedish Army (Thorstensson, 2002a), naval operations 
with the Swedish Navy (Thorstensson, Jenvald & Morin, 2002) and Rescue 
operations with the Swedish Rescue Services Agency and Linköping Fire 
Rescue Department (Thorstensson, Björneberg, Tingland & Carelius, 2001; 
Thorstensson, 2002b). 

Table 1 presents the different classes of components that the MIND 
framework distinguishes between. The objects are part of the conceptual 
model, the sources of the instrumentation plan while the events and 
documents are samples of collected data during the operation. Views and 
maps are used for exploration but have no pronounced meaning in the 
reconstruction phase. 

The size of the mission history data will vary depending on how detailed 
the conceptual models and instrumentation plans are. Using a model where 

Modeling Data collectionInstrumentation Presentation
Domain
analysis

Topics
Problems
Priorities

Conceptual model
Instrumentation plan

Procedures
Equipment

Software
Mission history

Reconstruction Exploration

 

Figure 1 Overview of the steps of the reconstruction-exploration 
approach. Boxes indicate the principal activities, whereas annotated 
arrows show the artifacts produced by each activity (Morin et al., 
2000). 

 



 8 

100 vehicles are equipped with GPS receivers and logged every 10 seconds 
for 8 hours a day in 3 days will result in 70 MB of data assuming a 
coordinate can be stored as an 8 byte structure. This can be regarded as a 
relatively small amount of data, but what if we add physiological data 
logged every 10 milliseconds or continuous sound recordings from 
microphones placed on every soldier? It is not difficult to realize that the 
dataset may become massive. 

In order to be able to recreate the events of a DTO in chronological order, 
all data for reconstruction must be time stamped. Obviously, time is an 

Component 
type  

Description Examples 

Objects Objects model real-world elements of a taskforce. 
They can be organized hierarchically to model the 
structure and chain of command. State variables 
represent essential aspects such as location, 
capabilities, and resources. 

Vehicles, Ships, 
Aircraft, People, 
Casualties 

Events Events represent time-stamped data collected 
during a tactical operation. Events define changes 
in object state variables at particular time points 
corresponding to time stamps.  

Position sample, 
Observation report, 
Sensor sample 

Sources  Sources manage collections of events from a 
particular physical or logical source. Sources are 
the primary mechanism for organizing and tracing 
data from an operation. Sources implement 
gateways and converters for accessing external 
data.  

Picture source, 
Position source, 
Audio source 

Views Views are presentation windows for particular types 
of data. Customized views are the primary means of 
extending the presentation capabilities of MIND. 

Map view, Casualty 
view, Audio clip 
view, Dynamic 
timeline, Attribute 
explorer view 

Maps Maps encapsulate a model of the earth, a projection 
method, and the logic necessary to render an image 
of this model in a generic map view. 

Raster map, Vector 
map, Generic 
coordinate system 
view 

Documents Documents are static data, for example text, digital 
photographs, video clips, audio samples, local 
HTML pages, and Internet URLs. A document can 
be made dynamic by linking it to an activation 
event that specifies when it was created. 

Text, HTML, Digital 
photograph, Video 
clip, Audio clip, 
URLs 

Table 1 Classification of the component types in the MIND framework (Morin, 2002b). 



 9 

important factor and how to handle it is a decisive aspect that needs to be 
carefully considered when creating a centralized storage facility for DTO 
data. Conventional database technology offers little support to deal with 
this kind of temporal data. Therefore an extensive research has been 
conducted during the last three decades in temporal databases (Jensen, 
2000). These databases define several complex ways of dealing with time. 

Another interesting research area somewhat related to this thesis is spatio-
temporal databases and geographic information systems, GIS. The goal of 
the research in these areas is to reduce the interaction problems between 
highly advanced geographical data collection tools, like GPS-receivers and 
video cameras, and ordinary database management systems.  

Our conclusion is that this project, though it involves a lot of temporal and 
spatial data, does not benefit at this early stage from the advanced modeling 
and design that is offered by temporal and spatio-temporal databases. Still, 
some areas of the research become interesting if further development of the 
data model is pursued. 

1.2 Problem description 

The conceptual model and instrumentation plan constructed during the 
modeling phase will decide how much information will be available at the 
exploration. In order to create a realistic reconstruction of the scenario the 
model must be correct and detailed enough to contain all necessary 
information. Deciding what is necessary is not trivial. 

To prevent loss of potentially important data, the model often becomes 
large with many data sources recording large amounts of data. The dataset 
of a recorded mission may thus grow rapidly. The current implementation 
of MIND stores this dataset as serialized objects in a single file. The 
purpose of these files is to offer a way to save a composed mission history 
so that it may be reloaded at another session.  

As the size of the dataset increases it gets more difficult to manage and the 
main purpose of this project is to investigate how a database management 
system can be used to overcome this problem. The current approach 
involves no central storage facility for collected data or conceptual models. 
Mission histories are composed out of conceptual models created using the 
MIND framework by manually importing scattered log files of data. Since 
the conceptual model, instrumentation plan and the data collection are 



 10 

stored together it is difficult to reuse concepts, plans or data used in 
previous missions.  

The following questions have been formulated for this thesis: 

• How can a general model be designed, that can hold mission 
histories from DTOs, including conceptual models, instrumentation 
plans and collected data? 

• What demands does a general data model for storing mission 
histories for DTOs put on a database management system and which 
database management systems are available that can handle these 
requirements? 

• How can a general application framework be developed which may 
be used to build applications operating on the data in a mission 
history database? 

• What applications are necessary for the database to support 
reconstruction and exploration of DTOs? 

1.3 Approach 

This project involves several different tasks, listed as main thesis questions 
in section 1.2 above. Some of these tasks are closely related to each other 
and could be solved using the same approach, while some are completely 
different and therefore need specialized approaches. The approaches are 
presented in the same chronological order as the corresponding problems 
were undertaken, see figure 2. 

1. The first phase of the project consists of defining the scope of the 
project and after this we started to develop a general data model for 
storing mission histories trying to answer the first two main 
questions.  

2. The second phase, the analysis of database management systems, is 
related to the third and fourth question in the previous section. The 
last two phases are directly related to the development of application 
framework and applications slot.  



 11 

3. The third and final phase consists of the two last slots of the timeline, 
which deal with the development of this report and the afterwork 
needed to finish the project. 

1.3.1 Development of a data model for storing mission histories 

The approach we used for the development of the data model for storing 
mission histories in DTOs is loosely based on the spiral model (Boehm, 
1986), which is an iterative software life-cycle model suited for object 
oriented development. Every step in our version of the spiral model 
consists of analysis, design, implementation and testing (see figure 3). We 
used this model to find weaknesses and strengths in an early stage so that 
the model could be refined until we reached a satisfying model. 

We found this approach very useful because when designing a general data 
model for storing mission histories it is important to make an extensive 
domain analysis to find out the requirements, problems and main topics. 
This domain analysis is extremely difficult to perform since it is impossible 
to predict every possible scenario in a DTO. Using this approach, an initial 
analysis led to an understanding of the problem which could be used as a 
basis for designing the first draft of the data model. It had to be designed, 
implemented and tested with different scenarios in mind to exploit 
weaknesses and limitations of the model. 

The initial analysis phase consisted mainly of exploring the existing 
functionality of MIND since this tool has been used to recreate and explore 
many DTOs over time. We found several possible solutions that could be 
used directly in our data model, but the model should also support 
extensions and other types of data and object which are currently not 
supported by MIND. Therefore, we also reviewed log files recorded during 
field trials, documents describing instrumentation plans for field missions 

Project Definition Data model for storage of
mission histories

Analysis of Database
management systems

Development of application
framework and applications Report writing Afterwork

Week 3, 2004 Week 23, 2004

 

Figure 2 Project timeline describing the different phases of this 
thesis project. Note that the time slots given to each phase in this 
timeline are not proportional to reality. 

 



 12 

and other external documents describing related data models, such as The 
Land C2 Information Exchange Data Model (NATO, 2002). 

During the first design phase we discussed different techniques to solve the 
problems we found during the initial analysis and drafted an initial diagram 
of the data model. During the implementation phase the model was 
implemented in an available database management system (DBMS), SQL 
Server 2000. The choice of DBMS was not intended to be final, it was 
simply chosen because a development edition of the system was available 
at the department. Finally, the model was tested with different scenarios, 
both in an abstract way, using the diagrams to reason if a certain scenario 
could be represented using the model, and in a more concrete way inserting 
records into the database to demonstrate the functionality and confirm the 
design. As flaws were detected, they were analyzed and the data model 
redesigned and another step in the iterative process was performed to reach 
an enhanced model. 

1.3.2 Analysis of database management systems 

When the data model was considered sufficient we moved on to analyzing 
what requirements this model put on a database management system and 

 
Figure 3 A simplified spiral model was used as development 
process when developing the data model for storing mission 
histories from DTOs, the application framework and the 
applications. 



 13 

started to collect data about different alternative systems on the market to 
find the best suited system for our model. 

We had already seen that the model could be implemented in a traditional 
relational database management system, so the focus was put on finding 
strengths and weaknesses of other alternatives. The main alternatives to 
Relational DBMSs that we discussed were Object-Oriented DBMSs, 
Object Relational DBMSs and specialized systems for temporal and spatio-
temporal databases. When we had decided on the type of DBMS best suited 
we continued to research different implementations of such systems trying 
to find the best one for our needs. 

1.3.3 Development of application framework and applications 

The application framework was developed using the same approach as 
described in section 1.3.1. During the analysis phase we discussed what 
different applications would be needed and how to model a general 
framework that could be used to implement this. We also investigated 
different development platforms and tried to find one that would be easy to 
work with while still having the opportunity to interoperate with the 
existing version of MIND. 

The analysis led to an initial design that we implemented and tested in C#. 
In compliance with the spiral model we did it in steps which eventually led 
to a state where the framework was ready to be tested with real 
applications. Our initial analysis showed a couple of basic applications that 
could be implemented to test the most important parts of the framework. 
The applications where then developed, again using the spiral model, while 
we continuously enhanced the framework. 

1.4 Structure of this Report 

In the first part of this report, chapter 1, we describe the background of this 
project. In the second part, chapters 2 and 3, we continue with the 
development of the data model for storing mission histories. We further 
describe the implementation of the application framework in the third part, 
chapters 4 to 6, while we present the necessary applications for using the 
database as a storage facility for reconstructing and exploring distributed 
tactical missions in the fourth part, chapters 7 and 8. In the last part we 
summarize our conclusions and present our recommendations for future 
work. 



 14 

 



 15 

Chapter 2 
Data model for storing mission histories 

The MIND system has been in use since 1992 for modeling DTOs and has 
continuously expanded as a research tool. During this process ideas of 
using a database to store data for recreating missions have evolved.  At the 
start of our project we were presented many features that the MIND 
research team wanted the database to manage. These ideas were to some 
extent documented in various reports, but mainly as scribbles and partially 
formulated solutions. Designing a data model that supported these ideas 
was therefore an important part of this project. 

2.1 Reconstruction and exploration 

Reconstructing a DTO generate high demands on the storage structures. 
The database model designed should be as general as possible to suit the 
modeling needs of future operations with unpredictable content. On the 
other hand, some areas require a high level of detail and specialization. 

A lot of material is available from previous operations that could be used to 
get a picture of what we need to store in the data model. For the modeling 
step of a mission it is obvious that some kind of structure for real-world 
objects should be stored independent of the studied domain. A suitable way 
to store the hierarchal dependency of these objects is also important, for 
example helicopters in a helicopter squadron. The instrument objects for 
collecting data should also be stored in an easy way, closely related to the 
objects the instruments is used to collect data for. Structures for storage of 
data collected by these instruments should also be a vital part of the 
database model. 

As an example the data collection plan of the exercise Cornelia (Morin & 
Thorstensson, 2000) stated the following data sources to be used: 

• Observations – written preformatted protocols 

• Communication – recordings of radio transmissions 



 16 

• GPS positions – converted to preformatted XML files 

• Photographs – digital pictures with preformatted protocol attached 

• Video – unknown format 

• Casualty cards – preformatted protocols 

• Police registration - preformatted protocols 

• Fax reports – Copies of situation reports 

• Tactical information tables – digital pictures 

The database model should support extensive analysis of the mission 
reconstructed and stored. Apart from presenting data and structures from 
different missions, i.e. easy retrieval of the stored information, it is also 
vital that new information about data, metadata, can be stored as processed 
during analysis of the mission. 

2.2 Modeling the database 

Taking into account the above demands we identified four different main 
functions and concepts of the system that the data model should support:  

1. Setup and store information about units, people, vehicles, 
instruments and other possible objects that would take part in an 
exercise or mission. It should be possible to insert and extract the 
hierarchal dependencies between all parts that have been setup in the 
exercise/mission. The result stored in the database is a model of the 
real world mission. This model is normally setup before the mission 
has taken place. 



 17 

2. Insert data collected by different instruments, for example positions 
from GPS receivers, audio recordings from radio networks or written 
observations from units. Today these data are collected during the 
mission and managed afterwards. The system should be able to 
automatically insert data provided in a specified format and in the 
future support real time storage when connected to the instruments. 

3. After a mission or exercise, exploration of collected data is an 
important step for analysis. The database and support systems should 
allow many manipulations of its data. Examples include adding 
metadata and classifications to collected data and revising certain 
parts of video clips and audio files that contain nothing but noise. 

4. The system should allow export to several kinds of presentation 
tools, including the MIND system.  

Based on these concepts the model was designed in Microsoft Visio, a tool 
offering a good platform to build and present database relational diagrams. 
The model is deliberately built in general terms to allow future changes 
when requirements on the system are added or changed. 

Because of its complexity, the relational diagram of the model is abstracted 
into blocks, where each block represents a logical part of the databases 
relational diagram. These blocks are described below. In an additional 
abstraction these model blocks are divided into two main blocks, see figure 
4. These two blocks are separated by the time factor that is critical in this 
representation. The first, the modeling domain block, represents structures 
that do not have a time relation. That is, the objects are not associated to 
any particular event in time where they were used. The second, the 
reconstruction and exploration block, represents structures that have a time 
relation. That is, they are objects that have been in active operation or 
collected data valid for certain periods of time during a mission. The 
complete data model can be found in appendix A. 

Modeling
domain

Reconstruction &
exploration

Objects
participate in

mission

 

Figure 4 Top level abstraction of the data model. 



 18 

2.3 Block: Modeling domain  

The modeling domain block holds information about objects and units that 
the operator creates. This block is divided into five sub blocks with logical 
differences, see figure 5. These blocks are objects, templates, attributes, 
symbols and unique objects. Theses parts can be considered to be a 
representation of the domain with object structures that an operator can 
choose from when modeling a mission.  

The object sub block holds the atomic building parts which are used as 
components in larger units and composites. The other four sub blocks hold 
special information or the hierarchal dependencies of these atomic building 
parts. A description of each sub block is found in the following subchapters 
including a relational schema of the sub blocks. 

Objects

Unique objects

Symbols

Attributes

Templates

Objects may have
dynamic attributes

Objects may be part
of a template

Unique object has a
base object

Each object has
symbol(s) attached

Unique object may
have overloaded

symbols

Modeling
domain

Template object may
have overloaded symbols

Legend:

Relation must
exist.

Relation is
optional.

 

Figure 5 Modeling domain block. 



 19 

 

WeaponMNAmmunition

PK,FK2 WeaponID
PK,FK1 AmmunitionID

MapType

PK ID

Description

Person

PK,FK1 ID

IdNumber
Rank

Vehicle

PK,FK1 ID

Model
Type

Shape

PK ID

Name

VehicleMNShape

PK,FK2 VehicleID
PK,FK1 ShapeID

ShapeMNCoordinate

PK,FK1 ShapeID
PK CoordinateID

DataFormat

PK ID

U1 Format

Solid

PK,FK1 ID

CoordinateID

SolidMNShape

PK,FK2 SolidID
PK,FK1 ShapeID

DataSource

PK,FK1 ID

DataSourceMNDataFormat

PK,FK2 DataSourceID
PK,FK1 DataFormatID

Equipment

PK,FK1 ID

Weight

Ammunition

PK,FK1 ID

Caliber
Type

Object

PK ID

Name
Authority
Information
SymbolTableID

Map

PK,FK2 ID

Scale
MapSize
Description

FK1 MapTypeID

Weapon

PK,FK1 ID

Range

Relations to Coordinate, see the Data block

Relation to Data,
see the Data block

Relation to
SymbolTable, see
the Symbols block

Relations to ObjectMNAttribute,
TemplateObject and UniqueObject,
see the Attribute, Template objects

and Unique objects blocks

 

Figure 6 Relational schema of the Object block. 



 20 

2.3.1 Sub block: Objects 

In this block all atomic building parts for an exercise or mission are stored 
in the table Objects. Some information like name and authority are also 
stored as attributes when the object is created.  

For common objects like vehicles, equipment and data sources, they have 
their own table holding specific information about that type of object. 
These tables inherit from table Objects, extending it with the special 
attributes for that kind of object. There are other possibilities to represent 
different kinds of objects since dynamic attributes can be related to any 
object. However we identified some classes of objects that would be used 
commonly and made specific tables and hard coded attributes for them. We 
believe this would be a more efficient way of handling these commonly 
used objects, although it is not as general as the dynamic attributes 
approach. Note that any object, even the specialized ones can have dynamic 
attributes. In addition, the framework is flexible enough to allow new tables 
to be added if a new commonly used object type is identified. 

The object representation is an abstract view of items. For example an 
object could be an armored personnel carrier class like ‘Stridsfordon 90’ or 
a digital camera of ‘Canon IXUS’ type. Therefore several instances of the 
same object can appear in the same exercise or mission. As an example 
there can be several ‘Stridsfordon 90’ vehicles on the battlefield or two 
observers can be equipped with ‘Canon IXUS’ cameras. A relational 
schema of the Objects block is found in figure 6. 



 21 

2.3.2 Sub block: Templates 

The template objects are composite building blocks normally containing 
several objects. The templates are built as tree structures holding one or 
many template objects. Each of these template objects has a relation to an 
object from the Objects table. As an example a helicopter squadron consists 
of four helicopters type 4. A helicopter 4 is an atomic building block found 
in the Vehicle table (inherits from Objects). The empty squadron is also an 
atomic building block found in the Objects table.  

Building a template squadron creates a new template object representing 
the empty helicopter squadron. The template squadron has a relation to the 
atomic building block squadron found in table Object. To this template 
squadron it is possible to attach helicopters, or any other type of object, 
making theses template objects as well. To keep track of which template 
objects are attached to which, a parent - child relation is also stored. A 
template object can be appointed a call sign and is then considered to be a 
template unit. When creating a template object it is also possible to attach a 
new symbol table. This overrides the symbol table related to the underlying 
object which makes it possible to have default symbol tables for specific 
instances of the template. 

TemplateObject

PK ID

Name
Information
SymbolTableID
ObjectID

TemplateObjectMNTemplateObject

PK,FK1 TemplateObjectID1
PK,FK2 TemplateObjectID2

TemplateUnit

PK,FK1 ID

Callsign

Relation to SymbolTable,
see the Symbols blockRelation to Object,

see the Objects block

Figure 7 Relational schema of the Template block. 

 



 22 

2.3.3 Sub block: Attributes 

Attributes can be added to an object to hold vital information. The 
attributes are stored as tuples <Name, Data, Type, XML, Static, Parent>. A 
dynamic attribute can thus be considered an object itself consisting of 
metadata describing the attribute.  

The name and data fields are quite obvious; they hold the most vital 
information of an attribute – what it is called and the data it stores. The 
Type field stores information about what data type the attribute data has 
while the XML field can contain just about anything needed to describe the 
data, for instance maximum and minimum values of the data. The static 
field is a boolean indicating whether it should be possible to change the 
data or if it is read only. 

The dynamic attributes can be used to store information about objects that 
are specific, for instance if there is something particular about a specific 
helicopter, or class of helicopters. Dynamic attributes that are used 
frequently should be considered to be added to the static model to increase 
performance. 

 

Attribute

PK ID

Name
Data
Type
XML
Static

FK1 ParentID

ObjectMNAttribute

PK,FK2 ObjectID
PK,FK1 AttributeID

Relation to Object,
see the Objects block

 

Figure 8 Relational schema of Attribute block. 

 



 23 

2.3.4 Sub block: Symbols 

The symbol block contains the symbols for different objects. The symbols 
are graphical items describing the object, often in form of a bitmap or a 
compressed image. The symbol images are stored as raw data in the 
Symbols table. Information about the symbol and the color it should be 
displayed with is stored in the table SymbolInformation.  

Each object is related to a symbol table. These symbol tables can be related 
to several symbol information items. Therefore an object can use many 

SymbolTableMNSymbolInformation

PK,FK2 SymbolTableID
PK,FK1 SymbolInformationID

Symbol

PK ID

Icon

SymbolInformation

PK ID

Color
Label

FK1 SymbolLibraryID

SymbolInformationMNSymbol

PK,FK2 SymbolInformationID
PK,FK1 SymbolID

SymbolLibrary

PK ID

Name
Information

SymbolTable

PK ID

Information

Relation to UniqueObject,
see the UniqueObject block

Relation to Object,
see the Object block

Relation to TemplateObject,
see the TemplateObject block

Relation to ActiveObject,
see the ActiveObject block

Figure 9 Relational schema of the Symbols block. 

 



 24 

different symbols and colors depending on the operator’s choice. This is 
especially useful when dealing with different presentation applications. The 
application can use several different symbols showing different amount of 
details, all retrieved directly from the database. 

When an object is used in a template object or in a unique object the 
symbol table relation is inherited. However, it is possible for the new 
instance to override the default symbol table making the system even more 
flexible. The same applies when a unique object is used by an active object, 
the active instance may thus override the unique objects symbol table.  

Another important relation is between SymbolInformation and 
SymbolLibrary. Each symbol can be a part of a symbol library. Using this 
relation all symbols can be divided into groups. When assigning a symbol 
to an object it would be convenient to display symbols part of the same 
symbol library as a possible choice rather than all symbols stored in the 
database. Examples of symbol libraries are army symbols or naval 
symbols. 



 25 

2.3.5 Sub block: Unique objects 

As the name describes unique objects are instances of objects that are 
unique. The unique object is identified by a string called identifier. The 
unique object also has a relation to the Objects table which describes what 
type the unique object is. As an example, there may exist two instances of 
the previously described helicopter 4, see chapter 2.3.2, named Y67 and 
Y70.  

While the objects describe types or models in an abstract manner, the 
unique object is the concrete object that exists in reality. When creating a 
unique object it is also possible to attach a new symbol table. This 
overrides the symbol table heritage from the underlying object. Unique 
objects can, like template objects, also be arranged in a hierarchal structure. 
Also at this level a parent - child relation is stored to keep track of which 
unique objects are attached to which. 

UniqueObject

PK ID

U1 Identifier
FK1,U1 ObjectID

SymbolTableID

UniqueObjectMNUniqueObject

PK,FK1 UniqueObjectID1
PK,FK2 UniqueObjectID2

Unit

PK,FK1 ID

Callsign

Relation to ActiveObject,
see the ActiveObject block

Relation to SymbolTable,
see the Symbols block

Relation to Object, see the
Objects block

Figure 10 Relational schema of Unique Objects block. 



 26 

A unique object can also be appointed a call sign and is then considered to 
be a unit. 

2.4 Block: Reconstruction and exploration 

The reconstruction and exploration block holds information about missions, 
objects participating in missions, data collected during the mission and 
information gathered in post-mission exploration and analysis. The block is 
divided into three conceptual blocks closely related to the reconstruction-
exploration modeling approach (Morin et al., 2000). The modeling and 
instrumentation block holds the actual model of a mission where 
participating objects and instruments are stored in the sub block Active 
objects. The data collection block holds all data collected from the 
instruments mentioned and stores it in the Data sub block. The time the 

Time

Classifications

Metadata

Active objects

Data

Metadata may point to
active object(s)

Metadata may contain
classifications

Data may
have metadata

Data may be
collected by an
active object

Active objects is
related to time

Metadata is
related to time

Data is
related to time

Modeling &
Instrumentation

Data
Collection

Analysis

Legend:

Relation must
exist.

Relation is
optional.

 

Figure 11 Reconstruction and exploration block. 



 27 

collected data is gathered is of extreme importance to be able to reconstruct 
a mission. Therefore the Time sub block is considered to be a part of the 
data collection block. The concept ‘presentation’ is considered to be the 
retrieval of information stored in the data collection and modeling and 
instrumentation blocks. The analysis block stores comments and notes 
regarding this presentation. 

The main issue for the reconstruction and exploration block is that time is a 
vital component. Missions take place during time periods, data is produced 
at certain times in these missions, units are allocated to missions in certain 
time periods and metadata is created or edited at certain times. A 
description of each block and its time dependencies and relational schema 
is found in the following subchapters. 



 28 

2.4.1 Sub block: Active objects 

Tables in this block contain the active objects that take part in different 
missions. When a mission is created, the time period it is active must also 
be set. This time period is called an interval, see section 2.4.2.  

An active object is a unique object, see chapter 2.3.5, which has been 
assigned to a mission during a certain amount of time. This amount of time 
often is the same interval as defined by the mission, but it can be any other 
type of interval, most likely within the mission interval.  

Like template objects and unique objects, see sections 2.3.2 and 2.3.5, the 
active objects can be assigned to each other in a hierarchical structure with 

ActiveObject

PK ID

UniqueObjectID
SymbolTableID

FK1 MissionID
IntervalID

ActiveObjectActiveObjectInterval

PK ID

FK1,U1 ParentActiveObjectID
FK2,U1 ChildActiveObjectID
U1 IntervalID

Role

Mission

PK,I1 ID

U1 Name
Information
IntervalID

Relation to Interval,
see the Time block

Relation to UniqueObject,
see the Unique objects block

ActiveObjectMNData

PK,FK1 ID
PK,FK1 ActiveObjectID
PK DataID

Relation to Data, see
the Data block

Relation to SymbolTable,
see the Symbols block

Relation to Interval,
see the Time block

Relation to Interval,
see the Time block

 

Figure 12 Relational schema of block Active objects. 



 29 

parent-child relations. In this relation a role attribute can be set. For 
example the unique object John Doe can be assigned to an active helicopter 
as a pilot during a certain time interval. Note that this solution allows the 
helicopter to switch pilot simply by adding a similar relation during another 
time interval.  

2.4.2 Sub block: Time 

The time block is very vital for the functionality of the system. Most events 
that occur during a mission use a time value in some way. A vehicle 
position is valid only at a certain time. When analyzing a mission, metadata 
is produced at certain times and may be edited at another time. There are 
numerous examples where time should be stored in, or extracted from, the 
database together with an object. Many tables use a time period instead of a 
precise time. This is represented in the table Interval with relations to the 
time table for start and end time. 

At an early stage in the project it was apparent that time was not only vital 
to the project it would also cause some design problems. First of all, what 
resolution should be used? When dealing with mission periods a resolution 
of hours would probably be fine. When dealing with helicopter trails the 
question arise if a resolution of seconds will be good enough. Secondly the 

Time

PK ID

U1 TimeValue

Interval

PK ID

FK1,U1 BeginTimeID
FK2,U1 EndTimeID

Relation to Mission, see the
Active objects block

Relation to
ActiveObjectActiveObjectInterval,

see the Active objects block

Relation to
MetaDataActiveObjectInterval,

see the Meta data block

Relation to MetaDataInterval,
see the Meta data block

Relation to Data,
see the Data block

Relation to Clip,
see the Data block

Relation to Data,
see the Data block

 

Figure 13 Relational scheme of block Time. 



 30 

sheer amount of times would cause difficulties. Logging GPS positions 
every second during a 7 day mission would cause some 600 000 records 
with time information. Despite the latter we designed the time table as 
straightforward as possible through a table containing dates and time down 
to 1 millisecond. This is the default time format used by most database 
systems. 

We are aware of the fact that this may not be the best solution. Performance 
analysis of different time representations should be done as soon as enough 
data has been collected and the outcome should be used for a discussion on 
possible alternatives to our system implementation. 

 



 31 

2.4.3 Sub block: Data 

Data collected throughout all exercises and operations are stored in this 
block. Like the Objects blocks, see section 2.3.1, different classes of data 
have their own tables inheriting from the main table data. The model 

Binary

PK,FK1 ID

Blob

Media

PK,FK1 ID

DataAttribute

PK,FK1 ID

Name
Data
Type

Clip

PK ID

Blob
FK1 MediaID

IntervalID

Coordinate

PK,FK1 ID

PositioningSystem
X_Cardinal
X_Value
Y_Cardinal
Y_Value
Z_Value

Data

PK,FK3 ID

DataFormatID
FK1 ParentDataAttributeID

CreatedTimeID
ChangedTimeID
ValidIntervalID
ValidTimeID

Relation to
ActiveObjectMNData,

see the ActiveObject block
DataFormat

PK ID

U1 Format

Relations to Time,
see the Time block

Relations to Interval,
see the Time block

Relations to DataMNMetaData,
see the Metadata block

 

Figure 14 Relational schema of block Data. 



 32 

support storing binary large objects, blobs, like audio- and video files. 
These multimedia files may also be analyzed and split into fragments of the 
original files. In this way portions of the file that an operator find 
irrelevant, can be removed and the storage need decreased. Of course this 
should be used with caution since information that seems irrelevant to one 
operator can be important to another. 

As for objects, the framework allows new tables to be added for modeling 
future data collection needs, but most types of data should be storable using 
the aggregate relation to DataAttribute. With this relation a composite data 
object can be created where every component itself is a data object of some 
sort. This is usable for instance when storing PIX data, which basically is a 
composition of a photography and a coordinate (describing where the 
picture was taken). 

Another important feature is the data format table which holds information 
on how to parse the data. Example may be MPEG-4 which lets the client 
know that a certain blob is in fact a video stored in the MPEG-4 format. 



 33 

2.4.4 Sub block: Metadata 

Meta data is information about other data. In this model it may for instance 
be notes from an analysis of a sample of data. As an example, information 
about who is the transmitter on a recorded radio network can be entered as 
metadata by an operator. Our model supports both simple textual notes and 
relations to other database entities via the metadata table. One example of 
an analyzing tool that produces metadata is the Metadata Workbench 
(Albinsson, Morin & Thorstensson, 2004). The metadata is modeled in 
MIND, using this tool. However, since the Metadata Workbench has no 
interface to the database, we have not been able to test our model using it. 

With this model data can be collected by an active object, then analyzed 
and metadata that point to another active object can be created. In the 
example above this can be used to relate the transmitter, who is regarded as 
an active object, to the metadata record. It is also allowed to store metadata 

MetaData

PK ID

Author
Note

FK1 ParentMetaDataID

MetaDataActiveObjectInterval

PK ID

FK1,U1 MetaDataID
U1 IntervalID

ClassificationID

DataMNMetaData

PK DataID
PK,FK1 MetaDataID

MetaDataInterval

PK ID

FK1,U1 MetaDataID
ClassificationID

U1 IntervalID

ActiveObjectMNMetaDataActiveObjectInterval

PK ActiveObjectID
PK,FK1 MetaDataActiveObjectIntervalID

Relation to Interval,
see the Time block

Relation to Interval,
see the Time block

Relation to Data,
see the Data block

Relation to ActiveObject,
see the ActiveObject block

Relations to Classification,
see the Classifications block

 

Figure 15 Relational schema of block Metadata. 

 



 34 

on the metadata if, for instance, an operator disagrees with the previous 
operator or has more input related to a previous note. 

2.4.5 Sub block: Classifications  

The classifications block is only used by, and related to, the metadata 
block. An operator may classify data in a certain way, for instance an 
operator listening to an audio recording may decide that this audio 
recording can be classified as an order. Another classification example 
would be to grade the quality of the sound on a scale from one to five. 

To simplify the work for the operator there are also classification schemes 
which organize the classifications even further. There may for instance be a 
certain scheme consisting of ten particular classifications that may be used 
when analyzing video recordings. Organizing these into a predefined 
scheme will simplify the work for the operator. Note also that 
classifications may be organized hierarchically, supporting both detailed 
classification as well as summary classifications (Albinsson & Fransson 
2001). 

Classification

PK ID

Label
FK1 ParentClassificationID

ClassificationScheme

PK ID

Name
FK1 ParentClassificationSchemeID

ClassificationSchemeMNClassification

PK,FK2 ClassificationSchemeID
PK,FK1 ClassisficationID

Relation to
MetaDataInterval,
see the Metadata

block

Relation to
MetaDataActiveObjectInterval,

see the Metadata block
 

Figure 16 Relational schema of block Classifications. 

 



 35 

Chapter 3 
Selection of database management system 

As part of this thesis project we have conducted an analysis of some 
common database management systems (DBMS) that exist today. In the 
analysis we have examined both commercial DBMSs and their open source 
counterparts. We have also examined differences between relational 
database management systems (RDBMS) and object oriented database 
management systems (ODBMS). Our conclusions about the different types 
are described in the corresponding sections below.  

3.1 Relational Database Management Systems 

RDBMSs are very common these days. There are many well known 
commercial systems like Microsoft SQL Server1. There are also some very 
interesting open source systems like Firebird2 and MySQL3. 

The RDBMSs are characterized by the Entity-Relation concept. The 
database consists of tables where every row is an entity identified by a 
primary key. By referencing these primary keys entities can have 
relationships to each other. This solution is very flexible and gives us a 
very loose coupling between the different data types.  

Another strong feature of the relational approach is that the concept is well 
tested and has been used for many years. RDBMSs are also well-
conformed to the ANSI standards4. 

                                           

1 See URL: http://www.microsoft.com/sql/default.asp 

2 See URL: http://firebird.sourceforge.net/ 

3 See URL: http://www.mysql.com/ 

4 American National Standards Institute, see URL: http://www.ansi.org 



 36 

3.2 Object-Oriented Database Management Systems 

ODBMSs are designed to work well with object programming languages 
such as C#, C++, and Java. An ODBMS makes database objects appear as 
programming language objects in one or more existing programming 
languages. ODBMSs extend the object programming language with 
transparently persistent data, concurrency control, data recovery, 
associative queries and other database capabilities.  

The main benefit using an ODBMS with an object oriented application for 
modelling DTOs would probably be that objects would not require 
assembly or disassembly during execution time. The main problem with the 
ODBMS is that the standards are not considered as stable as the RDMBS 
and are therefore more likely to change. This is a problem because a 
modification to the standards can make old data incompatible with newer 
versions of the system. It should be noted though that ODBMSs are 
catching up in terms of maturity compared to RDBMS and vendors are 
stating that their ODBMSs are operating at many times the speed of 
traditional RDBMSs. 

According to Elmasri and Navathe (Elmasri & Navathe, 2000) mapping 
binary relationships is not straightforward in object oriented databases, 
since the designer must choose in which direction the attributes should be 
included. If they are included in both directions redundancy in storage will 
exist and may lead to inconsistent data. 

Another disadvantage of the ODBMS is that the operations for each object 
is included in the model and must thus be included in the design in an early 
stage. With an RDBMS this is not as critical and the operations can be 
added on at any stage. (Elmasri & Navathe, 2000) 

3.3 Object-Relational Database Management Systems 

An Object-Relational Database Management System (ORDBMS) is in fact 
an ordinary RDBMS with an object oriented front-end. Data is accessed as 
though they were stored as objects but the system implicitly converts data 
to and from RDBMS format. The consequence of using this form of DBMS 
is that the programmer needs to produce less code to get a system up and 
running, but performance will be degraded compared to a conventional 
RDBMS because of the extra conversion steps. 



 37 

Some well-known ORDBMSs on the market are the commercial Oracle5 
and the open source alternative PostgreSQL6. 

3.4 Selecting conceptual database management system 

Due to the time constraints of this project we had to quickly decide on 
which concept to use for this model. Our choice was to go for the relational 
databases (or object-relational ones) because we knew what to expect from 
them, they have stable standards and they are well documented. Another 
reason for not choosing an ODBMS is that we need to access binary 
relationships in both directions, which can be complicated in an object 
oriented database. 

Our analysis showed that even though performance is not as good as with 
object oriented databases it should be enough since the database is mainly 
to be used as a component in after-action visualization tools like MIND and 
thus the time constraints are not that critical. The initial analysis showed 
that loose couplings between objects is a necessity in order to create a 
model general enough to cover all requirements the MIND research team 
has and to allow further extensions and modifications. Entities and relations 
are well suited to implement this kind of loose couplings. 

3.5 Requirements on the database management system 

After we decided to use the well known relational systems we had to decide 
which particular database engine to use. Parameters that we weighed in the 
decision are costs, performance and programming environment.  

When we conducted the comparison we identified some attributes of the 
engine that we considered vital to our project: 

• Supported platforms. Even if the current development platform is 
Windows, there is no reason to stick to Windows when choosing 
database engine. Since we use a client-server model, we should be 
able to use different platforms for the client and the server. 

                                           

5 See URL: http://www.oracle.com/database/ 

6 See URL: http://www.postgresql.org/ 



 38 

• Maximum size of database. Since the database will contain a lot of 
multimedia data it is important that the DBMS is capable of handling 
very large datasets.  

• Maximum BLOB size. The DBMS must be able to handle very 
large BLOBs (Binary Large Objects) since the dataset is likely to 
include many large video and audio clips. 

• Supported DateTime datatype. After discussions with the MIND 
research group we found that in the future at least a precision of 
1/100 of a second may be necessary when dealing with time in 
different operations. The DBMS must thus be able to handle time 
with a precision of 1/100 of a second or better. 

• Supported languages. Since we want to build applications 
independent of the underlying database it is important that the 
database engine supports a standardized variant of the SQL 
language, like ANSI SQL-92. 

• Application connection. Since we wanted to use a client-server 
approach connecting to the database it is vital that the DBMS and 
our application development environment support a common 
connection interface. 



 39 

In the tables above we have recorded some desired information for each 
database engine we have examined. The information is collected mainly 
from Internet resources (Bohuszewicz  et al., 2003; Fermi National 

Database engine supported LanguageS Application connection 

Firebird SQL-92 Entry ODBC, JDBC, C/C++, PHP 

SQL Server 2000 T-SQL, SQL-92 Entry ODBC, OLEDB 

DB2 v8.1 DB2 SQL, SQL-92 Entry JDBC, SQLJ, J2EE, ODBC, XML, OLEDB 

Oracle v9i PL-SQL, SQL-92 Entry ODBC, JDBC, PHP, ORAPERL, XML,  
many more 

Postgre SQL SQL-92 Intermediate ODBC, JDBC,C/C++, Embedded SQL (in 
C), Tcl/Tk, Perl, Python, PHP 

MySQL v4.1 MySQL, SQL-92 Entry ODBC, JDBC, C/C++, OLEDB, Delphi, 
Perl, Python, PHP 

Jet (Access) Jet SQL ODBC, OLEDB 

Table 2 Supported languages and connection types for different RDBMS. 

 

Database engine supported Platforms Database size Blob 
size 

Time 
Support 

Firebird Linux, Unix, Windows 32 TB 32 GB 1/100 s 

SQL Server 2000 Windows servers 1,048,516 TB 2 GB 1/1000 s 

DB2 v8.1 Linux, Unix, Windows N/A 2 GB 1/1000000 s 

Oracle v9i Linux, Unix, Windows N/A 4 GB 1/1000000 s 

Postgre SQL Linux, Unix N/A Ext store 1/1000000 s 

MySQL v4.1 Linux, Windows, Unix OS dependent 4 GB 1 s 

Jet (Access) Windows 2 GB + links 1 GB 1 s 

Table 3 Storage capacities of different RDBMS. 

 



 40 

Accelerator Laboratory/Computing Division, 2003; Microsoft Inc, 2004; 
Chigrik & Vartanyan, 2004). 

Note that the Jet database engine used in Microsoft Access is included in 
the comparison. We included this DBMS because it is a very common tool 
that many readers may have experience of. However we excluded it from 
our list of alternatives in an early stage since the Jet engine lacks client-
server model capabilities and possibilities to store large amounts of data. 

From the tables we can conclude that most RDBMSs could be used in our 
project, with the exception of Jet which is limited to 2GB databases, which 
certainly is not enough for this project. Most DBMSs of today are very 
powerful if setup correctly. Almost all of the systems can store very large 
amounts of data and some do not have a limit at all. There are several 
corporate examples of Terabyte sized databases using the systems 
described above. Therefore we believe it is more vital that the developer of 
the system is accustomed to the DBMS to fully exploit the potential of the 
database engine than decide to use a DBMS based on technical differences. 
Our intention is also to design the project in such a way that a more 
thorough investigation of different DBMSs and their effect on performance 
is possible with a minimal amount of extra work. 

 

Figure 17 Designing the MIND database in SQL Server Enterprise manager. 

 



 41 

3.6 Implementation of the database 

3.6.1 Platform 

Facing the fact that the MIND system is developed for the Windows 
platform, we argued that we initially should choose an engine that 
supported this operating system. In the developing stage we also prioritized 
cheap solutions since we did not expect the choice of DBMS to be final. 

Comparing performance and storage capacities we found that all of these 
systems should be able to handle the workload. Our choice was influenced 
by which products were locally available at our department, which ones 

 

Figure 18 Manipulating the database via MS Access through an 
ODBC connection to the SQL Server 2000 database. 

•  



 42 

were easy to work with and which ones we had most experience of. Since 
we also stated in an early stage in the project that it should be easy to 
change database engine in the future, we felt that our choice was not crucial 
at this time.  

Finally we decided to build our system in Microsoft SQL Server 2000 
(development edition) since it was available to us via a department license. 
It also had an integrated working environment which allowed us to quickly 
get started. 

3.6.2 Implementation tools 

We implemented the database strictly according to the data model 
described in chapter 2.2. This was performed in one of the SQL Server 
tools, the Enterprise manager, which is a graphical tool that allows the user 
to quickly set up a database.  

The drawback of using this tool is that we are reliant upon Microsoft export 
routines for exporting the database when wanting to recreate it in another 
database engine. Another solution would have been to create a script file 
with SQL commands that generates the database schema when run. 

3.6.3 Design choices 

The following design choices were made during the implementation: 

• All tables, attributes and relations should be created with names 
according to the data storage model. This makes it easy to relate the 
database structure to the model. 

• Many-to-many (MN) relations should be implemented as separate 
tables using the name convention <first table>MN<second table>. 
The MN table primary keys should consist of the two foreign keys 
from the tables involved. Using standardized conventions makes it 
easier to program general interfaces and applications. 

• All non MN tables should have auto number primary keys called ID. 
Using primary keys logically separated from the data should be 
stored eliminates the possibility of editing the primary key.  

• Null should not be allowed unless explicitly necessary. This reduces 
the need to allocate storage space and easier to deal with entities 
from a programmatic point of view. 



 43 

• Unique constraints should be added wherever applicable. This to 
avoid logical conflicts. 

• Heritage should be modeled as EER specializations (Elmasri & 
Navathe, 2000). The special attributes needed are stored in a child 
table with a relation to the ordinary parent table. 

• Referential integrity rules should be set up for tables with heritage. If 
the object from the special table is removed, it shall also be removed 
from the parent table.



 44 



 45 

Chapter 4 
The application framework 

To simplify the process of building applications using the data storage 
facility described in the previous chapters, we designed a framework of 
modules and components that interoperate with the DBMS. After an initial 
analysis together with the creators of the MIND system, we defined three 
main uses of the database: setting up conceptual models and 
instrumentation plans, importing collected data and exploring stored 
mission histories. These main use cases where the basis on which we 
designed the application framework. 

The main motivation for building such a framework instead of building 
specialized applications that interoperate directly with the DBMS is to 
simplify and encourage application development. Using an object oriented 
mapping of the relational scheme in the database makes it more natural to 
work in object oriented languages. Another reason for the development of 
this framework is to allow reuse of code; we found many functions that 
theoretically could be used in similar applications operating on the 
database. With a common framework these could be inserted into separate 
modules and reused. 

4.1 Design goals 

The main design goals of the framework were set up during the initial 
design process. The most important features of the desired framework were 
extendibility, generality, concurrency control, information hiding, 
independent layers, simplicity and real time support. Each of these goals is 
described more thoroughly below. 

4.1.1 Extendibility 

It is very likely that the database schema will change over time when new 
needs and potential use cases are discovered. The database application 
framework must therefore allow the user to modify and extend the database 
schema. 



 46 

4.1.2 Generality 

It is likely that new applications are discovered that should be able to 
operate, with or without modifications to the database schema. The 
framework must therefore be general enough to allow new innovative ways 
of exploiting the database. Even though MIND connectivity has the highest 
priority, the framework should not be designed solely for a particular 
application. 

While it is important enough to keep the model general at the top, it should 
also be general at the bottom. Even though the model was only tested using 
Microsoft SQL Server 2000, the framework should support other DBMSs 
as well. 

4.1.3 Concurrency control 

Multiple clients must be able to work concurrently with the database. The 
application framework should therefore be able to handle concurrency in a 
well defined manner. 

It is important to remember that one application may consist of several 
threads, each operating as a client towards the database, therefore the 
framework must also be thread safe. 

4.1.4 Information hiding 

From a programmer point of view the database structures need not be 
visible. By using layers and abstraction the framework strive to give the 
programmer access to the information without the programmer needing to 
know where it really exists. This can be achieved if presenting an abstract 
interface, preferably object oriented, towards the data by which the 
programmer retrieves and stores data. 

4.1.5 Independent layers and modules 

The framework should consist of several layers that work more or less 
independently of each other, communicating via public interfaces. These 
layers must be easy to replace. Every layer should also consist of one or 
more modules which package data types and functionality with similar 
purpose. The purpose of packaging functionality like this is to simplify 
reuse of certain parts of the framework and to simplify maintenance. A 
module can easily be replaced in the framework simply by replacing it with 
another module providing the same interfaces. 



 47 

4.1.6 Real time support 

The possibility to explore DTOs in real time could greatly simplify the 
work for decision makers. This goal was discussed and has been kept in 
mind during the entire design process, but it has not actively been designed 
for since the currently implemented applications are intended for after-
action reviews with no priority on real-time support. 

4.2 Design model 

4.2.1 4-tier architecture 

Our model is based on the 4-tier architecture (Moniz, 1999) which is 
illustrated in figure 19 above. In a 4-tier architecture, all of the data storage 
and retrieval processes are logically located on a single tier, the Data Tier. 
In our case this is simply the DBMS and the database. 

Database

Database Proxy

Datatypes

Manipulation

AudioCoordinate
logs

PIX logs

Import

MIND

Export

Coordinate ImporterMission Setup Tool

Presentation Tier

User Centric Tier

Data Centric Tier

Data Tier

 

Figure 19 Layers and modules of the developed application framework. 

 



 48 

All requests to and from the DBMS are then routed via the Data Centric 
Tier which gives the programmer an interface towards the data. 

The User Centric Tier is the tier actually requesting data via the Data 
Centric Tier. It can be seen as a router between the Presentation Tier and 
the Data Centric Tier. This tier includes the algorithms for determining 
what data to request and present. The Presentation Tier then presents and 
receives information from the user. 

4.2.2 Modules 

Each layer in the 4-tier architecture consists of one or more modules as 
illustrated in figure 19. Each module is independent in such a way that it 
can be replaced with another module without interfering with the rest of the 
modules as long as the new module implements the specified interfaces by 
which the other modules access it. 

The two modules in the Presentation Tier correspond to two different 
applications developed as part of this project. They are discussed further in 
the application section, see chapter 7. The modules in the User Centric Tier 
contain the real algorithms of the framework. The Manipulation module 
concern data organizing, editing and other manipulation that can be done 
prior to, or after, collecting data from a mission. It is mainly used to setup 
the conceptual models and instrumentation plans. 

The Import module is used to import collected data into the database while 
the Export module is used to export data from the database for exploration. 
The export module is implemented as a COM component which is 
referenced by a modified version of the MIND framework. MIND then 
accesses the data in the database via the application framework and can 
recreate selected samples of the mission histories. 

The Data Centric Tier provides an object oriented abstraction of the data in 
the database. All access to any entities is run via the Database Proxy which 
handles concurrency and thread safety to avoid database conflicts. 

The Data Tier consists solely of the database and the DBMS. The database 
might be located on a different machine and the server is automatically 
accessed through the Database Proxy via the network. 

A more thorough description of the modules and their implementation can 
be found in chapter 6. 



 49 

4.2.3 Extending the model 

The model is not supposed to be complete. Extending the model with more 
modules is a necessity that was kept in mind when designing this 
framework. The User Centric Tier is the tier in which most work needs to 
be put. Developing more import and export functions to allow integration 
with more of the currently used tools for data handling is highly advised. 
For instance importing video data is something that the Mind framework 
currently supports, and so should the database framework. Exporting to 
other formats such as Microsoft PowerPoint and HTML is also a desired 
extension. 

We have identified several more applications that may be developed. Every 
new application is likely to result in at least one new module in the 
Presentation Tier. The lower tiers (Data and Data Centric) should not need 
any extensions. They are fairly static and need to be changed only when the 
database schema is edited (edit the Datatypes module) or when another data 
access method is desired (edit the Database Proxy module). 

4.2.4 Building applications 

Applications are built within the User Centric and the Presentation Tiers. 
The User Centric modules should contain tools for performing data 
manipulation, import and export. The applications are then built by tying 
these tools together via a user interface in the Presentation Tier. 

4.2.5 Alternative solutions 

The selected model is rather straightforward and suits our needs perfectly. 
The model was found very powerful and still with much freedom to 
experiment. Many of the modules can be implemented in several ways. It 
would even be possible to implement the Data Centric Tier as a service 
running on the same host as the database. The 4-Tier model above allows 
this since the only necessary changes would be within the Data Centric 
module. 

We discussed the alternative of implementing stand-alone applications 
without a framework. We would gain some benefits such as increased 
performance and the ability to adapt the database mapping as best suited 
for each application. This approach can still be undertaken if special needs 
occur for any application. 



 50 

4.2.6 Maintaining the framework 

One important feature of the framework is that it must allow the schema of 
the database to be altered since the database is primarily to be used for 
research. It is impossible to foresee all possible applications and needs that 
could affect the design of the database.  

With our object oriented representation of the database with entities as 
classes this would not be very easy to maintain manually. Every little 
change in the database might influence a lot of code in the framework. To 
simplify the maintenance a code generator was constructed. The code 
generator automatically fetches the schema from the database and generates 
the core of the framework. After editing the structure of the database the 
code can thus easily be updated by regenerating the code. Minor 
modifications to the upper layers might still be necessary if the 
modifications affected the external interface as well. Still, this should be 
much less time consuming then revalidating the entire core. 

 



 51 

Chapter 5 
Implementation techniques 

During this project several implementation techniques had to be 
investigated to find the best solutions to given problems. In this chapter we 
describe how the system was implemented by presenting the programming 
environment in which we work and how the DBMS was integrated into the 
application framework. 

5.1 Programming environment 

The programming environment mainly used for this project is Microsoft 
Visual Studio .NET 2003 and Microsoft C# .NET 7. 

5.1.1 Platform 

When this thesis was written the latest version of the MIND framework 
that was available is written for Windows using Visual C++ and COM. 
One of the primary goals with this project was integration with MIND. 
Therefore we needed a programming environment which was fairly easy to 
make compatible with COM. Early investigations showed that a native 
COM or .NET environment was to be preferred. 

Since our framework should be used as a platform for many different 
projects we wanted to focus on creating an easy-to-use API which is easy 
to extend and work with. The modern .NET framework has a very 
programmer-friendly API and the structure of it is more natural to most 
programmers than the COM approach. 

5.1.2 Programming language 

Any of the languages supporting the .NET framework could have been 
selected, but we have chosen C# since we found it very well integrated 
with .NET and easy to work with. 

                                           

7 For information about Microsoft products and concepts see URL: 
http://msdn.microsoft.com/ 



 52 

Some modifications to the MIND framework were made in Visual C++, 
see chapter 8.  

5.1.3 Programming IDE 

Using Visual Studio .NET 2003 felt rather natural to us since we had 
chosen to work with .NET and C#. This IDE has many attractive features to 
a .NET programmer which essentially simplified our work, see figure 20. 
For the MIND modifications, we used Visual Studio 6.0. 

5.2 Interoperability 

When we had decided to use .NET as the main platform for our 
implementation we needed to solve the issue of interoperating with the 
MIND framework which is based upon COM. There are two ways for 
doing this, either by using COM object from .NET or the other way around. 
We examined both methods to find the best suited solution for our project. 

 

Figure 20 Using Visual Studio .Net 2003 to design the GPS log importer GUI. 

 



 53 

Based on our findings, presented in appendix D, we chose to create COM 
components using .NET to interconnect the database framework with 
MIND. 

5.3 Database integration 

The core of our framework is of course the database. Integration with the 
database is therefore very important to our task. .NET supports the database 
connection API OLE DB, which has been used for a long time and 
therefore can be expected to be thoroughly tested. OLE DB came as a 
natural choice to us because of its stability and extensive documentation. 

There is also an alternative connection method designed by Microsoft to 
operate with SQL Server. This solution is reported to improve performance 
but was not selected because it would tie the framework to SQL Server 
since no other DBMS currently supports it. 

5.3.1 Selected solution 

OLE DB is operating in a disconnected mode which means that all 
operations are executed on a local copy of the database and not committed 
until the user specifically requests a commit. This ensures good 
performance locally, but the programmer will never be certain that the data 
he is operating on is still valid unless he uses transactions. This solution 
does not fit well with our attempt to hide the database and its 
implementation from the application framework. 

One solution was to simulate connected mode by using transactions to 
retrieve the latest value every time a value is requested from the database. 
This is also the solution we selected as the first one to try out in this 
project. The main benefit of the above solution is that the local data will 
always match the database data when used. Another important benefit is 
that this solution allows us to create a framework where the database is 
completely hidden from the programmer. 

A drawback is that the suggested solution is very slow. All access to any 
data in the database requires at least one (sometimes many more) queries to 
the database. Tests have also showed that this may introduce a heavy load 
on the network, even on a 100 Mbps Ethernet network between the 
database and the client, the network proved to be main bottleneck in some 
applications. Another drawback is that from a single client point of view 
the data model may seem to be undeterministic since one entity may 



 54 

change between two instructions if another client modifies data while the 
first client is doing something else. It is of course possible to lock an entire 
section of data, but with a complex model like this one it comes with a risk 
of large chunks of data being locked for a long time and in the end 
deadlocks are likely to occur. 

5.3.2 Suggested improvements 

While the model outlined tries to simulate connected mode to always 
ensure the latest value is retrieved from the database, this might not always 
be necessary. In some situations we might simply not care whether the data 
is the current data or the data 10 seconds ago. If this is the case, then it 
would be enough to work in a disconnected mode. Simply adding an option 
for the programmer to go disconnected would be an alternative that would 
improve a lot of applications in terms of speed. This solution would be 
fairly easy to implement, however with this solution we would be back to 
were we started, i.e. the programmer needs take care of any concurrency 
control. 

Another model that was suggested was to create a service that is always 
connected to the database and to which the clients may request 
subscriptions to the database. When data is updated the service will then 
notify those clients that are interested in this data. A solution like this 
would probably make the framework a little more complicated and it would 
certainly not be as easy to implement as the suggestion above. Still, it is our 
recommendation that this solution is the way to go when improving the 
application framework. It should also be noted that the service should be 
executed on the same server as the database is running on to reduce 
network load. 

 



 55 

Chapter 6 
Implementation of the application framework 

The application framework is designed as a platform on which applications 
for reconstruction and exploration of DTOs can be built, see chapter 4. This 
chapter is a brief specification of the implementation of the framework. 

6.1 Requirements 

Most requirements on the application framework are in reality requirements 
on the design. Still, a few of the design goals, such as simplicity, need to be 
taken into account also for implementation of the framework. Apart from 
these design goals, the following requirements are set up for the 
implementation:  

6.1.1 Object orientation 

The framework is written in an object oriented language to allow desired 
features such as inheritance and interfaces. The mapping between the 
relational schema and an object oriented model is straightforward and 
implemented in accordance with the method described in (Elmasri & 
Navathe, 2000). 

6.1.2 Modularity 

The modules identified in the design are implemented as separate modules 
or projects. Each of the modules should correspond to one library which 
should be tested separately and regarded as an independent component of 
the framework. This solution simplifies the process of building additional 
extensions to the framework as new modules are ready to be plugged in 
without the need for any modifications to the original framework. 

6.1.3 Relocability 

It should be easy to distribute new, or replace old, modules in an existing 
installation of the framework. Allowing the administrators to add modules 
simply by installing extra content on the previous release will simplify 
future maintenance as modules are likely to be added or changed. 



 56 

6.1.4 MIND compatibility 

As MIND is the main research tool used for DTOs and command and 
control analysis, the process of evaluating the application framework is 
greatly simplified thanks to the possibility to export data from the database 
to MIND via the framework. 

6.1.5 Implementation language 

The selected programming language for the application framework is C#. 
This language is selected due to the fact that it is very nicely adapted to the 
.NET framework and that it resembles popular languages like Java and 
C++. 

6.2 Data Centric Tier 

6.2.1 Database Proxy 

The implementation of the database proxy is very central to the entire 
framework. The proxy provides a fairly easy-to-use interface towards the 
Data Tier. This class reads a configuration file and extracts data about the 
database from it. This data is then used to set up an ODBC connection via 
the .NET OLE DB classes towards the database through which all the 
communication with the database is sent. 

6.2.2 Data types 

For each entity in the database there is one data type class. The columns in 
the tables are mapped to properties in the corresponding classes. Foreign 
keys and MN relations are mapped to collections of the target data type. A 
complete description of the mapping schema used can be found in (Elmasri 
& Navathe, 2000). 

Every access to a property of any data type is routed to the database via the 
Data Tier and the result is then returned to the user. The constructor of each 
data type is designed to automatically create a row in the corresponding 
table each time the class is instantiated. This means that all objects are 
automatically persistent, without the need for any particular user 
interaction. 

6.2.3 Data type generator 

The mapping between the entities and the data types is very static and 
instead of writing every construct manually, we decided to create a data 



 57 

type generator that does the work for us. The data type generator connects 
to the database and fetches the schema; it then produces the code needed to 
generate the DataType module. This approach gives the benefit that we 
only need to rerun the generator and recompile, after the database schema 
has been altered, to keep the framework synchronized with the database. 
Maintenance is thus largely simplified by the use of a data type generator. 

6.3 User Centric Tier 

6.3.1 Manipulation 

The manipulation module contains several functions for manipulating the 
data in the database in some more or less complex ways. The module 
currently consists mainly of algorithms that are supposed to be used by the 
Mission setup tool, but this module is intended to grow as more 
applications are developed. 

6.3.2 Import 

The import module contains common functionality for the log file 
importers, such as a small framework for parsing XML files and structured 
storages8. The module is very small and likely to grow as more data 
formats are imported into the database. 

6.3.3 Coordinate log import 

All specific functionality for importing coordinate log files, such as the 
ones generated from GPS logs (appendix C), is found in the Coordinate log 
import module. The XML reader framework from the Import module is 
used to parse the file and the DataType module is used to store the data in 
the database. The module is an example of a module used for data 
collection. Many similar modules can easily be built to import other types 
of collected data, the PIX and Audio log import modules described below 
are two such examples. 

6.3.4 PIX log import 

PIX (Morin, Jenvald, Nygren, Axelsson & Thorstensson, 2003) is a tool 
developed by the MIND research team for creating log files with metadata 

                                           

8 See URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/stg/stg/structured_storage_start_page.asp 



 58 

for digital cameras. The log files include information such as when the 
picture was taken, who shot it, notes and more, see appendix D. The PIX 
log import module work in the same way as the Coordinate log import 
module, i.e. by parsing an XML file and storing the data in the database. 
The main difference here is the storage format. The coordinate logs are 
fairly easy to store in our model as there is a specific coordinate table in the 
schema. PIX data on the other hand, is treated as an aggregate of 
photographs and coordinates which complicates the storage procedure. 

6.3.5 Audio log import 

The audio log files are currently stored as structured storages, and thus 
have to be parsed as such. The Audio log import module therefore uses the 
structured storage features of the import module to retrieve the sound 
recordings and then stores the sound as clips in the database. 

6.3.6 Export 

The export module is currently empty, but it is supposed to contain 
common functions that are needed for exporting data from the database to 
external formats. 

6.3.7 MIND export 

The MIND export module contains a few functions adopted for exporting 
data to MIND via a COM interface. 

6.4 Presentation Tier 

Two main tools where developed in the presentation tier, below is a brief 
description of the modules while the applications themselves are further 
described in chapter 7. 

6.4.1 Coordinate log importer 

The coordinate log importer is a simple graphical front-end to the 
Coordinate log import module found in the Data Centric Tier. More 
information about the Coordinate log importer can be found in section 7.1. 

6.4.2 Mission setup tool 

The mission setup tool contains a graphical user interface with which the 
user may build an organization hierarchy before any mission. The main 
focus is usability; the GUI should be intuitive and easy to use to simplify 



 59 

the work for the user. This tool is the main tool used to set up the 
conceptual model and the instrumentation plan before the data collection 
phase. More information about the mission setup tool can be found in 
section 7.2. 

6.5 Testing applications 

We tested the lower tiers thoroughly after each of the implementation 
phases in accordance with the spiral approach described in section 1.3. To 
test the user centric and presentation tiers and verify their functionality, on 
the other hand, we built specialized applications that used the most 
important features of these modules. 

Apart from the specific tests described below, we have performed several 
tests to measure performance and verify thread safety for instance. We do 
not claim to have tested the entire framework, but our tests indicate that it 
is fairly stable.  

6.5.1 Manipulation 

We have mainly tested the manipulation module using the mission setup 
tool described in chapter 7. The tests showed that conceptual models and 
instrumentation plans can easily be built for several scenarios in the army, 
naval and rescue operation domains. 

6.5.2 Import 

The coordinate and PIX log import modules are tested thoroughly to verify 
the data collection part of the database. Data can successfully be imported 
to the database and linked to the instruments that collected the data. Apart 
from these tests, we have written several simple programs to test specific 
features of the framework, such as image retrieval and storage. 



 60 

6.5.3 Export 

The MIND export module provides an excellent tool to test the entire 
framework and data model since one of the primary goals is to create a data 
storage concept which can be used together with MIND. We modified the 
core of the MIND framework to successfully import the data stored in the 
database. We have also reconstructed several operations in MIND, 
including a helicopter wing flying over central Linköping in March 2003 
and a fictive mission where a battle tank squadron and a helicopter wing 
are maneuvering in central Stockholm, see figure 21. The MIND 
modifications are further described in chapter 8. 

 

Figure 21 This scenario was recorded in central Stockholm, Sweden 
and has been stored in the database. On this picture it has been 
recreated and is being reviewed in MIND using the application 
framework to access the database. 

 



 61 

Chapter 7 
Applications 

An analysis together with the MIND research team led to the description of 
several different applications needed to reconstruct and explore DTOs 
based on the data model defined in chapter 2. We identify the need for tools 
for building conceptual models and instrumentation plans, for importing 
collected data files and for exploring and analyzing the mission history. 

Before this project MIND was used for all these steps, with main focus on 
the exploration step. We still use MIND for this exploration by adding a 
simple connection to the database. For the reconstruction phase though, we 
choose to develop new applications since we believe it is currently very 
complicated to implement the database connection for these tasks in 
MIND. We are also building simple tools for importing collected data since 
these tools are easy to create and thus they provide quick verification of 
certain portions of the system. 

Having built these applications and the connection to MIND, described in 
chapter 8, we have the tools for demonstrating the entire flow from 
modeling a DTO to the exploration of the recreated mission history. 

7.1 GPS log importer 

The GPS log importer is the first tool that we developed for operation with 
the database. The GPS logs were selected because of their straightforward 
structure and because of the large amount of GPS logs available at the 
Swedish Defense Research Agency. 

Originally the GPS log importer was used to test whether the parts related 
to storing and retrieving data and coordinate entities are useable, but the 
importer is also a much needed tool in itself. Almost every data is 
somehow related to a position, and many observers or participants of a 
mission are equipped with GPSs, so we can assume that large quantities of 
coordinates are going to be stored in the database and tools like this one 
will be frequently used. 



 62 

7.1.1 Implementation 

The GPS log importer is implemented in C# .NET using the application 
framework. The implementation consists of a module in the user centric 
tier containing algorithms for parsing coordinate log files in XML and a 
user module containing the GUI by which the operator interacts. 

7.1.2 Usage 

When the GPS log is started the user selects a file containing the data to 
import. After this the user is presented a simple graphical view, in which 
the user may select a GPS receiver to which the data will be attached. To 
make it easier for the operator to know which GPS receiver to chose, the 
current holder of the selected instrument is presented in a separate textbox. 
After this setup the operator may choose to import all log entries from the 
file or select those that fall within a certain time span. 

 

Figure 22 Importing positions with the GPS log importer. 



 63 

7.1.3 Results 

The GPS log importer tool is very useful to test the benefits of using the 
application framework; we built the application very quickly and were able 
to quickly find, and correct, some weaknesses of the framework. We also 
found that many of the data types in the DataType module where rather 
impractical to use. A direct consequence of this is that we introduced data 
type helpers which are functions that may be used to simplify the use of 
some complex data types. Example functions are the RT-90 and WGS-84 
coordinate constructors which simplify the creation of such coordinates. 

7.1.4 Extensions 

We have identified many useful extensions to this tool that would increase 
the usefulness of it. Allowing the operator to add offsets and manipulate the 
data before importing it is one of the most simple and important extensions. 
Adding support for filtering data based on certain criterions and to simplify 
the user interface are others. Another possibility is to integrate data import 
functions like this in the mission setup tool, see chapter 7.2, or add the 
mission tree structure in a view which would make it easier to relate 
positions to the right object. 

7.2 Mission setup tool 

The mission setup tool is used to create conceptual models and 
instrumentation plans for missions. These are usually set up prior to a 
mission and form the basic structure of the organization behind an 
operation. 

While the tool is a useful product in itself it also provided an excellent way 
of testing complex relations in the data model and how the object oriented 
mapping in the framework worked in reality. The process of implementing 
this tool led to several redesigns of the framework. 



 64 

7.2.1 Implementation 

The mission setup tool is implemented in C# .NET using the application 
framework described in chapter 4. The implementation consists of a user 
module containing the GUI through which the operator interacts. All 
interactions are passed on to a second module in the user centric tier which 
interacts with the proxy. This architecture makes it easy to change GUI 
since all methods for manipulating data are found in the lower layers.  

The GUI consists of six independent forms which use the docking 
capabilities found in many Windows applications. The mission setup tool 
was developed mainly as a tool to verify the data model and the application 
framework. As a stand-alone application it is not considered complete. For 
example, not all of the inherited objects classes are implemented in the 
Atomic Building Blocks form and the use of dynamic attributes is not 
supported. 

 

Figure 23 Modeling a fictive operation with the mission setup tool. 

 



 65 

7.2.2 Usage 

When the mission setup tool is started the six forms described in figure 24 
are displayed in a large window with docking capabilities. These six forms 
are logically and functionally separated in different stages of the setup 
phase. The Atomic Building Blocks form is used to create single objects 
see chapter 2.3.1.  The Composite Building Blocks form is used to create 
complex template objects, see chapter 2.3.2, by dragging and dropping 
objects from the Atomic Building Blocks Form. The Atomic Unique 
Instances form and the Composite Unique Instances form are used in 
similar ways. The difference is that in these forms you work with objects 
and templates that are unique instances, see chapter 2.3.5. Together these 

Unique Units

Active objects
assigned to current

mission

Objects

Template
Objects

Unique
Objects

Previous
Missions

Atomic
Building
Blocks

Composite
Building
Blocks

Atomic
Unique

Instances

Composite
Unique

Instances

Trial
Workbench

Former
Trials

Build hierarchies of
building blocks

Create unique
templates

Create unique
instance of building

stones

Build hierarchies of
unique instances

Reuse structures
from previous

missions

 Activate objects
and units in

mission

 

Figure 24 Workflow of building a conceptual model with the Mission setup tool. 

 



 66 

four forms are used to design and initialize components in the modeling 
domain block that are used to create the conceptual model. 

The Trial Workbench is the form where the actual mission setup is made, 
or where the conceptual model and instrumentation plans are put together. 
A mission model can be composed out of components from old missions or 
designed from scratch using the available components in the modeling 
domain block. In either case the mission is setup by dragging and dropping 
unique objects or units from their respective form to the Trial Workbench. 
The contents of the missions are then considered activated, see section 
2.4.1. 

7.2.3 Results 

The direct result of building the mission setup is one single useful tool 
handling all work needed to prepare the database for import of data 
collected during a mission. As a deliberate side effect, the tool is also used 
to model the participating objects in a mission and the hierarchal command 
structures different units have or the complex structures of some objects, 
for example naval ships.   

The tool is also very useful to test the frameworks effectiveness regarding 
complex relations. Our tests led to some redesign of the code generation of 
lower tiers of the framework, with modifications that greatly enhanced 
usability.  

Another important result is the discovery of the performance problem that 
arises when handling multiple objects dependent on information from the 
database. At startup the tool fetches information about all objects in the 
database one by one. This is very inefficient and slows down performance. 
Chapter 9 describes a few suggested solutions to this problem, which must 
be solved. 

7.2.4 Extensions 

The Mission setup tool can be extended in many ways. The most important 
extension we have identified is to add some kind of hierarchical ordering 
system in the different forms. When the database grows large it is apparent 
that the information displayed in the different forms also will grow 
dramatically and it will become more difficult to get a good overview of 
the contents of the database. We therefore identified a need to organize the 
objects even further. Discussions on this matter have led to several 



 67 

suggestions on how to deal with this problem. Whichever is chosen it is 
clear that it will improve usability of this tool. 

The most straightforward solution we found was to introduce a folder 
system where each object may belong to a certain folder. The Apache 
helicopter, for instance, is a Vehicle which may be organized into the 
attack helicopter folder. This gives us two possible ways to sort the 
helicopter, either as a vehicle or as an attack helicopter. A problem to solve 
is how to store this folder structure. One solution would be to keep this 
centralized at the database level by introducing another relation between 
objects and folders. This solution would make the database even more 
complex and the only benefit gained is that it will become easier to find 
objects in tools like the setup tool. It can be argued that this information 
should be stored at an application level since it is not clear that every 
application wants to sort the objects on the same criterions. 

Another way to solve the problem of too much data displayed is to 
introduce parameters holding information about how old and how 
interesting an object is. Very old or uninteresting objects could then be 
filtered out if the operator knows that he wants to use only common objects 
or, if the operator doesn’t want to filter them out completely, they may be 
displayed at the bottom of the view. Again there is the question whether 
this information should be bound to a specific application or if it should be 
introduced in the database.  

A third solution is to introduce the domain concept in the database. By 
assigning each and every item in the database to a domain, such as fire 
rescue items, we could filter the objects based on which domain the current 
mission belongs to. It is not clear how useful this would be though, as one 
instance of the database is likely to be used within just a few domains. 

The second problem we found was that it is very easy, perhaps a little too 
easy, to create relations between entities in the database using this tool. The 
user is allowed to create many strange relations which would be logically 
wrong in reality. In these cases constraints on the relations should be 
introduced. The most apparent example is to regulate which time objects 
can be related to another object to prevent them from being allocated 
multiple times in overlapping time periods. While we want to keep the data 
model unrestricted perhaps the restrictions should be brought into this tool 
instead to prevent illegal use of the relations. 



 68 

Another possible extension is to merge this application with data import 
applications like the GPS log importer. It would be very convenient to be 
able to import the log file to a certain GPS simply by right-clicking it and 
select ‘import’ from the menu. An extension like this can easily be 
implemented since all the functionality for the import already exists in the 
GPS log import module in the User Centric Tier. 



 69 

Chapter 8 
Revisions to the MIND framework 

The MIND framework was developed to reconstruct and explore DTOs at 
the Swedish Defense Research Agency. As stated in the introduction, 
MIND is a component-based visualization framework that integrates 
domain models, data sources, data converters and presentation views. 
MIND has been used to demonstrate the applicability of methods and tools 
in several different domains including combat training with the Swedish 
Army, naval operations with the Swedish Navy and Rescue operations with 
the Swedish Rescue Services Agency and Linköping Fire Rescue 
Department. (Morin, 2002a) 

Because the MIND framework has been under development for such a long 
time and has been tested thoroughly it provides an excellent testing 
platform for the exploration part of the application framework described in 
chapter 4. Establishing a connection to MIND was therefore a much 
prioritized part of developing the application framework, see chapter 6. 

Since MIND has been a research project developed under tight time 
constraints and with the focus on overarching research questions, there has 
never been time to create an official document describing the architecture 
or design of the system. A significant part of the work of integrating the 
two systems has been to get an understanding of the MIND architecture 
and design, which could be done thanks to the well commented source code 
and access to an unpublished paper describing the main concepts of MIND 
(Axelsson, 2001). 



 70 

In order to connect the application framework to MIND we had to make 
some modifications to the MIND core. As can be seen in figure 25 the 
component table is very central to MIND. The table contains all the MIND 
components and is the main connection point for storage and playback. In 
order to create components based directly on data from the database the 
natural approach is to extend the model as the dotted lines in the figure 
indicates. To achieve the connection between the component table and the 
application framework the component table was extended with 
functionality to interpret COM objects generated by the application 
framework. These COM objects are then interpreted by the component 
table and converted into standard components. Note that the Component 
table is written in Visual C++ and uses COM to communicate with the 
different modules shown in the drawing while the application framework is 
written in C#.NET. Thus the framework must support COM/.NET 

Component

Component

Component

Component
table

FileFile manager for
structured storage

Clock

Event list

Playback

Notification

Coordinate
system

DB
Application
Framework

 

Figure 25 Schematic drawing of the MIND core with the added 
connection to the application framework and the database. This 
drawing is based on a drawing in an unpublished guide to MIND 
(Axelsson, 2001). 



 71 

interoperability, by generating COM compatible assemblies for the .NET 
objects as described in appendix B. 

When saving scenarios explored using the MIND system, the current 
approach is to use a structured storage file. This file is mission specific and 
needs to be set up from scratch every time. Also, the storage format is very 
specific to MIND, since every object is stored as a binary snapshot of the 
current state the object is in, which makes the data difficult to use in other 
applications. The structured storage solution is closely tied to the current 
implementation of MIND, and future upgrades to the core might make old 
data difficult to use. 

Jenvald proposes a database in which the data is stored and retrieved using 
a SQL interface (Jenvald, 1996). Storing data in the database would give 
the benefit that any application can access and interpret the data via a 
standard SQL interface instead of reading serialized Visual C++ objects as 
is the case in MIND. Although not implemented, we suggest that the 
application framework is used for this purpose as well, leaving only data 
very specific to the MIND application to be stored in a separate file. 

The modified version of MIND is incapable of importing the symbols 
stored in the database since the symbol tables are coded into the program 
and can not be changed at runtime. Until this has been solved, the user 
must select an icon manually for each object that needs to be visible in the 
map views. Future expansions to MIND might also allow the user to select 
the level of detail on the data to be imported based on a predefined set of 
criterions. 

 



 72 



 73 

Chapter 9 
Future work 

The data model and the application framework presented in this thesis are 
not intended to be complete in any way. There are many ways to extend 
them and make the system better. In this chapter we describe a few of the 
possible enhancements that we found desirable. 

9.1 Database 

Although we have tried to cover as many special types of data as possible 
we know for a fact that the data model is not complete. We have discovered 
several ways to enhance the database, both in terms of what data can be 
stored and in terms of efficiency.  

9.1.1  Multilingual strings 

There are many strings stored in the database which are used to display 
information of some sort. Currently they are stored as regular ANSI strings. 
In order to change the language of the strings the user needs to copy the 
entire database and edit the strings manually. A better solution might be to 
have a global variable in the application framework which selects a 
language, and replace all strings with a unique identifier. Then the global 
variable is used to select from which table the string with the unique 
identifier is to be selected. 

figure 26 shows a suggested implementation of these tables along with the 
relations to the object table. Every table containing strings will have this 
kind of relation to the string table.  

It should be noted that this solution will cost some performance, although it 
will be very useful when demonstrating the system in different languages, 
since all presentations can then operate on the same set of data. 

 

 



 74 

9.1.2  Time 

The time table is very central and will grow rapidly. The table is therefore 
likely to become slow and a bottleneck of the system. A way to work 
around this is to remove the table completely and replace all relations to the 
table with the actual timestamp itself. One timestamp can thus exist in 
many tables at the same time. Whether this solution will give any benefits 
is not clear, but it might be something to try out if performance becomes a 
problem. A negative side effect is that it will become more difficult to 
select actions based on time, for instance filter out every event that 
somehow is related to a certain time interval. 

9.1.3  Targets 

Targets are currently represented as any other object or data in our model. 
There are however several problems with this representation. One problem 
is that we seldom know the exact real-world position of the target, there is 
always an error in measured data. This means that when we have two radar 
stations measuring the same target, they will differ in their output. The 
consequence of this is that it is impossible to know when two targets are in 
fact the same. How do we know which object to relate the detected target 
to? 

There may also be a problem in knowing whether two subsequent blips on 
a radar screen in fact belong to the same target. A workaround for this is to 
represent all targets simply as data and let the operator decide how to deal 

NewObject

PK Id

FK2 NameId
FK1 DescriptionId

SymbolTableId

Stringtable

PK StringId

DefaultText

EnglishStrings

PK,FK1 StringId

Text

SwedishStrings

PK,FK1 StringId

Text

Object

PK Id

Name
Description
SymbolTableId

 

Figure 26 Left: The current Object model. Right: The Object model 
with the proposed string table extension. A global variable should be 
used to identify which string table to use when looking up the name or 
description of a NewObject. Should the string not be implemented in 
that table, then the value could be selected from DefaultText instead. 

 



 75 

with them. This solution will work fairly well in simple scenarios, but there 
are also scenarios where we need to represent the actual airplane that the 
radar is following as well, and when we want to know how different radar 
stations perceive the same target. The situation may become very complex 
and an automated way to represent targets could simplify our work. The 
question remains; what is the best way to represent targets? 

It is fair to assume that a special representation of targets is necessary. We 
have outlined a simple solution using target lists and targets which may or 
may not be related to objects in our database. This sample solution can be 
found in figure 27. 

9.1.4  Splitting the database 

The database can be roughly divided into two parts; the static part which 
consists of building blocks for setting up a mission and the more dynamic 
part containing the data collected during and after the mission. The 
database could therefore be split into two databases to reduce the size of the 
operating database. It is likely though that the data partition will become 

ActiveObject

PK ID

SymbolTableID
MissionID
UniqueObjectID
IntervalID

TargetList

PK,FK1,FK2 ID

Target

PK,FK1 ID

Side
SymbolTableID
Description

TargetTargetListInterval

PK,FK1 ID

FK2 TargetListID
StartTimeID
EndTimeID

Data

PK ID

DataFormatID
ParentDataAttributeID
CreatedTimeID
ChangedTimeID
ValidIntervalID
ValidTimeID

 

Figure 27 An extension to the current model of Data and ActiveObject 
which will allow us to represent the targets in lists of measured target 
points. Each target may then be related to the actual object that it 
represents in case the operator knows the ground truth of the target. 

 



 76 

much larger than the building block partition, so it is not certain that the 
benefits gained from this partitioning outweigh the costs. 

9.1.5  Perform tests using other database management systems 

For this project Microsoft SQL Server 2000 has been used exclusively. The 
application framework has been written to allow any back-end DBMS to be 
used with only minor modifications to the framework. Although not 
verified we believe the workload of testing another RDBMS or ORDBMS, 
such as Oracle, would be quite limited. Of extra interest might be to 
evaluate specialized temporal and spatio-temporal database management 
systems. Even though we have decided not to evaluate them further since 
we could model the data with ordinary relations, it might become 
interesting to verify whether these systems could help improve 
performance or usability. 

9.1.6  Dynamic attributes 

The object model is currently based on inheritance. A vehicle, for instance, 
is an object extended with some extra features. Since traditional RDBMS 
such as SQL Server does not allow inheritance, this is implemented simply 
as a 1-1 relation between an object and a vehicle where the vehicle has a 
foreign key to an object; this key also serves as a primary key for the 
vehicle. This solution simulates inheritance pretty well. In a similar way we 
have created solid objects, person objects, map objects and equipment 
objects. 

Still, it is impossible to cover every possible extension to the object model, 
and is also not very hard to imagine that for some special vehicles the 
vehicle model is not adequate. We might for instance want to store the 
engine capacity of a large truck, or the number of wheels it has. To allow 
this we also need some sort of dynamic attribute model, where any 
attribute-value pair can be added to any object. 

It can be argued whether there really is any need to organize the objects 
into a hierarchical inheritance structure when we still need these dynamic 
attributes. Is it not better to make all objects just objects, with dynamic 
attributes where necessary? This model would certainly be more general 
and consistent, but the drawbacks would be that we need to store more data 
(we would have to store what kind of attribute is stored for every single 
attribute-value pair). Also, searching the database using dynamic attributes 
is much slower than searching a column in an ordinary table. Therefore we 



 77 

believe that the current model is better, but it would be nice to test how 
much difference it will make in terms of speed and memory. 

9.1.7  Evaluating object oriented database manager systems 

As can be read in section 3.2, the ODBMS are catching up on the RDBMS 
in terms of maturity. The vendors state that their databases operate at much 
higher speeds compared to traditional RDBMS. These statements have not 
been verified and the flexibility of the ODBMS is not known either. Heavy 
testing and evaluation of ODBMSs are desired to find out whether they are 
applicable for this kind of framework. 

9.2 Application framework 

The application framework is not very optimized at all, nor is it complete in 
terms of functionality. This section tries to sort out what kind of 
optimizations and modifications we suggest as future work on the 
application framework. 

9.2.1  Database mediator 

Today the database proxy is accessing the database directly via OLE DB. 
With a solution like this we automatically inherit all the weaknesses of 
OLE DB, such as its inability to work in connected mode. It is also very 
difficult to handle concurrency conflicts in a well organized manner. Right 
now the framework simply changes the underlying data or generates 
exceptions when two different applications operate on the same data. 

Writing a database mediator (DM) that communicates with the database is 
perhaps a better alternative. With a solution like this we can have every 
front-end application request data from the DM and we get much better 
control over the underlying engine. We can for instance refuse access for 
one certain application before another application releases it (much like 
transactions, but on a larger scale).  

We can also have the mediator send events to the listening clients when a 
certain piece of data is altered. This solution will certainly improve 
performance a lot since we will not need to update the entire table every 
time we load a piece of data to verify its correctness. 



 78 

9.2.2  Data type helpers 

Some of the data types are very complex and to generate standard data, 
such as WGS-84 coordinates, it is convenient to have helper functions that 
simplify the process. This kind of helper functions are implemented in 
some cases, but far from all. To make the framework really easy to use, all 
data types should be thoroughly evaluated and helper functions added if 
necessary. 

9.2.3  Application adapted database proxies 

Today the database proxy fetches records directly from the database, every 
time they are accessed, to allow a multi user environment. This causes a lot 
of traffic on the network and reduces performance of some applications. In 
some cases performance is more vital than concurrency control. In these 
cases the applications could use a different proxy which fetches data from 
the database less frequently and holds the information internally. This 
would reduce network traffic and enhance performance. However this 
proxy is vulnerable to multi-user environments, if several users change 
information on the same object simultaneously. 

9.3 Applications 

Today only three applications exist that interoperate with the application 
framework, the Mission setup tool, the GPS log importer and the extended 
MIND. MIND is described more in the next section, in this section we try 
to identify a few of the applications we believe are natural to develop as a 
next step in this project. 

9.3.1  Miscellaneous log import tools 

We need tools for importing the data log files that are currently used in 
MIND. Example data are pictures, video and audio. Currently there exists a 
module for importing pictures via the PIX log files and one for GPS log 
files, but there are numerous more that MIND can handle, and so should 
the application framework. As for the coordinate log importer, it should be 
extended with additional functionality and features to improve usability, 
such as importing several log files in one click. 

One possible alternative is to develop several user centric modules for 
importing various types of data and then tie them all together in one single 
graphical application. 



 79 

9.3.2  Metadata workbench 

A metadata workbench was developed for MIND (Albinsson et al, 2004) to 
create couplings between metadata and the original raw data. Using this 
tool the operator can relate a photograph to the people on the picture or a 
video recording to the actors in it. One of the major strengths and original 
motivations of creating this database framework was the increased ability 
to create relationships between objects, data and metadata. Bearing this in 
mind the metadata workbench should be upgraded to make use of the 
database. 

9.3.3  Tools for communication analysis 

There is some support for analyzing communication in MIND (Albinsson, 
Fransson & Morin, 2003). With these tools the operator can enter who the 
actors are in a communication segment. This data may then be presented in 
the MIND visualization framework by creating a view. These tools could 
be given an extra dimension if they were used in conjunction with the 
database since it would then be possible to create relations between the 
actors in the recorded communication clip and the actual clip. 

Another tool could be implemented to do noise reduction and filter out 
silent sessions that have been recorded. The database model supports this, 
yet there are no tools that currently use it. 

9.3.4  Data displayer 

There is lots of data in the database, and not even MIND is capable of 
displaying it all, so writing a few small applications for displaying data in 
various ways might be desirable. Such a tool could also be written as a 
component for integration with MIND. 

9.3.5  Symbol table utility 

A utility for organizing symbol tables and symbol libraries as well as 
adding, creating and removing symbols would be very handy for operating 
on symbol tables. 

Some possible features of the tool would be to create libraries of symbols, 
organize these libraries and symbols, edit the symbols, add descriptions to 
the symbols and create tables consisting of a set of symbols that can be 
assigned to any object. 



 80 

9.3.6  Object designer 

The database allows just about any type of object to be created, but it takes 
some work to create it by hand. Therefore it would be excellent to have a 
graphical tool for designing new objects with custom attributes. 

9.3.7  Export tools 

Exporting the data from a mission to several other formats has been 
discussed. Some examples are: PowerPoint, HTML, XML and executables. 
Creating such a tool is probably not an easy task since it is not clear what 
data should be included in the export. However, a tool that is configurable 
so that the operator may select what is to be presented in the exported data 
and to which format might become very useful. 

9.4 MIND 

MIND is currently the only supported export format. The data is imported 
from the database via a graphical interface in MIND. The project of 
integrating the database in MIND has only just begun and there are several 
paths to continue this integration. No matter which of the solutions is 
selected, some remakes need to be done in the kernel to support our 
dynamic active object model where objects may be aggregates of other 
objects. This is not allowed in the MIND core unless special components 
are created for that purpose. 

9.4.1  Add support for more object and data types 

The first alternative is to continue on the chosen path and implement 
support for more kinds of objects and data types. This should not be too 
hard for the basic structures that map well to the components in MIND 
today. Structures that do not map well to the existing MIND components 
should perhaps be given their own components, a solution which requires 
more work. 

9.4.2 Convert MIND source code to .NET 

Another alternative is to make a port of MIND in .NET and meanwhile 
redesign the MIND framework for a better match with the database. This 
job is of course very expensive and takes quite some time to perform 
because of the size of MIND. Bearing in mind that this system is to be 
continued, this idea should be thoroughly considered. Maintaining the 



 81 

system will become much easier if the frameworks get a common 
architecture that fit well together. 

9.4.3 Global relations 

Every view in MIND defines its own relations between the incorporated 
objects. It would be preferable if the relations were made global so that a 
connection made in one tool could be interpreted by any other tool. 
Currently the MIND core does not support this, but with the use of the 
database this feature should not be too difficult to implement in the MIND 
components. 

One example of this is metadata which may be inserted via the metadata 
tools available in MIND. The user may for instance enter text describing a 
vehicle in a photograph, but there is currently no way to connect that 
photograph to the representation of that vehicle in MIND. Using global 
relations between objects and data would give this possibility. 

9.4.4  Extended database support 

Currently the implemented changes in MIND allows only importing data 
from the database. Adding support which will allow the operator not only 
to import data, but also to export changes made in MIND would greatly 
improve the interoperability between the two frameworks. 



 82 

 



 83 

Chapter 10 
Summary and Conclusions 

10.1 Summary 

The main purpose of this report is to present a centralized storage facility 
based on a DBMS that aims to replace the current serialized single file 
storage structure of the MIND mission history data. During the 
development process we investigated data storage modeling needs for 
reconstruction and exploration of DTOs and the requirements this model 
puts on a DBMS. To interact with the model and the storage system, user 
oriented applications are needed. To facilitate development of the 
applications and standardize the interface between applications and the 
database we have developed an application framework. 

10.2 Data model 

The data model we present supports most of the features that the MIND 
system has today. It is constructed in a general manner allowing future 
extensions with none or few modifications. The model supports handling 
data from previous field trials as shown in the informal test runs. However, 
as the complexity of the mission history is increasing, future use will surely 
put emphasis on new areas. Therefore future extensions and modifications 
are very likely and the model should not be thought of as complete. It 
should rather be used as a base for further studies which might eventually 
lead to a satisfying model. It is also a fact that some areas of the model 
need more thorough investigation. This is especially true concerning the 
analysis parts, that is the adding of metadata and classifications, to which 
we have not been able to build test applications due to the time constraints 
of this project. 

10.3 Database management system 

The complexity of storing a reconstruction of a DTO put high demands on 
the DBMS. The DBMS should be able to quickly sort and query several 
tables with millions of records as well as tables containing very large files, 



 84 

e.g. audio and video data. We have investigated some of the most well 
known RDBMSs as well as some more modern object oriented systems. 
We believe that most of these DBMS are capable of handling the 
complexity of the data model as well as the probable storage need of the 
mission history data. Since the technical differences regarding the 
specifications we have investigated are small, we believe that the DBMS 
choice used in this data storage facility should be based on which product 
the database developers and administrators have access to and are used to 
work with rather than technical details. However the database system 
chosen should be thoroughly tested with an extreme amount of records. 
There may be performance differences among the systems when managing 
large amount of records. 

10.4 Application framework 

Using the programming framework together with the model is an attractive 
way to get the objects and relations you need to build effective 
applications. However, in some cases several consecutive relations in the 
model make the programming interface complex. In these cases, should 
modification of the data model be needed, the framework is very flexible 
and allows changes with only minor updates. Furthermore the framework 
also supports a swift switching of the underlying database engine.  

The application framework of today has some deficits. The most urgent 
issue to deal with is performance. The proxy module should be revised to 
decrease network traffic. 

10.5 Application development 

To fully be able to reconstruct and explore a DTO we need tools for 
building conceptual models and instrumentation plans, import collected 
data and finally explore and analyze the composed mission history. The 
application framework facilitates the task of creating these applications. A 
programmer hardly needs any knowledge of the DBMS to be able to create 
an application that operates on the database. 

Using two high-level applications that we developed, one for the modeling 
part and one for the data collection part is a good way to test different data 
structures. These applications are important in the iterative design process 
since they help us to enhance the data storage model and discover problems 



 85 

in the application framework. In addition to this the modification of the 
existing MIND framework makes us able to explore missions stored in the 
database.  

Currently only a subset of the data model is supported by MIND and no 
other exploration application has been written, so more effort needs to be 
put into the MIND export module before the framework can be used to 
explore more complex missions. 

10.6 General conclusions  

Considering the complex data model and the desired expansions to MIND 
we believe that the database approach and the data model suggested are 
suitable for storing mission histories for DTOs. However the system must 
be carefully optimized for applications where speed is important. The 
system presented in this report is today ready to be used for minor 
operations when there are no time constraints creating the conceptual 
models and instrumentation plans. Since we do not consider the application 
framework to be capable of handling real time streaming data at this 
moment, we suggest further investigation in this area. We also suggest that 
the framework and data model are extended as needed when new 
applications are designed. Extending the MIND framework to include a 
higher level of support for the database connection would also be a natural 
way to continue this work.  



 86 

 



 87 

Chapter 11 
References 

Albinsson, P. & Fransson, J. (2001). Communication visualization - an aid 
to military command and control evaluation. In Proceedings of the 45th 
Annual Meeting of the Human Factors and Ergonomics Society, October 8-
12, Minneapolis/St. Paul, USA. 

Albinsson, P., Fransson, J. & Morin, M. (2003). Finding information needs 
in military command and control systems using exploratory tools for 
communication analysis. In Proceedings of the 47th Annual Meeting of the 
Human Factors and Ergonomics Society, October 13-17, Denver, USA. 

Albinsson, P., Morin, M. & Thorstensson, M. (2004). Managing metadata 
in collaborative command and control analysis. To be presented at the 48th 
Annual Meeting of the Human Factors and Ergonomics Society, September 
20-24, New Orleans, USA. 

Axelsson, M. (2001). MIND. Unpublished. 

Boehm, B. (1986). A Spiral Model of Software Development and 
Enhancement. ACM SIGSOFT Software Engineering Notes, August 1986, 

Bohuszewicz, K., Czyowicz, M., Janik, M., Jarosz, D., Mazan, P.,  
Mierzejewski, M., Olszewski, M., Peryt, W., Radomski, S., Szarwas, P., 
Traczyk, T., Tukendorf, D., & Wojcieszuk, J. (2003). Comparison of 
Oracle, MySQL and Postgres DBMS. Published on the Internet: http://det-
dbalice.if.pw.edu.pl/det-dbalice/ttraczyk/db_compare/db_compare.html 

Chigrik, A. & Vartanyan, (2004) S. SQL Server Articles – Comparison. 
Published on the Internet: 
http://www.mssqlcity.com/Articles/Compare/Compare.htm 

Elmasri, R. & Navathe, S. (2000) Fundamentals of database systems. 
Addison-Wesley. ISBN 08-0531-755-4.  

Fermi National Accelerator Laboratory/Computing Division (2003). 
MySQL General Information – Comparison of Oracle, MySQL and 



 88 

PostgreSQL DBMS. Published on the Internet: http://www-
css.fnal.gov/dsg/external/freeware/mysql-vs-pgsql.html 

Jensen, C.S. (2000). Temporal Database Management. Published on the 
Internet: http://www.cs.auc.dk/~csj/Thesis/. 

Jenvald, J. (1996). Simulation and Data Collection in Battle Training. 
Linköping Studies in Science and Technology, Thesis No 567, Linköping 
University, Linköping, Sweden. 

Jenvald, J. (1999). Methods and Tools in Computer-Supported Taskforce 
Training. Linköping Studies in Science and Technology, Dissertation No. 
598, ISBN 91-7219-547-9, Linköping University, Linköping, Sweden. 

Microsoft Inc. (2004). SQL Server Architecture Maximum Capacity 
Specifications. Published on the Internet: 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/architec/8_ar_ts_8dbn.asp 

Moniz, J. (1999). Enterprise Application Architecture. Wrox Press Inc. 
ISBN 18-6100-258-0. 

Morin, M. & Thorstensson, M. (2000). Cornelia Datainsamlingsplan. 
Unpublished internal report (In Swedish). 

Morin, M. (2002a). Multimedia representation of Distributed Tactical 
Operations. Department of Computer and Information Science Dissertation 
No. 771, Linköping University, Linköping, Sweden. 

Morin, M. (2002b). Modeling Distributed Tactical Operations for 
Command and Control Analysis. In Proceedings of the Swedish-American 
Workshop on Modeling and Simulation, SAWMAS-2003, 2002, Orlando, 
USA. 

Morin, M., Jenvald, J. & Thorstensson, M. (2000). Computer-supported 
visualisation of rescue operations. Safety Science, 35, 3-27. 

Morin, M., Jenvald, J., Nygren A., Axelsson, M. & Thorstensson, M. 
(2003). A study of first responders’ use of digital cameras for documenting 
rescue operations for debriefing and analysis, In Proceeding of the 
International Emergency Management Society’s Tenth Annual Conference, 
TIEMS 2003, June 3-6, Sophia-Antipolis/Nice, France. 



 89 

NATO (2002), The Land C2 Information Exchange Data Model, Working 
Paper 5-5, Edition 5.0, 18 March 2002. ATTCIS WG, SHAPE, Belgium. 

Thorstensson, M. (2002a). Rapportering av genomfört fältförsök med FM 
Helikopterflottilj. FOI Memo 02-2918. (In Swedish) 

Thorstensson, M. (2002b) Data Collection in Rescue Operations. In 
Proceedings of the International Emergency Management Society’s Ninth 
Annual Conference (TIEMS 2002). May 14-17, 2002, Waterloo, Canada. 

Thorstensson, M., Björneberg, A., Tingland, B. & Tirmén Carelius, M. 
(2001). Computer-Supported Visualisation of an Inter-Agency Exercise in 
the Stockholm Underground. In Proceedings of The International 
Emergency Management Society’s Eighth Annual Conference (TIEMS 
2001). June 19-22, Oslo, Norway. 

Thorstensson, M., Jenvald, J., Morin, M. (2002) Modeling and 
visualization of naval units. Swedish Defense Research Agency. Report 
No. FOI-R--0524--SE. 





Appendix A 
Data model for reconstruction and exploration of DTO 

The data model for reconstruction and exploration of Distributed Tactical 
Operations is enclosed on the next page.





Appendix B 
COM / .NET Interoperability 

B.1.1 Using COM objects from .NET with early binding 

COM objects are defined by their interfaces and an implementation of the 
interface. They are generally created by using the CoCreateInstance 
method by specifying what interface to implement and what 
implementation to use. The term ‘early binding‘ implies that the 
implementation and its type library are known at development time. 

In .NET there is no equivalent to the CoCreateInstance method of COM. 
Instead we need to generate Runtime Callable Wrappers (RCW)1. The 
RCW wraps the COM object and mediates between it and the .NET 
common language runtime (CLR)2 environment, making the COM object 
appear to .NET clients just as if it were a native .NET object and making 
the .NET client appear to the COM object just as if it were a standard COM 
client. 

The RCW can be created in numerous ways. One way is to use the 
TlbImp.exe tool which converts a COM type library to a .NET 
understandable DLL. With Visual Studio .NET this can also be done by 
adding a reference to the COM type library. A third way to do it is to write 
the wrappers by hand using the DllImport class. 

COM objects are then created just like any other .NET objects by calling 
the RCW default constructor. 

A potential problem with this approach is that COM and .NET objects have 
different lifecycles. A COM object is immediately destroyed when it is 
unreferenced but a .NET object is not actually destroyed until the garbage 
collector collects it. How the garbage collector works is beyond the scope if 
                                           

1 See URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconruntimecallablewrapper.asp 

2 See URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconthecommonlanguageruntime.asp 



this report and for now it is sufficient to know that this can be solved by 
explicitly calling the garbage collector every time a COM object needs to 
be released. Although this solves the problem it introduces a large overhead 
since garbage collecting is a very heavy operation. You may not want to 
pay the price of garbage collecting the entire system just to release one 
object. Fortunately there is a function that releases one COM object, 
System.Runtime.InteropServices.Marshal.ReleaseComObject, this may be 
called instead. 

B.1.2 Using COM objects from .NET with late binding 

If a COM object supports the IDispatch interface it can be bound late by 
specifying the ProgID or the CLSID, or the unique identifiers of the 
implemented classes, of the implementation at runtime. As this is retrieved 
at runtime it is not possible to pregenerate a RCW as could be done with 
the early bound object. The solution to this is to create a System.Type using 
the Type.GetTypeFromProgID or the Type.GetTypeFromCLSID methods 
respectively. The COM object can then be created using the 
Activator.CreateInstance method and call a method via the 
Type.InvokeMember function. 

B.1.3 Using .NET objects from COM 

To let COM interoperate with .NET objects we need a structure called the 
COM Callable Wrapper (CCW)3, which wraps a .NET object and mediates 
between the object and the CLR environment. COM needs every 
component to have a strong name, so also for the .NET components. It 
must also exist in the Global Assembly Cache (GAC)4 or in the 
applications directory tree. Finally the registry must have entries for the 
component for the COM client to be able to locate a server when creating 
an object. 

The strong name is typically generated using the sn.exe tool shipped with 
the .NET Source Development Kit (SDK). This tool generates a file 
containing the strong name pair which can then be inserted into the 
assembly to associate the assembly with the strong name. 
                                           

3 See URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconcomcallablewrapper.asp 

4 See URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconglobalassemblycache.asp 



To install the assembly into the GAC you should use the gacutil.exe tool 
shipped with .NET SDK. This step is only necessary if you need the 
assembly to be globally available. If not, it is enough to copy the assembly 
Type Library (TLB) to the applications directory tree. The .NET assembly 
can then be accessed using the #import directive in VC++. 

Creating the registry entries is done using the regasm.exe tool from the 
.NET SDK. This tool reads the Metadata from the class and generates the 
proper entries in the registry.  

To create the .NET component, CoCreateInstance can be used just as with 
any other COM component. A CCW is then created based on the .NET 
class found in the registry which is associated with the requested CLSID. 
Since COM components are always created using the default constructor, 
the .NET components must also have one. It is this constructor that is 
called when CoCreateInstance is called. The CCW will take care of any 
conversions needed between COM natives and their .NET equivalents, for 
instance between BSTR and System.String. 



 



Appendix C 
Sample GPS receiver log file 

<Root> 

<Positions> 

<SourceType="Garmin GPS 12 CX">GPS-92-ANJ</Source> 

<Objectid Type="Name">ANJ</Objectid> 

<Sample Date="2003-03-12" Time="13:14:14"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.40749</Latitude> 

<Longitude CardinalPoint="East">15.5189</Longitude> 

</Position> 

</Sample> 

  <Sample Date="2003-03-12" Time="13:14:19"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.40752</Latitude> 

<Longitude CardinalPoint="East">15.51877</Longitude> 

</Position> 

</Sample> 

  <Sample Date="2003-03-12" Time="13:27:33"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.40763</Latitude> 

<Longitude CardinalPoint="East">15.51891</Longitude> 

</Position> 

</Sample> 

  <Sample Date="2003-03-12" Time="13:27:37"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.40766</Latitude> 

<Longitude CardinalPoint="East">15.51894</Longitude> 



</Position> 

</Sample> 

<Sample Date="2003-03-12" Time="13:27:42"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.4077</Latitude> 

<Longitude CardinalPoint="East">15.51899</Longitude> 

</Position> 

</Sample> 

  <Sample Date="2003-03-12" Time="13:27:46"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.40772</Latitude> 

<Longitude CardinalPoint="East">15.51903</Longitude> 

</Position> 

</Sample> 

  <Sample Date="2003-03-12" Time="13:27:50"> 

   <Position Type="WGS84"> 

<Latitude CardinalPoint="North">58.40775</Latitude> 

<Longitude CardinalPoint="East">15.51906</Longitude> 

</Position> 

</Sample> 

</Positions> 

</Root> 



Appendix D 
Sample PIX log file 

<Root> 

 <RTJInfo> 

  <Date>2002-12-11</Date> 

  <EditorName>Markus</EditorName> 

  <EditorLastName>Axelsson</EditorLastName> 

  <EditorSignature>MA</EditorSignature> 

  <ReportID>MA</ReportID> 

  <CameraID></CameraID> 

 </RTJInfo> 

<Reports> 

  <Observer>Markus Axelsson</Observer> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101064</Serial> 

   <Time>10:10:00</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101064.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101064.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101063</Serial> 

   <Time>10:09:52</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101063.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101063.jpg</Thumb> 



  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101062</Serial> 

   <Time>10:09:45</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101062.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101062.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101061</Serial> 

   <Time>10:09:40</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101061.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101061.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101059</Serial> 

   <Time>11:07:58</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101059.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101059.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101058</Serial> 

   <Time>10:06:59</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101058.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101058.jpg</Thumb> 



  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101057</Serial> 

   <Time>10:05:26</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101057.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101057.jpg</Thumb> 

   </Report><Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101055</Serial> 

   <Time>10:04:04</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101055.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101055.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101054</Serial> 

   <Time>10:00:48</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101054.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101054.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101053</Serial> 

   <Time>10:00:38</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101053.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101053.jpg</Thumb> 

  </Report> 



  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101052</Serial> 

   <Time>09:52:05</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101052.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101052.jpg</Thumb> 

  </Report> 

  <Report Type="Photo"> 

   <Date>2002-12-11</Date> 

   <Serial>1101051</Serial> 

   <Time>09:51:52</Time> 

   <Note></Note> 

   <FileName>Daniela_MA_1101051.jpg</FileName> 

   <Thumb>TH_Daniela_MA_1101051.jpg</Thumb> 

  </Report> 

</Reports> 

</Root> 

 



 

 
Issuing organization Report number, ISRN Report type 
FOI – Swedish Defence Research Agency FOI-R--1277--SE Technical report 

Research area code 
2. Operational Research, Modelling and Simulation 
Month year Project no. 
May 2004 E7093 
Customers code 
5. Commissioned Research 
Sub area code 

Command and Control Systems 
P.O. Box 1165 
SE-581 11 Linköping 

21 Modelling and Simulation 

Author/s (editor/s) Project manager 
Dennis Andersson  Mirko Thorstensson 
Christer Skagert  Approved by 
  Mirko Thorstensson 
  Sponsoring agency 
  Swedish Armed Forces 
  Scientifically and technically responsible 
  Mirko Thorstensson 
Report title 
Managing Massive Datasets from Distributed Tactical Operations 

Abstract (not more than 200 words) 
Reconstruction and exploration is the foundation of analyzing the complex course of events of distributed tactical 
operations. As the instruments collecting data from operations become more frequent and more capable of 
recording multimedia data, the datasets needed to store each operation grow rapidly. This thesis presents tools to 
manage these large amounts of multimedia data from distributed tactical operations, including modeling the 
hierarchal structure of the actors in an operation, data collection and exporting collected data to the operation 
visualization framework MIND, developed at the Swedish Defense Research Agency. This thesis explores two main 
areas of data management: modeling and accessibility. First, we present a general data model dividing the storage 
need of a distributed tactical operation into logical blocks. Second, we provide a general object-oriented application 
programming interface for access to the database. Using these two products we also demonstrate how to build 
applications for building conceptual models, collecting data and exploring missions. 

Keywords 
Database, MIND, Distributed Tactical Operation, Data modeling 

Further bibliographic information Language English 

Published master’s thesis at the University of Linköping, ISRN LiTH-IDA-EX--04 / 063--SE 

ISSN 1650-1942 Pages 106 p. 

 Price acc. to pricelist 



 

 
Utgivare Rapportnummer, ISRN Klassificering 
Totalförsvarets Forskningsinstitut - FOI FOI-R--1277--SE Teknisk rapport 

Forskningsområde 
2. Operationsanalys, modellering och simulering 
Månad, år Projektnummer 
Maj 2004 E7093 
Verksamhetsgren 
5. Uppdragsfinansierad verksamhet 
Delområde 

Ledningssystem 
Box 1165 
581 11 Linköping 

21 Modellering och simulering 

Författare/redaktör Projektledare 
Dennis Andersson  Mirko Thorstensson
Christer Skagert  Godkänd av 
  Mirko Thorstensson
  Uppdragsgivare/kundbeteckning 
  Försvarsmakten
  Tekniskt och/eller vetenskapligt ansvarig 
  Mirko Thorstensson
Rapportens titel (i översättning) 
Hantering av stora datamängder från distribuerade taktiska operationer 

Sammanfattning (högst 200 ord) 
Att återskapa och utforska är en grundläggande metod för att undersöka det komplexa händelseförloppet under en 
distribuerad taktisk operation. I takt med att det blir allt vanligare att använda datainsamlingsinstrument, och att dessa
blir bättre och bättre på att samla in multimedial data, ökar storleken på den mängd data som behöver sparas. 
Denna rapport lägger fram verktyg för att hantera dessa stora multimedia-databaser, inklusive modellering av den 
hierarkiska konceptstrukturen inför en övning, datainsamlingen och export av den insamlade datan till 
visualiseringsramverket MIND som utvecklats av forskare på FOI. Denna rapport utforskar främst två stora delar av 
datahanteringen, nämligen modellering och åtkomst. Först presenteras en generell datamodell som separerar datan 
från distribuerade taktiska operationer i logiska block. Sedan visar vi också ett generellt objektorienterat 
applikationsprogrammeringsgränssnitt (API). Med hjälp av dessa två produkter demonstrerar vi slutligen hur man 
kan bygga applikationer för att skapa konceptmodeller, samla in data och utforska operationerna. 

Nyckelord 
Databas, MIND, Distribuerade taktiska operationer, Datamodellering 

Övriga bibliografiska uppgifter Språk Engelska 

Publicerad som examensarbete vid Linköpings universitet, ISRN LiTH-IDA-EX--04 / 063--SE 

ISSN 1650-1942 Antal sidor: 106 s. 

Distribution enligt missiv Pris: Enligt prislista 

 

FO
I1

00
4 

 U
tg

åv
a 

11
  2

00
2.

02
  w

w
w

.s
ig

no
n.

se
  S

ig
n 

O
n 

AB
 




