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NOTATION 
Latin: 
a = Lift coefficient increment as defined in Fig. 1 
A = Amplitude manipulation factor in thin plate artificial lift generation, see Eq. (19) 
a = CL curve elevation caused by the Himmelskamp effect, see Fig. 31 and δCL 
a = CL difference between potential flow line and 2D curve, see Fig. 18 
A = Point in CL vs α according to Fig. 1 
A' = Point in CL vs α according to Fig. 1 
A =Blade tip area as defined in Fig. 27 
AM = Point in CL vs α according to Fig. 1 
αmin =Angle of attack value where CL is minimum, see Eq. (3) 
arm = Moment arm counted from the leading edge of the wing profile 
arm0 = Moment arm length at around α = 0, see Sect. 2.4.2 
armCalc = Simplified estimate of the moment arm defined in Sect. 2.4.2 
armLine = Linear approximation for the moment arm in the deep stall positive α region, see Eq. (45) 
armNeg = Linear moment arm approximation for negative α, see Sect. 2.4.2 
b = CL difference between 2D curve and thin plate CL deep stall curve, see Fig. 18 
b = CL difference between potential flow line and 2D curve, see Fig. 31 
b = Effective span measure as defined in Fig. 9 
b = Lift coefficient increment as defined in Fig. 1 
B = Point in CL vs a according to Fig. 1 
BM = Point in CL vs a according to Fig. 1 
c = Chord length 
CD = General drag coefficient 
CD,thinPlate = CD value for a thin (possibly cambered) plate with fully separated flow 
CD2D = CD data valid for 2D flow 
CD3D = CD data valid for 3D flow, possibly including  effects in the boundary layer from rotation 
CD90 = Drag coefficient at 90 deg angle of attack 
CL = Lift coefficient 
CL,max = Maximum CL at typically 16 deg 
CL,min = Minimum CL at typically -14 deg 
CL,thinPlate = CL value for a thin (possibly cambered) plate with fully separated flow 
CL0 = Lift coefficient caused by profile camber, see e.g. Fig. 15 
CL2D = CL for two-dimensional flows 
CL90 = Lift coefficient at 90 deg angle of attack 
CLα =Lift coefficient slope with α 
Cm = Wing profile moment coefficient 
CN = Cn = Normal coefficient 
e = Exponent in expression (69) 
f = Interpolation function for moment arm calculation, see Eqs. (43) and (44) 
f = Kirchoff proportion of profile suction side having attached flow - (0 < f < 1.0) 
f = Transition function for CL interpolation, see definition in Eq. (5) and Fig. 3 
g = Reduction factor on 2D coefficient to yield a 3D ditto, see Eq. (69) 
h = 360 degree range interpolation function according to Eq. (76) 
h = Camber line maximum height, see Sect. 3.3.5 
h = Lift increment defined in Fig. 2 
h1, h2, h3 and h4 = Components of h according to Eq. (76) 
k = Coefficient defined in Eq. (1) 
k = Factor defined in Eq. (74) 
k* = Coefficient defined in Eq. (1) 
LAR = Local area aspect ratio, see Sect. 3.2 
offset = Component in the estimate of armLine, see Eq. (46) 

 6



p = Factor of proportionality to apply in the separation of Himmelskamp lift effects, see Eq. (82) and (84) 
r = Blade radial coordinate 
rawSnelCL = same as the basic Snel expression as applied near 0 and near 180 deg, see Eq. (77) 
rLE = Wing profile leading edge radius 
s = Thin plate lift function value seen in Fig. 2 
slope = Component in the estimate of armLine, see Eq. (47) 
t = Potential flow idealized lift line as defined in Fig. 2 
t = Wing profile thickness 
y = Coordinate counted from the blade tip and inward, see Fig. 27 
 
Greek: 
α = Angle of attack 
α* = Angle of attack shift defined in Eq. (75) 
α0 = Angle of attack where CL = 0 
α1 = Arbitrary point chosen according to instruction near Eq. (7) 
α2 = Arbitrary point chosen according to instruction near Eq. (7) 
αM =Point of departure from potential flow to fully separated, see Fig. 2 
β = Rear flank wing profile angle, see Fig. 35 
β = Thin plate lift modification angle according to Eq. (14) 
δ1 = Thin plate manipulation angle according to Eqs. (14), (15) and (16) 
δ2 = Thin plate manipulation angle according to Eqs. (14), (15) and (16) 
∆αmin = Parameter defined in Eq. (3) 
δCL =  CL curve elevation caused by the Himmelskamp effect, see Eqs. (73) and (89) 
∆CL = CL increment at 25% chord caused by angle of attack, See Fig. 15 
∆CL = Difference between CL for potential flow line and CL2D,see Fig. 11 
∆CL,circ = CL increment defined in Fig. 36 
∆CL,vort = CL increment defined in Fig. 36 
κ = Factor on chord as defined in Eqs. (27) 
λ = Local speed ratio as defined in Sect. 3.3.4 
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1. INTRODUCTION 
Two areas of practical importance for implementing wind turbine and propeller aerodynamic computer 
code are addressed in this report. The text deals partly with modifications to the two-dimensional 
aerodynamic coefficient functions and partly with methods for extending the angle of attack interval. One 
fundamental assumption is that steady state aerodynamic tables can be used together with unsteady 
aerodynamics. The latter effects are then added to the steady state values. This report deals only with the 
steady part. 
 
Aerodynamic information usually comes in a package containing lift, drag and moment vs angle of attack. 
But, the information is valid only for a range that is of interest for airplane analysis, a context where deep 
stall is of minor interest because it was always avoided. In wind turbine technology deep stall is 
sometimes invited in high winds as the means to limit excessive power, usually without pitching the 
blades.  
 
Analysis of tests, coming from the early stall controlled wind turbines (~1980), revealed considerable 
deviation from what had been predicted when the turbines were designed. The prominent difference 
consisted in a discrepancy in torque. The real turbine performed much “better” than predicted once the 
stall region was experienced. This typically occurred at a wind velocity of about 12 m/s and up. 
 
The matter was investigated and a three-dimensional aerodynamic effect, associated with the centrifugal 
loading of the blade boundary layer, not accounted for in the analysis at the time, was identified as the 
main cause for the large discrepancy in torque. Numbers of 10 to 25 % of difference between prediction 
and measurement were recorded. Reports generated by German researcher Himmelskamp at around 1940 
came under scrutiny. He performed wind tunnel tests on instrumented propellers, allowing the evaluation 
of pressure distributions, and he presented lift coefficient (CL) values in excess of 3.0 for radial stations 
near the hub. Although Himmelskamp found the consequences of this particular aerodynamic 
phenomenon he did not present a theory explaining his findings. 
 
Qualitative explanations of the Himmelskamp effect were presented in the late 80s. Notably Dutch 
researcher H. Snel et al derived a simplified set of two-dimensional Navier – Stokes boundary layer 
equations, where centrifugal and consequential Coriolis effects were accounted for. It appears, in their 
final corrective expression for CL, that the crucial factor, driving the Himmelskamp effect, is chord 
divided by radius (c/r). This method was expedient to use as an add-on to existing code. The correction 
term, originally containing two constants, is now being widely used in the wind turbine industry with 
various adaptations of the constants to measured data. This is of equal interest in fixed pitch propeller 
analysis, particularly at takeoff conditions. The Snel approach is applied also in this report with some 
additional thoughts for the corresponding profile drag and moment effects. 
 
Further modification to two-dimensional data are effects associated with radial pressure gradients near the 
tip. These have been observed to have a lowering effect on both lift curve slope and CL maximum. 
 
The present main trend in manufacturing is seen to favor pitch control, which is used to avoid separated 
flow over the blade surface. The influence of the Himmelskamp effect is then negligible in normal 
operating conditions. However, pitch control is also used in some designs to control stall. In this case stall 
is intentionally invited as the means to reduce the loading when the wind increases over rated wind speed. 
The fixed pitch, stall controlled turbines, which were omnipotent in the eighties, are becoming more rare. 
But, their continued existence, and the fact that all turbines can have control errors requires the calculation 
of loads from separated flow on the blades in order to account for normal operational as well as extreme 
load cases. 
 
The other area addressed in this report is the extension of the aerodynamic tables to be valid in the full 360 
degrees interval of angle of attack. This need comes from practical application of aerodynamic code inside 
of aeroelastic programs. The latter are frequently used to investigate the elastic behavior of the whole 
wind turbine in response to gravity loading and variable wind conditions. In a start-up sequence the wind 
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turbine may be directed out of the wind such that the slowly turning blade is chased by the wind from 
behind. This may cause angles of attack that are near 180 degrees. In order not to extrapolate the 
aerodynamic tables, from typically available 20 degrees, an approximate representation for the full 360 
degree interval is necessary. 
 
Also of interest, at high angles of attack, are the plus and minus 90 degrees angle of attack vicinities. 
These have relevance for self starting torque especially if the blades are fixed as is frequently the case in 
stall controlled turbines. 
 
The general approach to reach the described accomplishments is to apply curve fit generalizations to 
measured data. The background material varies from being dependable down to outright guesswork. 
Fortunately, in the latter case, the importance of accuracy is little, e.g. the aerodynamics around 180 
degrees of angle of attack.  
 
The curve fits mostly include model parameters that can be changed as new data from measurement, and 
hopefully CFD, become available. The total methodology therefore includes a number of such parameter 
to be monitored by any user. But, this document recommends default values which are judged to be a 
present "best guess”. The typical need for modifying these parameters occurs in the context of applying 
the described methods in computer programs aiming at the prediction of loads and performance for wind 
turbine rotors and propellers. 
 
Although the author of this text is active in the wind turbine aerodynamics area and the text therefore is 
slanted toward turbines, there is no basic difference between the aerodynamics for turbine and propeller. 
In practical application, however, the propeller analyst will find some extensions, of the aerodynamic 
tables to numerically very large negative values, to be of little interest. In this light turbine aerodynamics 
can be seen as encompassing and exceeding the propeller aerodynamic needs. 
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2. EXTENDING AERODYNAMIC CURVES FOR LIFT, DRAG AND 
MOMENT TO 180° ANGLE OF ATTACK ±
 
2.1 THE NEED FOR THE 180° ANGLE OF ATTACK INTERVAL ±
Usually the aerodynamic curves of CL, CD and Cm vs angle of attack are presented in an angular interval 
extending from say –5 to +20 degrees. In wind turbine performance simulation, there is a need to extend 
the normally available aero tables to the full 360 degree range. For this purpose thin plate theory 
(complete stall) complemented with the linear range behavior (potential flow model) is used. The 
following text treats CL, CD and Cm in separate sections. It is assumed that a normal range angle of attack 
set of curves is the raw material from which data are extended. 
 

2.2 LIFT COEFFICIENT - CL 
2.2.1 Extending the Alpha Range 
The basic thin plate curve, see Sect. 2.2.4, is used as a base, which the extended curve will approach 
asymptotically. However, in the –15 to +15 degree region and also around 180° there will be some 
potential-flow-like behavior of a real case, which should be emulated. 
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he complete top region of A is usually known whereas its lowest part, around A’, corresponding to 
L,min, is frequently not available. The theory to find the lower apex (lower end of the hA measure arrow) 
ill emerge from the idea that hA depends on CL,max and camber. The case without camber can serve as a 
arting point for this discourse. Because of geometrical symmetry there will also be a symmetry in the CL 
urve such that CL,min =- CL,max. With a cambered airfoil, which is created to operate in a positive angle of 
ttack range, the performance on the negative side will be relatively poor. This means that the cambered 
irfoil does not simply move the CL curve up as a rigid object. Therefore, b ≠ a. The ratio b/a should 
erefore change as CL(0) increases. The following expression of proportionality is proposed for b. 

{ } { } )1()0()0(1 max, LLL CCCkakb −⋅⋅−≡⋅= ∗  

here k* is a model parameter which should depend on Reynolds number, nose radius and camber shape. 
ut, no such connection is known to the author. A value of k* = 0 is tentatively proposed. From Fig. 1: 

)2()0(min, bCC LL −=  
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This relation can perhaps be accepted on the grounds that hitting the minimum is usually not of extreme 
importance. The expression for k could easily be modified to reflect any measurements of other behavior 
than linear, should such data become available in the future. 
 
Point A’ is further defined by an angle of attack value. It should be slightly smaller, i.e. more to the left, 
than the potential flow straight line would indicate, see Fig. 2. The following expression arises from this 
idea. 
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where ∆αmin is typically say +3 degrees. However, the point A’=(amin,CLmin) will be used for reference 
only. This will become clear in Sect. 2.2.2. 
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2.2.2 The transformation function f 
The shape of the CL curve, left of A’M and right of AM, will be 
constructed using a certain function f. This function, which can be 
seen as a transformation of CL, is used for interpolation between the 
curves for attached flow (t) and fully separated flow (s) to yield the 
CL curve. Explanation and definition of f follows. 
 
When an airfoil undergoes an increase from zero degrees angle of 
attack  (α) to say 50 degrees, the following happens. First the flow 
behaves very much like potential flow, i.e. the lift curve slope vs α 
is near 2π and drag is minimal. In this situation f = 1.0. At 50 
degrees the flow on the suction side of the airfoil is separated and 
this very non-potential flow produces a substantial drag force. In 
this situation f = 0 and the wing behaves very much like a thin plate 
with a sharp leading edge.  

Figure 2 

 
Between the two described situations a transition, from potential flow (t) to fully separated flow (s  
C

≡
L,thinPlate), takes place, see Fig. 2, “the CL curve”. This transition can be thought of as an interpolation 

between t and s. The function f decreases from its value 1.0, around zero angle of attack, to zero for high 
(or very small i.e. negative) alphas. In this model the f curve leaves t at some “anchor” point AM where 
α = αM. Angles of attack are then used to create the differential angle ∆α where 
 

)4(ααα −=∆ M  
 
Glancing in advance at Eq. (6), which is symmetrical, it will turn out that this definition is valid for the 
negative side and the positive side alike. The definition of f is 
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So, if all three curves (CL, s and t) are known beforehand, it 
is a simple matter to calculate f. After studying a few airfoil 
CL curves and after numerical manipulations using Excel the 
following curve fit expression for f was arrived at. It is 
proposed as a substitute for more rigorous data mining of 
general CL behaviors. 

Figure 3 
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An example of the function f, for k=.001 is seen in Fig. 3. The negative side, of the bell shaped curve, 
reflects the CL behavior on the negative side left of AM’ in the CL vs α plane. The right side reflects the 
right CL side at AM respectively. See Fig. 2 for notations. 
 
Once the curve fit expression for f has been found, it can be applied for interpolation purposes as 
described above and by Eq. (10).  
 
Obviously the expression for f, according to Eq. (6), contains two initially unknown constants k and αM. 
Using two points, from the given CL vs α curve, these constants can be solved for. This is typically always 
applied to the positive side of the curve. The last given point, on the original source curve, should be used 
as point 1. The second point (point 2) is taken from somewhere near the middle between where the CL 
curve leaves t and the last given point. Applying Eq. (5) for two points in the (α,f) plane two values of f 
are calculated. They are f1 and f2. Using the two points, inserting in (6) and (5) and applying some algebra 
the following solution can be arrived at. 
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Inserting the values for αM and k in Eq. (4) and (6) values of f can be calculated for any given value of α. 
This is typically carried out for a series of α values. Then the corresponding series of f values is converted 
to CL values using 
 

)10()1( sftfCL −+⋅=  
 
where t is the straight line function being a tangent to the CL curve at (α=0,CL=CL(0)). Since 0 < f < 1 Eq. 
(10) gives a smooth interpolated transition from curve (t) to s (= CL,thinPlate), see definitions in Fig. 2. 
 
If the negative value corresponding to CL,max, i.e. CL,min, is not present in the original data, it must be 
constructed as described above. Then Eqs. (7) through (10) are applied to the negative side as well. 
 
It should be pointed out finally that creating an f function that gives back a CL,max value at the right point, 
at the same time making it a maximum, is not a straight-forward matter. If the CL,max point is known a 
numerical iteration must be applied in order to arrive at correct values of αM. Although it is true that Eqs. 
(7) through (9) could be evaluated letting one point e.g. (α1,CL1) be the maximum point on the CL curve, 
the f curve created this way would give back the coordinate point for maximum. But, that point would not 
necessarily be a maximum! The whole matter boils down to the impossibility of having two points and 
one optimum to be satisfied while the curve fit expression only has two parameters (knobs) to set. I.e. 
three conditions cannot be satisfied with two equations only. 
 
As explained the method requires that two points on the CL curve be given in the transition between the 
”potential flow” curve and the thin plate separated flow curve. These points give some freedom to shape 
the curve. But, mostly these points are unknown. Mostly, however, a notion of the CLmax level is present in 
the mind of the analyst. Therefore, there is a need for a practical selection procedure including CLmax and 
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some elements of default. The idea is that CLmax and the default values should be used as an input to the 
procedure which outputs the two points on the transition curve. The following algorithm contains these 
ideas. Note that the positive side analysis is usually not necessary to carry out. It is already in basic data. 
 
Algorithm positive side    Algorithm negative side 
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For the function s, see Sect. 2.2.4 below. 
 
2.2.3 The Potential Flow Lift function t 
The attached flow function t will be assumed to be a straight line obtained from the following expression. 
 

)11()0(, α
αLLattachL CCCt +=≡  

 
where the slope CLα is obtained from points near α = 0 on the given 
basic CL curve if the curve can be seen as two-dimensional. 
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2.2.4 Fully separated Flow on Cambered Thin Plates – Function s 
Two important effects from real wings modify the basic flat plate curve
rounded nose. Camber gives rise to a positive CL value at an angle of a
rounded nose, on the real airfoil, causes a modest positive lift coefficien
degrees it is typically 0.08 according to Ref. 1. Ref. 1 is one prominent 
only available in a limited angle of attack range. It can therefore serve a
blend between an airfoil and a flat plate. Ref. 1 describes the wind tunn
NACA 0012 profile at all angles of attack. 
 
The part of the aerodynamic curves for any given set of data must now 
thin plate curve as the angle of attack gets larger or smaller toward the n
gentle blending, of the known values into the real curve, the following m
 
The technique is to initially only modify the angle of attack slightly. Th
Hoerner, Ref. 2, reads 
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But, to modify for the real effects, α is replaced by β whose definition i
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The curves resulting from (12) and then (12), with β in place of α, appear in Fig. 5. (CD90=2.0) 
 
The correction functions are seen in Fig. 6. In both figures the following numerical values were used.  
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In the application of the formulae, it is important to use the zero lift angle of attack from the profile 
aerodynamic data graph or table, and use it also for the flat plate equations. Lift at 90 degrees may not 
always be known. The value used above may then be used as an approximation. 
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Another effect need also be modeled. Even a thin plate that is cambered will have an asymmetrical lift 
curve meaning that, its maximum positive value is higher than the absolute of the corresponding minimum 
value (at around –45 deg.). The simple form of the lift curve, according to Fig. 5, can be modified using a 
multiplier on the amplitude. That multiplier can be 
constructed to be 1.0 + some relatively small variation with 
desired characteristics. The amplitude of this correction 
depends on camber. A measure of camber is the zero lift 
angle. Therefore, the zero lift angle is used to represent this 
effect.  
 
Very little guidance can be had from the literature. This 
calls for some inventive approach. The idea applied here is 
to say that the elevation, of the sinusoidal curve at +45o 
angle of attack, is the same as that at zero degrees. This 
leads to a multiplier function accordingly: 
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Summing up the complete method in an algorithm gives 
the following. 
 

Figure 7 
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The final curve, for αo = -4 deg., CD90=2 and CL90=.08, is seen in Fig. 7 together with the simpler 
approximation, the latter having constant amplitude. 
 
180 o Algorithm 
The “rear-end-first-flying” also requires some crude 
estimate of the “linear” range of the curve. 
Accuracy is probably not the concern in the 180 
degrees area. It will be assumed that CLmax and CLmin 
corresponding to points B and A in Fig. 8, are 
symmetrically placed around the thin plate value at 
180 degrees. The size remains to be estimated. One 
source of information comes from Critzos 1955 
report, see Ref. 1. In the report the symmetrical 
NACA 0012 profile is investigated. At around 170° 
angle of attack the maximum (minimum) ∆CL,180 is 
about -1.3 for smooth surface at Re = 1.8 million. 
At Re = 0.5 million ∆CL,180 = -.75. The latter 
number is confirmed by the Chinese measurements, 
see Ref. [12]. However, the Chinese measurements 
show that ∆CL,180 = -.8 for the Clark-Y airfoil while 
the FX72-MS-150A has a value of –1.0, valid also 
for the NACA64(2)-415. The value -.8 and -.7 are 
also recorded for the NACA4418 and 64(1)412 
profiles respectively. All the Chinese measurements 
were carried out at a Re of approximately ½ million. In
apply. There is only the knowledge that the numerical s
increasing for increasing Re. It is known from Hoerner[
not linear. Instead there is a precipitous rise in CLmax w
there appears to be a plateau up to one million followed
the trends referred to are valid for the leading-edge-firs
firm conclusions for the trailing-edge–first from this ma
the time of writing. An attempt, to sketch the dependen
below, see point a.  
 
The slope can be assumed to be the same as for the nea
model can be established for the near 180° region as fo
 
The α range in the immediate 180° vicinity need be mo
construction hinges upon a few assumptions. They are: 
 

a. A dependence on Reynolds number can b
∆CL,180 =  (27262.)2.10(Re308.2 )1(324.1

6 −⋅− −
− e

 
This equation was created based solely on the 
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 summary no clear indicator exists what number to 
ize varies between .7 and 1.0 and that the trend is 
2] that the normal (i.e. leading edge first) trend is 
hen Re goes from say 200000 to 300000. Then 

 by a gentle rise for still higher Re numbers. But, 
t situation as mentioned. It is uncertain to draw 
terial although it is the only material available at 

ce on Re, is nevertheless presented in the summary 
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r-zero region. With this simple basis a linear lift 
llows. 

deled with its linear characteristics. The data 

e used as follows. 
5) 

information on CLmax mentioned above. 



b. The transition from the linear to the thin plate curve follows the ideas presented in Sect. 
2.2.2. 

 
c. The linear part has a slope CLα that is, on the average, lower than that of the linear part 

around zero degrees, see Eq.(12). As a default use:  
 

CLα,180 = 0.8CLα,0    (26) 
 
 
 
 
 

2.3 DRAG COEFFICIENT - CD 
The drag associated with 90 deg. angle of attack (CD90 ) has a particularly important function in the data 
conversion. Just like in the case of CL the basic thin plate CD90 value is needed to provide the extended CD 
curve.  
 
2.3.1 Finding CD90
Ref. [4] provides a method that gives CD90 as a function of radius for any value of the aspect ratio and 
chord distribution. The essence of Ref. [4] is repeated in algorithmic form as follows. 

 )27(
2

1
20

b
c

e b
c

−
−

=κ  

 
κ is a help variable to be used below. c, b etc are defined in Fig. 9. 
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Depending on source the values of CD,2D 
and CD,3D can obtain different values. 
 
Ref. 1, Sharp edges:  
            CD,2D = 1.98 
            CD,3D = 1.17  
 
Ref. 7, 8 and 9, Rounded edges:  
            CD,2D = 2.06  
            CD,3D = 1.45 
 
Ref. 10: Lower values than those of  Ref. 1.

 
Note that Eq. (30) is valid only when y<s. Otherwise CD90 assumes the 2D value. The continued discussion 
is centered around Fig. 9, which also defines some important geometrical quantities used in the formulae. 
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It is assumed that a plate of sufficient slendersness has a certain range where 2D drag is present. Toward 
the ends the relatively high value of the 2D CD can not be maintained because of pressure ”leakage” over 
the tip and root, as seen in the shape of the sketched CD90 curve. A minor complication of low significance 
is the fact that, at the root end, the drag value can not approach zero because there is not a free end. Rather 
the shank CD should be matched with the 3D curve in order to make a continuous curve. This is indicated 
by the dashed curve called A. It is, however, recommended that these particular circumstances be ignored. 
Two reasons for such a recommendation exist. 
 
Firstly there are not sufficient amounts of measured data available to allow a resolution of the problem at 
such a level. Secondly the contribution to torque from the parts near the root are small. For thrust 
calculation, however, the full line curve should be changed toward that dashed (curve A). A value of CD 
=1.2 should be a reasonable approximation for the shank part and some hand drawn smoothing toward 
higher radii in the spirit of curve A should be good enough for thrust calculations. The rest of this report 
will be focused on the performance aspects of the aerodynamics of the rotor blade. 
 
As pointed out in Ref. [4] the value of s will have to be found iteratively for any plan form that does not 
have a constant chord distribution. The significance of the quantity s is to point out where 3D drag merges 
into 2D drag as calculated from Eq. (28). The expressions (27) through (30) were originally derived for 
constant chord plates. In such case the formulae are applicable as written above. If, however, the chord is 
variable the meaning of the ratio c/b must be expanded to take into account the variability of the chord. An 
iteration is necessary. The iteration in search for s can be carried out as follows. 

45o

y

s
Solution

 
A small step from the tip of the rotor blade is first assumed. For the 
corresponding y value the chord length is evaluated. Dividing by b yields a ratio 
that can be inserted in Eq. (27) which is inserted in Eq. (28) to obtain s. The 
described action could be thought of as being a step to a radial position y which 
is tentatively at s – but only tentatively. Now y is checked against s. If y is less 
than s increase y a little and repeat the process until a value of y is found to be 
equal to s. Then this is s-at-the-tip. Correspondingly the root end is analyzed for 
its value of s, i.e. s-at-the-root. The search process is illustrated in Fig. 10. 
 
A complicating real effect is that camber and nose radius may modify the value 
of CD90 as defined above. The reason is that when a wing is blown at 90 degrees 
onto its bulgy side drag is lower than when blown from the other side. In Ref. [4] the concept of “bulge” is 
created. It signifies how much the wind facing side deviates from a flat plate. Also the radius of the 
leading edge is discussed in the same context. Increasing bulge and/or leading edge radius (rLE) 
contributes to reduce the CD90 values by ∆CD,round. This also applies to CD,2D and CD,3D in Eqs. (29) and 
(30). 

Figure 10 
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From simple analysis of any wing profile geometry the following relation is deduced. 
 

)32(
2c
t

c
hblg +±=  

 
where  the plus sign is chosen when the wind blows against the suction side. The minus sign is chosen 
when blown onto the pressure side. h is the camber line maximum height, t is the section thickness and c 
is chord length. Because of application of different signs on the camber term (first term Eq. (32)) the CD90 
drag becomes different for the two sides. But this drag value governs several other aerodynamic 
quantities. The question then arises, which one of the two values of CD90 to use.  
 
In order to resolve the problem it is proposed to let CD90 vary with the angle of attack. Since we know it 
has a maximum at +90 degrees and a minimum at –90 degrees a simple sine function comes to mind. 
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Strictly logically this violates the heuristic definition of CD90 which was meant to be one value. But, reality 
requires differently. Implementing the simple idea of variation leads to the following expression. 
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2.3.2 Using CD90 to Create CD
The CD90 value is used to calculate the CD value of the complete 360 degree range of angles of attack.  It 
determines the amplitude of the thin plate CD variation with angle of attack. The thin plate curve is used as 
a base for the actual blade profile. Following Hoerner[2] or Ref. [4] the drag for a cambered (thin) profile 
that is completely stalled can be written 
 

)34(sin)( 2
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This expression will be used below, but first another 
technique of describing drag for “low” angles of attack 
must be established as follows. 
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basic curve where linear

 
The loss in CL, see ∆ CL in Fig. 11a, can be seen as a deficit 
in relation to the imaginary continuation of the ”potential 
flow” lift curve depicted as a straight line in the CL vs α 
diagram. The deficit is the result of first only boundary 
layer then also separation leading to lesser circulation. 
 
The widening separation region, as α increases, is also 
associated with an increasing loss of momentum of the 
flow, thus drag. By allowing the potential flow line to be 
integral with the lift curve, for low values of α, some loss 
of circulation has already been ignored. The reason is that 
the boundary layer, how ever thin, generates both drag and 
loss of circulation. The very small effects associated with 
the substall angles of attack are filtered away by using the 
technique of making the line perfectly identical with the CL 
curve where it is straight. This technique also reflects in the 
CD diagram, Fig. 11b, such that CD0 is ignored. 
 
The third diagram in Fig. 11 is a plot of ∆ CD vs ∆ CL 
which can be thought of as one separation effect vs another 
separation effect. It was derived from NACA0025 and –33 
airfoils. 
 
Difficulties of a practical nature will arise. The 2D data, as 
of Fig. 11c, may not extend all the way to where the new 
CL curve reaches. The remedy is extrapolation of the curve 
in 6c. Investigation, of the nature of this curve, has been 
carried out by the author previously. For several different 
airfoils the relationship appeared to be essentially linear. 
The slope was found to be = 0.13 apart from the bucket 
seen in Fig. 11c. The bucket tends to appear only for 
symmetrical and thick airfoils. The explanation is that the 
thick symmetrical airfoil has separated flow on the upper 
and lower surfaces at zero α. As α increases the lower side 
separation gradually vanishes while the upper separation does 
not increase as much as the decrease on the lower side. The net Figure 11 
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effect is a total lowering of drag. For a regular propeller or wind turbine profile separation is not present 
on the lower side except for very highly negative alphas. The bucket in the curve seen in Fig. 11c is 
therefore not present in “normal” airfoils. Pointing to the aberration from normal is intended as a warning 
that such behaviors may exist and that they are not necessarily the result of error. 
 
The technique used above to calculate the extended CL curve can also be used to calculate ∆ CL as defined 
in Fig. 11a. With the curve in Fig. 11c extrapolated this allows calculation of extrapolated values of ∆CD 
to which an estimate of the friction part of CD can be added to yield the total drag estimate. This results in 
an extrapolated CD  vs α table/curve. 
 
We now have two CD curves, one coming from extrapolation of the given aerodynamic set, another 
coming from the completely stalled thin plate. In order to complete the method, the two must now be 
fused. This is done using interpolation between the two. The interpolation is carried out using the same 
function f that was used for the CL interpolation, see Eqs. (6) and (10). This technique will accomplish a 
smooth transition from the given CD curve extrapolated to (numerically) high angles of attack. There is 
admittedly not much theoretical support for the method. Therefore it will be used tentatively until 
experimental evidence can be used to modify what is proposed here. 
 
In summary the method can be expressed as follows. 
a) Determine α 
b) Use the corresponding value of the potential flow CL and subtract the CL value to get ∆ CL 
c) From the extrapolated ∆ CD vs ∆ CL curve (see Fig. 11c) get ∆ CD 
d) Add estimate of the friction value of CD, i.e. CD friction= .006 around α = 0 and CD friction=1.25(t/c)2 

(Hoerner p. 6-20) around α =180 with arbitrary fairing between. Define CD e=∆ CD + CD friction 
e) The final drag value is obtained using the function f from Eq. (6): 
 

)35()1( ,thinPlateDDeD CfCfC ⋅−+⋅=  
At around 180 degrees of α There are special circumstances valid for drag whose practical importance can 
be ignored. It is therefore suggested that the thin plate CD + 1.25(t/c)2 be used in that alpha range.  
 
2.4 MOMENT COEFFICIENT - Cm 

AC
CC a

b

Local wind

c

d

e

2.4.1 Aerodynamic Centers 
In the basic inviscid theory for thin airfoils the 25% chord 
position (AC) emerges as the prominent point. The lifting 
force, perpendicular to the undisturbed flow direction, acts 
through this point denoted AC in the adjacent figure. The 
simple theory only predicts real behaviors for a limited 
angle of attack range as symbolized in Fig. 12a. At 
increasing angles the theory becomes increasingly 
inaccurate and nature follows laws other than those based 
on simple linear theory. This has to do with stall, which is a 
viscous phenomenon. 
 
The 25% point is generally made reference to as the 
aerodynamic center. But there is also another center (CC) 
namely that point through which the camber lift (CLo) 
contribution acts. The camber lift is present even at α = 0. 
When α is varied the additional lift acts through AC while 
the camber lift is essentially unperturbed and still located in 
CC. This is typically valid for the situations according to a 
and b. In the flow situation as in c measurements must be 
carried out since this is far from the linear angle of attack 
range. At d and e the flow resembles that at a and b meaning 
that now the AC point is still 25% from the edge that faces the 

Figure 12 
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wind. But, this means that in the same coordinate system the arm length, counted from the rounded edge is 
75% chord length. It is also assumed that the camber lift acts through the very same CC point as in a and 
b. Using the angle β=(α – 180) instead of α, the profile, blown from behind, can be seen as a profile with 
the approximate lift 
 

)36(2πβ=LC  
 
Attention must be paid to the angle, which, in this case, should vary from zero to 360 degrees in order for 
the lift to obtain the correct sign. 
 
2.4.2 Moment Arm and its Relation to CL and CD 
With an idea of the camber lift and CL at around 180 degrees, the moment can be modeled and therefore 
also the moment arm. This is to say that now we have information about the moment and its arm at around 
0 and 180 degrees. To complete the model information is required for the other alpha regimes. These are, 
loosely speaking, from 18 to 174 negative and positive angles. Critzos’ report, see the reference list, 
shows the variation of CL, CD and Cm from 0 to 180 degrees for the symmetrical airfoils NACA0012 and 
NACA0015. An evaluation of the moment arm has been carried out for these data. A description of the 
method follows. 
 
First the basic assumption is made that both lift and 
drag act through the same point (P) on the chord line. 
This assumption is somewhat arbitrary simply 
because the chord line is arbitrary and it can be shown 
that P lies above (toward the humped suction side) the 
normal definition of a chord line. This should not 
disturb the usage of the basic assumption, however, as 
explained further down the text. 

c
arm

25%c
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The moment, on coefficient form, is defined around 
the 25% chord point. Thus lift and drag contribute to 
create the moment accordingly. 
 

)37()25.)(sincos( −−−= armCCCm DL αα  
 Figure 13 
The arm length is solved from this expression. 
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If this arm length were to be used to calculate Cm 
according to Eq. (37) then the exact input value of Cm 
would be regenerated. This is pointed out with the 
perspective that the point CC might not be positioned 
exactly on the chord line, although that was the initial 
assumption. Thus, using this technique consistently 
yields the correct value of Cm and what has hitherto been 
called arm can be thought of as a work parameter used to 
calculate correct values of Cm.  
 
The work parameter arm was calculated from the Critzos 
data for two airfoils whose data were given in his report. 
The corresponding graphs are seen in Fig. 14. This graph 
also shows one corresponding CL curve for orientation. 
The fact that the end points do not hit the 25% and 75% 
points respectively is caused by numerical effects where 
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both CL and Cm are zero. The data at α = 0 and α = 180 are therefore to be ignored. 
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The very straight line segment, the deep stall region, from about 20 deg. to 160 deg. is noteworthy. It 
suggests modeling with a straight line with a certain slope and 
offset from the origin. The fact that the end points do not hit the 
25% and the 75% levels respectively is caused by numerical 
effects with no consequence for the calculation of Cm. The reason 
is that Cm is calculated with another method at around zero and 
180 degrees, as dealt with later in the text. 
 
It should also be pointed out that, although the CL and the CD data 
for the two airfoils are quite different, the assumptions lead to a 
remarkably similar result in terms of moment arm length. Figure 15 
 
One assumption, that will turn out useful when modeling the general airfoil Cm behavior, is to say that, at 
the linear range of α, camber lift is constant. Furthermore, the lift vector from pure camber acts through a 
constant chordwise position independent from α variations. This is the lift vector, that gives rise to the 
zero moment coefficient. One illustration of this assumption is the moment arm calculation compared to 
that “measured”. The data were taken from Rep. FFA TN 1990-15 valid for NACA63-415. The 
comparison is seen in Fig. 16.  
 
The “measured” arm length was generated from CL, CD and Cm using Eq. (38). The calculated arm length 
was arrived at in the following manner. 
 
It was assumed that the α dependent part of the lift goes through the 25% chord point. At α =0 the lift 
coefficient is called CLo. Its arm length is obtained from  
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which is the same expression as Eq. (38) ignoring CD. For the moment coefficient, referred to the leading 
edge, Fig. 15 then gives 
 Surprisingly good agreement assuming camber lift is constant. Comparison 
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Noting that 
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the arm length becomes 
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The two arm lengths from Eqs.  (38) and (42) are 
plotted in the same diagram, see Fig. 16. The graph 
reveals a few characteristics of particular interest. 
  
a) The theoretical curve tends to become relatively high
b) The agreement between “measured” and calculated i
 
Point a) can be explained by the fact that the NACA63-4
the suction side. NACA63-415 should therefore be expec
gently from the trailing edge as α increases. This means t
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part of the airfoil, thus generating more of its lift at a more forward position. This lift will thus act through 
a point located forward of the 25% point. I.e. a short moment arm length should be expected. 
 
Also it can be expected that the separated rear flank of the airfoil represents drag, because full pressure 
recovery is not achieved in a separated region. The drag center is thus positioned above the chord line, for 
moderate αs, which would have given a nose-up moment contribution if α is about = 0. But, for increasing 
αs, the drag line will increasingly fall below the 25% point. That translates into a nose-up contribution as 
well. Therefore, the simplified approach, neglecting both the travel of the vector corresponding to CL(α) 
and the influence of CD, gives too large an arm.  
 

Straight line seen in Fig. 14

and compiled below 
Curve from Fig. 16

arm

α0 180

As calculated 
from Eq. (42)

P

Q

Interpolation between the two 
curves (transition from the one to 
the other) could be carried out

The described effect should go away as 90 degrees and higher are entered. There is no particular reason to 
assume that a cambered airfoil at say 100 degrees should differ from a symmetrical airfoil in this respect. 
Therefore it is assumed that the “arm line” from the 
cambered airfoil will merge with that of the 
symmetrical airfoil. The technique to accomplish this 
effect is dealt with below. 
 

Figure 17 

The curves from Figs. 3 and 5 are sketched into the 
same diagram, see Fig. 17. For low angles of attack the 
simple calculation curve is valid. At some slightly 
undetermined point P the straight line should gradually 
become dominant. Thus an interpolation function could 
in principle be applied to accomplish the transition from 
P to Q. However, since the situation is complicated on 
the negative side (α < 0), where there are two singular 
points, the blending of curves is not done for the arm 
function. The blending is instead best applied to the moment coefficient directly. Thus Cm in the linear 
range is blended with Cm calculated from Eq. (37). The function performing the fusing of the two curves 
can be written as follows. 
 

)43()1( armLineftheCurvefarm ⋅+−=  
 
where the function f will be determined below. 
 
This simple approach grew into a model upon discovery of a 
Chinese report from CAARDC where several airfoils were 
investigated in “some” tunnel at Reynolds numbers about half a 
million. The report is written in Chinese so the background 
material is not available to a western civilization engineer. But, 
numbers and graphs are the same in the two cultures and the 
plotting of arms for a selection out of the Chinese report appears 
in Fig. 19. The plot has the same axes as those seen in Fig. 14. The 
Excel plot also includes the NACA 0012 and 0015 data as seen 
above. 
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Figure 18 One slightly disturbing feature of the Excel plot is that the airfoils tested in the 
Chinese wind tunnel appear to group nicely around an essentially straight line, while 
the NACA data for 0012 and 0015 seem to form a family of their own. It is not clear what constitutes the 
essential difference. The author looked for differences in Reynolds number and aspect ratio of the 
different models, without being able to deduce an explanation for the discrepancy. Since, however, airfoils 
on horizontal axis wind turbines are always cambered the modeling technique, as indicated in Fig. 17 and 
Eq. (43), will be derived from the Chinese set of curves. 
 
One important systematic effect in the curves seems to be that the approach behavior of the arm curve to 
tend toward the straight line is similar to that of the CL curve. When the CL curve leaves the potential flow 
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linear part it tends toward the thin plate curve in like manner. This observation can be used to create a 
model for the function f in Eq. (43) as follows. 
 
If the arm curve is to approach the straight line as fast as the CL curve approaches the thin plate (stalled 
flow) curve. In fact, after numerical experimentation, an improvement could be achieved if the approach 
also included a square relationship as follows. 
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After the lift calculations have been carried out, both a and b will be available. The same technique is to 
be used even for the linear lift range around α = 180 degrees. 
 
The straight line representation with reference to Fig. 14 and Fig. 19 is 
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The offset and slope were found after some experimentation using an Excel sheet.  
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Comparison of measured and curve fit arm lengths for NACA4418.
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where α0 is normally a negative number. 
 
The proposed approximation technique was tested numerically on an Excel sheet. It was then discovered 
that Eq. (42) can be improved somewhat if the whole expression is multiplied by a factor. The new 
expression, that replaces that of Eq. (42), then reads 
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One example of comparison was made for NACA4418. The graph appears in Fig. 20.  
 
The striking difference at 30 degrees is explained by the fact that the predicted thin plate curve turned out 
to be higher than the CL curve in deep stall from the Chinese measurements. There is, however, no firm 
indicator how to use this information. Therefore it is ignored. 
 
To complete the full 360 degree range with respect to Cm the same technique can be employed. 
 
In Fig. 12,d (or 21d) the angle can be made greater than that in 12,e (or 21e) before separation occurs. 
This can be realized when thinking of the air as having difficulties rounding a sharp corner. A sharper 
rounding of the corner is required at a numerically lower negative α than correspondingly for a positive 
angle. This is to say that the active linear range is larger just below 180 degrees than above. But angles 
above +180 degrees will be translated into negative angles in the range of say from –165 to –180 degrees. 
This should reflect in the linear function that is called armLine, see Eq. (43). An asymmetry arises in 
terms of  the linear function such that its behavior on the negative side behaves as indicated in Fig. 22. 
 
The moment coefficient contribution from the arm function will be calculated from Eq. (37). However, for 
the linear range of angle of attack the moment coefficient is calculated from the indication in Figs. 36 and 
45. Taking the 25% point as the reference point, as usual, yields 
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where CLα is obtained from Eq. (12). 
 
From the linear range toward deep stall (on the 
negative side as well as on the positive side) there is 
a transition toward a line when the moment is 
expressed as an arm length rather than a coefficient. 
The linear arm function obtains its form as seen in 
Fig. 22. Because the airfoil is not symmetrical there 
is an asymmetry in the arm curve as well as in the 
transition function f. It can be noted that an exercise 
in calculation, of the arm length on the negative 
side, gives two singular points for Cm e.g. where CL0 
equals ∆CL and the two are of opposite signs. Therefore
when they are added to yield the total CL value, see Eq.
(41), the sum is zero but the Cm value is finite. The 
equation for the calculation of the arm, according to Eq
similar situation exists near –175 degrees.  
 
Obviously the calculation of Cm in the immediate vicin
values when the arm method is used. Fortunately there 
e.g. Eq. (49) and (50). In deep stall this difficulty does n
only one available. 
 
Because of sparse availability of deep stall data (the Ch
the negative side straight line (Fig. 22) is uncertain exc
Then also the curves in Fig. 22 are symmetrical. It is, h
function to calculate Cm even for cambered airfoils. 
 
From the described uncertain background the left part o
This is done from the observation that both of the curve
α when the airfoil is cambered (compared to a symmetr
side as an “extension” of the corresponding line. In Fig
negative side are constructed. As a consequence its fun
and B as governed by the zero lift angle of attack.  
 
The algorithmic presentation of the calculation of the li
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2.4.3 Summary of the Cm Calculation Technique 
The building blocks in the method to produce an approximation for the Cm curve through 360 degrees can 
be described with the following statements. 
 
1.The Cm(α) curve can be generated from: 

a. Cm(α1) where α1 is an arbitrary angle of attack near zero 
b. CL(α1) must be known 
c. CL(α) 
d. CD(α) 

 
2. The basic data used are from Critzos [1] – NACA0012 and NACA0015 and Chinese data [12] for 
several cambered airfoils, although only data for positive angles of attack exist in the Ref. [12] report. 
 
3. The technique used relies on thin airfoil theory for small numerical values of α. For deep stall data the 
arm from the leading edge to the center of lift and drag was extracted from the measured data. This arm is 
cast in a curve fit formulation. Knowing CL and CD in this deep stall region allows the calculation of Cm 
using also the arm information. In the region between small values of α and deep stall a transition based 
on the shape of the CL curve is applied. 
 
4.After step 3 a Cm curve has been generated. However, at around zero degrees angle of attack there is 
usually original data available. The original data should of course be used where available and a transient 
to Cm data according to the method above should be applied. 
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3. END EFFECTS 
3.1 OVERVIEW OF END EFFECTS 
The blade is exposed to a flow that becomes more three-dimensional (3D) as the tip or the root is 
approached from some inboard radius. The effective parameter to measure three-dimensionality is the 
ratio (local chord)/(distance to nearest end).  
 
Blade Element Momentum (BEM) theories rely on aerodynamic information in the form of tables, which 
in turn depend on the profile shape. Since a profile is a two-dimensional (2D) concept so is the 
aerodynamics. Therefore the unmodified 2D tabled aerodynamic coefficients are not suited to be used 
directly near the ends of a blade. In BEM theory 2D profile aerodynamics is used because this is inherent 
in the method. But, compensation for 3D effects can be introduced by changing the aerodynamic tables in 
a dedicated way. 
 
The effect from the radial pressure gradient is that, close to the ends of the blade, the lift slope and the 
drag value at 90 degrees angle of attack tend toward zero as the tip, or the root, is approached. The drag 
value at 90 degrees angle of attack has a crucial role in the creation of the 180 degree tables as explained 
in Sect. 2. The end effects, as described, will be referred to as “gradient effects”, or “gradient corrections” 
when applied as increments to basic two-dimensional aerodynamic coefficients. 
 
Superimposed on the gradient effects is the Himmelskamp effect. It will be taken into account as an 
increment as explained below. Its most prominent feature is to increase maximum CL to about twice its 
2D value.  
 
When running a performance/aeroelastic program, the gradient corrections are best implemented directly 
in the files that contain the aerodynamic information, while the Himmelskamp effect could be calculated 
on line. Thus, the Himmelskamp effect could be implemented in the coded algorithms in the program. 
Even if a blade has pitchable tips, for run-away control, the tip effects are favorably given from the 
beginning. This is because only chord in relation to radial position matters (not pitching). In the case of 
the extremely remote possibility of variable chord or radial extensibility, for control purposes, would the 
gradient effects be implemented as code, on-line. 
 
The Himmelskamp effect depends on RPM such that, below a very low RPM, there is no effect, while 
above this very low value there is full effect. This apparent step in Himmelskamp functionality is not truly 
a step. In reality the effect rises softly but distinctly at some low value of RPM. In practical computer 
implementation a relatively fast rising curve fit equation is applied, which rises from 0 to 1 over some 
suitably chosen low RPM. This allows simulation of starts and stops. The RPM dependent characteristics 
of the Himmelskamp effect thus suggests implementation in the code rather than in the fixed aerodynamic 
tables, although there would hardly be any noticeable difference in the resulting loads if implemented in 
the tables. 
 
3.2 GRADIENT EFFECTS 
Near the tip both lift and drag deviate from what would have been the case in the 2D situation. These 
effects have in fact already been covered as far as the flat plate aerodynamics are concerned, see Sect. 2. 
In that section, however, the end effects were not explained explicitly.  A practical problem must be 
overcome as follows. 
 
In the method for lift calculation the CL curve is extended using an interpolation technique in which the 
flat plate curve amplitude is determined by the CD 90value. But, since the CD 90 value is a function of the 
nearness to the end, the complete CL curve must be affected by tip proximity. In experiments, e.g. Ref. 
[11], the linear range lift has been observed to be affected by tip proximity. It is assumed that CLmax is 
subjected to the same effect. These measurements depend on a notion of the angle of attack. The angle of 
attack will always have to be calculated even in the case of measurements. Therefore, the “measured” 
angle of attack, as it were, is prone to errors inherent in the estimation method.   
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But, in practical engineering evaluation, of rotor performance, angles of attack will have to depend on the 
methods that we know of today. So, if there is an error in the estimate of the angle of attack, this error can 
be accounted for by modifying the corresponding CL value. This process has given CL vs α curves, which 
appear to have lesser slopes than those two-dimensional. In a coherent methodology, using the available 
methods for angle of attack evaluation, it is therefore relevant to consider even reducing the linear range 
slope of a CL vs α curve. Some measurements even seem to indicate that the lift at zero angle of attack is 
higher in this case. The method of this document will rely on one tip proximity decrease of loading for 
attached flow and another for totally detached flow. All situations between these extremes will be 
described by interpolation. 
 
3.2.1 Tip Effects – Attached Flow 
Steady state blade pressure data were obtained in the CARDC wind tunnel from the FFA model wind 
turbine rotating in polar symmetric flow. For a description of these tests and corresponding analysis, see  
Ronsten  [14] -  [16]. These data have been reexamined, in the development of this report, with the 
purpose to look for tip effects in order to model these. From Ref. [14] it seemed that only the two 
outermost stations produced data that pointed to an effect. The two tip-most stations from Fig. 9, in the 
reference, are reproduced in the figures below. These stations were located at 97.5 and 99 % of tip radius. 
The station at 97.5 % showed no evidence of any tip effect at all. However, some further analysis of the 
data files revealed that, in some cases, where the blade is more highly loaded, the tip effects extend further 
inboard. Such is the case particularly for cases 38 and 39 (definition in Ref. [16]). For case 38 a significant 
difference is seen over the full length of the blade while at case 39 only the four outer Cp distributions are 
different. The expectation is that case 39, which represents the highest possible loading (i.e. it contains 
most stall), should be the one displaying more of differences. But, there is the difficulty of assessing the 
angle of attack correctly, which might explain the discrepancy. 
 
The test information essentially consists of pressure distributions from 29 orifices around the perimeters of 
8 airfoil sections, at different radii, of a 2.5 m long blade, of about 1985 vintage, manufactured by Stork of 
Holland. The pressure tapped radial stations were densely packed in the proximity of the tip. 
 
To carry out the numerical analysis, of these data, the following sequence of thoughts was used to create a 
practical engineering model, whose purpose it is to allow correction of standard 2D aerodynamic tables to 
3D equivalents to be used in loads and performance calculations of the BEM type. 

Comparison of Cp from calculation and measurement 
(TSR=7.37, ReXFOIL=1.2, ReMeas=1.2, α  = 4.87 - r/R = 97.5%
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First the assumption is made that the vertical dimension (y direction in the profile coordinate system) can 
be ignored when integrating the moment. Properly done the pressures should have been integrated around 
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the profile geometry to yield the normal coefficient (CN), the tangential coefficient (Ct) and the moment 
coefficient (Cm). But, since the profiles are close to the tip, they are relatively thin making the 
approximation acceptable for the intended purpose. Therefore, the method was to calculate the 
incremental forces on a flat plate of no thickness. This makes it possible to calculate CN and Cm (not Ct). 
In other words the pressure coefficient Cp is multiplied piecewise by the dimensionless chord distance 
between orifices to build up the CN value. Similarly for Cm where of course multiplication by the length 
of the arm to the quarter chord point is included in the calculation. The described method, applied to the 
data of the two figures above, gave the following numerical values. 
 
 
     Table 3.2.1 - 1 

 Non-rotating - XFOIL Rotating - Measurement 
r/R location CN Cm Arm from 

25% chord 
CN Cm Arm from 

25% chord 
97.5% (α=4.9°) .916 -.0906 .099 .708 -.0698 .099 
99% (α=3.6°) .818 -.0814 .100 .497 -.0241 .0484 

  
A study, of the background numerical files, reveals that at 95 % of radius there is no significant difference 
between non-rotating (XFOIL as well as non-rotating measurements) data and rotating (measured) data. 
At lower radial positions, however, the measurements yield higher values of CN. This can be interpreted 
as an error of the lifting line (LL) method for angle of attack evaluation. Selected data, from the FFA non-
rotating measurements, appear in Fig. 26. The global parameters behind the case numbers are defined in 
Ref. [16]. 

 
 

Case 97  
r/R% α 
92.5 8.72 
95 8.26 

97.5 7.35 
99 4.07 
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If it is assumed that the angle of attack error from the LL method could be eliminated then the calculated 
curves (squares) could be moved up to match the near two-dimensional data that should be present at say 
75 to 80% of tip radius. It is then seen more clearly that, in relation to measured data, the calculated curves 
do not drop off toward the tip as they should.  
 
The non-rotating data seen in the three samples above are usable as rotating data below stall. The matter is 
complicated by the fact that when the profile is partly or fully stalled there are no 2D data in that region if 
the blade rotates. The explanation can be found in the intricacies of the separated flow being propelled 
toward a higher radius, thus contributing to a centrifugal pumping action with the flow being essentially 
radial. Since the data above comes from the non-rotating tests they can only be representative for rotating 
conditions if the flow is attached. 
 
The relatively small radial extent of discrepancy, as evidenced in the three charts, can be compared to 
findings in Refs. [17] and [18], where the region of tip flow appears to be somewhat larger.  
 
In the table, including Cm numbers above, it is seen that at 97.5% there is a difference in CN, but the 
difference in moment arm is insignificant. This means that Cm scales linearly with CN, and probably with 
CL as well. At the 99% station the table values give evidence of significant differences in all parameters. 
This should be expected since the flow is far from being two-dimensional. For a load calculation it can be 
concluded that it is quite satisfactory to scale the moment as the CN value scales, i.e. the ratios, between 
the 2D value of the aerodynamic coefficients and the 3D ditto, have the same values – equal for CN and 
Cm. 
 
It is encouraging to notice that the Cp data from the rotating measurements are practically identical to 
those measured on the fix mounted blade in the FFA wind tunnel, when the Ronsten pressure pattern 
fitting technique is successfully applied. This statement holds for all instrumented stations except for the 
30% r/R station provided the flow is attached. However, for the purpose of comparing results from 
XFOIL, the local angle of attack must still be estimated, thereby introducing a source of errors. Even so, it 
is surprising how well the XFOIL data, in most cases, fit the measured data.  
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c
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For the purpose of paving the way for a model of calculation, the 
following set of observations and conclusions is stated: 
 
Attached flow: 
1. Rotation has hardly any influence of practical importance on the 

sub-stall flow near the tip.  
2. The three-dimensional effects at the tip must be of a potential 

flow type. 
3. Only a certain small outboard part of the blade is affected by tip 

proximity effects. 
4. The extent of the affected span is probably a function of loading. 

This dependence will be ignored. 
5. The tip effect on drag is unknown. 
 
(Partly) separated flow: 
6. At 90° angle of attack, the tip proximity effects seem to extend 

much further inboard than in the attached flow case. Here the 
rules of Section 2.3.1 (“Finding CD90”) apply. 

7. In partial separation interpolation must be carried out. 
 
The calculations described above, together with the statements 1 - 6, 
constitute the basis for model making. It can be reasoned as follows. 
 
The outermost 8%, that seem to be affected by tip effects, are valid for the 
particular Stork blade used in the tests. But, a connection to other plan forms 
must be made. To assist in such a task the adjacent picture can be used. 

Figure 27 
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All three plan forms have the same distance from the tip to the dashed line. Although this measure is 
identical in all three tips it certainly appears that the mid-figure has its dashed line effectively closer to the 
tip than the two other shapes. It may be less obvious that the top shape has the dashed line effectively 
closer to the tip than has the lower shape. The distance y is the same but the surrounding geometry is 
different in all three cases, which will be used to serve as representatives for all existing shapes of tips. 
 
To capture these intuitive thoughts into something more tangible the concept of  “local aspect ratio” 
comes to mind. The serrated areas (A) have different aspect ratios and, as inspired from airplane practical 
aerodynamics, the local aspect ratio can be expressed as y2/A. Therefore the idea can be expressed as 
follows: 
 
Points of equal influence, from three-dimensional effects near a tip, are calculated from equal local 
aspect ratios. 
 
In practical application the Stork data will be plotted versus local aspect ratio rather than versus radius. 
Then that plot is assumed to be valid for all possible blade shapes. This completes the creation of the 
model for the effective coordinate as a technical measure of tip proximity. The practical consequences 
remain.  
 
The CN vs radial coordinate in the plots above only show convincingly that from about 95% of tip radius 
to the very tip the CN value, i.e. the loading, is attenuated by a factor that is roughly one near 95%. It is 
equal to zero at the very tip. Deviations at lower radial coordinates are probably caused by error in the 
estimate of the angle of attack. The model therefore becomes to multiply the 2D CL and Cm tables by a 
factor, which is constructed as a curve reminiscent of a quarter circle according to the Fig. 28. The figure 
is a more general transformation of the information where local aspect ratio (LAR) takes over the role of x 
coordinate. To use this information the following steps could be taken. 
 
 
1. Assume that the aerodynamic table definition is required at some radial 

location r corresponding to y = Rtip - r 
 

1           

2. Calculate Ay =1 … (using LAR0 = 1.0 for attached flow)            (58) 
 
3. Compare y with y1. If y < y1 go to the next step, else there is no 

modification to the two-dimensional aero tables. 
 
4. Calculate      (59) Ay /LAR 2=
 

5. Calculate the factor ( ){ } eegg
/1

LAR11)LAR( −−==    (60) 
where e=2.5 was found to be a suitable value. 

 
6. Apply the factor to the 2D values of CL and Cm but not to CD. Thus for all an

2D aero table do: 
CL,3D = g CL,2D ; Cm,3D = g Cm,2D ; CD,3D = CD,2D   (61) 

 
 

0

LAR3.2.2 Tip Effects – Detached Flow 
Ref. [20], (measurements on the NREL 10m diameter machine) 
indicates that when the outer part of the blade starts experiencing 
separation the decline of maximum loading is vaguely visible at 80% 
radius. There was unfortunately no instrumented station at a higher 
radius on the blade. This corresponds to a LAR of approximately 2.2. 
Thus, the tip effect is more pronounced in the case of separated flow being 
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visible at  LAR=2.2. The effect is present more outboard, at 94%, in the case of attached flow. For totally 
detached flow it can be conjectured that the reduction of the loading starts at a value of LAR, which 
corresponds to the value of s according to Eq. (28). For radial stations outboard of s an interpolation in 
two variables is carried out. The two variables are LAR and proportion of chord (f) that is separated. The 
LAR value corresponding to a certain value of f is gleaned from the Ronsten [14] - [16] and Simms [20] 
reports, where the attached flow is affected within a LAR value = 1 and for detached flow LAR = s2/A 
respectively. A straight line relationship is assumed as seen in Fig. 29.  
 
To arrive at an algorithm for an arbitrary level of stall the steps 1 
– 6 above can be used in a modified form as follows. Input to the 
algorithm is CD90, Cn, α and the angle of attack for zero lift (α0). 
 
ALGORITHM: 
1. Find s according to Eq. (28). Apply iteration, according to 

Fig. 10, if the chord is not constant. 
 
2. Create the corresponding value of LAR, i.e. LAR0 = s2/A.         
 

s

3. Calculate a value of f accordingly (See Appendix A): 
 
aa = 0.149398407 ba = -0.06195778 ca = 0.025
ab = -0.309142373 bb = 0.349459195 cb = -0.10
ac = -0.023715832 bc = -0.164404434 cc = 0.069
ad = 0.086426002 bd = -0.013828726 cd = -0.00
(63) 
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After insertion of aa, ab etc in the expressions for A, B, C and D, f is
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4. Calculate the LAR value where reduction starts according to the
        where LAR( f⋅−+= 010

* LARLARLARLAR ) 1 = 1  
 
5. Calculate the station LAR value at input value of y: yLAR =
 
6. If LAR < LAR* continue to the next step, else g = 1 and the calc
 

7. Calculate the factor 5.2    where
LAR
LAR11

/1
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8. for all angle of attack values in the 2D aero table do: 

CL,3D = g CL,2D ; Cm,3D = g Cm,2D ; CD,3D = CD,2D   
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315784 da = -0.001529882 
8291675 db = 0.007827487     
789982 dc = -0.00568632 
5941372 dd = 0.00070752   

   (64) 

 obtained through: 

)66(

(65)
 

 straight line assumption, i.e.  
   (67) 

   (68) A/2

ulation is finished. 

   (69) 

   (70) 



It is finally pointed out that these preparatory calculations are referred to the circumstances before a 
reduction, using the factor g, has been carried out. Thus, no iteration is necessary. 
 
 
3.3 THE HIMMELSKAMP EFFECT 
As in the case of the tip effects the root area of the blade is subject to radial gradient effects. The 
Himmelskamp effect is superimposed on the radial gradient effect. Moreover, there is a transition effect 
where the Himmelskamp part depends on RPM. These three phenomena interact in a fashion which is 
concealed to the observer because of inherent difficulties to separate the three and because of lack of 
sufficient amounts of measured data. As will be shown, the gradient effect will not be applied in the same 
manner because it is taken care of by the transition effect, as demonstrated in the following text. 
 
The boundary layer on a rotating blade is subject to centrifugal forces, which transport parts of the layer, 
which can be called an “air lump”, toward a larger radius. If the air lump were to stay on the same 
chordwise position it would be traveling faster in the tangential direction. Such a situation would be 
equivalent with an acceleration in the tangential direction. This is opposed by an opposite mass inertia 
force trying to pull the air lump toward the trailing edge. The latter force, which is equal to the Coriolis 
force, works the same way as a favorable pressure gradient. As a result the air lump can withstand a higher 
adverse pressure gradient on a rotating blade than on a fixed wing. The consequence is that separation, for 
a given angle of attack and Reynolds number, occurs at a position aft of that which would have been the 
case on a fixed wing. This phenomenon was first recorded in 1940 by German researcher Himmelskamp. 
He performed wind tunnel tests on instrumented propellers, allowing the evaluation of pressure 
distributions, and he presented CL values in excess of 3.0 for radial stations near the hub. Although 
Himmelskamp found the consequences of this particular aerodynamic phenomenon he did not present a 
theory explaining his findings. His doctorial thesis from 1945 includes descriptions of his measurements, 
see Ref. [5]. 
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3.3.1 CL Modification 
Qualitative explanations of the Himmelskamp 
effect were presented in the late 80s. Notably 
Dutch researcher H. Snel et al derived a 
simplified set of Navier – Stokes equations valid 
for a quasi-two-dimensional boundary layers, 
where centrifugal and consequential Coriolis 
effects were accounted for. It appears, in his 
final expression for CL, that the crucial factor, 
driving the Himmelskamp effect, is chord 
divided by radius (c/r). This method was expedient to use as an add-on to existing computer code. His 
final equation for lift is now being used with modifications flavored by each wind turbine engineer trying 
to fit measured data to the Snel lift equation. 

Figure 31 

 
The Snel approach is applied also in this report with some additional thoughts for the corresponding drag 
and moment effects. With reference to Fig. 31 the Snel additional lift can be expressed as a. It constitutes 
a fraction of the measure b. The ratio therefore is a number between 0 and 1. Ref.[6] gives the following 
form for the ratio 
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The authors of Ref. [6], however, caution against this quantity formally being in excess of 1.0. A remedy 
is to replace it with the following expression. 
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This function, for small values of the argument c/r, is identical to its 
argument, while it cannot exceed the value of 1.0 for larger values of 
the argument. 
 
The typical application of this formula is to replace the coefficient 3 
and the exponent 2 with parameter values, which can be adapted to 
measurements. In summary the CL adjustment, caused by the 
Himmelskamp effect, can be written 
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where the last member defines the quantity δCL (also denoted a, see 
Eq. (72)). Before emerging data from measurement will become 
available the default values should be d = 3 and e = 2. 

For complete expression see3.3.4 

 
One very important consideration is to determine at what angle of 
attack to terminate the Himmelskamp effect in order to prepare for a 
”soft landing” on the thin plate curve. Although there is no firm 
evidence how to proceed in this matter the following procedure will 
be used. 
 
The unrestricted application of the Himmelskamp effect, according to 
Eq. (73), would lead to unrealistic values for very high and very low 
angles of attack. Therefore an assumption, concerning the probable 
behavior at these high angles, must be made. It is assumed that the 
Himmelskamp effect is reduced to a low level above say 45 degrees. 
But, this should also be true on the negative side. Moreover at round 
the linear part at 180 degrees the full Himmelskamp effect should be 
present. This reasoning leads to the conclusion that the Himmelskamp 
effect should be subdued between approximately –140 to – 40 degrees 

and between 45 and 140 degrees angle of attack. For practical 
application these thoughts can be listed as a sequence of steps with 
reference to Fig. 32. 

Figure 32 

 
Step 1: The basic assumption is that the original curve is somehow available in the complete interval from 
–180 to +180 degrees. This curve may, or may not, be representative for 2D circumstances. But, it is 
important that the curve does not represent rotational data. The curve may, however, have been produced 
from an experiment with an aspect ratio of the wing which is finite, such as was frequently the case in the 
early NACA tests, where AR=6 was typically applied.  
 
Step 2: The linear parts of the CL curve are identified and their linear approximations are established 
(linear curve fits). 
 
Step 3: The Snel equation is applied to yield interpolated curves, not only at positive CLs, but also at all 
four positions where the Himmelskamp physics apply, see A, B, C and D. The CL curves obtained in this 
way will be called “rawSnelCL”. 
 
Step 4: If all interpolated curves from step 3 were to be extrapolated there would not be one coherent 
curve. Nor would there be finite values as the angles tend to infinity. A realistic improvement is called for. 
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The improvement consists of letting the interpolated curves at A, B, C and D “snuggle up” toward the 
basic curve. 
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The four steps of thought described above can be captured in 
equations, which are adaptable to easy computer programming. Since 
the ideas are simple and the algorithms become complicated, because 
of several switches between angular regions, the author refrains from 
presenting a complete algorithm. The essentials will, however, be 
presented here. The program code will have to be accepted also as 
documentation in this respect. 
 
First the equations for the three lines (step 2) are established. This 
should be done such that they coincide as much as possible with the 
pre-existing basic curve. Then the Snel equation, Eq. (73), is applied 
to the regions indicated by A, B, C and D, where A extends to –90o, B 
from –90o, C up to +90o and D from +90o. 
 
As indicated previously approaching 90o with this technique yields 
unphysical values. Therefore step 4 is applied by means of an 
interpolation function h whose characteristics are seen in Fig. 33, part 
6. It is to be applied to an interpolated function from the A, B, C or D 
curve to the basic CL curve. This function must be created somewhat 
heuristically. It could have been made equal to the f function 
according to Eq. 44. But, it was felt that some freedom of shaping the 
details of the complicated h curve calls for an independent approach. 
Testing of ideas in a spread sheet program gave support to apply the 
following method.  
 
First it is noted that a basic “soft ramp” function is needed (any one of 
the flanks of the h curve). The following expression is chosen. 
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The corresponding graph is seen in Fig. 33, part 1. The point P is at 
the value of one half. It will be referred to as the mid-point. The factor 
k determines how steep the transition from level 0 to 1.0 is. The mid-
point can be sideways shifted to any location α* by a slight 
modification of the expression accordingly. 
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The curve, according to part 1 of the figure, can be turned upside 
down by changing the sign before the arctan function term. Thus all 
combinations of possibilities seen in 2, 3, 4, and 5 are controlled using 
k, α* and switching sign before the arctan function. 
 
Changing notation (y ->h) ,the desired function is now obtained by 
combining the four different curves.  
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Then the following expression is used for interpolation. 
 

)77()1( originalCLhrawSnelCLhfinalCL −+⋅=  
Figure 33 
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where the “rawSnelCL” value is obtained from Eq. (73). A numerical example, that the author tested and 
found to give reasonable results, had the control parameters that are seen in the following expressions. 
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3.3.2 CD Modification 
3.3.2.1 Background 
Along with the lift increase near the hub, which is quite 
conspicuous, CLmax values of 2.5 can easily be obtained, 
there is also an effect on drag. The typical behavior of 
Himmelskamp drag, as a result of calculation, is lower 
than 2D drag whereas some FFA measurements, see Ref. 
[7], shows a mixed or opposite trend. The reason for 
increased drag, in relation to the 2D corresponding drag 
at same alpha, could be that the blade rotation maintains a 
lower pressure over the rear flank of the suction side of 
the airfoil where the flow is separated. In fact, where the pressure is almost constant, in the separated part 
of the surface flow for the 2D case, the 3D rotating situation shows a pressure gradient pointing toward the 
trailing edge, see  Fig. 34. This pressure gradient opposes the Coriolis force thus maintaining a balance, 
which permits the separated flow to stay over the rear part of the surface while being transported toward 
the tip by centrifugal forces. See Ref. [5] for a fuller explanation. The situation in the separated region is 
probably more stable than that in 2D because of the orderly swirl that has been observed to take place 
there. These effects suggest the separate treatment of the separated rear flank flow. 
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Figure 34 

 
In order to model this effect the low pressure, in the separated region, will be used to generate a surface 
force which must be perfectly perpendicular to the surface if, as a suitable approximation, friction forces 
between the air and the surface are ignored in this region, see Fig.35. But, the method will not model the 
rear flank pressure directly. Instead the following approach will be 
taken. 
 
3.3.2.2 Lift Implications 
From Eq.(73) an increase in CL, in relation to the non-rotating case, in 
physical reality is assumed to emanate from two effects. Firstly the 
chordwise location of the separation line is shifted further aft (stall 
delay). This gives a higher level of circulation, which translates into 
higher lift and lower drag. Secondly, the rear flank separated area will 
experience a lower pressure resulting in a component in drag direction 
(with a corresponding component in lift direction). However, both 
incremental lift contributions from the Himmelskamp effect are 
calculated collectively as one quantity, the rotational additional lift, simply from Eq. (73).  
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3.3.2.3 Drag Implications 
The drag implications will be clarified as follows. Two situations are compared to each other. One is the non-
rotating case. The other is the rotating case. All comparisons made below will refer to the rotating case in relation 
to the non-rotating case unless otherwise stated. This is also true when the word differential is used. 
 
The method is based on dividing the rotational additional lift between the two effects described above. 
Thus, one portion will be ascribed to increased circulation. The other likewise to the rear flank increased 
suction. At the present stage of knowledge there is no firm basis for such a distribution. The technique will 
therefore have to rely on a parameter p, in an interval 0<p<1. p can be seen as a model parameter, with the 
hope that present and future investigations will furnish the data necessary to assign a value, or functional 
relationship, to p. How p is to be used is dealt with below. 
 
Vortical drag: 
The rotating case has a separation point located further aft. 
This allows a higher level of circulation, hence more lift. 
Because of the thinner wake, drag should be reduced. Both of 
these effects can be ascribed to the increased circulation, 
giving rise to a lift increase that can be called δ CL (not to be 
confused with ∆ CL). The parameter p, a number between 0 
and 1, mentioned above is used such that it is the proportion 
that is circulatory. (1-p) must be the rest, i.e. the rear flank 
lift, which is thought to be vortical. In Fig. 35 it is called 
∆lift. To emphasize the coefficient aspect we will use the 
notation ∆ CL,vort instead. 
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In the separated region rotating, the pressure is lower thus 
giving rise to a local differential force that acts in a direction 
perpendicular to the surface. I.e. such is the case if friction 
forces are ignored. Since, in separated flow, pressure effects 
dominate the force buildup totally, such an omission is 
acceptable. 
 
When the additional force is projected perpendicular to the 
flow and parallel with it the incremental lift and drag 
components respectively are generated. Since the situations 
in focus generally occur at high angles of attack and 
furthermore the rear upper flank angle of the airfoil surface 
must be added to the angle of attack, i.e. α + β, the angle 
used in the vector sub-component generation is quite large 
compared to normal angles of attack. This gives considerable 
contributions to drag. 
 
It is emphasized that the method is incremental, building on 
presumed known aerodynamic behavior at circumstances, 
which can be described as non-rotating and two-dimensional. 
Thus the incremental effects are = (those 3D) – (those 2D). 
Fig. 35 shows the projection of the incremental rear surface 
force. The angle of attack and airfoil shape sketched are 
probably realistic under heavily stalled circumstances. The 
result is that the vortical lift and drag contributions are of 
same order of magnitude even same size sometimes. 
 

Figure 36 
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The angle β is obtained from statistics as described in the algorithm further down the text.  
 
 
Attached flow lift and drag: 
There is a need to obtain both lift and drag pertaining solely to the attached flow preceding the separated 
region. The complete lift or drag thus is the sum of the attached flow coefficient and the coefficient that is 
generated in the separated region of the airfoil. First we need to establish the Himmelskamp additional 
attached lift as follows. 
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The loss in CL, see ∆ CL in Fig. 36a, can be seen as a deficit in relation to the imaginary continuation of 
the ”potential flow” lift curve depicted as a straight line in the CL vs α diagram. The deficit is the result of 
separation leading to a lesser circulation. 
 
The widening separation region, as α increases, is also associated with an increasing loss of momentum of 
the flow, thus drag. By allowing the potential flow line to be integral with the lift curve, for low values of 
α, some loss of circulation has already been ignored. The reason is that the boundary layer, how ever thin, 
generates both drag and loss of circulation. The very small effects associated with the substall angles of 
attack are filtered away by using the technique of making the line perfectly identical with the CL curve 
where it is straight. This technique also reflects in the CD diagram, Fig. 36b, such that CDo is ignored. 
 
The third diagram in Fig. 36 is a plot of ∆ CD vs ∆ CL which can be thought of as one separation effect vs 
another separation effect. The audacious assumption is made that this curve will be valid even after 
Himmelskamp manipulation of the CL curve! This allows calculation of CD – not including the rear flank 
extra drag as discussed above. First the new CL curve is established with tip effects and Himmelskamp 
effects. Then the already existing curve from Fig. 36c is used together with the new CL curve to create a 
new CD vs α diagram.  
 
Difficulties of a practical nature will arise. E.g. the 2D data, as of Fig. 36, may not extend all the way to 
where the new CL curve reaches. The remedy is extrapolation of the curve in 36c. Investigation of the 
nature of this curve has been carried out by this author previously and for several different airfoils the 
relationship appeared to be essentially linear. The slope was found to be = 0.13 apart from the bulge seen 
in the figure. The bulge only appears for symmetrical and thick airfoils, see Ref. [6], p. 20. 
 

3.3.3 Cm Modification 
In analogy with what is proposed for lift and drag 
there will be an effect in the moment coefficient as 
well. Only one single experimental data source of 
information has been available to investigate the 
matter, see Ref. [14]. From it Fig. 31 was extracted. 
It represents pressure coefficient (Cp) distributions 
in standard interpretation format. It demonstrates 
the significance of the parameter c/r. The value c/r 
= 0.377 is associated with more than doubling the 
area within the Cp loop, when the non-rotational data (c
compared with rotational ditto (circles). The distance fr
(CG)  of the Cp area is the moment arm, which, multipl
moment coefficient (Cm). Visual inspection of the left p
the area, enclosed by the pressure curve, is at a more fo
loop is more of a pure triangle compared to the non-rot
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rward position for the rotational case, because the 
ational loop. 



 
Several simplifying assumptions were made in order to prepare for a simple comparative analysis. By 
assuming that the airfoil is a non-cambered flat thin plate the normal and the moment coefficients can be 
calculated, for all four distributions. This was done in the hope that incremental differences (although not 
absolute numbers) could be derived from such an approach. 
 
The data were utilized in the following manner. 
 
1. Moments (Cm) and normal coefficients (CN) were evaluated. 
 
2. The moment arms (to the 25% chord point) were calculated from a = Cm/ CN. 
 
3. The difference between rotating and non-rotating CN values were calculated and were called ∆ CN, 

one for each α. 
 
4. The difference between rotating and non-rotating moment arm values were calculated and were called 

∆ a, one for each α. 
 
5. The thus resulting two points (∆ CN, ∆ a)α=30.41 = (1.177,0.011) and (∆ CN, ∆ a)α=18.12 = (0.227,0.058) 

were plotted in a diagram with ∆ CN on the abscissa and ∆ a on the ordinate. 
 
6. Analyzing the two points in the diagram it seemed unlikely that the connecting relationship between 

the two points could be a straight line. The trend from the two points is that ∆ a decreases with 
increasing values of ∆ CN. But there seems to be no reason why the line should cross over the x axis 
and become negative. Negative values would lead to the Cp CG moving up forward of the 25% point 
and that should be avoided. So, it was assumed that the curve connecting the two points should be an 
asymptote to the x axis (in fact the ∆ CN axis). 

 
7. The two points and the assumption from point 6 lead to the curve fit expression see Eq. (87). 
 
8. Then Ref. [15] was used for an extended number of check points available in Figs. 8a and 8c in that 

report. The technical difference was that the angle of attack had been calculated using different 
methods. It turned out that the correlation between the two sets of information was reasonable 
considering the expected level of approximation. The unifying technique was to interpolate the sets of 
constants seen in Eq. (87) from the two data sets. The final numerical values of the described 
elaboration are seen in Eq. (87). 

 
The conclusions can be summarized in an algorithm as follows. 
 
Algorithm: 
 
1. Calculate, if need be, CNo from the angle of attack (α), CLo and CDo where the subscript “o” signifies 

non-rotational conditions. 
 
2. Calculate the moment arm using 
 

 ao = -Cmo/CNo        (85) 
 

        where ao is counted from the 25% chord point, positive toward the trailing edge of the profile. 
 
3. Calculate CL and CD using the method adapted to the Himmelskamp (rotational) effect, for the given 

value of α. 
 
4. Calculate the normal coefficient CN from α, CL and CD. 
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5. Create the difference ∆CN = CN - CNo     (86) 
 

6. Calculate the negative increment in moment arm using:  281
2.1

NC
a

∆+
−=∆  (87) 

 
7. Calculate the final value of the moment coefficient accordingly:  

( aaCC oNm ∆+⋅= )       (88) 
 

3.3.4 Variability with RPM  
At very low RPMs there is no Himmelskamp effect. The theory of Ref. [6] does not deal with RPM. It 
simply assumes it is not zero. At this point in time there is no exact knowledge about the RPM transition 
behavior of the Himmelskamp effect. An approximation from Ref. [21] is used accordingly. 
 
δCL (See Eq. (73) is replaced by δCL*λ2/( 1 + λ2 )     (89) 
 
where λ is to be interpreted as the local speed ratio with  due respect to any axial induction.  

3.3.5 Summary of Measures taken to Account for the Himmelskamp Effect 
A compact description of the intricacies dealt with in the previous section follows. 
 
1. The Himmelskamp effect is calculated for δCL using Eq. (73) and Eq. (89) 
 
2. The parameter p, which is a model parameter number between 0 and 1.0, is applied to get 
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3. The vortical drag part is obtained using the angle β, which is obtained from basic geometric 
characteristics accordingly: 
 Input:  t/c = Profile relative thickness 
  h/c= Profile maximum camber 
where h is the height from the reference line to the mean line maximum. An equation for the rear flank 
angle β, see Fig. 35, was found from analysis of a few typical airfoils: 
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If more accurate information is available about the rear flank angle β, that information should be used in 
place of the simplified formula according to Eq. (92). 
 
Finally the basic drag, even called “attached flow drag” above, is obtained from reading off the data from 
the diagram in Fig. 36c, which will have to be constructed first. 
 
To calculate Cm the algorithm given in section 3.3.3 is followed. 
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4. TOPICS FOR FUTURE INVESTIGATION 
The ideas presented in this document are based on a combination of observation and theory. The 
observations mainly refer to measured data with a few exceptions for CFD calculations, which show the 
same trends. But, there is a long chain of linked dependence from basic two-dimensional aerodynamic 
tables to the calculated performance of a propeller or a wind turbine rotor. It is therefore necessary to get 
access to future measurements and to utilize the data from the measurements in order to tune the model 
parameters of the many methods presented in the document. Moreover, it will most likely be necessary 
even to change the algorithms whenever conclusive studies obviate such a need. The generation of the 
overall method described here is to be seen as a beginning of a process, which should be continuously 
refined. This will require, first of all, access to high quality experimental data. But, the future might even 
gradually allow increasing dependence on CFD methods, whose results can be treated as experimental 
data. 
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Appendix A 
NORMAL COEFFICIENT AS A FUNCTION OF ANGLE OF 
ATTACK AND SEPARATION LOCATION 

 
1. BACKGROUND 
The need for aerodynamic relations valid for deep stall conditions lead to this study. A fundamental idea is 
that the point in a Cn (α) plane will always soar between two curves. Those curves are that for perfectly 
attached flow and that for perfectly separated flow. They can be thought of as "fences" for the freedom of 
a Cn(α) point. 
 
For the curve for attached flow, sometimes referred to as the potential flow curve, the separation 
parameter f = 1. The f parameter signifies the number of chord lengths that the flow is attached (length to 
separation relative to the chord), in this case all the way to the trailing edge. Correspondingly at fully 
separated flow f has a value of zero. 
 
The text below deals with the task to find an empirical relationship between the normal coefficient (Cn), α 
and f. 
 
2. EQUATIONS 
Leishman and Beddoes, Ref. 1, present a relation, usually referred to as the Kirchoff law, that reads as 
follows – using α to denote the angle of attack as usual. 
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Here α is to be interpreted to mean the angle of attack counted from the zero lift angle of attack. Cn is the 
normal coefficient. Hoerner, Ref. 2, p. 4 – 23, presents the following expression for totally stalled airfoil 
conditions 
  

Cnstall = (1. 8 to 2. 0) sin α 
 
(2) 

 
It should be noted that the number range 1.8 to 2.0 represents the flat plate drag coefficient number at α = 
90°. The notation CD90 will be used to denote this quantity rather than the numerical range – Hoerner 
fashion. 
 
A comparison between the two related expressions reveals the following similarities and differences. 
 
(1) is valid for a relatively small α interval from zero up to stall whereas (2), the Hoerner expression, is 
valid for the complete α range from 0 to ± 180º. (1) has more information of detail since it says something 
about the degree of stall embodied in the f parameter. 
 
The Hoerner version is obviously more useful when very high α:s need to be considered. But, the higher 
resolution Kirchoff expression is more useful for practical modeling purposes at around normal stall 
angles. 
 
The following treatment of these two expressions is directed toward fusing them, thereby retaining the 
good resolution of (1) and bringing the validity to higher α:s like in (2). 
 
A function k can be used to be responsible for both the CD90 value and the sensitivity to the location of the 
separation point f. Eq. (1) is rewritten using this new function. 
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The requirements on this function must be that it is equal to 1 for unstalled conditions (where f = 1). 
Further it must tend toward 2CD90 /π for totally stalled situations (where f = 0). Then (2) is satisfied. Many 
forms can be found, which satisfy both requirements. After some numerical experimentation the following 
expression was selected. 
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The complete expression for Cn is now obtained from (3) and (4) accordingly.  
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It turns out that the more frequent problem calls for f as a function of α and Cn, which is the reversal of 
Eq. (5). One way of solution could be reached by numerical iteration out of convenience even though a 
4th order polynomial root would be possible to solve for analytically. However, a simple curve fit 
polynomial was found using the “Solve” function in MS Excel. This function could be used to find the 
inverse of  (5). 
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f  is an approximation of the inverted function of  Eq. (5) judged to be accurate enough. Its value can 
mathematically be greater than 1.0, which should be prevented in a complete algorithm. Numerical values 
of the polynomial coefficients were evaluated accordingly. 
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    (8) 

where 
 
aa = 0.149398407 ba = -0.06195778 ca = 0.025315784 da = -0.001529882 
ab = -0.309142373 bb = 0.349459195 cb = -0.108291675 db = 0.007827487         
(9) 
ac = -0.023715832 bc = -0.164404434 cc = 0.069789982 dc = -0.00568632 
ad = 0.086426002 bd = -0.013828726 cd = -0.005941372 dd = 0.00070752 
 
The practical application of this method is therefore: 
 
3. ALGORITHM 
The figure shows the idea. Follow these steps: Input:

   * Cn
   *  α
   ∗  C

METHOD Output: f

D90  

 
1. Calculate A, B, C and D according to (8). 
2. Calculate x using (6). 
3. Calculate f using (7). 
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4. COMPARISON 
The figure shows one example of a comparison between f and its curve fit representation. CD90 was 2.2 
for this particular case. 
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