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1. Introduction 
 

In a previous assignment FOI was asked to find an algorithm for the use of IR-decoys 
against an anti-ship missile. The tool to be used for this was a simulation model 
consisting of (at top level) ship, decoys, missiles and weather conditions. Both ship and 
decoys were regarded as point sources.  

The ship had (and has) an IR-signature as a function of azimuth angle in the model. 
This was accomplished by a lookup-table where input is azimuth angle and output is 
radiance value. The IR-decoys was given their radiance values as a function of time, 
from burst (also this accomplished by look-up table) to the end of duration for the flare.  

This report describes how and to some extent why the simulation model was 
transformed from being a point source approach to an extended object simulation model. 
To most problems however concerning simulations and modelling there are several ways 
of solving them. Some ways are better than others depending on different requirements. 
The problem faced within this project could also have been solved by generating one 
image for each time increment showing the scenario seen from the missile seeker. By 
using image processing the detector signal could be generated (the model works on 
detector signal level). The drawback with this approach for the project was that it would 
be too time consuming. A single simulation run took about 20 seconds, by generating 
images and use image processing the same simulation would take at least 80 seconds. 
This may not appear so dramatic, but the plan for this project included half a million of 
simulation runs. Apart from the extra programming the simulation time had to be held 
short in order to meet the projects deadline. 

Chapter 2 to 4 describes step by step the order in which the simulation model was 
changed and why. In chapter 2 a description of how the decoys were modified 
concerning contact with the water is given. Chapter 3 describes how much of a decoy’s 
energy falls upon a detector element. In chapter 4 a presentation is given of how the ship 
could be represented as an extended object. Chapter 5 discusses circles that overlap each 
other. Chapter 6 handles miss distance and hit coordinates. In chapter 7 calculations of 
relative wind is shown (not that it has a lot to do with extended targets, but for 
documentation purposes).  

The calculations described in this report was first tested in Matlab, then transferred 
and implemented in the model. 

After the described changes were made a single simulation run takes about 50% longer 
time then it did before, but the time cost is acceptable considering the more accurate 
results that are obtained. 

 

1.1 Acknowledgements 
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Johansson (both from the department of Electronic Warfare Assessments) for their input 
and participation.  

The project team would also like to express our gratitude to our sponsor Monica 
Strömstedt at FMV. Not only for a challenging, mostly fun and interesting assignment, 
but also for the trust shown during the project. 
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2. IR-decoy 
 

An IR-decoy such as a flare could be described by intensity and area as a function of 
time. This is illustrated in figure below. 

 

 
Figure 1.1 Intensity and area for a IR-decoy as function of time. 

In the model that was going to be used the flare was regarded as a point source. The 
intensity values were stored in a look up table from which the current intensity value 
was calculated depending on the time. However the first problem was that the 
reperesentation of the flares were as point sources. One consequence of this was that 
when a descending flare got close to the waterline it got a digital behaviour. If the flare’s 
point of gravity was above the water all it’s intensity was used. If point of gravity was 
below the water surface none intensity would be taken into account.  

The solution for this problem is to regard the flare as a sphere with it’s projected area 
as a circle (from modelling point of view that is a very common way to regard flares). 
The projected circle is said to have the same radiance all over the circle (not quite true in 
reality but an acceptable simplification). By letting the flare be described as a circle with 
a radius R as a function of time, a better representation of the flare is achieved. See what 
happens to a flare when it gets close to water (see figure below).  

 

 
Figure 2.2 A flare’s four different principle positions regarding the water surface. 

Completely above the water, mostly above the water, mostly below the 
water and finally completely below the water. 

 

To describe the figure in a mathematical way, the height h of the flare is introduced. 
The height is where the point of gravity is for the flare relative to the water surface.  

 h  R  The flare is completely above the water surface. 
 0   h < R  Most of the flare is above the water surface. 
 -R   h < 0 Most of the flare is below the water surface. 
 h < -R The flare is completely below the water surface. 

To calculate how much of the flare (circle) that is visible above the water surface the 
variables: r, d, and θ are introduced. See figure 2.3 for definitions. 

Intensity 

Time 

Area 

Time 
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Figure 2.3 Flare partly below water line. 
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By using the equations above a value G, can be calculated to tell how much of the 
flare is above the water surface. G is within the range of 0 to 1.0. This yields: 

( )

0.0

/0

/0

0.1

2

22

=−<
=<≤−

−=<≤
=≥

GRh

RAGhR

RARGRh

GRh

segment
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π
ππ

 Eq. 2.6 

By multiplying the flare’s intensity value with the calculated G-value, a more realistic 
value is obtained.  

In order to not slow simulations down, a function was introduced that uses the height 
(z) and the radius R of the flare. The input parameter to the function is the parameter z/R. 
The function G (z/R) is plotted in figure 2.4. The values in this plot were put in a look up 
table to be used in the model. The values that are used for the function in the look up 
table is given in table 2.1. Note that in model used, the coordinate system is a right-
handed rectangular coordinate system with the z-axis pointing downwards. This means 
that the corresponding z value for the height h is equal to –h.  

 

R

d

h
r

θ Waterline
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Figure 2.4 Variabel G as a function av z/R. 
   

z/R Gfcwl 
-500.000 1.0000 
-1.000 1.0000 
-0.900 0.9813 
-0.800 0.9480 
-0.700 0.9059 
-0.600 0.8576 
-0.500 0.8045 
-0.400 0.7477 
-0.300 0.6881 
-0.200 0.6265 
-0.100 0.5636 
-0.075 0.5477 
-0.050 0.5318 
-0.025 0.5159 
0.000 0.5000 
0.025 0.4841 
0.050 0.4682 
0.075 0.4523 
0.100 0.4364 
0.200 0.3735 
0.300 0.3119 
0.400 0.2523 
0.500 0.1955 
0.600 0.1424 
0.700 0.0941 
0.800 0.0520 
0.900 0.0187 
1.000 0.000 
500.0000 0.0000 

 
Table 2.1 G as a function of z/R, where z = -h. Z-axis pointing downwards. 
 

So far the only thing introduced in the model is the radius for the flares and a look up 
table for the function G.  
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3. A flare’s projection on a detector element 
When calculating the resulting detector signals in the model the same approach are 

used as in the case with the flare and water surface. This means that either the flare’s 
point of gravity was within the detector element and all the flare’s intensity considered 
to be projected or the flare’s point of gravity was outside the detector element and did 
not contribute anything to the detector signal. This was a model with the approach all or 
nothing. After the changes were made that are described in the previous chapter, it was 
argued that changes had to be made for the projection of a flare on a detector element.  

Using the same reasoning as in previous chapter a flare can be projected as a circle. In 
order to solve the problem following conditions has been used: 

The detector element is a rectangle with its origin in the centre of itself. 

The detector element’s sides are parallel with x- respectively y-axis. 

The detector element has the width b and the height h.  

The flare is projected on the detector plane as a circle with the radius R. 

The flare’s point of gravity is given by the coordinates x, y. 

In order to minimize the calculations within a simulation, the most common situation 
has to be determined. In the model used, the most common situation is that the flare is 
not projected on the detector. 

 

3.1 No projection on the detector element. 
To determine if the projected circle in the detector plane will give an effect on the 

detector following parameters are used: 

 b width of the detector 

 h height of the detector 

 R radius of circle 

 x,y position of point of gravity for circle 

The parameters are shown below in figure 3.1  
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Figure 3.1 Parameters used to determine if the circle will coincide with the detector 

element. 

In the figure, two new parameters d and L are introduced. Where  










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




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22

22
db

d  Eq. 3.1 

and 

RdL +=  Eq. 3.2 

If the condition in equation 3.3 is true the projected circle will not be projected on the 
detector at all, and can therefore be neglected. 

Lyx >+ 22  Eq. 3.3 

In case that the condition is false the circle is not necessarily projected on the detector 
element. So a closer determination, to decide if the flare is projected on the detector 
element, has to be done. 

Next step is to investigate if the center of the circle is closer to any of the sides of the 
detector than the radius of the circle. This is done by study if the condition in equation 
3.4 is true. 
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



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b

2222
   Eq. 3.4 

If the statement above is false there is no need to go further. But if the statement is 
true, the circle is projected on the detector element. Two cases are possible, the first is 
that the center of the circle is within the detector element and the second is that the 
center of the circle is outside the detector element. The condition to be fulfilled if the 
center of the circle is inside the detector element is given in equation 3.5  

d

L

R

b

h
X

Y

R
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
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
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b
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3. 2 Point of gravity within the detector element. 
 

 
Figure 3.2  The circle’s projection on the detector element. Definition of help 

variables. 

Since the problem with calculating the area of circle, above or below a line was solved 
previously, the problem can be restricted to four cases. This is achieved by introducing 
four help variables. The variables are 

 b1 Distance between the left edge of detector and the centre of the circle. 

 b2  Distance between the right edge of detector and the centre of the circle. 

 h1 Distance between the lower edge of detector and the centre of the circle. 

 h2 Distance between the upper edge of detector and the centre of the circle. 

By using the variable b1 a normalized circle segment that is outside the left edge of 
the detector element is calculated and stored in the parameter Aleft. In the corresponding 
way the parameters Aright (area segment on the right side of the detector), Abelow (area 
segment on the lower side of the detector) and Aabove (area segment on the upper side of 
the detector) are calculated. In the figure 3.2 Abelow and Aabove would be zero. When these 
calculations are done the final area on the detector could be calculated according to 
equation 3.6 

Area = ( 1 – Aleft – Aright )* ( 1 – Abelow – Aabove ) Eq. 3.6 

b

h 

b1 

h2 b2 

h1 
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3.3 Point of gravity outside the detector element. 
If the circle’s point of gravity is outside the detector element but still overlaps the 

detector element, there are several possible combinations of the overlap. For reason of 
simplicity the possible combination for the x-axis is shown in figure 3.3. 

Figure 3.3 Possible combination of overlap concerning the x-axis. 
 

As can be noticed, there are three major cases. The first is that the centre of the circle 
is on the left side of the detector (marked in the figure with I). The second case is that 
the circle’s centre is inside the x-values determining the sides of the detector (marked as 
II in the figure). The third case is when the circle’s centre is on the right side of the 
detector (marked as III in the figure).   

 
Figure 3.4  Name of variables connected to the area for calculation.  
 

If the circle’s centre is on the left side of the detector (case I), then area right of the 
detector’s left side is calculated and stored in variable A2. The value of the area is 
normalized with the total area of the circle. If the circle reaches outside the right side of 
the detector, the normalized area A3 is calculated. The part of the circle that is 
overlapping the detector element can now be calculated as: 

Ax = A2 – A3  Eq. 3.7 

The calculated area is normalized and tells how much of the circle that overlaps the 
detector. If there is an overlap as illustrated in the figure 3.3 case I a, then A3 would 
equal zero.  

I a           I b          II a             II b            II c        II d       III a          III b 

A1  A2 A3

A6
 
 
 
A5
 
 
 
 
A4
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If the circle’s center is on the right side of the detector (case III), then area left of the 
detector’s right side is calculated and stored in variable A2. If the circle reaches outside 
the left side of the detector, the normalized area A1 is calculated. The solution in this 
case can be calculated as: 

Ax = A2 – A1  Eq. 3.8 

The last combination is case II, circle’s centre inside the x values determining the 
sides of the detector. If the circle has any part outside the left side of the detector that 
area will be calculated and saved in variable A1. In case of that the circle has any part 
outside the right side of the detector, calculate the segment A3. The final area will be 
calculated as: 

Ax = 1 – A1 – A3  Eq. 3.9 

Note that if overlap as illustrated in the figure 3.3 case II c, then both A1 and A3 would 
equal zero.  

In the corresponding way, the area for the y-axis is calculated. To get the final result 
for the area overlapping the detector, multiply the calculated areas Ax and Ay with each 
other (eq. 3.10). 

A = Ax* Ay  Eq 3.10 

3. 4 Estimation of error in calculations. 
 

In order to determine how large error the described method will give the result 
following method has been applied. A detector element with the size 2 times 7, 
represented as 200 x 700 points (squares). Each of these points is tested to see whether it 
lies within the radius for a circle or outside. The circle’s position is altered in steps of 0.5 
along both x- and y-axis. 

 
 Error in % of circle’s area Error in % of detector’s 

area 
Radius Maximal 

error  
Average 
error 

Maximal 
error  

Average 
error 

1.75 2.73 % 0.44 % 1.87 % 0.30 % 
3.0 2.11 % 0.71 % 4.26 % 1.43 % 
7.0 2.38 % 0.61 % 26.16 % 6.70 % 

 
Table 3.1 Error in % as a function of radius when calculating the area from a circle 

projected on a detector element. 

The largest error will occur when the circle is placed as in figure 3.3 case II b. The 
size of the errors indicates that they could be neglected considering the other 
presumptions made (circularity of flares and that the flare would have the same intensity 
within the whole area). Some of the values for the radius 7 do not look very good, but 
this corresponds in the used model for very close ranges, so it is actually quite 
acceptable.  



  FOI-R--1312--SE 
 

 14 

4. Model of the ship 
 

In the point source model the ship was defined as one point, with different intensities 
depending on the aspect angle. The intensity values were given in a table as a function of 
the azimuth angle. A total number of 72 values were used, which means a step of five 
degrees between each value. This is illustrated in the table below, only 5 values 
presented as an example.  

Azimuth Intensity
0 I0 
45 I45 
90 I90 
135 I135 
180 I180 

Table 4.1 Intensity as function of azimuth. 

After the changes concerning the flares as described in previous chapters, it did not 
seem like a very bright idea to continue to treat the ship as a point source. The first 
approach was to describe the ship by using seven point sources. This was accomplished 
by dividing the ship into seven volume segements. Each segment is represented by a 
projected area, depending of the aspect angle. The seven segments are shown in figure 
4.1. 

 
Figure 4.1.a The seven segment volumes that defines the ship. 
 

 
Figure 4.1.b The seven corresponding points that defines the ship. 
 

As a result of using seven point sources, each point would have to be described with 
its intensity as a function of the azimuth angle.  
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Azimuth P1 P2 P3 P4 P5 P6 P7 Total 

Intensity 
0 IA0 IB0 IC0 ID0 IE0 IF0 IG0 I0 
45 IA45 IB45 IC45 ID45 IE45 IF45 IG45 I45 
90 IA90 IB90 IC90 ID90 IE90 IF90 IG90 I90 

135 IA135 IB135 IC135 ID135 IE135 IF135 IG135 I135 
180 IA180 IB180 IC180 ID180 IE180 IF180 IG180 I180 

 
Table 4.2 Intensity for each point as a function of azimuth, in the seven point model. 

 

Simulations showed that the seven point model was not ideal for the purpose. The 
points regarded from side aspect, where to far apart. During the discussions an idea was 
formulated. Why not describe the ship by using spheres, and use the calculation method 
described earlier. After some work, including test and simulation it was decided to 
describe the ship with 14 spheres. This is illustrated below by figure 4.3. 

 

 
Figure 4.3 Ship seen from starboard view. Note that the three last spheres are laid 

side by side and therefore only one can be seen in this view. 

 

Note that depending on the aspect angle, the size of the spheres will vary and in some 
cases even disappear when they are not seen from a certain view. The method used to 
get the tables to the simulation model can be described as follows.  

First a CAD model is used to generate a 3-dimensionell IR CAD model of the ship. At 
FOI, a software program called RadThermIR is used for this purpose. This model is 
complemented with input from analysis of the material properties for the ship’s different 
parts. If possible IR-measurements is used to validate (or modify) the 3D IR CAD 
model. The program calculates an image of the ship in the desired aspect and the grey 
level in the image corresponds to the radiance for each picture element. Next step is to 
generate images for the desired wavelength band to study or use in the simulation model. 
These generated images shows different aspects in azimuth, for this job the step selected 
was 22.5 degrees which gives 16 images. By using drawings of the ship, (side, front, aft 
and top view) the number of sub areas to use is determined. For each of the images the 
sub areas are identified and their corresponding projected area and radiance is 
determined. Finally the determined values describing the sub areas are stored in tables to 
be used in the simulation model. The method is also shown below as a flowchart.   

 

1 2 

34
5

67 89 10 

11 12, 13 and 14 
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Figure 4.4 Flowchart over the method or process of defining the tables describing the 

sub areas of the ship (i.e spheres). 

The area of each sub area is presented in table 4.3 below. 

 
Az S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Total 

area 
0 AAa ABa ACa ADa AEa AFa AGa AHa AAa AJa AKa ALa AMa ANa A0 

45 AAb ABb ACb ADb AEb AFb AGb AHb AAb AJb AKb ALb AMb ANb A45 
90 AAc ABc ACc ADc AEc AFc AGc AHc AAc AJc AKc ALc AMc ANc A90 

135 AAd ABd ACd ADd AEd AFd AGd AHd AAd AJd AKd ALd AMd ANd A135 
180 AAe ABe ACe ADe AEe AFe AGe AHe AAe AJe AKe ALe AMe ANe A180 

 
Table 4.3 The areas of each of the surfaces as a function of the azimuth angles.  

 

Each area could easily be translated to a radius using the formula for a circle’s area, 
which yields following table of the radius of each sub area (sphere) as function of the 
azimuth angles. 

 
Az S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 
0 rAa rBa rCa rDa rEa rFa rGa rHa rra rJa rKa rLa rMa rNa 
45 rAb rBb rCb rDb rEb rFb rGb rHb rrb rJb rKb rLb rMb rNb 
90 rAc rBc rCc rDc rEc rFc rGc rHc rrc rJc rKc rLc rMc rNc 

135 rAd rBd rCd rDd rEd rFd rGd rHd rrd rJd rKd rLd rMd rNd 
180 rAe rBe rCe rDe rEe rFe rGe rHe rre rJe rKe rLe rMe rNe 

 
 
Table 4.4 The radius for each of the surfaces as a function of the azimuth angle. 

 

Finally the intensity for each sub area is defined also by using the images generated by 
RadThermIR. 

IR 
measurement 

of the ship 

CAD model 
of the ship 

Analysis of 
material 

properties 

3D IR CAD 
model 

Generation of 
IR images 

Determine sub areas 
with their projected 
area and radiance 

for each aspect 

Validation 

Create table 
defining the ship 

in the missile 
model 
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Az S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Total 
intensity 

0 IAa IBa ICa IDa IEa IFa IGa IHa IIa IJa IKa ILa IMa INa I0 
45 IAb IBb ICb IDb IEb IFb IGb IHb IIb IJb IKb ILb IMb INb I45 
90 IAc IBc ICc IDc IEc IFc IGc IHc IIc IJc IKc ILc IMc INc I90 
135 IAd IBd ICd IDd IEd IFd IGd IHd IId IJd IKd ILd IMd INd I135 
180 IAe IBe ICe IDe IEe IFe IGe IHe IIe IJe IKe ILe IMe INe I180 

 
Table 4.5 The intensity for each of the surfaces, as a function of the azimuth angle.  

The values in the tables 4.4 and 4.5 are used in the simulation model. Before using the 
calculated values a check is performed to control that both the total area and the total 
intensity for each aspect is correct when using the sphere model. The representations 
with spheres are presented in figure 4.5 to 4.9. 

 

 
 
Figure 4.5 Front aspect seen from missile (above to the left). Port view and bird view 

shows the spheres distribution. 
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Figure 4.6 Aspect in 45 degrees, seen from missile (above to the left). Port view and 
bird view shows the spheres distribution. 

 

 
 

Figure 4.7 Aspect in 90 degrees, seen from missile (above to the left). Port view and 
bird view shows the spheres distribution. 
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Figure 4.8 Aspect in 135 degrees, seen from missile (above to the left). Port view and 
bird view shows the spheres distribution. 

 

 
 
Figure 4.9 Aspect in 180 degrees, seen from missile (above to the left). Port view and 

bird view shows the spheres distribution. 
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5. Calculation of a circle’s area when overlapped by another 
    circle. 
 

A problem that have been solved but not implemented in the model is when there are 
two circles and one is overlapping the other. Again several combinations can be found. 
In order to simplify the description of the cases the lower circle (marked red in figure 
5.1) is partly or completely covered by the upper circle (marked blue in figure 5.1). This 
also means that when calculating the projection of a sphere on the detector plane a third 
coordinate is needed to determine the order which of the circles is the upper respectively 
the lower circle. 

 
 
Figure 5.1  Possible combinations of two circles in regards to overlap, where blue 

circle is in front of red circle. 
 I.  The two circles do not overlap each other. 
 II Overlap, the centres of the circles are on each side of the 

intersection line (marked black in figure 5.1) 
 III Overlap, the centres of one of the circles is on the intersection 

line.  
 IV Overlap, the centres of the circles are on the same side of the 

intersection line. 
 V Overlap, the upper circle is completely covering the lower circle. 
 VI Overlap, the upper circle covering the lower circle but lower 

circle is larger then the upper circle. 

The circles are described with their coordinates, and their radius. In order to determine 
if they are overlapping, the distance between the circles origin can be calculated as 
indicated in equation 5.1. 

( ) ( )yyxxD 2121
22 −− +=  Eq.5.1 

I              II          III            IV        V             VI 
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A situation where there is an overlap is shown in figure 5.2. 

 

 
Figure 5.2 Overlap and definition of distance D. 
 

If the circles do not overlap the condition in eq. 5.2 is fulfilled. 

R1+R2  D Eq. 5.2 

If the condition in eq. 5.2 is not met the circles are overlapping somehow. Next step 
will be to determine if one of the circles is completely inside the other circle (case V or 
VI in figure 5.1). This can be done by checking the conditions given in equations 5.3 and 
5.4. 

D + R2  R1 Eq. 5.3 

If true the lower circle is completely covered by the upper circle, which yields that the 
contribution from the lower circle will be zero. 

D + R1  R2 Eq. 5.4 

If true the upper circle is completely inside the lower circle, which yields that the 
contribution from the lower circle will be: 

2
2

2
1

2
2 )(
R

RR
f

π
π −=  Eq. 5.5 

In equation 5.5 the variable f is the factor which tells how much of the lower circle 
that is visible. If none of the three conditions above is true the two circles is overlapping 
and there are two points where the circles intersects. In order to be able to calculate the 
visible area of the lower circle, the intersection points have to be calculated. This is done 
by using the equation for a circle as described below. 

( ) ( ) Ryyxx 2
1

22

11 =+ −−  Eq. 5.6 

( ) ( ) Ryyxx 2
2

22

22 =+ −−  Eq. 5.7 

R1R2 D 
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By using equation 5.6 to express the variable x, and use that in equation 5.7 it is 
possible to calculate the y-values. After some formula exercise a number of equations 
are obtained in order to calculate the final y-values. 

( )xxk 211 2 −=  Eq. 5.8 

( ) 2

2

2

1

2
21

2
1

2
22 yyxxRRk −+−−−=  Eq. 5.9 

)(2
213 yyk −=  Eq. 5.10 

)(

)(2
2

3
2

1

321

2
1

4
kk

kkk
k

y
+
+

−=  Eq. 5.11 

If the circles have the same origin the equation 5.11 would be division by zero, 
however that case was handled with the previous conditions.  

)( 2
3

2
1

2
2

2
1

2
1

2

1

2
1

5
kk

kkk
k

Ry
+

+−
=  Eq. 5.12 

5

2

4

2
4

2
k

k
y

k
−±−= 






  Eq. 5.13 

If y in equation 5.13 is a double root, the solution for x is given by the equations 5.6 
and 5.7.  

If two y-values are obtained from the use of equation 5.13, then use equation 5.14. 
Note that index n in equation 5.14 refers to circle 1 and 2.  

( )yyRx nnnx −−±= 22  Ekv. 5.14 

When this equation is used a total number of eight values for x is given, four for each 
y-value. 

These four x-values for each y-value are compared with each other and the two 
solutions that have the same value is the true value. When this is done the intersection 
points are calculated, and there coordinates are given by(x3, y3) and (x4, y4).  

The coordinates for the two intersection points are used to calculate the length of the 
line L described in figure 5.3. 
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Figure 5.3 Area to be calculated is marked in yellow.  

( ) ( )yyxxL 4343
22 −− +=  Eq. 5.15 

The distances between the centre of each circle and the line L are calculated. 









−=

4

2
2
11

L
Rh  Eq. 5.16 









−=

4

2
2
22

L
Rh  Eq. 5.17 

Then very similar to chapter 1, the following equations are used to calculate the 
covered area of the lower circle. Note the index n in the equations below, the index 
indicates which of the circle’s segment that is calculated. 








=
2

sin
2

n
nR

L θ
 Eq. 5.18 











=

R
L

n
n 2

arcsin2θ  Eq. 5.19 

nntorcircle RA
n

θ2
sec 2

1=  Eq. 5.20 








=
2

sin n
nn Rr

θ
 Eq. 5.21 

Lh
L

hA nnncone 2

1

22

1
2 ==  Eq. 5.22 

h2 h1

L 

d1
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nconetorcirclensegment AAA
n

−= sec  Eq. 5.23 

In order to find out which of the cases II, III and IV in figure 5.1 is the actual case, an 
intersection line L (figure 5.3) is used. To determine on which side of the intersection 
line the two circle’s centre’s are the equation 5.24 can be used.  

0))(())(( 334334 =−−−−− xyyyxx xy  Eq. 5.24 

By using the coordinates for each circle’s centre in equation 5.24 (left side) and check 
the sign of the result for each of the two circles then the proper case can be determined. 
If the signs are different, this means that they are on the opposite side of the intersection 
line and thus can the hidden area can be calculated as: 

AAA segmentsegmenthidden 21 +=  Eq. 5.25 

Otherwise they have their centre on the same side. If the radius of the upper circle is 
greater or equal to lower then the radius (radius R1> radius R2) then the hidden area is 
calculated as:  

AAAA segmentcirclesegmenthidden −+= 221  Eq. 5.26 

If the radius of the upper circle is smaller than the lower circles radius (radius R1 < 
radius R2), use equation 5.27 instead.  

AAA segmentsegmenthidden 12 −=  Eq. 5.27 

Finally the calculated hidden area has to be normalized. 
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6. Calculation of missdistance or impact point 
 

In the simulations the criteria for when to stop the simulation is by looking at the 
distance between the missile and the ship. That distance will decrease during the 
simulation, time step by time step, until the missile will has passed the ships point of 
gravity. When the missile has passed the ship the distance will start to increase. By using 
the positions (in the ship’s coordinate system) of the missile from the two latest time 
steps a line equation for the path of the missile in the form given in equation 6.1 can be 
expressed. The closest relative distance between the missile path and the ship is 
calculated.  

 
Figure 6.1 Missile passage of ship. 

 

In the simulation model an algorithm also calculated if the ship was hit or not. If the 
ship is hit the coordnates has to be determined. In case of a hit, a box is used to represent 
the hull of the ship. The miss distance was representing the distance between point of 
gravity and missile passage point as mentioned before. In order to interpret the 
missdistance the first approach for was to translate the miss distance into some kind of 
safety measurement for the ship. For this purpose different radius where used. This is 
illustrated in figure 6.2 below.  

 

 
Figure 6.2 Missile passage of ship. Different safety zones indicated by color how dire 

the result can be. The inner circle (surrounding the the orange area) has a 
radius of half the length of the ship and some meteres added. The outer 
circle has the radius of the ship length and some metres added. 
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As can be seen in the above figure, the distance between the hull and the missile path 
will vary even if the radius is the same. So there was a need for a more correct 
calculation of the miss distance.  

6.1 Calculation of miss distance 
 

The selected solution for how to solve the problem with miss distance is illustrated in 
figure 6.3. The situation can be regarded as a two dimensional problem in the x and y 
plane. The slant rate for the missile in z is very low for anti ship missiles.  

 

 
 

Figure 6.3 Missile passage of ship. Variable d is the closest distance between the 
missle’s path and the point of gravity of the ship. Variable r is a more 
realistic miss distance. 

 

In order to calculate the real miss distance or the hit coordinates the first step is to 
represent the ship with a box (as indicated in figure 6.3).  

Definition of parameters: 

 ϕ  missile’s course relative the ship, in the ship’s coordnate system
    or rather the missile’s velocity vector represented as an angle. 

xm,ym, zm   position of missile in the ship coordinate system at the closest 
point of the ship’s point of gravity 

 xi,yi  corner coordinates of box, i = 1,2,3 and 4 

The equation for a straight line is defined by either of the equation 6.1 or 6.2. 

lkxy +=  Eq. 6.1 

0=++ cbyax  Eq. 6.2 

Since the missile’s velocity vectors are given(i.e the course in the xy-plane), the 
parameter k (in eq. 6.1.) is easy to express.  

)cos(

)sin(

ϕ
ϕ=k

 Eq. 6.3 

d

r
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Using equation 6.1 and 6.3 in the equation 6.2 will give the equation 6.4. 

0)cos()cos()sin( =−+− ϕϕϕ lyx mm  Eq 6.4 

Identifiyng the parameters in equation 6.2 with those in equation 6.5 will give: 

)sin()cos()cos(

)cos(

)sin(

ϕϕϕ
ϕ

ϕ

mm xylc

b

a

−=−=
=

−=

 

In order to determine if the ship is hit or not, the equation for a line that describes the 
missile path can be used. The line equation 6.2 can be used. Insert the coordinate pairs 
for the box in the equation 6.2 and four values are obtained. If the sign of these four 
values are the same, the ship is not hit by the missile. In other case the ship is hit by the 
missile. In the case that the ship was not hit the shortest distance between the missile’s 
path and the ship can be determined by using the coordinates for the point defining the 
box. 

The distance between a point (given by the coordinates m and n) and a straight line 
expressed as in equation 6.2 can be calculated according to equation 6.5. 

22 ba

cbnam
r

+

++
=  Eq. 6.5 

With the definition from previous page for parameter a and b in equation 6.5 will yield 
equation 6.6. 

cbnam
cbnam

ba

cbnam
r ++=

+
++

=
+

++
=

ϕϕ 2222 sincos
 Eq. 6.6 

By inserting the corner coordinates xi, yi  in the equation 6.6, the result with the 
smallest value is the miss distance. No consideration has been taken to the z value, the 
reason for this is that it will only have a minmal effect on the resulat and thus can be 
ignored.  

 

6.2 Calculation of hit coordinates 
If the ship is hit the following method can be used to determine the impact point. 

The reversed direction of the missile’s course relative to the ship can be exressed as: 

πϕφ +=  Eq. 6.7 

Where ϕ is the missile course. By looking at the sign for the two functions cos(φ ) and 
sin(φ ) a total number of eight combinations are possible. The sign function has three 
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possible output, they are -1, 0 or +1. In the figure 6.4, the signs are indicated as functions 
of the threat direction. In table 6.1 the different possible combinations are listed with the 
corresponding lines that can be intersected.  

 
Figure 6.4 Signs of threat direction in the ship’s coordinate system. 
 

Possible solutions according to sign of threat direction
+ 0 + + 0 + - + - 0 - - 0 - + - 
L41 L41 L12 L12 L23 L23 L34 L34 
x L12 x L23 x L34 x L41 

 
Table 6.1  Possible intersections between the missile path and the lines describing the 

box round the ship. 

In order to select the line or the two lines that might be possible a matrix is used and 
all that has to be done is to calculate the index. By using a base of three, the sign can be 
calculated as: 

Sign_index = 3(sign(cos(φ )) + 1) + sign(sin(φ ))+2 Eq. 6.8 

The calculated index will be a number within the range from 1 to 9. However the 
index 5 is an impossible combination (because the function cos and sin can not both be 
zero for the same angle) and has to be eliminated. This can be done by checking if index 
is larger then 4 and if so subtract 1 from the index. 

 

Possible solutions according to sign of threat direction
1 2 3 4 5 6 7 8 
- - - 0 - + 0 - 0 + + - + 0 + + 
L23 L23 L12 L34 L12 L34 L41 L12 
L34 x L23 x x L41 x L41 

 
Table 6.2  Possible intersections between the missile path and the lines describing the 

box round the ship.In this table ordered by the index.  

If the missile’s path (a straight line) cuts the box describing the ship, there are two 
possibilities. The possibilities are that two of the lines L12, L23, L34 and L41 are crossed or 
the path cuts through one of the corner points P1, P2, P3, and P4. The next step is then to 

X

Y

P1

+ 0

- +

+ - 

- - 

+ +

0 - 0 +

- 0

L12

L41

L34

L23

P2P3

P4
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determine which of the lines that are crossed. This is done by using the equation 6.9 or 
6.10. 

)cos(
)sin(

ϕ
ϕ cx

y i
ij

−=  Eq 6.9 

)sin(
)cos(

ϕ
ϕ cy

x i
ij

+=  Eq.6.10 

Four calculations have to be performed. The calculations will be yielding the 
following coordinate pairs. 

  x12, y1   

  x3, y23   

  x34, y3   

x1, y41   

At least one of the above relations is going to have the value true, most likely two of 
them. By checking if the calculated values (two digit index) are within the border a 
corresponding flag (hit flag) can be set to the value true otherwise to false.  

If the table 6.2 contains the line index for the lines of the box, then the sign_index can 
be used to find the first line index indicating which hit flag to test. If true the solution is 
found otherwise use the second line index given by the sign index. 

If the method described above is used and the calculations show that the ship is hit, 
there may be a need for confirming that the ship really is hit. In figure 6.5 four different 
cases are shown, but all of them will indicate that the ship is hit. Case 1 is a clear hit. 
Case 2 will give wrong imact point. Case 3 and 4 should give a miss distance, not a hit.  

 
Figure 6.5 Illustrations of missile paths that may or may not be a hit. 

Since the hit coordinates in x and y are given, the z value can be calculated by using 
equation 6.11. Note that v is the velocity vector. 

t

t

t

vzz
vyy
vxx

zmh

ymh

xmh

+=

+=

+=

 Eq. 6.11 

Use either the equation for x or y to calculate the value for parameter t. Use the 
calculated value t in the equation to calculate the hit coordinate for z. Check if the 
calculated z-value is within the limits. If so, case 1 is solved. 

1

3

2

4
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If the calculated z value is outside limits and and has a value indicating that it is below 
the ship (case 4). The miss distance can then be calculated as 

( ) )cos(αzzr shipcalcmiss −=  Eq. 6.12 

where α is  

)arctan(
22

vv

v

yx

z

+
=α  Eq. 6.13 

If the calculated z value is outside and above the ship (case 2 and 3 in figure 6.5) 
further calculations have to be done. This can be done be using the method described 
previously in this chapter (eq. 6.7 to 6.10) with the change by using ϕ instead of φ , in 
order to determine the exit point for the missile’s velocity vector.  

By checking the new calculated z value, it is either above the ship (case 3) and miss 
distance can be calculated by using equations 6.12 and 6.13 or it is within the range of 
the ship (case 3). In order to determine the hit coordinates in case 2 the equation 6.11 
can be used. The z value for the height of the box is used in order to determine the 
variable t. Use variable t to calculate x and y coordinate.  
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7. Relative wind 
 

In the work with a countermeasure algoritm it is import to be able to calculate the 
separation between ship and IR-decoy. The IR-decoy is expected to move with the wind, 
which means that the wind speed and the wind course are parameters to be taking into 
account. The separation is also effected by the ship’s own course and speed. The 
interesting view of the separation is the one seen from the missile’s seeker.  

 

7.1 Calculation of relative wind and speed 

 
Figure 7.1 Definition of coordinate systems and angles. 
  Black (earth fixed coordinate system)  
 Blue (ship coordinate system) 
 Light green (wind course in earth coordinate system) 
 Dark green (relative wind in ship coordinate system) 
 Read (threat) 

 

The following definitions will be used in this chapter. Φ represents angles in earth 
fixed coordinate system. φ represents the angles in the ship’s coordinate system. The 
variable v is used to represent the velocity.   

The relation between the wind course and the ship in the earth fixed coordinate system 
is given by the equationen 7.1. Corresponding for the threat direction is given by the 
equationen 7.2. 

ΦΦ −= shipwindwindϕ  Eq. 7.1 

ΦΦ =+ threatshipthreatϕ  Eq. 7.2 

In order to get a value for the relative wind speed in the earth fixed coordinate system 
the relative wind vector has to be calculated. 

- 

        + 
φthreat 

φwind 

x 

y 

x 

y - 

+ 

x

y 

φproj 
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





−=
−=

ΦΦ
ΦΦ

)sin()sin(

)cos()cos(

shipshipwindwindrel

shipshipwindwindrel

vvy
vvx  Eq. 7.3 

The calculated vector is used to calculate the relative wind. 

yxv relrelrel

22 +=  Ekv. 7.4 

The relative wind course (ship’s coordinate system) is calculated by using equation 7.5 
and 7.6. 

v
x

rel

rel

rel
=Φ )cos(  Eq. 7.5 

)arccos(
v
x

rel

rel
rel =Φ  Eq. 7.6 

In order to get the true sign for the calculated angle a test of the sign of xrel and y rel has 
to be done. 

 

7.2 Calculation of projected wind speed  

 

As mentioned earlier, the relativ wind speed ”seen” from the missile (variable 
vthreat_rel) is what in the end will effect the miss distance. In order to calculate the 
projected wind speed a unit vector is used according to:  

2

π+= ΦΦ threatproj  Eq. 7.7 

With the projected angle calculated the unit vector’s composants can be calculated. 







=

=

Φ
Φ

)sin(

)cos(

projproj

projproj

y
x

 Eq. 7.8 

By using equation 7.9 and identify the parameters the projected relative wind can be 
determined.  

ABBA =)cos(α
 Eq. 7.9 

where  0 ≤ α ≤ π. 
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Vector A is the relative wind vector and is given by xrel and y rel. Vector B is the unit 
vector and is given by xproj and yproj. The projected relative wind vector is given by: 

B

AB
A =)cos(α  Eq. 7.10 

Since B is a unit vector then the lenght of the vector is equal to one, as shown in 
equation 7.11.  

0.1cossin 22 =+= ΦΦ projproj
B  Eq. 7.11 

This will give that the sought projected wind speed is calculated as: 

yyxxv projrelprojrelrelthreat +=_  Eq. 7.12 

7.3  Derivate of projected wind velocity  
As described previously the projected wind speed is an important variable to consider.  

In order to derivate the projected wind velocity, the variables are expressed in the 
earth fixed coordinate system.  

By using equation 7.12 together with equation 7.3, 7.9 and 7.7 the expression for the 
relative projected wind speed is obtained. 

)
2

sin()sin()
2

sin()sin(

)
2

cos()cos()
2

cos()cos(_

ππ

ππ

+−+

++−+=

ΦΦΦΦ

ΦΦΦΦ

threatshipshipthreatwindwind

threatshipshipthreatwindwindrelthreat

vv

vvv
 Eq. 7.13 

If the equation 7.13 is derivated considering the ship’s course only the second and 
fourth term has to be considered. The result will be:. 

)cos(_ ΦΦ −−= threatshipship
ftg

relthreat
v

v
dφ

 Eq. 7.14 

If the equation 7.13 instead is derivated considering the ship’s speed again only the 
second and fourth term has to be considered. The result will be:. 

)sin(_ ΦΦ −= threatship
ftg

relthreat

v
v

d
 Eq. 7.15 

One onclusion from the expressions in the equations 7.14 and 7.15 is that the only two 
variables that have effect on the relative projected wind are the ship’s course and speed. 
That may not come as a surprise, since wind and threat direction may be very hard to 
alter. 
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8. Final remarks 
 

The method for the work done described in this report has followed in principally the 
same way. First there were discussions about something in the model that was not up to 
the standard of what the project team wanted. During those discussions a solution was 
brought up. After that, the solution was analysed and written down. The solution was 
then tested in Matlab and changed if needed (– almost every time), and after that 
imported in to the simulation model. The simulation results after a change was compared 
with prevoius results from the model, in order to check that no mistakes were made.  

After the described changes were made a single simulation run takes about 50% longer 
time then it did before, from 20 seconds to 30 seconds. The time for a single simulation 
is of course depending on the processor capacity of the computer used. However, the 
loss of time is acceptable considering the more accurate results that are obtained. 

Images in chapter 4 (figure 4.5 to 4.9) where generated by the program AFE, which is 
a software package made at FOI for visalization of simulations. 

The big changes in the model are that the number of tables describing the target and 
IR decoys has increased. For instance, the IR decoys do not only have a table describing 
the intensity as a function of time but also a table for radius as a function of time.  

The order in which the changes in the model were done is descibed by the order of the 
chapters in this report. Chapter 5 is not implemented in the simulation model. The reason 
for that is that there has been enough need for implementing the algorithm in the model.  

The results of the changes are that the simulation model today better represents 
extended targets and as a result will give a more thrustworthy outcome.  
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