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Array Pre-processing for the SESAM System:
DOA Mean Square Error Minimization

Per Hyberg, per.hyberg@foi.se

I. BACKGROUND

PRE-PROCESSING Mapping of the output data from an il-
luminated antenna array before this data is fed to a DOA

estimator can be used to gain different advantages. One such
advantage treated here, is the possibility to optimize the ar-
ray geometry and DOA estimator individually. Using a circu-
lar array (for omni-directionality) together with root-MUSIC
or other fast DOA estimators that presume linear arrays, is one
such application, attractive for signal surveillance. This is also
the underlying application behind the presented work.
A relevant problem in this context is under what circum-

stances the pre-processing retains accuracy in the DOA esti-
mates, since both a deterministic (bias) and random (variance)
error increase can be caused by the pre-processing as such.
The present paper addresses an application (wide band sig-

nal surveillance) where these error types are of comparable size
and neither can be neglected. Conditions for minimizing the
variance under mapping has been studied by many authors, [1],
[2], and under the related application of dimension reduction
by [3]. Bias minimizing conditions were given in a.o. [4], but
here the combined error, the Mean Square Error MSE (defined
as bias2 + variance), is analyzed. Furthermore an analytical
expression for this MSE is derived and also a special design al-
gorithm for the pre-processing matrix that minimizes the MSE
of the DOA estimates.

A. Interpolation
When an array with unknown errors is calibrated at a grid of

calibration directions, interpolation techniques can be used to
generate the response vectors from emitters between the cali-
brated directions. This is done by calculating a correction ma-
trix that matches the real array to a mathematical model of the
error-free array in the calibrated directions. After multiplication
with this correction matrix the data is treated as error-free.
First proposed in 1988, [5], [6], [1], this technique can also

be viewed as mapping between two similar array manifold sets,
the real one and the virtual (error-free) one. Due to the array
similarity that was presumed in these early studies, such a data
transformation could be performed with very small added new
errors, despite the directions of arrival, the DOAs, being only
coarsely known.

B. Sector mapping
Signal surveillance often needs to combine omni-

directionality and fast signal processing, the latter to catch
sub-second burst transmitters. Hence there is a need to combine

a circular array (for omni-directionality) with ULA based root
estimators (for speed). One attractive solution to this problem
is to map (interpolate) the circular array manifold onto that of
an imaginary uniform linear manifold, usually with equally
many elements, see Figure 1.

T

x(t) y(t)

Fig. 1. Array mapping over sectors makes it possible to use fast rooting DOA
estimators with arbitrary array shapes. Here the output vectors from a uniform
circular (real) array UCA, are mapped (interpolated) onto the output vectors
of a (virtual) ULA using the transformation matrix T. However, if the sector
is wide, errors will occure, both increased bias and increased variance, unless
special measures are taken. This is a typical situation where MSE minimization
becomes important.

One appreciated feature of this mapping approach is its gen-
erality: For example we can equally well map upon two equal
but displaced ULAs and use the ESPRIT or correspondingly
any other suitable DOA estimator. The original real array can
also be mapped on a displaced copy of itself [7].
Since in the signal surveillance application the DOAs ini-

tially are unknown, we have to process wide azimuthal sectors
and design one mapping matrix for each sector. If the frequency
band in addition is wide, such as in signal reconnaissance, we
may also use one mapping matrix per frequency subband.
In this pre-processing several difficulties occur. First, for ob-

vious geometrical reasons we cannot perfectly match a circular
array to a linear one. Mapping errors will occur since the map-
ping matrix can at the best be a compromise over the mapped
sector. The wider the sector the larger the errors.
The deterministic part of these errors are known, at least in

the calibrated directions, a fact that can be used to correct them
[4], [8], [9], [10] The random part, caused by the transformed
noise, can result in added DOA estimate variance [2], [3] as
well as bias, [11].
Conditions for minimizing variance and attaining the

Cramér-Rao Bound (CRB) were derived by Andersson [3] but
presume the DOAs to be known, at least to within a beamwidth.
Hence when the emitter directions are completely unknown ex-
tra DOA error variance will be generated by the mapping. This
motivates the development of techniques to reduce the extra
variance as much as possible while at the same time keeping
bias small.
Describing the mechanisms behind both these error types,

the bias and the variance, (together expressed as Mean Square
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Error, MSE), and finding ways to minimize them, is the aim of
the present paper.

C. Dimension reduction
Processing speed can be enhanced if the DOA estimator is

designed for fewer antenna elements. A large, possibly non-
uniform, linear array (that provides good resolution) can then be
mapped onto a ULAwith fewer elements, to achieve this. To re-
tain variance, this dimension reduction presumes that the DOAs
are known, at least to within a beamwidth. The requirements on
the dimension-reducing mapping matrix to retain variance was
derived in [3], see equation (34).
We also note that dimension reduction helps to restore nu-

merical robustness in the solution for the mapping matrix,
since the number of columns in the mapping matrix is re-
duced. Dimension reduction may be necessary if the used array
beamwidth is equal to, or larger than, the mapped sector, since
in such cases linear dependence between the response vectors
inside the sector may become a problem. This is further com-
mented on in the Simulations section.

D. Dimension increase
It is in principal possible to map the real array onto a virtual

array with a larger number of antenna elements, i.e. dimension
increase. This is equivalent to using more base functions when
matching the two array manifolds, a measure that should reduce
the errors somewhat. However, since the number of required
calculations increases as m3

v,where mv is the number of ele-
ments in the virtual array, this approach will not be considered
in what follows.

II. PROBLEM FORMULATION

This report will address the general problem of DOA esti-
mate accuracy under pre-processing. One such application is
array mapping (interpolation) over sectors, a problem where
the pre-processing as such can cause both bias and added vari-
ance. Our problem is to design a pre-processing matrix com-
mon to the sector, that minimizes both.
Although the underlying application is mapping from a cir-

cular array onto a uniform linear array, the argument and deriva-
tions will be of a general nature. The ULA and the associated
ULA DOA estimator will be regarded as one entity, separated
from the mapping operation. Hence all estimator cost func-
tions, as well as derivatives and gradients thereof, will refer to
the ULA and its ULA based DOA estimator, and not be explic-
itly parameterized by any pre-processing.
The abovementioned mapping errors will be regarded as er-

rors in the (virtual) field that impinges on the ULA and para-
meterized as corresponding errors ∆ev in the eigenvectors ev
of the virtual signal subspace of the range space of the ULA
output covariance matrix.
This view will simplify the analysis. The problem of best

mapping matrix design can now be formulated as a best trans-
formation on the errors ∆ev. We can either minimize them,
or rotate them into directions where they cause the least DOA
errors, or both.

As a result the derived method of preventing the mappings
errors from affecting the DOA measurements, is applicable to
a much wider class of errors than those caused by imperfect
mapping. In fact, the derived method is capable of making any
signal subspace error almost invisible in the DOA estimates. At
least as long as said errors are of limited size.

A. Error types

DOA estimates θ̂ often have errors ∆θ = θ̂ − θ consisting
of both deterministic and random parts: These errors manifest
themselves as DOA bias and variance. Hence, a practical en-
tity to describe the total DOA error is theMSE (Mean Square
Error) and we thus haveMSE = bias2 + variance. For sub-
space based DOA estimators these DOA errors can be seen as
caused by corresponding eigenvector errors∆ev in the (virtual)
signal subspace of the data covariance matrixR.
Consider the virtual array from which we get an output data

vector with certain signal subspace errors ∆ev. With super-
script denoting the cause, and subscript effect of these errors,
we can write

∆ev = ∆e
(det)
v,(bias) +∆e

(noise)
v,(bias) +∆e

(noise)
v,(var) (1)

The first superscript (det) refers to various model errors, im-
perfect array mapping, or other non-fluctuating deterministic
error mechanisms. This type of error is independent of signal
to noise ratio SNR and the number of snapshots N. Array map-
ping errors are of this type, see Figure 1. Their correction was
t reated in [ 4], [8] , [9] and [10] .
Random errors (noise) can cause both DOA bias and vari-

ance, the second and third error types in (1) respectively.
DOA variance, the third error type, has been studied ex-

tensively and conditions for the retainment of the Cramér-Rao
Bound, CRB, without and with pre-processing described, [12],
[13], [3] and [2]. Furthermore, DOA bias due to noise, the sec-
ond error type, was analyzed for MUSIC in [11], where it was
shown that this type of bias requires a third order Taylor ex-
pansion of the estimator cost function to be described properly.
However, no procedure for removal of this bias was suggested.
The purpose of the present report is to study array pre-

processing,especially array mapping, with the property of min-
imizing the total MSE, not just bias or variance. The argument
will be of general nature although the underlying application is
fast signal surveillance against emitters in unknown directions.
Special emphasis is therefore put on the case where the DOAs
initially are known only to within a wide sector and any pre-
processing has to be a compromise over this sector.
For a bias free estimator in white noise, no pre-processing

can yield a DOA variance below the CRB. It is the unneces-
sary extra variance that is caused by the pre-processing under
the above compromise that we should try to minimize. If, in the
Figure 1 scenario, a single mapping matrix T is to work over a
30o sector (a typical width) and the bandwidth of the circular ar-
ray is stressed, both bias and extra variance can grossly exceed
the CRB. This is a typical situation where MSE minimization
techniques are called for.

FOI-R--1297--SE
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B. Notational remarks and assumptions
Throughout this paper (·) will denote scalar product,

(∗)Hermitian transpose, (T ) matrix transpose, and (−) com-
plex conjugate. Measurement noise is considered Gaussian,
zero mean and circularly symmetric. Furthermore, for ease of
notation we will mainly analyze scenarios that contain a sin-
gle emitter at the horizon, i.e. the DOA is fully characterized
by the scalar entity θ (azimuth). In the bias analysis and the
subsequent construction of the mapping matrix T, the imping-
ing signal will come from a known calibration emitter, whereas
during the evaluation simulations it will come from an unknown
emitter (presumed to be within the mapped azimuthal sector).
The argument is not limited to the single emitter case how-

ever but the error reduction effectiveness of the suggested map-
ping will be best for such cases. This is because the mapping
error ∆ev = T∗es − ev, where es and ev are the eigenvec-
tors associated with the real and virtual arrays respectively, is
more difficult to rotate (through the selection of the mapping
matrix) into simultaneous orthogonality with more than one sig-
nal eigenvector gradients.
Since from a signal reconnaissance point of view the imping-

ing wave fields are of a non-predictable nature, and in addition
only direction of arrival (DOA) is of interest, we use a Gaussian
distributed (single) signal model s(t) with covariance matrix S
(which in the presumed one emitter case reduces to a scalar
representing the signal power), and the usual properties of be-
ing both temporally and spatially white. Furthermore, consider
a general planar real array of mr isotropic antenna elements.
The array output at time t is then modeled as anmr × 1 vector
x(ti), where i = 1, ..., N :

x(t) = A(θ)s(t) + n(t) (2)

The columns of the mr × 1 matrix A(θ) transform from the
impinging signal s(t) to the array output x(t), and n(t) is the
noise contribution from the mr receiver channels. This noise
is presumed to be an ergodic spatially white stochastic process
with the second order moment E

©
n(t)n

∗
(t)
ª
= σ2I where I

is the identity matrix.
To distinguish the real array from the virtual, we will denote

the formerAr and the latterAv. The symbol θ̂ will be used in
the sequel for estimates of the DOA azimuth θ.
We can now model the array output covariance matrixR as

R = A(θ)SA
∗
(θ) + σ2I (3)

The estimated signal- and noise subspaces Ês and Ên of the
real array are formed by eigenvalue decomposition of an esti-
mate ofR obtained as

R̂ =
1

N

NX
i=1

x(t)x∗(t) (4)

where N is the number of snapshots.
Finally, this paper deals with the construction of mapping

(interpolation-, pre-processing-) matrices. These matrices are
calculated from a set of calibration response vectors

n
θ(i)
o
that

are assumed to be collected by moving a (single) calibration

transmitter around the array at some suitable distance. Hence
all the derivations in the sequel presume one emitter at a time.
The resulting mapping matrix is of course a linear operator

that can be used in multi-emitter scenarios as well, as long as
these are confined to the calibration sector. As illustrated in
the simulations section, a somewhat reduced performance is ex-
pected in the multi emitter case however.
The additional problem of suppressing out of sector signals

is only coarsely treated in this paper. The reader is referred to
existing literature on this topic, i.g. [14], [15], [16].

III. THE GRADIENT OF THE COST FUNCTION
For all cost function based DOA estimators bias corresponds

to an off-set along the θ-axis in the extreme of the (scalar) cost
function V (θ). We can equivalently study the off-set in the zero
of the derivative with respect to θ, V̇ (θ), an approach that has
some advantages and therefore will be used throughout this pa-
per.
In the sequel the gradient ∇ev V̇ (θ) with respect to the sig-

nal eigenvector ev of the virtual array (which is delivering data
to the DOA estimator) will be important. Using Brandwood’s
conventions [17], the scalar product 2Re

n
∇es V̇ (θ) ·∆ev

o
equals the change in the value of V̇ (θ) caused by the change
∆ev in ev. Hence, by dividing with the second derivative V̈ (θ)
we get the corresponding change in estimated DOA.
Below the gradient will be used to express and cast new light

over both bias and variance in the DOA estimates.
We now observe that the above errors ∆ev in the virtual

signal subspace eigenvectors can be divided into two classes,
namely

1) Those with the scalar product

2Re
n
∇es V̇ (θ) ·∆ev

o
= 0 (5)

2) The remaining ones for which

2Re
n
∇es V̇ (θ) ·∆ev

o
6= 0 (6)

Obviously errors that belong to the first class are harmless
since they do not effect the value of V̇ (θ) and therefore do not
cause bias or other DOA errors. We will come back to this in
the next section.
The gradient ∇ev V̇ (θ) has another interesting feature con-

nected with zero bias. This feature is formulated in the follow-
ing theorem:
Theorem 1: With a (θ ) bei ng the r esponse vector, for an ar-

bitrary array geometry in a single emitter scenario, if the esti-
mator cost function consists of the quadratic form1

Q(θ, ev) = a
∗(θ)eve∗va(θ) (7)

and is bias free at the correct DOA θ, then at this DOA

∇ev V̇ (θo) ⊥ a(θo) (8)

1This is the case for most subspace based estimators, especially WSF/MODE
and MUSIC

FOI-R--1297--SE
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Proof: The derivative w.r.t. θ of V (θ) is

V̇ (θ) = 2Re {a∗(θ)eve∗vȧ(θ)} (9)

The gradient of V̇ (θ) w.r.t. the signal eigenvector ev becomes
(Brandwood, see (52) in the Appendix)

g , ∇ev V̇ (θo) = ȧ(θ)e∗va(θ) + a(θ)e∗vȧ(θ) (10)

We now write a(θ)∗a(θ) = q1 and furthermore ev = q2 · a(θ),
where q1 and q2 are a constants, the latter since the two vectors
span the same subspace. Hence we get

ḡ∗ = ȧ∗(θ)q1q2 + ȧT (θ)ēva∗(θ)

and, describing the array elements through their phase lags
only, for a general array geometry,

ḡ∗a(θ) = (ȧ∗(θ)a(θ)q1q2 + ȧT (θ)ā(θ)q1q2)
= 0 (11)

We now conclude that
Lemma 2: Given an estimator cost function that contains the

quadratic form Q(θ, ev), any error ∆ev parallel to a(θo) and
small enough to fulfill ∇ev ≈ ∇ev+∆ev , does not cause other
than higher order DOA bias.

Proof: The proof follows immediately from Theorem 1.

The above Lemma points at one possible strategy for ob-
taining zero bias: If the errors ∆ev are deterministic and con-
trollable2, a pre-processing that rotates them into orthogonality
with∇ev V̇ (θo), will reduce or eliminate the bias.
In the next section, using a Taylor expansion, the result of

Lemma 1 will be extended to encompass all cost functions for
which the necessary derivatives exist, not only those containing
the quadratic form Q(θ, ev).

IV. REDUCING BIAS

Below the derivative of the DOA estimator cost function will
be Taylor expanded around the estimated point V̇ (θ̂, Êv). The
purpose is to establish a relation between a certain (mapping)
error∆Ev in Ev on the DOA estimate θ̂. Initially multi emitter
formalism is used but later the analysis will be restricted to one
emitter scenarios.
Third order Taylor expansion around the (single) correct

DOA θo of the estimator cost function V is required to analyze
the first two bias mechanisms in (1). Second order expansion
of the derivative V̇ with respect to θ is equivalent and yields

2Mapping between two known arrays of different known shapes is one ex-
ample of a pre-processing which yields this type of errors

V̇ (θ̂, Êv) = V̇ (θo,Ev) + V̈ (θo,Ev)∆θ (12a)

+2Re

(
dX

k=1

∇ev V̇ (θo,Ev)
T∆ek

)
(12b)

+
1

2

...
V (θo,Ev)∆θ

2 (12c)

+2Re

(
dX

k=1

∇ev V̈ (θo)T∆ek∆θ
)

(12d)

+Re

(
dX

k=1

dX
l=1

Tr (H1kl∆el∆e
∗
k)

)
(12e)

+Re

(
dX

k=1

dX
l=1

Tr
¡
H2kl∆el∆e

T
k

¢)
(12f)

+o(N−1) (12g)

Here E s contains the d signal eigenvectors3. The Hessian
matricesH1 andH2 are given by

H1kl(i, j) =
∂2V̇ (·, ·)

∂ēk(i)∂el(j)

¯̄̄̄
¯
(θ,Es)

(13)

H2kl(i, j) =
∂2V̇ (·, ·)

∂ek(i)∂el(j)

¯̄̄̄
¯
(θ,Es)

(14)

We will now use the above expansion to analyze the effect of
different types of errors.

A. Using the gradient to express bias
As shown in [4], under imperfect array mapping and other

deterministic errors, the first error term in (1) can become large.
This shows up in the Taylor expansion term (12b) which then
will dominate over the higher order terms and we get the fol-
lowing simplified expression for the DOA bias b. (Note that if
∆ek is random we in stead get standard deviation)

∆θ , b = −
2Re

nPd
k=1∇ev V̇ (θo)T∆ek

o
V̈ (θo,Es)

+o(N−1) (15)

Hence, forN not to small and reasonable SNR, the resulting
DOA bias∆θ can be reduced if (15) is minimized by reshaping
the (deterministic) errors∆ek such that

∇ev V̇ (θo) ⊥ ∆ek, ∀ k (16)

By Lemma 1 we know that if ∆ek can be rotated to become
parallel with the response vector a(θo) then θo will be estimated
correctly without other than higher order bias.
While this orthogonality yields Re

n
∇ev V̇ (θo) ·∆ek

o
= 0,

and Im
n
∇ev V̇ (θo) ·∆ek

o
= 0, and we need only the for-

mer to reduce 1st order bias, it is easily verified by simulations
3Note that we earlier confined our application to d = 1 emitters
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that the extra latter condition helps in reducing the higher or-
der terms in (12), i.e. (12c)-(12f). These become visible when
SNR is high and thus constitute the residual bias in such sce-
narios.
On the other hand minimizing both theRe- and the Im -terms

ties up more degrees of freedom in the mapping matrix and may
therefore compromise bias reduction. This measure is therefore
only recommended in high SNR scenarios.
Both these effects are illustrated and commented on in the

Simulations section.
When mapping from a matrixAr of real response vectors ar

onto a matrix Av of virtual response vectors av in a scenario
with only one emitter, i.e. d = 1, the bias expression (15) can be
simplified into a more useful form if we replace the eigenvector
error ∆ev = T∗es − ev with the array mapping error ∆a =
T∗ar − av (presuming the response vectors have been normed
to length 1). This is allowed since in the one emitter case these
two vectors span the same subspace.
The bias expression (15) then becomes

bT = −2Re {ḡ
∗
v∆a}

V̈ (θo, ev)
(17)

where we for convenience have denoted the gradient in (15) by
gv and used the notation bT to indicate the dependence of the
bias on the mapping matrix T.

B. Reducing deterministically induced bias
To minimize bias one would naturally choose T as

Topt = argmin
T
|bT |2 (18)

For the specific application of array mapping over a sector one
would use a set {θi}Ncal

1 of adjacent calibration directions to
comprise the sector and then choose T as

Topt = argmin
T

NcalX
i=1

|bT,i|2 (19)

where bT,i is the bias according to (17) in direction θi. How-
ever, since we also need keeping the eigenvector (mapping) er-
rors∆ev,i small we can extend the sum with the corresponding
manifold matching terms into

Topt = argmin
T(

(1− k)

NcalX
i=1

|∆a(θi)|2 + k

NcalX
i=1

|bT,i|2
)

(20)

where ∆a(θi) = T∗ar(θi)− av(θi) and k is a weighting con-
stant smaller than, but close to 1. Extending the sum as in (20)
also ensures a sufficient number of equations to solve the cor-
responding least square problem for T.
The weighting constant k is chosen smaller than, but close

to 1 to ensure the orthogonality (16) in the real part. The value
of k is a compromise between putting high emphasis on the or-
thogonality between the mapping error and the gradient on one
hand, and on the other hand to keep the length of the mapping

errors limited so that the linear terms in the Taylor expansion
dominate. Low signal SNRs contribute to the mapping errors
so we expect the optimal k to be chosen slightly lower in such
cases. This aspect is illustrated in the Simulation section, see
Figures 8 and 9.
1) Simplifications to the bias minimizing algorithm: When

implementing the suggested design algorithm a few practical
details are worth noting:
1) For a typical broadside mapping sector, comprised by the
set {θi} of calibration directions, say up to +/ − 15o
wide, the beamwidth (and hence the Hessian V̈ (θi, ev,i)
of a λ/2 spaced ULA does not vary much. As veri-
fied by simulations we can therefore replace the Hessians
V̈ (θi, ev,i) in (17) with their average value across the sec-
tor and then modify k accordingly.

2) The scalar products g∗v,iav(θi) are all zero. This simpli-
fies the (17) bias terms into

bT = const.× 2Re {ḡ∗Tar} (21)

3) As mentioned before, if we devote some of the degrees
of freedom in T to reducing also the imaginary part of
the scalar products g∗v,iT∗a(θi), i.e. we drop the Re
operator in (21), then the rest bias can be noticeably re-
duced.This measure will deteriorate first order bias sup-
pression slightly but in high SNR scenarios simulations
show it to be a rewardable step. See the Simulations sec-
tion.

With the above simplifications, when the mapping is onto a
ULA and SNR is high, (20) takes the simplified form

Topt = argmin
T(

(1− k)

NcalX
i=1

|∆a(θi)|2 + k

NcalX
i=1

¯̄
ḡ∗v,iTar(θi)

¯̄2)(22)
where the weighting constant k now includes the average of the
Hessians. It is presumed that the exact value of k is chosen
empirically.
2) Some comments: Note that the suggested algorithm (20)

reduces DOA estimation bias not by minimizing the size of the
virtual array mapping errors ∆ev,i but instead by giving said
errors such a structure that they no longer affect the DOA es-
timates. This approach makes mapping between dissimilar ar-
rays feasible over sectors much wider than would be possible
for a corresponding (pure) array manifold match (where k = 0).
Furthermore, note that due to Theorem 1 we can usually re-

place ∆a(θ(i)) in (20) by T∗ar(θ(c)). This simplification will
be used also in the MSE analysis later on.
The action of the design algorithm (20) can be described as

generating one transformation matrix T for each of the Ncal

calibration directions, and then, in a least square sense, finding
the best compromise across all the Ncal transformation matri-
ces. If the uncorrected bias is large its reduction by adding the
last sum term can be dramatic. In [4] a reduction factor ex-
ceeding 100 was demonstrated despite the sum terms not being
individually weighted by the corresponding Hessians.
Finally note that (15) only uses a parabolic, i.e. symmetrical,

approximation of the cost function V , hence in this description
bias generated by zero mean noise will not be visible, [11].
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C. An expression for minimized bias
Algorithm (20) reduces bias primarily by enforcing orthog-

onality between the gradient gv and the error ∆ev in (15), an
approach that will be shown to be quite effective. However, af-
ter having performed a mapping using a transformation matrix
designed according to (20), it should again be noted that for the
remaining bias, expression (15) is no longer valid.
This is evident from an inspection of the Taylor expansion

(12) where the first order term (12b) through the enforced or-
thogonality now is small but the mapping error ∆ev still may
be relatively large.
Assuming good orthogonality, and hence a small ∆θ in (12)

we can neglect the terms (12b) and (12c). Thus an higher or-
der expression for minimized bias (the remaining bias after a
mapping according to (20) has been performed) is

∆θrem = (23a)

−
2Re

nPd
k=1

Pd
l=1 Tr (H1kl∆el∆e

∗
k)
o

V̈ (θo,Ev) + 2Re
nPd

k=1∇es V̈ (θo,Ev)T∆ek

o(23b)
−

2Re
nPd

k=1

Pd
l=1 Tr

¡
H2kl∆el∆e

T
k

¢o
V̈ (θo,Ev) + 2Re

nPd
k=1∇es V̈ (θo)T∆ek

o (23c)

+o(N−1)

This entity will be plotted as reference in the Simulations
section. It illustrates the limits of the effectiveness of the first
order based bias reduction approach (20).
Since for a ULA the second Hessian H2 = 0, it is evident

from (23) that in order to minimize the remaining bias ∆θrem
the mapping should have the property to leave errors ∆ek that
fall in the nullspace of the first Hessian H1. As supported by
simulations, due to the similar structure in the ULA case be-
tween H1 and the gradient ∇ev V̇ (θo) (see Appendix I) this is
advocated by requiring (16) to hold in both theRe and Im parts.
This explains the lower residual bias for high SNR cases il-

lustrated in the Simulations section if theRe operator is omitted
in algorithm (20).

D. Reducing noise induced bias
Assuming no deterministic errors, measurement noise will

dominate and we have∆ev = O(N−1/2). It was shown in [11]
that for relatively few snapshots (N = 20 was used as an exam-
ple) the bias caused by noise can dominate over STD caused
by noise. Using the full Taylor expansion (12) and the result in
Theorem 2 (see below), [11] derives the following expression
for MUSIC noise induced bias

E {∆θ} ≈

− 1
N

2
Pd

k=1
(m−d−1)λkσ2n
(λk−σ2n)2 Re {ȧ(θo)eke∗ka(θo)}

V̈ (θo,Ev)

−
...
V (θo,Ev)

V̈ (θo,Ev)
var(∆θ) (24)

In (24)m denotes the number of array elements, d the num-
ber of emitters, λk and σ2n the signal and noise eigenvalues re-
spectively of the data covariance matrix.
The last term in (24) can be interpreted as a measure of the

degree of asymmetry in the cost function V at the true DOA:s,
whereas the first term describes the interaction between individ-
ual DOA:s. This interaction is larger if at least one λk is close
to σ2n which is the case for adjacent and/or coherent emitters.
For one single emitter however, this first term vanishes and

the resulting bias depends only on the variance and on the sec-
ond and third order derivatives of the cost function, i.e. the
above mentioned asymmetry.
To reduce noise induced bias in the single emitter case we can

then use that V̈ and
...
V are analytically known. As an example,

to avoid the well known end-fire bias for ULA MUSIC we can
estimate sin θ instead of θ which makes

...
V (θo,Ev) = 0,∀θ

and the noise induced bias is avoided, [11].
A corresponding measure for the multi emitter case is in prin-

ciple also possible, but eliminating the first term analytically
seems tedious and in general requires knowledge of the true
DOA. Pre-processing to yield ȧ∗(θ)⊥ek∀k (in the real part), or
choosing an array geometry for which ȧ∗(θ)⊥a∗(θ), may be
options however.
Assuming a real arrayAr that is mapped byT onto a virtual

arrayAv using a set
n
θ(c)

o
ofNcal calibrated directions across

a sector, we can give the mapped data approximately this prop-
erty (with the aim of zeroing the first term in (24)) by taking

Topt = argmin
T
(1− k)

°°°∆A(θ(c))°°°2
F
+

k ·
NcalX
i=1

¯̄̄
Re
n
ȧv(θ

(i))Tar(θ
(i))
o¯̄̄2

(25)

where again∆A(θ(c)) = T∗Ar(θ
(c))−Av(θ

(c)) is the man-
ifold mapping error.
Because both terms in (24) scale with 1

N , this design of T is
expected to improve the DOA estimates only if these are based
on relatively few snapshots, and the scenario is one for which
noise induced bias is expected to dominate over noise induced
STD. A typical such scenario would involve about 20 snapshots
[11], and/or adjacent or coherent emitters near ULA end fire
directions.
As in (20) the value of the weighting constant k has to be

determined empirically. Likewise we cannot allow k = 0 for
then the LS solution to both (20) and (25) becomes T = 0.

V. REDUCING VARIANCE

To formulate an expression for DOA error variance we need
the following result also used by [12], p. 723.
Theorem 3: If measurement noise is both spatially white and

circularly symmetric, then the noise induced signal eigenvec-
tor errors ∆e(noise)s,i are asymptotically (for large N ) jointly
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Gaussian distributed with zero mean and

E
n
∆e

(noise)
s,i ∆e

(noise)∗
s,i

o
, cov(∆e

(noise)
s,i )

=
λi
N
·

dX
k=1
k 6=i

λk
(λk − λi)2

es,ke
∗
s,k

+
λi
N
·
m−dX
k=1

σ2k
(σ2k − λi)2

en,ke
∗
n,k (26)

Here λi and σ2k are eigenvalues of the data covariance matrix,
and en,k are the noise eigenvectors. In our application the num-
ber d of emitters d is limited to 1.

Proof: See [12] and the references therein.
The first sum in (26) describes the interaction between differ-

ent signal eigenvectors es,k, it therefore disappears if the sce-
nario contains one emitter only. In this case cov(∆e(noise)s,i ) is
determined solely by the noise eigenvectors en,k and the factor
λi
N · σ2k

(σ2k−λi)2
, a measure of SNR.

A. Using the gradient to express variance
If the errors ∆ev are limited and we presume one emitter

only, by (15) we can write any DOA error, deterministic or ran-
dom, as

∆θ = −2Re {gv
∗∆ev}

V̈ (θo,Ev)
= −gv

∗∆ev + gv∗∆ev
V̈ (θo,Ev)

(27)

where ∆ev is the error in the single signal eigenvector ev
contained in Ev.
To study the total effect on V̇ of ∆e(noise)v,(var), i.e. vari-

ance, we need to examine the entity 2Re
n
gv
∗∆e(noise)v,(var)

o
.

For notational convenience we now write this expression as
2Re {gv∗∆ev}.
Since this term is random we use second order statistics and

assess its magnitude by forming the expectation

E
n
(gv
∗∆ev + gv∗∆ev)(gv

∗∆ev + gv
∗∆ev)

∗
o
=

E
©
gv
∗∆e

v
∆e∗

v
gv
ª
+ (28a)

E
©
gv
∗∆ev∆e

T
v
gv
ª
+ (28b)

E
n
g∗∆ev∆e

∗
v
gv

o
+ (28c)

E
n
gv
∗∆ev∆e

T
v
g
o

(28d)

By the Theorem 3 the entities (28a) and (28b) are both zero.
We can therefore write the V̇ variance as the expectation

E
©
2Re(gv

∗∆ev)2Re(∆e
∗
v
gv)
ª
=

E
©
gv
∗∆eve

∗
v
gv
ª
+E

n
gv
∗∆ev∆e

T
v
gv

o
=

2Re {gv∗vcov(∆ev)gv} (29)

Theorem 2 now gives an expression for cov(∆ev), hence for
a non mapped one emitter case, using the gradient, we can write

the (non-mapped) DOA error variance as

var(∆θ) =

2λ1N ·Pm−d
k=1

σ2k
(σ2k−λ1)2

g∗ven,ke
∗
n,kgv

V̈ 2(θo,Es)
(30)

where we have dropped theRe operator since gv∗en,ke∗n,kgv =
|g∗en,k|2 is real.
Note that we have also dropped the higher order terms corre-

sponding to (12c)-(12f). For noise like errors this is well mo-
tivated since no realistic pre-processing can null out all noise
eigenvectors, see Figure 2 and the associated argument, so the
effect of the higher order terms is expected to be negligible..
We now observe that for the one emitter case the variance is

determined by them−1 scalar products g∗ven,k. This opens up
a prospect for minimizing variance when pre-processing is in-
volved: If the pre-processing rotates gv and en,k relative to one
another variance could possibly be controlled. We will address
this issue in the sequel.

B. Using the gradient to express mapped variance
Due to our partitioning of ∆ev into separate bias- and vari-

ance generating parts, putting the former to zero we can for the
latter assume

E
n
∆e

(noise)
v,(var)

o
= E {Tês,r − es,v} = 0 (31)

The virtual signal eigenvector error ∆ev = Tês,r − es,v has
all its noise power is in the first termTês,r, i.e. associated with
the real array. Hence, to derive an expression for DOA variance
we can study the variance in ∆es,r,T , T(ês,r − es,r) where
es,r is the true non-mapped signal eigenvector associated with
the real array. This variance is expressed as

var(∆es,r,T ) =

E {T(Tês,r − es,r)(Tês,r − es,r)∗T∗} =
Tcov(∆es,r)T

∗ (32)

The above expression has the desired property of being
quadratic in T and therefore lends itself well to least square
minimization.
As in (30) we can now use Theorem 2 and express the

mapped DOA variance as

varT (∆θ) =

2λ1N ·Pm−d
k=1

σ2k
(σ2k−λ1)2

g∗vTen,ke∗n,kT
∗gv

V̈ 2(θo,Ev)
(33)

Note that (33) expresses true mapped variance only if the
transformation matrix T is unitary. If this is not the case mul-
tiplication of the data with T can mean a net power gain and
thus a scaling on the resulting DOA variance. This has to be
taken into account when comparing different signal processing
solutions.
If T is well conditioned we can in principle correct for the

non-unitarity by the pre-multiplication T(TT∗)−
1
2 . The mul-

tiplications in (33) will then yield a weighted matrix product of
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the structure T(TT∗)−
1
2 en,ke

∗
n,kT(TT

∗
)
− 1
2∗ which can be

seen as a weighted projector onto the range space of T. We
thus see that the resulting mapped variance will depend on the
eigenvectors of the real array output covariance matrix, the pro-
jection properties of T, and on the derivatives comprising the
gradient gv.
With the above correction term (TT∗)−

1
2 the expression (33)

for mapped MSE no longer is quadratic inT. This complicates
the minimization. However, since it is the mapped DOA MSE
we want to minimize and the same T and gradient gv are used
in the bias expression, we can still use (33) as a minimization
criterion for the variance part of the MSE:
Without the pre-multiplication the above variance term (33)

contains the form g∗vTen,ke∗n,kT∗gv where T can be seen as a
rotator and re-scaler operating on the noise eigenvectors en,k.
The variance is then determined by the scalar product g∗vTen,k.
This can be given a geometrical interpretation and will be de-
veloped further in the next sections.

VI. GENERAL REQUIREMENTS ON THE PRE-PROCESSING
MATRIX

Minimization of noise induced DOA variance under map-
ping has been studied in great detail. Aside from improving the
SNR by spatial filtering (which assumes some pre-knowledge
of the searched DOA:s) the best we can do is to avoid imped-
ing the estimator effectiveness and try to retain the Cramér-Rao
Bound CRB under any pre-processing that we want to apply.
We thus require that the unmapped CRBs should be retained,
then DOA estimation variance will not be impeded by the pre-
processing. Assuming spatially white noise and a unitary T it
has been shown in [3] and [2] that if the pre-processing matrix
T fulfills

T∗T
h
A(θ(i)) D(θ(i))

i
=
h
A(θ(i)) D(θ(i))

i
∀i
(34)

then at θ(i) the DOA estimator variance performance will be
retained.
Here the matrix D(θ(i)) contains the derivatives w.r.t. θ of

the response vectors a of the manifold matrix A evaluated at
θ(i). T is also presumed to be unitary.
Obviously, if T is full rank we have T∗T = I and (34) is

trivially fulfilled. However if T is of poor condition some di-
mensions in the spaceT∗T will not be well spanned. This plus
the wide sector compromise for T in the signal reconnaissance
application are the main reasons behind variance increase in
the sector mapping application. A corresponding situation is
dimension reduction where T has fewer rows than columns.
In the formulation (34) T is assumed unitary. Hence T∗T

can be seen as a projector, and this projector must not project
away the dimensions needed to attain the CRB, especially not
those spanned by the derivatives. However in the sector map-
ping application, minimizing both manifold mapping error and
bias (as in (20)) usually results in a non-unitaryT. This is easily
seen from simulations.
Generalizing (34) for this case we write

ΠT

h
A(θ(i)) D(θ(i))

i
=
h
A(θ(i)) D(θ(i))

i
∀i
(35)

whereΠT = T
∗(TT∗)−1T , T†T.

A slight reformulation of (34) now gives

T†
h
TA(θ(i)) TD(θ(i))

i
=
h
A(θ(i)) D(θ(i))

i
∀i
(36)

An interesting question now is wether the fulfillment of
(35) in any way is impeded by the zero bias condition
Re {ḡ∗∆ek} = 0. We shall see that this can be the case.
The last term in the design algorithm (20) advocates

the zero bias condition by pushing Re
©
ḡ(i)∗∆A

ª
=

Re
n
ḡ(i)∗(TAr(θ

(i))−Av(θ
(i)))

o
towards zero. However

from Theorem 1, for a wide class of DOA estimators we have
that ḡ∗Av = 0 so the zero bias condition can be simplified into
Re
n
ḡ(i)∗TAr(θ

(i))
o
= 0.

Applying this to the left membrum in (36) we see that a T
designed for minimum bias, as seen in the real part, will tend
to rotate all column vectors TAr(θ

(i)) into orthogonality with
ḡ(i), i.e. the vector ḡ(i) forms a null-space of T (at least in
the real part). This will tend to remove a dimension from ΠT

and therefore somewhat restricts the space spanned by the set of
said column vectors. According to (35) this can make it more
difficult to attain the CRB.
In the Simulations section this effect is illustrated in Figure 5

which shows MUSIC spectra for unmapped and mapped data,
the latter using a matrix T obtained from algorithm (20) with,
and without, the Re operator in the sum terms.

VII. REDUCING MEAN SQUARE ERROR MSE
In order to design a ”best” pre-processing matrix T when

neither deterministic nor noise induced errors can be neglected,
we need a suitable criterion function. Preferably this criterion
function should be scalar and also convex in T to yield a prac-
ticable optimization problem. The Mean Square of the total
error,MSE = bias2 + variance, provides one such criterion
function which will be used here.
Using the earlier results we can now form expressions for

both unmapped and mapped MSE. The latter expression has
the desired feature of being quadratic in T.

A. An analytical expression for unmapped DOA MSE
Using (15) and (33), we get the following expression for the

total Mean Square Error of the (unmapped) DOA estimates. It
describes both bias and variance but presumes validity of the
linear expansion (12a) and (12b) of the estimator cost function
derivative V̇ .

MSE = bias2 + V ar =

4Re
n
ḡ∗∆e(det)s,(bias)

o2
V̈ 2(θo,Es)

(37a)

+
2
Pm−d

k=1 g
∗
ven,k

λ1
N · σ2k

(σ2k−λ1)2
e∗n,kgv

V̈ 2(θo,Es)
, (37b)
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where we have assumed the measurement noise to spatially
white. Therefore all σ2k are equal.
At this point we recall that both (37a) and (37b) were derived

using the Taylor expansion (12) around the true DOA. Hence,
in the mapped case this expansion becomes more and more ap-
proximative the larger the mapping errors.
Any pre-processing based on said (first order) Taylor expan-

sion must meet the requirement that these errors are limited.

B. An analytical expression for mapped DOA MSE
We now assume that the DOA estimator receives pre-

processed data and view the mapped data that is fed from the
virtual array to the DOA estimator. Assuming one emitter
d = 1, and aiming at a quadratic expression inT, for the corre-
sponding mappedMSET , we therefore write

MSET = bias2T + V arT (38)

and by the earlier formulations (15) and (33) get the following
expression for pre-processedMSE. Apart from assuming lim-
ited sized errors ∆ev = T∗es − ev it also assumes that the
higher order terms (12c) - (12f) are negligible.

MSET =
4Re {ḡ∗∆av}2
V̈ 2(θo, ev)

(39a)

+
2
Pm−d

k=1 g
∗
vTên,k

λ1
N · σ2k

(σ2k−λ1)2
ê∗n,kT

∗gv

V̈ 2(θo, ev)
(39b)

We observe from (39) that the MSE minimizing T will de-
pend on SNR through the factor σ2k/(σ2k − λ1)

2. This means
that we either have to estimate the prevailing SNR or, which is
preferable, use a pre-calculated ”design SNR”, f. ex. 10 dB,
according to which the mapping matrixT is constructed.
In a practical sector mapping application one would (per sec-

tor) pre-calculate a number of matricesT for different SNR val-
ues and then, once the proper sector has been determined, via an
eigenvalue decomposition performed on the non-mapped data,
estimate the SNR. Thereafter the best T would be used.
Finally notice that both (39a) and (39b) in the MSET ex-

pression (39) could in principle be extended with the higher
order (23) terms to gain a somewhat better accuracy. However,
any procedure to minimize MSET is complicated by such an
extension since MSET would then no longer be quadratic in
T. This option will therefore not be further considered.

VIII. MINIMIZING MAPPED MSE: A GEOMETRICAL
INTERPRETATION

From (39) it is clear that, disregarding the proportional-
ity constants involved and the higher order terms, mapped
variance is essentially determined by the quadratic formP

k g
∗
vTêen,k ê

∗
n,kT

∗gv. Formally, we can view T as a map-
ping on gv, and in doing so we see that in order to minimize
variance T should have the property to rotate gv into orthogo-
nality with all (real array) noise eigenvectors. This means that
g∗vT as much as possible should lie in the corresponding signal
subspace <{ês} ≈ <{ar} .For T to map into <{ês} it thus
needs the property

1) <{T} ⊇ <{ês}
We also need the property of T to be able to map all compo-

nents of gv onto the signal subspace, i.e. <{ar}. No matter if
the DOA estimator uses orthogonality between the array man-
ifold and the noise subspace as in MUSIC, or tries to fit the
signal subspace to the array manifold as in WSF4 , for a sin-
gle emitter the resulting cost function gets the same structure
a∗(θ)(I− êsê∗s), see f. ex. [18].
The corresponding (unconjugated) gradient with respect to ê

sbecomes
gv = ȧ(θ)ê

∗
sa(θ) + a(θ)ê

∗
sȧ(θ) (40)

so obviously we also need the property of T that
2 <{T} ⊇ <{ȧr}
As expected, these two properties ofT are in full accordance

with (34).

A. A geometrical interpretation
If the used estimator is bias free and our strategy is to avoid

adding new bias, the search for the variance minimizing T can
be visualized in Figure 2 as a rotation of the (mapped) noise
subspace relative to the gradient ḡv. If ḡv⊥ a (for minimum
bias) and measurement noise covariance is a scaled identity
matrix this rotation does not affect the variance. For coloured
measurement noise however, when the noise eigenvalues are
unequal, there exist optimal directions for the gradient inside
the noise subspace.

e n1

e n2

e s

g
gn

g s a,

bi
as

v

e n1

e n2

e s

g
gn

g s a,

bi
as

v

Fig. 2. The mapped signal- (es, a) and noise subspaces (en1 and en2) are
rotated relative to the gradient gv by the mapping matrixT for minimum DOA
MSE. Bias is represented by by the real part of the projection of gv onto the
signal subspace (a-axis). This figure illustrates the orthogonal nature of bias
reduction in relation to variance reduction. No pre-processing exist by which
both can be zeroed simultaneously.

Then, by Lemma 1 we observe that those samples of
∆e

(noise)
s,(var) that happen to fall parallel to the response vector

a(θo) do not contribute to DOA estimation variance. However,
those that have components inside the corresponding orthogo-
nal space, i.e. the noise subspace, do.
To minimizeMSET both the deterministic and random parts

of the signal subspace eigenvector errors should be orthogonal
4Weighted Subspace Fitting
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to the gradient gv  , i.e. parallel to a(θo ), at least in the real part.
This would be the ideal situation, but one obvious problem is
the amount of control we can exercise over the random part
a(θo).
By (33), to minimize variance T should have the property

that
gv ∈ N

n
TÊn(θo)

o
(41)

whereN denotes the null-space. But by Lemma 1, for bias-free
cost functions containing the quadratic form Q(θ, ev) we have
for the (sufficient) minimum bias condition

gv ⊥ Tar(θo) (42)

or equivalently

g ∈ N {Tar(θo)} ≈ <
n
TÊn(θo)

o
(43)

where the last equality is exact if the mapping is error free and
SNR is sufficiently good.
Obviously no pre-processing exist for which both (41) and

(43) can be met simultaneously.
If we take into view that we only require

Re {gv ·Tar(θo) ·Tar(θo)} = 0 (44)

the zero bias condition can be relaxed into

Re {gv} ·Re {Tar(θo)} = Imgv Im {Tar(θo)} (45)

At least ifT is designed around the true DOA θo, a larger set of
solutions should exist for (45) than for the combination of (41)
and (43). When T is a sector compromise this may still be true
but the set will be smaller.
The orthogonal character of (deterministic) bias reduction in

relation to variance reduction is illustrated in Figure 2 for a 3D
case. Using the notation in Figure 2 the real part of the pro-
jection gs of g on the (mapped) signal subspace vector a deter-
mines the bias, and the projection gn of g on the noise subspace
the variance.
Bias will be small if g lives entirely in the noise subspace

but also if only (45) is met. If the noise is spatially white, all
noise eigenvectors have a common scaling factor σ2 so in this
case there exists no pre-processing T on the data by which the
DOA variance can be reduced while the gradient is confined to
the noise subspace.
If the estimator has some (deterministic) bias, then g∗es 6= 0

and some components of g do fall outside the noise subspace.
This leaves fewer components of g inside the noise subspace,
and therefore a somewhat reduced variance. Hence, as far as
the relative direction between g and the (pre-processed) noise
subspace is concerned, we indeed can reduce variance, but, if
the noise is spatially white, always at the cost of increased bias.
And vice versa.
Still using the notation in Figure 2, an optimal transformation

matrix would align Im {g} along the signal eigenvector axis
(where it does not cause bias but moves maximum power out
of the noise subspace), and Re {g} into orthogonality with said
signal eigenvector axis, i.e. inside the noise subspace. Inside

the noise subspace Re {g} would be aligned along the eigen-
vector with the smallest associated eigenvalue.
A “best” pre-processing matrixT should exploit this while at

the same time be retained in as good a condition as possible. If
condition becomes a problem we may apply dimension reduc-
tion, i.e. design a T with fewer rows than columns. All along
the lines described in [3] to regain numerical robustness. An-
other remedy against poor conditioning of T is diagonal load-
ing.

B. Spatially coloured noise
If some of the pre-amplifiers in the antenna array have higher

noise figures than the others the noise covariance matrix will
still be diagonal but with unequal diagonal elements σ2k. This
will also be the case for the array output covariance matrix.
Returning to the virtual array subspace notation we would then
pick a T that aligns the eigenvector en,k that corresponds to
the smallest factor λ1σ

2
k

(σ2k−λ1)2
along the gradient gv. We can do

this without generating bias if the gradient is retained inside the
noise subspace.
The degree of variance reduction obtainable through this op-

eration will depend on the ratio of the largest λ1σ
2
k

(σ2k−λ1)2
-value

to the smallest. See Figures 12 & 13 in the Simulations section
for an illustration.
If the external noise is spatially coloured, f. ex. by noise

jammers, the sun etc., we have a similar situation. Then some
gradient directions (inside the noise subspace) are better than
the others in terms of MSE. An optimal pre-processing or map-
ping matrix should take this into account (spatial filtering). This
problem has been treated in [14] where pre-whitening of the
data using the inverse of an estimate of the (coloured) noise
covariance matrix is used to restore the equal scaling of the dif-
ferent dimensions in the noise subspace.

IX. MAPPING DESIGN ALGORITHMS FOR BEST MSE

Taking theMSE perspective into view, and assuming an N
large, and ∆ev = T∗es − ev small enough for the Taylor ex-
pansion terms (12a) and (12b) to dominate, the used mapping
matrix should possess the following properties as well as possi-
ble across all directions comprising the processed mapped sec-
tor
1) The direction of the gradient gv , ∇ekV (θ, ev ) relative
to ∆ev, es and en,i should be such as to minimize bias
and variance in optimal proportions.

2) The columns of the pre-processing matrix T should span
all the dimensions required by (34) in order to avoid vari-
ance increase.

3) We must prevent the T = 0 solution in any design algo-
rithm

4) As in (20), the design algorithm should have a structure
that facilitates a least square solution.

For large SNR property 1 and 3 are secured through the de-
sign algorithm (20), but generally the “best”Twill depend also
on the noise so this must be estimated and used in the design
criterion.

FOI-R--1297--SE



11

A. A design algorithm for best mapped MSE

Since both terms in the expression (39) for mapped MSE are
quadratic inT we know a global minimum exists. In designing
T, to obtain some numerical robustness we should preferably
use more calibration directions θ(c) than the numbermr of an-
tenna elements and seek a best least square solution.
Assuming this and again replacing ∆ev,i with ∆a(θ(i)) =

T∗ar(θ(i))− av(θ(i)), we re-write (39) as

V̈ 2(θo,Es) ·MSE = 4Re
n
ḡ∗∆e(det)s,(bias)

o2
(46a)

+2
m−dX
k=1

(g∗vTen,k

s
λ1
N
· σ2k
(σ2k − λ1)2

·s
λ1
N
· σ2k
(σ2k − λ1)2

e∗n,kT
∗gv) = (46b)¯̄̄

2Re
n
ḡ∗∆a(θ(i))

o¯̄̄2
+ (46c)

2
m−dX
k=1

¯̄̄̄
¯g∗T∗en,k

s
λ1
N
· σ2k
(σ2k − λ1)2

¯̄̄̄
¯
2

(46d)

Here the terms (46a) and (46c) represents bias2, (46b) and
(46d) variance. Our problem now is to find a pre-processing
T that minimizes their sum. In doing this we are aware of the
facts that the variance cannot be reduced below the CRB, and
that the accuracy of (46a) in describing the bias is limited by
the size of the rest terms (12c) - (12f).
We now return to the application of array mapping over a sec-

tor comprised by the Ncal calibration directions θ(i). As men-
tioned before this is a typical case where (i), the deterministic
errors ∆e(det)v,(bias) are controllable, and (ii), the variance, due to
a T that due to the sector mapping spans the wrong subspace,
easily gets much larger than the CRB.
In the calibration process we collect the Ncal response vec-

tors ar(θ(i)), presumably at good SNR, and calculate the corre-
sponding virtual vectors av(θ(i)) analytically. For any given T
the mapping errors∆a(θ(i)) = T∗ar(θ(i))− av(θ(i)) can now
also be calculated.
To find a mapping matrixT that, in a DOA error minimizing

sense, is a best least square compromise for all calibration re-
sponse vectors within this sector, and at the same time prevent-
ing the T = 0 solution, we thus propose the following design
algorithm

T = argmin
T

½
(1− k)

°°°∆A(θ(c))°°°2
F
+ (47a)

k

"
NcalX
i=1

1

V̈ 2(θ(i))

¯̄̄
2Re

n
g∗v,iT

∗ar(θ(i))
o¯̄̄2

+ (47b)

NcalX
i=1

1

V̈ 2(θ(i))

mr−1X
j=1

¯̄̄
g∗v,iT

∗en,i,j(θ(i))·
s

λ1,i
N

· σ2i,j
(σ2i,j − λ1,i)2

¯̄̄̄
¯
2
 (47c)

where F denotes the Frobenius norm and gv,i , gv(θ
(i)) are

the Ncal (calibration) gradient vectors.
The first term (47a) minimizes the manifold mapping error

∆A(θ(c)) and prevents the T = 0 solution, the second term
(47b) advocates minimum DOA bias, and the third (47c) mini-
mum DOA variance.
In analogy with (20), we expect the weighting constant k to

be close to 1 to enforce low MSE. We also expect the opti-
mal k to be slightly smaller for lower SNR since then control
over the mapping error becomes more important. Furthermore,
the balance between correcting the deterministic or stochastic
parts of theMSE is set by the root expression, i.e. essentially
SNR. We see that if SNR or N is large, the variance part
(47c) disappears and (47) reduces to (20).
In (47b) we have again used that ar(θ(i)) and es(θ(i))

span the same subspace, and also, from Theorem 1, that
g∗v,iav(θ

(i)) = 0,∀i.
Finally we observe that the space <

n
∆a(θ(i))

o
≈

<
n
∆e

(det)
s,(bias)(θ

(i))
o
⊥ en,j(θ(i)),∀i, so again we see the con-

flict previously illustrated by the pair of equations (41) and (43):
No T 6= 0 exist for which both the bias (39a) and the vari-
ance (39b) can be put to zero. However, as long as the linear
Taylor expansion holds, a mapping matrix according to (47) is
expected to minimize DOA MSE across the sector.
Since the variance part of theMSE cannot be reduced below

the CRB the amount of improvement that can be expected by
adding the last term (47c) depends on how close to the CRB
the variance of the estimates already get without use of this last
term.
Furthermore, to strong a linear dependence among the cali-

bration response vectors will tend to cause numerical instability
in the solution for T and thus extra variance. In such cases the
resulting variance may substantially exceed the CRB and the
last term nevertheless be effective.

B. Calibration sector width
To solve (47) forT we need at leastmr linearly independent

column vectors inAr(θ
(i)) wheremr is the number of antenna

elements in the real array. This is decisive since in the solution
for T we need to invert the matrixAr(θ

(i)).
In addition, as mentioned before the zero bias condition will

tend to further restrict<{ΠT } so any linear dependence among
the calibration response vectors is important to control.
For the UCA to ULA mapping application this problem is

evident:
The maximum number Nrv of (almost) independent re-

sponse vectors inside a certain sector of width Sw can be ap-
proximated by Sw

Bw
where Bw is the array beamwidth. We

should have Nrv ≥ mr. Strict inequality is to prefer since it
leads to a numerically more robust least square solution for the
best mapping matrix.
Taking a uniform λ/2 spaced circular array UCA as an ex-

ample we roughly have Bw = λ/(mr
λ
2
1
π ) =

2π
mr
. The above

inequality then becomes Nrv = Sw/Bw = Sw/(
2π
mr
) ≥ mr

which yields Sw > 2π, ∀mr.
Since for a good circular to linear match this is impossibly

wide we must increase the element spacing. In [4] it is shown
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that up to 4λ is quite feasible for an UCA, and this would yield
Bw =

π
4mr

and Sw > π/4 respectively, see Figure 3.
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Fig. 3. With 4λ of UCA element separation a 45o sector can barely encompass
mr linearly independent response vectors, wheremr is the number of antenna
elements.

For illustration, in figure 4 the condition number5 of an 8 ele-
ment UCA response vector matrixAr is plotted against element
spacing in wavelengths for two sector widths, 45o and 30o. The
condition number increase towards smaller element separations
is evident.
Allowing condition numbers up to 104 (above which further

calibration response vectors contribute little to the solution for
T) figure 4 indicates a useful relative bandwidth of one octave
for a uniform circular array. As a compromise between linear
dependence (and a complicated calibration procedure) on one
hand, and mapping errors on the other, 30o will be used in the
Simulations section.
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Fig. 4. Condition number of the response vector matrix Ar as function of
element spacing, i.e. array size, for an 8 element uniform circular array, UCA.
The bump is due to a geometrical resonance effect.

Hence we see that ifT retains the dimension, i.e. is quadratic
and full rank, then sector mapping always has to be performed

5The largest singular value divided by the smallest

with some linear dependence among the used calibration re-
sponse vectors, the more the narrower the sector. This can lead
to increased variance and may enforce dimension reduction so
that fewer than mr calibration directions can be used. This is
verified in figures 16 and 17 in the Simulations section.
If dimension reduction6 is used to remove those dimensions

in Ar that correspond to the smallest singular values, the con-
dition numbers can be improved and lower frequencies used for
a given array. This plus the fact that less inherent bias has to
be countered if the frequency is reduced, so that the weighting
constant k in (47) can be given a much smaller value, relieves
the problem significantly.
Simulations show that we can reduce the operating frequency

down below λ/2 element spacing if these measures are taken.
Hence an operating bandwidth in excess of 3 octaves can be
expected for a givenmr = 8 UCA.
Dimension reduction was treated extensively in [3] to which

the interested reader is referred.

C. Spanning the space of the derivatives
While overlapping beams cause linear dependence and nu-

merical problems, the CRB retainment condition (34) is auto-
matically fulfilled by precisely said overlap. Using a dense grid
θ(c) of calibration directions we see that the corresponding set
of response vectors a(θ(c)) spans a space that also includes the
derivativesD(θ(c)) in (34).
This is seen by approximating the derivatives with the differ-

entials.

d(θ(i)) =
a(θ(i+1))− a(θ(i))
(θ(i+1))− (θ(i)) (48)

The fulfillment of (34) generally requires the DOA to be
known beforehand, at least to within a beamwidth. In signal
surveillance this knowledge is not at hand and we have to rely
on the LS compromise of sector mapping, at least in a first step.
The resulting deviation from (34) will cause a variance increase
in the mapped estimates. Reducing this increase as much as
possible is one prime purpose of the proposed design algorithm
(47).

D. The least square solution
The minimization problem (47) can be solved in many ways.

One approach is to apply the vec operator to both terms inside
each norm and solve for a vectorized version t of T. In doing
so we get a least square solution of the type

t =

·
vec(Re {T})
vec(Im {T}) =M†m

¸
(49)

with obvious definitions for M and m. Solving it involves
calculating the pseudo-inverse of the large matrix M of size
[2Ncal ×mr +Ncal + 2Ncal × (mr − 1)] × [2mvmr]. If, as
a typical example, mv = mr = 8 and Ncal = 15, the size of
the matrixM is 465× 128.
Omitting the Re operator in (47b) reduces the size ofM to

[Ncal ×mr +Ncal + 2Ncal × (mr − 1)] × [mvmr] or 345 ×
6T has dimension n×m with n < m
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64 in the example, but on the other hand enforces complex com-
putations. However, this measure has the advantage of mini-
mizing the modulus of g∗v(θ

(i))TAr(θ
(i)) and not just the real

part, a feature that shows up in the simulations as lower bias
during high SNR conditions.
This observation is explains as a reduced magnitude also of

the residual terms (12c) - (12f) in the Taylor expansion, but
has the accompanying disadvantage that some of the avail-
able degrees of freedom in T now are used to minimize
also Im

n
g∗(θ(i))Tar(θ(i))

o
which as such does not improve

MSE. Conversely, as already pointed out, this increases the
DOA error variance somewhat, see Figure 5 in the Simulations
section for an illustration.
It should also be noted that solving (47) and inverting the

rather large matrixM is part of the calibration process. During
real time operation of a typical DF system all mapping matrices
T would be calculated in advance and will therefore not slow
down the real time generation of DOA estimates.
Finally note that in the above derivation of theMSE expres-

sion (39) no restrictions on the cost function V were made other
than the existence of the necessary derivatives. Hence we con-
clude the proposed design algorithm (47) to be applicable to all
DOA estimators that are based on cost functions of this class.

X. DIMENSION REDUCTION AND THE SPAN OF T

A natural way to enforce some of the abovementioned CRB
-property (34) into the transformation matrix T is to extend
each term in the (20) sum with a new term that penalizes lack of
said property (34), i.e. lack of ability in T to span the required
subspace. This measure is motivated when dimension reduction
is involved and the transformation matrix T therefore is much
below full rank.
The design algorithm (20) then extends into

Topt = argmin
T,M

½
(1− k)

°°°∆A(θ(c))°°°2
F
+ (50a)

k(1− λ) ·
NcalX
i=1

¯̄̄
Re
n
gv
(i)∗∆A(θ(c))

o¯̄̄2
+ (50b)

λ kT−MVk2F
o

(50c)

where we see that if the weighting constant λ = 0 then (50)
reduces to the earlier design algorithm (20).
The new penalty term involves a matching matrix M, and

the matrix V whose columns form an orthogonal basis for the
space spanned by the right membrum in (34) at the true DOA
θo. This basis can be obtained by performing a singular value
decomposition on the matrix in said right membrum, [19].
To enforce some of the property (34), we take λ > 0, where

the optimum value will depend on the amount of deterministic
bias as well as on SNR and N , and above all, on the amount
of space Cm outside <{V}.
The design algorithm (50) is most effective in dimension re-

duction applications where <{V} ⊂ Cm. In this case an ini-
tially (for λ = 0) high or full rank matrix T can be ”pruned” to
span but the necessary dimensions.

For dimension retaining pre-processing, f. ex. array map-
ping over sectors, <{V} ≈ Cm and there will always exist an
M that puts the last term (50c) to zero, regardless of T. This
renders (50) less useful in such cases and corresponds to trivial
fulfillment of (34).
For (50) to work, the true DOA θo should in principle be

known and if this is not the case a successive narrowing of the
width of the mapped sector is necessary. If this operation is
included and combined with dimension reduction, bias can be
minimized and the CRB approached. See also [4], pp. 107-109
for verifying simulations.

XI. SIMULATIONS
In the simulations to follow theMSE of the DOAs obtained

from a mapped circular array will be studied. The mapping
is from a (real) 8 element planar uniform circular array UCA,
spaced at 4λ to highlight bias, onto an 8 element (virtual) λ/2
ULA. Both arrays are confined to the same plane with the phase
centers symmetrically placed. This is a typical case where the
deterministic errors can get relatively large, are known (through
a calibration process), and are controllable (by the design ofT).
Using a set of Ncal = 15 calibrated directions uniformly

spread across a 30o wide broadside azimuthal sector, a map-
ping (transformation) matrix T is constructed according to the
proposed algorithm (47). This corresponds to a typical signal
surveillance application where omni-directionality (the UCA)
and bandwidth (the 4λ spacing), can be combined with esti-
mator processing speed (ULA root MUSIC or root WSF). It is
however also a scenario where DOA bias is large and can dom-
inate over STD if no countermeasures are taken.
In the construction of the mapping matrix it is assumed that

the calibration process is carried out against one (moving) cal-
ibration emitter at good SNR. The two sets of response vec-
tors, Ar(θ

(c)) and Av(θ
(c)) needed in (47), were hence calcu-

lated without errors, as were the noise subspace eigenvectors in
(47c).
Furthermore, to avoid extra bias due to coloring of the mea-

surement noise by (the usually non-unitary)T, the signal eigen-
vectors were obtained from an eigenvalue decomposition of the
(real) array output data covariance matrix. Thereafter said sig-
nal eigenvectors were mapped by T, i.e. ev = Tes, and the or-
thogonal noise subspace needed for root MUSIC obtained from
a subsequent singular value decomposition on this mapped sig-
nal subspace.
Said eigenvalue decomposition of the real array output also

yielded estimates of the noise eigenvectors en,i as well as the
eigenvalues λ1 and σ2k needed in (47c).
Measurement noise is spatially white and Gaussian circularly

symmetric. N = 100 snapshots and 400 Monte Carlo runs
per azimuth are used to calculate the DOA means, biases and
variances.
The Ncal Hessians V̈ (θ(i)) vary only a few percent around

the value 100 so to facilitate comparisons between the orthogo-
nality enforcing algorithm (20) and the MSE minimizing (47),
a (common) scaling factor of 100 was used in k for the latter
algorithm.
In the simulations 4 different mapping matrices are used:
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1) Pure LS manif old match, i.e. k = 0 in (22) and (47)
respectively,

2) Pure bias reduction at high SNR, i.e. k = 0.99 in (22),
3) MSE minimization according to (47) at high SNR with

k = 0.99.
4) MSE minimization according to (47) at moderate SNR
with k = 0.95.

The lobewidth of the UCA array is about 5o so with 30/15 =
2o between the calibration directions there is a substantial
amount of linear dependence in the calibration response vec-
tor matrixAr(θ

(c)). The condition number, i.e. the ratio of the
largest singular value to the smallest, of the resulting Ar(θ

(c))
is of order 104.
On the other hand, due to this proximity between the re-

sponse vectors the (needed) space spanned by the derivativesD
in (34) are to some extent spanned by the columns inAr(θ

(c)).
The main obstacle in this latter respect7 is the compromise

across the 30o wide sector, which hence prevents the simu-
lated variances from attaining the CRB. Further simulations
with smaller sector widths illustrate this effect clearly.

A. Bias reduction design
For later comparison with the MSE minimizing design (47),

we start by illustrating the performance of the pure bias reduc-
tion design (22). First for a high SNR value, 60 dB, and then
for a low, 10 dB. The result for 60 dB, see Figure 5, shows a
conspicuous bias reduction factor, exceeding 100 in some az-
imuths, when the gradient orthogonality criterion is enforced in
stead of the pure manifold match design.
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Fig. 5. Absolute value of the bias (deg) as function of azimuth for a single
emitter that moves across a 30o mapped sector. The manifild match design of
T (green curve) generates the largest bias, and the T that uses all available
degrees of freedom to counter bias, the lowest. Hence, the design algorithm
(20) without the Re operator the lowest (blue curve).

The difference between the red and blue bias curves in figure
5 illustrates the effect of the higher order terms in the Taylor
expansion (12), terms that to some extent are zeroed by enforc-
ing the gradient orthogonality also in the imaginary part. See
Appendix 1 for reference.
7Remember that the DOA should in principle be known for the requirement

(34) to be met.

Also recall that the bias minimizing design criterions (20)
and (22) were derived taking only deterministic effects into ac-
count. As expected it therefore works best at high SNRs. The
rapidly deteriorated performance when SNR is reduced is ap-
parent from a comparison with Figure 6 where SNR is reduced
to 10 dB. Here we see a clear tendency of the algorithm to as-
sign the emitters a DOA in the center of the mapped sector when
noise is increased. Of the three illustrated designs, gradient or-
thogonality without the real part operator, still is the best.
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Fig. 6. At low SNR, 10 dB, the bias minimizing criterion (20) works less well.
The reason is that it was derived using the pure deterministic errors ∆e(det)s,(bias),
in our case the mapping errors. The effect of the noise is to produce a net bias
towards the center of the mapped sector.

As will be seen in the sequel however, the extension of the
design criterion (20) to include also the variance terms appre-
ciably improves performance for low SNRs.
1) Bias reduction and resolution: Figure 7 illustrates the

effect on resolution of the various mapping matrix designs. For
reference the non-mapped MUSIC UCA spectrum (black line)
is also shown.
When T is forced to transform the signal eigenvector errors

∆ev into orthogonality with the gradient gv in both the real
and imaginary part (top curve, i.e. the Re operator in (47b) is
omitted), more degrees of freedom in T are used up to counter
DOA bias than in the other two designs. As mentioned before,
this leaves fewer degrees of freedom to fulfill the CRB crite-
rion (34) and is consequently expected to result in higher DOA
variance and loss of resolution.
Figure 7 clearly shows a loss in resolution for all mapped

cases, and also, as lost sharpness in the two peaks, a corre-
sponding increase in variance. The largest loss occurs for the
best bias minimizing design, i.e. for (47b) without the real part
operator.
As expected, with increasing amount of bias control we get

more and more DOA variance, and correspondingly loose more
and more resolution. Bias control is paid for by increased vari-
ance and lost resolution.

B. MSE minimization with SNR 60 dB
To get a first insight into the operation of the proposed design

algorithm (47) we start by assuming large SNR, 60 dB, so that
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Fig. 7. MUSIC spectra for 2 emitters and various mapping matrix designs.
The black line shows unmapped UCAMUSIC for reference. As seen the design
that yields the lowest bias, i.e. without the Re operator, also shows the poorest
resolution, (blue curve).

theMSE is dominated entirely by bias. The design algorithm
(47) now selectively enforces the orthogonality gv ⊥ Tar in
the real part, but somewhat differently from algorithm (22) in
that each term in the sum now is weighted by the Hessian in-
verse V̈ −2(θ(i)o ).
As previously mentioned, the resolution of an 8 element λ/2

ULA does not vary noticeably within ±15o from broadside, so
the above weighting with a constant k only has marginal ef-
fect on the bias. Hence, at this SNR algorithms (22) and (47)
produce mapping matrices with approximately the same bias
suppression properties.
For the two alternatives with, (wrp) and with no (nrp), real

part operator in (47), Figure 8 shows DOARMSE, i.e.
√
MSE,

when both design SNR and signal SNR are high, 60 dB. This
means that in the corresponding design criterion forT the vari-
ance term (47c) is almost zero. The only difference now be-
tween the two design criterions (22) and (47) is the inverse
Hessian weighting factor V̈ −2(θ(i)o ), so the influence of this
factor, though small, can be studied by comparing figures 5 and
8.
Figure 8 also shows the analytically calculated RMSE as

non-marked coloured curves (red and blue for the alternatives
with andwithout theRe operator respectively). These analytical
values were calculated using the higher order expression (23)
for the bias part, which explains the good agreement with the
simulated values.

C. MSE minimization with SNR 6 dB
The 4λ element spacing of the (real) UCA generates slight,

but due to the curved array geometry, not full ambiguities.
These cause no problem at the high SNR 60 dB but do at the
more realistic 6 dB level. To test the proposed design algorithm
forT at SNR 6 dB we therefore reduce the UCA element spac-
ing from 4λ down to 2λ.
Furthermore, the array mapping error ∆a is still the same

under an SNR decrease down to 6 dB but the estimated sig-
nal eigenvectors ê(i)s are no longer unaffected by the noise. The
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Fig. 8. RMSE for 8 element UCA to ULA mapping when both the design-
and signal SNRs are large, 60 dB. The used algorithm (47) now essentially
minimises bias, the difference from (20) and figure 6 being the inverse Hessian
weghting in (47). Note the good agreement between the analytical (red and
blue) and the simulated curves. The design with no Re operator (nrp) is best.

eigenvector errors∆e(i)v thereby become larger and need arises
to keep the size of these vectors under control in order to reduce
the higher order terms in the Taylor expansion (12). We there-
fore expect the optimal weighting factor k in (47) to be slightly
smaller than before.
Hence in the simulations we use the value 0.95 instead of

0.99.
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Fig. 9. DOA RMSE for 2λ UCA element spacing and SNR 6 dB. The pro-
posed design of the mapping matrixT clearly outperforms the manifold match
approach.

Figure 9 shows theDOARMSE when (47) is used to calcu-
late the mapping matrix, with 6 dB as design- and signal SNR,
and the weighting factor k = 0.95.
As seen, at SNR 6 dB, the design algorithm (47) clearly out-

performs the manifold match approach (top green curve) as well
as the (22) design. The reason is that the latter was derived pre-
suming only deterministic errors, which at SNR 40 dB and up,
may be a good approximation, but at 6 dB is not.
For the 6 dB SNR case the standard deviations STD of the

DOA estimates are displayed in Figure 10. The STD values
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follow reasonably well the corresponding CRB curves. The
flat coinciding CRBs are expected because of the near omni-
directionality of the non-mapped UCA and the full rank T.
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Fig. 10. The standard deviation part of the MSE in figure 9. Both the STD-
and bias part are clearly reduced by the proposed design of T relative to the
pure manifold match design (top dashed curve). Relative to the bias minimiza-
tion design (22) a conspicuous robustness against measurement noise has been
achieved.

As a comparison the STD values for the k = 0 case are also
shown (top dashed curve), i.e. when T is designed for best ar-
ray manifold match only. In the simulated case both the two
mappings, with- and without the Re operator in (47c), produce
mapped response vectors with derivatives that fulfill the CRB
criterion (34) much better than does the manifold match de-
signed T.
When it comes to implementation in a practical signal sur-

veillance system such as SESAM, the new transformation de-
sign (47) seems to be far better suited than both the manifold
match- and the bias minimization (22) designs.

D. Spatially coloured noise
We now assume an unintentional change in the noise figure

of one of the pre-amplifiers in the array. This case is not un-
common in a real direction finding system, it can be caused by
increased attenuation in one of the antenna elements or the as-
sociated cabling, followed by an automatic gain increase in the
corresponding receiver channel.
In this case the eigenvalues σ2k of the noise subspace of the

data covariance matrix will no longer be equal. Inside the now
unsymmetrical noise subspace there exist directions for the gra-
dient gv that are better in terms of variance than other direc-
tions.
In a practical DF system the unequal input noise factors are

most easily detected and assessed when no external emitters il-
luminate the array. Anmr×mr noise covariance matrixQnoise

can then be measured, stored, and, as a good approximation, be
used to construct the variance terms (47c).
The simulation results displayed in Figures 11 and 12 involve

an array with a 10 dB noise factor increase in one of the 8 re-
ceiver channels. Original signal SNR is 10 dB. All other para-
meters are the same as those in Figures 9 and 10.
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Fig. 11. Standard deviation for the DOA estimates when knowledge about a
10 dB noise factor increase in one of the receiver channels is used to construct
the mapping matrix T, (x-marked curve). For reference the diamond marked
curve shows the same case but with no use of this knowledge.
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Fig. 12. RMSE for the DOA estimates when knowledge about a 10 dB noise
factor increase in one of the receiver channels is used to construct the mapping
matrix T. For reference the diamond marked curve shows the same case but
with no use of this knowledge.

The resulting overall noise level increase is visible when
comparing Figures 11 and 10. In the latter figure, for the x-
and diamond marked curves knowledge of the faulty receiver
channel was not used when constructing the mapping matrix.
An important advantage of the suggested design algorithm

(47) is that it allows us to exploit this knowledge if it is at hand
and Qnoise is available. To do this, in the simulations the ap-
proximate noise eigenvectors en,i, as well as the corresponding
approximate eigenvalues λ1.i and σ2i,j needed in (47c), were
obtained from an eigenvalue decompositions of

R̂i = a(θ
(i))a∗(θ(i)) +Qnoise, i = 1, ...,Ncal (51)

The interpretation of the bias reduction visible when com-
paring Figures 11 and 12, is that the new T that was obtained
through (47) and (51) rotated the mapped signal subspace fur-
ther away from the gradient. According to Figure 2 this is ex-
pected to generate more DOA estimate variance, but this was
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Fig. 13. RMSE as function of SNR when the sector mapping is designed
according to the proposed algorithm (47).

avoided by rotating the (mapped) noise subspace around the
signal subspace axis into an orientation that put the noise eigen-
vector with the smallest scaling factor along the gradient.
This illustrates a prominent feature of the proposed design

(47): It can minimize the influence of various data errors, de-
terministic, stochastic as well as measurement setup errors, on
the DOA estimates by rotating the mapped signal- and noise
subspaces around the gradient into optimal positions.
Note: Another way to deal with coloured background noise

is to pre-whiten, i.e. to pre-multiply the real array output data
withQ−1/2noise, see [14].

E. Dependence on SNR

For completeness the performance of the proposed design al-
gorithm (47) is also verified as function of signal SNR, Figures
13, and 14. In doing so we retain all other simulation parame-
ters, i.e. the ”design” SNR is still 10 dB.
Furthermore, in order use signal SNR as a parameter, for

each SNR the RMSE and STD values at a 1o grid from −15o
to +15o were calculated. Thereafter a mean was formed across
the sector for the particular SNR. The bias2 and var values
were first averaged. Thereafter RMSE = bias2 + var and
STD =

√
var were calculated and plotted. Since the grid goes

from −15o to+15o some (minor) end effects are included. Re-
stricting the averaging to the center portion of the sector would
yield smaller errors.
Clearly, for increasing signal SNR the MSE will be more and

dominated by bias. This is also analytically visible in the sec-
ond term (47c) which goes to zero when SNR goes to infinity.
We therefore anticipate the results from the designs (20) and
(47) to converge toward high SNRs.
As seen from Figures 13, and 14 these anticipations are con-

firmed by the simulations. The differences are most evident for
low SNRs.
Figure 13 clearly illustrates the bias reduction capability of

both the (20), (triangle- and star marked curves), and (47) algo-
rithms (diamond- and x-marked curves). The (47) algorithm is
best, especially at low SNRs.
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Fig. 14. DOA estimate standard deviation as function of SNR when the pro-
posed algorithm (47) is used to construct the mapping.

Figure 14 shows the corresponding STD curves. By com-
paring with Figure 13 it is seen that the superior RMSE perfor-
mance of the (47) algorithm mainly is due to lower STD. This
is explained by the corresponding mapping matrices being de-
signed to minimize RMSE at 10 dB SNR, and hence, at this and
lower SNRs, yielding a more favorable orientation of the gradi-
ent ḡv relative to the prevailing noise- and signal subspaces.

F. Dependence on sector width
A narrowing mapped sector reduces the effect of T being

a sector compromise. According to the results in [3] a sec-
tor width smaller that the beamwidth of the array is needed in
order to design a T that fully preserves variance. However,
on the other hand a narrow sector generated more calibration
lobe overlap and thus more linear dependence in the matrix
A
³
θ(c)

´
A∗
³
θ(c)

´
that has to be inverted in order to solve

for T.
The performance of the mapping as function of sector width

is therefore also of interest.
Figure 15 shows standard deviation of the mapped DOA es-

timates as function of mapped sector width. It is seen that the
CRB is not approached until the sector width approaches one
beamwidth (about 50). The same thing is observed in the RMSE
plot, Figure 16.
As expected, both bias and variance get small when the sector

narrows. The former because of geometrical reasons and the
latter because the required condition (34) to attain the CRB of
the real array, now is met. A comparison between the RMSE-
and STD -values reveal that noise effects now form the main
constituent of the total errors and not bias.

G. Lower frequency limit for the SESAM system
The SESAM surveillance and direction finding system uses

a circular antenna array of 10 m radius and 8 elements. The
nominal frequency range is 3-30 MHz corresponding to ele-
ment separations of 0.08λ to 0.8λ.
Using the above schemes for bias- and MSE minimization

it was show through simulations, Hyberg [1], that even for a
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Fig. 15. Standard deviation STD as function of mapped sector width .
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Fig. 16. RMSE of the DOA estimates as function of sector width.

non-randomized circular array, element spacings up to 4λ can
be used for high SNRs. This corresponds to 150 MHz, a con-
spicuous extension in the upper frequency range, or put another
way, improvement in DOA accuracy.
If we, for a given array, in stead go down in frequency, both

bias problems and mapping errors, as well as increase in vari-
ance due to mapping errors, are reduced. This is because (i) bias
tends to scale with frequency and (ii), the increased lobewidth
that makes the CRB attainment requirement (34) easier to ful-
fill. However, as shown earlier the increased lobewidth causes
more linear dependence among the calibration response vectors
from which the mapping matrix is constructed, and subsequent
numerical problems. The lower frequency limit for a given ar-
ray therefore depends on how well we can avoid and cope with,
this increased linear dependence.
To handle lower frequencies, in analogy with the previous

subsection the measures to take are the following

1) Dimension reduction,mv < mr

2) Corresponding reduction in Ncal

3) Reduction of sector width

The first measure is the most important one. The second and
last measures may not be needed, but simulations show they do

improve the results.
Numerous simulations have indicated that 0.1λ element sep-

aration still yields usable results, provided a dimension reduc-
tion down to 2 elements in the virtual array.
It should also be noted that despite the high input impedance

active antenna elements of the SESAM array, at 0.1λ ele-
ment separation, coupling effects are expected to become non-
negligible. The array models (2) - (4) used in the simulations
may therefore have to be modified to produce relevant results
in this case. Coming field tests with the SESAM system will
clarify this problem.
Finally, note that at this low frequency the (parallel) Adcock

algorithm of the SESAM system is expected to produce almost
equally good DOA estimates.

XII. CONCLUSIONS

In this paper we have analyzed both deterministic and ran-
dom DOA estimation errors that arise from various types of
array pre-processing, especially array mapping. Via a Taylor
expansion of the derivative of the DOA estimator cost function,
its gradient with respect to the signal eigenvectors was identi-
fied as an entity by which both deterministic (bias) and random
(variance) DOA errors could be quantified, analyzed and mini-
mized.
Using this gradient, expressions for DOA bias, DOA error

variance and DOA MSE under pre-processing were derived.
Furthermore design algorithms for the preprocessing matrix
were formulated by which the resulting DOA bias and MSE
could be minimized. A slightly modified version was also given
with the property of further reducing the higher order terms and
thus the rest bias.
DOA bias was reduced not by minimizing the mapping er-

rors, but in stead by rotating these errors so that they get orthog-
onal to said gradient and this way no longer affect the value of
the cost function.
DOA variance was minimized by rotating the mapped noise

subspace into an optimal orientation relative to the same gradi-
ent. The usefulness of this was illustrated by handling a situa-
tion with excess noise in one receiver channel.
DOA MSE was minimized by rotating the mapped signal-

and noise subspaces into optimal directions relative to the gra-
dient.
It was shown that while bias due to imperfect mapping can

be dramatically reduced in high SNR scenarios, variance reduc-
tion also depends on the degree of asymmetry in the noise sub-
space. Through a geometrical interpretation it was also shown
that there exist no pre-processing by which both bias and vari-
ance generally can be minimized simultaneously.
Finally, in relation to the earlier described pure bias mini-

mizing design, Hyberg [1], by adding the variance terms to the
design criterion for the mapping matrix, a much larger robust-
ness in low and moderate SNR scenarios was achieved.
The expressions and design algorithms were verified by sim-

ulations. So were their consistency with earlier results concern-
ing the attainment of the CRB as well as the bandwidth require-
ments of the SESAM 3-30 MHz signal surveillance system.
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APPENDIX

For the MUSIC estimator, which is used in the Simulations
section, we will here derive the needed gradients and Hessians.
The MUSIC cost function is a real scalar that depends on the
scalar θ and also on the complex eigenvectors comprising the
signal subspace, i.e. the column vectors of the matrix Es.
In deriving the gradient and the Hessian we use the conven-

tions by Brandwood [17] :
Let J(e) be a function of the complex vector e and its con-

jugate. Further, let ek be the kth element of e and let xk and
yk be the real and imaginary parts of ek, respectively. Then the
kth component of the gradient vector is defined as

[∇eJ(e)]k =
1

2
(
∂J(e)

∂xk
− j

∂J(e)

∂yk
) (52)

With this convention, the differential of J(e) will be dJ(e) =
2Re{[∇eJ(e)]∗de}. Specifically8 for J(e) = e∗Re where R
is any Hermitian matrix independent of e, we get ∇eJ(e) =
Re and dJ(e) = 2Re{e∗R de}.
For MUSIC the commonly used cost function is

V (θ,Es) =
a∗(θ)a(θ)

a∗(θ)(I−EsE∗s )a(θ)
(53)

which is a scalar function of the scalar θ and the complex col-
umn vectors in Es.
For analysis of bias and variance we have used the derivative

w.r.t. θ of the denominator:

V̇ (θ,Es) = 2Re {a∗(θ)(I−EsE∗s )ȧ(θ)} (54)

The gradient∇ei V̇ (θ,Es) of V̇ (θ,Es) with respect to the ith
eigenvector ei in the signal subspace Es becomes

∇ei V̇ (θ,Es) , g(i) = −ȧ(θ)e∗i a(θ)− a(θ)e∗i ȧ(θ) (55)

We also need the second derivative w.r.t. θ

V̈ (θ,Es) = 2ȧ
∗(θ)(I−EsE∗s )ȧ(θ) (56)

According to the above convention the gradient of (56) be-
comes

∇ei V̈ (θ,Es) = −ä(θ)e∗i a(θ)− a(θ)e∗i ä(θ)− 2ȧ(θ)e∗i ȧ(θ)
(57)

Finally we need the higher ordermv ×mv Hessian matrices
which become, respectively

H1 = −(a(θ)ȧ∗(θ)− ȧ(θ)a(θ)ȧ(θ)) (58)

H2 = 0 (59)

The entities (56), (57), (58) and (59) are needed to quantify
the higher order term in the Taylor expansion (12) and thus the
bias rest terms.

1) Bias minimization: Assuming one emitter only and tak-
ing only the first order terms of the Taylor expansion (12) into
account, we expect zero bias if

Re
n
∇e1 V̇ (θ,Es)

∗
∆es,1

o
= 0 (60)

However, after a pre-processing that at least approximately
yields (60)=0, and thus∆θ ≈ 0, but still∆es,1 > 0,the remain-
ing bias is determined by the higher order terms (12c) - (12f) in
the Taylor expansion (12). Since we assume ∆θ ≈ 0 we can
omit (12c) so the remaining bias will depend on the terms

2Re
n
∇e1 V̇ (θ,Es)

∗
∆es,1∆θ

o
+Re

©
Tr(H1∆es,1∆e

∗
s,1)
ª

+0 + o(N−1) (61)

Simulations indicate that imposing the tightened requirement
on the mapping errors that

∇e1 V̇ (θ,Es)
∗
∆es,1 = 0 (62)

in both the real and imaginary parts, helps in reducing the sum
of the terms in (61). This is made possible by the evident com-
monality in the structure of (55), (57) and (58), but is compli-
cated to show analytically in a general case.
The property (62) is imposed on the errors ∆es,1 simply by

dropping theRe -operator in the suggested design criterion (47)
for T. As already pointed out this measure has the additional
advantage of reducing the size of the equation system that has to
be solved to findT from (47), but on the other hand necessitates
complex calculations.
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