G ;\. FOI-R--1383--SE
October 2004
1650-1942

WEDISH DEFENCE . g
ESEARCH AGENCY Scientific report

Magnus Lindhé

A flocking and obstacle avoidance
algorithm for mobile robots

System Technology Division
SE-172 90 STOCKHOLM
Sweden

Swedish Defence Research Agency FOI-R--1383--SE

System Technology Division October 2004
SE-172 90 STOCKHOLM 1650-1942
Sweden

Scientific report

Magnus Lindhé

A flocking and obstacle avoidance algorithm for
mobile robots

Issuing organization Report number, ISRN Report type

Swedish Defence Research Agency FOI-R--1383--SE Scientific report

System Technology Division Research area code

SE-172 90 STOCKHOLM Combat

Sweden Month year Project no.
October 2004 E6003

Customers code
Commissioned Research

Sub area code

Weapons and Protection

Author/s (editor/s) Project manager
Magnus Lindhé Peter Alva

Approved by

Monica Dahlén

Sponsoring agency

Swedish Armed Forces

Scientifically and technically responsible

Karl Henrik Johansson

Report title

A flocking and obstacle avoidance algorithm for mobile robots

Abstract

Mobile robots cooperating in groups offer several advantages such as redundancy and flexibility and
can sometimes perform tasks that would be impossible for one single robot. We have developed a new
algorithm for navigating a group of robots to a predefined target while avoiding obstacles and staying
together in a formation. The algorithm merges a potential-based method that provides the shortest
unobstructed path to the goal with an approach from coverage control, where the centroids of Voronoi
partitions are used to optimize the placement of sensors in a scalar field.

Our algorithm guarantees safety: there will be no collisions between robots or with obstacles of arbit-
rary shape. It has shown reliable goal convergence in simulations, and the robots form a hexagonal
lattice when moving in open fields. Further, the algorithm is completely decentralized and the pro-
cessing load for each robot is virtually unaffected by adding more group members.

This report provides a description of the algorithm and its properties, as well as results from simulations
in both Matlab and Fenix, a graphical simulation environment developed at FOI, where the robots are
modeled as the US Army HMMWYV all-terrain vehicle.

Keywords

Flocking, Obstacle Avoidance, Car-like robots, Cooperative control

Further bibliographic information Language
English

ISSN Pages

1650-1942 52l
Distributi L.

istrbution Price Acc. to pricelist

By sendlist)

Security classification Unclassified

ii

Utgivare Rapportnummer, ISRN Klassificering

Totalférsvarets forskningsinstitut FOI-R--1383--SE Vetenskaplig rapport
Avdelningen fér Systemteknik Forskningsomrade
SE-172 90 STOCKHOLM Bekiimpning
Sweden Manad, ar Projektnummer
Oktober 2004 E6003
Verksamhetsgren
Uppdragsfinansierad verksamhet
Delomrade

VVS med styrda vapen

Forfattare/redaktér Projektledare
Magnus Lindhé Peter Alva
Godkénd av

Monica Dahlén

Uppdragsgivare/kundbeteckning

Forsvarsmakten

Tekniskt och/eller vetenskapligt ansvarig

Karl Henrik Johansson

Rapportens titel

En navigationsalgoritm fér flockar av autonoma mobila robotar

Sammanfattning

Mobila robotar som samarbetar i grupp ger flera férdelar, t.ex. redundans och flexibilitet. Dessutom
ger det mojlighet att 16sa vissa uppgifter som vore omgjliga for en ensam robot. Vi har utvecklat en
ny algoritm for att forflytta grupper av robotar till ett forutbestamt mal, utan att de kolliderar med
varandra eller med hinder. Pa véigen héaller de ihop i en formation. Vi har kombinerat en potentialbase-
rad metod, som anvinds for att hitta kortaste vigen till mélet, och en yttickningsmetod som utnyttjar
tyngdpunkterna for Voronoi-regioner fér att optimera placeringen av sensorer i ett skalart falt.

Var algoritm &r bevisat siker mot kollisioner, oavsett form pa hindren. Den har visat sig ge palitlig
konvergens till mélet i simuleringar och robotarna bildar hexagonala gitterformationer nér de ror sig
pa 6ppna ytor. Algoritmen &r dessutom helt decentraliserad och méingden berikningar som varje robot
behover gora okar forsumbart nar fler gruppmedlemmar tillkommer.

Den hér rapporten beskriver algoritmen och dess egenskaper och redovisar resultat fran simuleringar
i tva olika milj6er. Dels har vi simulerat i Matlab och dels i Fenix, en grafisk datormiljo utvecklad av
FOI, dér robotarna har modellerats efter amerikanska arméns terrdngfordon HMMWV.

Nyckelord

Formationer, hinderundvikande, robotbilar, samverkande robotar

Ovriga bibliografiska uppgifter Sprak
Engelska
ISSN Antal sidor
1650-1942 2]
Distribution Pris Enligt prislista
Enligt missiv ..
Sekretess Oppen

il

Contents

[L__Introductionl

[1.2 Report outline|
I1.3° Reader’s guide] L

12 Background)|

2.2.2 Positioning|
[2.2.3 Control and processing|,
2.2.4 Communicationl.
2.3 Autonomous navigation|
2.4 Multi-robot cooperation and formations|

13 Flocking with obstacle avoidance|

3.1 Earlier approaches| oo oo
3.2 Combining coverage control and navigation functions|.
3.3 Coverage control|
3.4 Navigation functions| Lo oo
3.5 Proposed algorithm|
3.6 Properties of the algorithm|

B.6. Dead-Tocksl

EIResultd - - o o v oo oo e e e
4.2 Implementational aspects| 0oL,
4.2.1 Numerical integrationl
422 Lineofsightf 0000
4.2.3 Finding the optimal step|.o
4.3 Practical experiences|o oo
4.3.1 Trimming the integration regions to a convex shapel
4.3.2 Voronoi regions in vertex form|

[Tmplementation in Fenix|
P.1 System overview] oL
.2 Implementational issues| oo Lo

6 Sensor deployment|
6.1 Sensor types|.
6.2 Switching from navigation to sensing|o ...

W N ==

O © © W0 ot!

FOI-R--1383--SE vi
[7__Conclusions| 47
7.1 Suggestions for future work| L. 47

Preface

This report, written at the Department of Autonomous Systems at the Swedish De-
fence Research Agency (FOI), constitutes my master’s thesis. It is the final element
of my Master of Science in Electrical Engineering at the Royal Institute of Technology
(KTH).

The last years of my studies have been funded by the Armed Forces Engineer Pro-
gramme, aiming at providing the Swedish Armed Forces with specialized officers who
have both a military background as well as a Master of Science. As FOI represents
the highest level of military research and development in Sweden, it was a natural
choice to apply for a master’s thesis project here.

The work has been supervised by Petter Ogren at the Department of Autonomous
Systems and by Karl-Henrik Johansson at the Department of Sensors, Signals and
Systems at KTH. Karl-Henrik Johansson has also acted as examiner.

A shorter version of this report was presented by the author at the Reglerméte
2004, at Chalmers University of Technology in Gothenburg, [1].

Work planning and experiences

This project got off to a flying start in the beginning of February, when Petter presen-
ted his idea of combining coverage control with obstacle avoidance. We decided to
try to produce the outline of a paper by the beginning of March, so I had to quickly
take in the papers on coverage control before starting on the Matlab code for the
simulations. During the next four weeks I simulated the algorithm and came up with
problems that Petter and I had to solve. After the basic framework was designed and
tested, I spent some time documenting the first phase of the project and studying how
the algorithm could be extended to sensor positioning in the target area.

The second phase was to implement it in Fenix, which made me have to brush
up on my C++ skills before understanding the structure of the software. The actual
programming took five weeks and then I spent two weeks documenting and making
screenshots and films for the presentations. The final phase of the work has been to
present it at the Reglermdte and work on the properties of formation stability and
goal convergence.

During the work I have learned a lot about robotics in general and computational
geometry and path planning in particular. It also gave me a better understanding
of research methodology, which is not taught much in other undergraduate courses.
Attending the Reglerméte was very rewarding, both professionally and personally, as
I got some insight into current issues in the control community as well as inspiration
for possible future postgraduate studies.

Acknowledgements

The first mentioning of course goes to my supervisor Petter, as thanks for all his
scientific as well as moral support. He has always been available to help whenever
innocent, albeit virtual, robots have lost their lives due to my mistakes or flaws in
the algorithm. Most of the ideas contained in this report originate from him.

I also owe thanks to Emil Salling at FOI, who has spent many hours customizing
Fenix for my application and editing the screenshot films that I showed at the Reg-

vii

FOI-R--1383--SE viii

lermo6te. One day I will summon the courage to ask my future boss for a flatscreen
like Emil’s...

Had it not been for Karl-Henrik Johansson at S3, I would probably not have
found this master’s thesis project and he has been a valuable sounding board for the
development of the algorithm as well as the presentation of it.

Finally I would like to thank all those who have made my time at FOI pleasant,
be it as room-mates, Fenix technicians, spontaneous coffee-room lecturers, rewarding
lunch company or otherwise. I hope to see you again in my future career!

Stockholm, 11th of June 2004

Magnus Lindhé

1. Introduction

1.1 Problem definition

The object of this project has been to develop and study a new algorithm for moving
a group of robots from one place to another, without colliding with each other or any
obstacles. While doing so the group should stay together, preferably in a geometrically
defined formation. The algorithm was then to be tested in a realistic setting. FOI
has a testbed for robotics applications, consisting of rebuilt radio-controlled cars
and Fenix, a graphical computer simulation environment. The interface between the
system and the controller is the same in both environments, so the same control
program can be run both in the cars and in the computer. Since there are currently
only two robots available in hardware, a decision was made to implement the system
in Fenix. The developed algorithm is a combination of two recently presented research
papers, on navigation functions, [2], and coverage control, [3]. The idea was to extend
them to get the desired formation properties and eventually study the issues of safety,
goal convergence and under what conditions formations were formed.

The main difficulty when trying to achieve goal convergence, flocking and collision
avoidance is that of prioritizing the sometimes contradictory requirements. Figure
illustrates the chosen order of priorities:

1. The highest priority is given to safety, i.e. collision avoidance.

2. The second priority is goal convergence. For collision safety the robots should
of course not all reach the exact goal coordinates, but rather a set of equilibrium
positions, tightly arranged around it.

3. Finally the robots should stay together in a flock while moving. We call this
flock cohesion.

We consider a group of kinematic robots p; that have the following dynamics:

pi(k+1) = pi(k)+ui(k)
||U|H < Umax
Each robot is equipped with a sensor that can detect neighboring agents within the
radius Rmax- Equivalently, it can have some means of communication, used to inquire
about the position of other robots within Rmax. We believe this to be a more realistic
assumption than the one made in [3], where the sensors are assumed to have infinite
range. It is also assumed that the positioning problem (described in the background
section) has been solved, so that we have access to an accurate position estimate.
All robots have processing capabilities that allow them to locally run the algorithm
that will be presented. Finally they have knowledge of the location of all obstacles.
This is not always true in real-world implementations, but then the robots can be
equipped with a sensor for obstacles and the navigation function can be calculated
with respect to all obstacles in view from the robot. All other areas are assumed to
be free space. If the robot later discovers more obstacles, they can be added to the
map and the navigation function is recalculated. This can lead to the robot going

FOI-R--1383--SE 2

1. Collision safety

* L]
. e
e’ * 2. Goal
s o convergence

3. Flock cohesion

Figure 1.1: A group of robots moving around some obstacles before stopping around
the goal, marked by an X. This illustrates the chosen order of priorities for the
algorithm. Safety is given the highest priority, then comes goal convergence and
finally flock cohesion.

into dead ends, but as soon as it discovers this the map will be redrawn and it will
try another, presumably better, path.

Robots with more realistic dynamics, such as car-like vehicles, can also be con-
trolled with the proposed algorithm. As an example of this, we use the following
model in Fenix (deduced in section [5.4)):

T = wcosl
y = wsinb,
0 Y tan o
= — tan

L

vo= u

This requires a hierarchical controller structure, as depicted in Figure [I.2l The
high-level algorithm uses the position of the vehicle and that of the neighbors to
calculate the next waypoint as well as a region where the vehicle controller is free to
manoeuvre. This ensures collision-safety even in the case of non-holonomic dynamics,
when the vehicle may need to make parallel parking movements to reach its waypoint.

1.2 Report outline

The report starts with an introduction to robotics, in section It motivates the
use of robots in general and groups of robots moving in formations in particular. It
also contains a presentation of some of the most important hardware building blocks
used in robotics, to give an understanding of some considerations that have governed
the development of the algorithm. The theoretical core of the report is contained in
section [3| It briefly accounts for the concepts of navigation functions and coverage
control before presenting our new algorithm. It ends with a section on proven or
theoretically predicted properties of the algorithm.

Then two sections follow, describing the simulations first in Matlab and then in
Fenix. They both present the results of the simulations and some problems that have
been encountered when implementing the algorithm on that specific platform. The
section on Fenix also contains some information on the structure of the software and
an account of how a controller was developed to drive the car between waypoints
designated by the higher-level algorithm.

Thus far the report considers the problem of only navigating the robots. In section
[6] the problem is extended to also consider different sensing tasks in an area surround-

3 FOI-R--1383--SE

Flocking and obstacle

avoidance algorithm Neighbors

Obstacles

Sensors
Calculates waypoints on
the way to the global
goal.

Waypoint

Safe region Position

Vehicle controller

Drives the vehicle
between waypoints.

Steering Position
Thrust Velocity
Brakes on/off

o0

Figure 1.2: The hierarchical controller structure used to control vehicles with more
realistic dynamics.

ing the designated goal. Some sensor types that could be of interest in a military
context are presented, as well as a simple way of switching between navigation and
sensing within the framework of the algorithm. Finally there are some conclusions on
the algorithm as a whole and an account of some issues that are still open to research.

1.3 Reader’s guide

The background section is intended for readers who are new to the field of robotics.
Those who want a motivation for formation movement and groups of robots can go
directly to section[2:4] All readers should read section [3, as it contains the necessary
theory to understand the algorithm, possibly with the exception of section [3.6]

Sections 4| (Simulations in Matlab) and [5| (Simulations in Fenix) are independent
and can be read in arbitrary order. Subsection [5.3]is mainly intended for those who
want to understand the software and/or develop it further.

Section [f], on deployment in the target area, can be understood separately except
for the extension of the navigation algorithm, which requires that one has understood
the theory in section [3]

2. Background

This section will provide some background information on robotics in general and
mobile robots in particular for readers who are unfamiliar with the field. We give some
motivations for the use of robots and then present the underlying technical challenges
when designing a mobile robotic system. This will serve to explain the governing
limitations when we focus on high-level autonomous navigation and formation keeping
in the rest of the report.

Since this work has been carried out at the Swedish Defence Research Agency
the main focus is on military applications and we have chosen to limit the scope
to ground vehicles. The limitation lies not so much in the general theory as in the
assumption on vehicle dynamics in the problem definition and the choice of interesting
sensor types in section @ As an example, an unmanned aerial vehicle (UAV) with
aircraft-like design cannot stop and turn on the spot, and in underwater applications
radio direction finding or computer vision are not as feasible and interesting as the
standard method of acoustic detection and ranging.

2.1 Motivation for robotics

Robots should be used to relieve humans of tasks that fall under the four D:s of
robotics: dirty, dull, dangerous or difficult [4]. Much like man has always developed
technology to free time for other more challenging tasks, now the time has come for
robots. Stationary industrial robots have become standard and many of the key
technologies for mobile robots, such as power-efficient yet fast processors, sensors
and communication circuits are getting cheaper and smaller by the day. This is
driven by their use in consumer products, but as a side effect it makes robotics more
economically attractive.

Industrial robots can carry out tasks where humans are exposed to high noise
levels, uncomfortable working positions or unhealthy environments such as solvents,
spray paint or radioactivity. They also make new products and methods of manufac-
turing available by giving unprecedented precision to welding and cutting operations.
In military applications, mobile robots can do dangerous disposal of explosive ord-
nance, exposed reconnaissance missions or long-distance transportation. The US
Defence Advanced Research Project Agency (DARPA) has shown great interest in
the field, issuing the DARPA Grand Challenge, a desert race between Los Angeles
and Las Vegas for autonomously navigating offroad cars [5]. The best car managed to
drive 11 kilometres before getting off course, which serves to underline the difficulties
involved in autonomous navigation.

A more peaceful use for robots will be to aid in caring for the numerous after-war
generation of Swedes that will soon be retired and can be expected to need more
health care. Simple or unergonomic tasks may be performed by robots to give medical
personnel more quality time with the patients. In space, robots have landed on
Mars before the technology allows humans to safely travel there. Because of the
long distances the robots cannot be remotely operated from Earth, but instead get
high-level commands such as waypoints or predefined experiments to perform. Results
are then transmitted back to scientists on Earth [6].

FOI-R--1383--SE 6

2.2 Challenges in mobile robotics

By mobile robot we mean a robot that is not attached, mechanically or electrically,
to anything and that is completely self-contained. Such a robot needs to be able to
displace itself, find its position, detect obstacles or other objects, communicate with a
supervisor and/or other robots and finally process all the data into sensible outputs.
All of these requirements present challenges that are subject of inter-disciplinary
research.

Figure 2.1: Examples of mobile research robots. Left: The Pioneer 2 from Active-
Media. The “coffee-brewer” is a laser scanner, above which a camera is mounted.
Middle: The BrainStem Bug from Acroname, Inc., a six-legged walking robot with
ultra-sound sonars for obstacle detection. Right: The Lynxmotion 4WD2 all-terrain
chassis with L5 Arm, from Lynxmotion.

2.2.1 Actuators All components that are used to mechanically execute the out-
puts of the control system are called actuators. In the case of robotics they can be
wheels, tracks or legs for moving, manipulator arms for handling objects, motors
turning a camera head and so on. For the purpose of this overview we will restrict
the presentation to popular systems for propulsion of mobile robots.

The three most common methods of traction for mobile robots are wheels, tracks
and legs. Wheels have the advantage of being reliable, simple and allowing high
speeds. Tracks work better in uneven or soft terrain but are less suited for dead
reckoning as they tend to slip, especially when turning. They also use more energy
and require more maintenance than wheels. Legged robots are still in the research
phase and require much more power and sophisticated control. The advantages are
that they allow the robot to access very difficult terrain, a key feature in future
applications such as nuclear power plant maintenance and earthquake victim search
and rescue. A legged robot would be able to go wherever a human could.

A system on wheels can have some different configurations, representing tradeoffs
between ease of control and other desirable properties such as speed, cheap actuators
and agility. Figure [2:2] depicts three popular configurations. Model A has all wheels
turnable and powered, which gives very good maneuverability at the expense of a
more difficult mechanical design. B is called a “unicycle” and is very popular for
simple experiment robots since it contains very little mechanics. Note that the two
powered wheels are individually actuated, enabling the robot to turn on the spot.
Drawbacks are that it cannot move sideways without turning first, and the passive
castor wheels make it unsuited for rough terrain. Finally C has “car-like dynamics”,
with powered back wheels and steerable front wheels. It can go fast and there are
ready-made platforms ranging from cheap radio controlled cars to full-size trucks,
but controlling it is more difficult. Moving sideways requires a whole sequence of
back-and-forth manoeuvres, as in parallel parking.

7 FOI-R--1383--SE

[N

i,
V)

A B C

=

N
Turnable, not ed 3 Fixand ed
D urnanie, not power % 1X and power

B

I Turnable and powered

Figure 2.2: Three common wheel configurations for mobile robots.

2.2.2 Positioning In order to be useful and to find its goal, a robot must know
its position. This can be in the sense of the robot knowing its coordinates, be it
global coordinates or relative to e.g. a room, or in a topological sense, e.g. knowing
that it is “in the corridor between the kitchen and the library”. Tomatis et al., [7],
have mixed the two methods in a robot that navigates to the correct room in an office
building by first using a topological approach and then orients itself inside the room
using local coordinates. They remark that this is very similar to the way a human
would do it: when going to a room he orients himself coarsely by counting passed
doors or corridors, while inside he switches to exact positioning to place the coffee
mug in the coffee machine.

The basic method for positioning is usually dead reckoning, by simply counting
the number of revolutions of the wheels or tracks, or in case of legs, by counting
steps and using more complex geometry. It has the advantage of being simple, but
since it involves integration it inevitably suffers from accumulating errors. Slippage,
uneven surfaces and sensor errors will eventually make the dead reckoning position
estimate drift away from the true position. The same is true for more advanced
inertial navigation systems containing gyros, accelerometers and/or magnetic flux
meters used as compasses. They can be more or less accurate but always have some
finite drift, giving rise to a growing error.

To correct the dead reckoning one needs to use a parallel system where the error
is bounded, see below. The standard approach is then to fuse the data from both
systems by using a Kalman filter, [8]. This can give a better position estimate and
also an estimate of the drift that is used to improve the performance of the inertial
navigation system.

One such system that can be used in parallel is satellite navigation, most popularly
GPS. It works only in outdoor applications where there is a free line of sight to a large
portion of the sky, thus there are problems in dense cities and no reliable estimate at
all indoors. As an example of what accuracies can be obtained we take the Lassen
LP GPS receiver from Trimble, a small low-power GPS receiver suited for robotics
applications. It has a stated horizontal uncertainty of less than six metres for 50% of
its measurements and less than nine metres for 90% of the measurements, [9]. There
are several more advanced approaches, such as receiving both carrier frequencies of
the GPS system and use the extra information to correct for atmospheric effects or
tracking the phase of the signal, which can give accuracies in the order of centimetres,
[10]. Another commonly used technique is differential GPS (DGPS) with a stationary
receiver at a surveyed position, producing corrections that can be used in real-time

FOI-R--1383--SE 8

or for post-processing to significantly improve the accuracy of other receivers in the
proximity (tens of kilometres from the stationary receiver).

In a military context the GPS system has some important weaknesses. First of
all it is controlled by the United States, which makes it possible for the US military
to degrade the accuracy of the signal (as was done with the publicly available signal
until 2000). If civilian GPS receivers are used against US troops in a conflict, they
could decide to degrade the signal again or even make it unavailable, which would
have an impact also on countries that do not participate in the conflict. Secondly,
the signal is very weak once it reaches Earth, so even very small jammers could have
a substantial impact on the performance of GPS receivers in a large area. These
problems make it necessary not to depend entirely on GPS for critical positioning of
military systems.

A consequence of the design of the GPS system is that a receiver that has localized
itself also has access to a very accurate time estimate. In the Lassen LP the errors are
in the order of less than a microsecond [9]. If one has the possibility to use specifically
placed beacons or other transmitters with known locations, they can be used in much
the same way as the satellites of the GPS system. The beacons can transmit light,
sound or radio waves and the method typically requires some signal processing to
filter out echoes and surrounding noise before calculating a position estimate.

Many research robots also have sonar-type sensors, emitting a signal and then
listening for echoes that indicate objects. They can be fairly unsophisticated ultra-
sound sonars that have the advantage of also providing good warning for collisions,
or more advanced laser scanners that can produce a high-resolution 3D image of the
immediate surroundings. A normal radar would fit into this category too, but its bulk-
iness and coarser resolution make it more interesting in the case of UAVs. By looking
for characteristic landmarks such as walls, corners or trees a sonar-type sensor can
contribute to the positioning. A problem with ultrasonic sonars is that very smooth
surfaces tend to deflect the waves much like a mirror deflects light, without giving the
diffuse echo that can be detected by the sonar.

In recent years there has been rapid development in the field of computer vision,
strongly affected by the abundance of cheap digital cameras and computing power.
Fitting a robot with a camera can aid the positioning, although even the most sophist-
icated systems today depend on highly controlled environments such as clear roadside
markings and colour-coded objects or using the image to avoid movement or clearly
distinguishable obstacles only. Human image recognition contains several layers of
sophisticated image processing, intuition and experience that are far from what can
be artificially achieved today.

A related research area is that of simultaneous localization and mapping, SLAM.
Here the robot has no a priori knowledge of the environment, but is given the task of
building its own map and positioning itself in it as it goes along.

2.2.3 Control and processing The robot needs a “brain”, making sense of all
the sensor data, applying a control algorithm to it and finally producing output to
the actuators. The rapid development in computer technology has made it possible to
fit even small robots with considerable processing capacity, without using too much
of the precious electric power. The programs running in a robot are often divided
hierarchically, where the lowest level consists of driving the actuators and filtering
sensor data. Higher-level programs make strategical decisions on paths, goals and
priorities. An important issue when designing software for robots is that of safety.
There must be low-level safety routines that can quickly detect potentially dangerous
conditions without the need for extensive calculations. Furthermore the system needs
to be stable to avoid the risk of hang-ups that could disable the safety routines.

9 FOI-R--1383--SE

2.2.4 Communication Adding a means of communication to a robot can en-
hance its performance considerably. It can relay sensor data to an operator, reduce
the need for on-board computation by communicating with a central controller and co-
ordinate actions within a group. As with processing, technology makes rapid progress
giving cheaper, smaller and less energy consuming circuits. Communication is most
commonly done through radio links, that can range from transponders or Bluetooth
circuits with ranges of a few metres to the directional antennas and high-power trans-
ceivers used to communicate with robots in space. Networks can have a fix configura-
tion or be ad hoc, where the topology is dynamic. Depending on what nodes are within
range at a given moment, messages can then be relayed different paths to increase
the overall range of the system, at the expense of more demanding network protocols.
In a military context, the problem of jamming requires that the system does not fail
without communications or has countermeasures, for example directional antennas
or frequency-hopping radios. An enemy can also be expected to use deception, i.e.
sending false messages, and to use triangulation to localize the transmitter.

2.3 Autonomous navigation

The objective of autonomous navigation is to be able to tell a robot where to go, but
let it figure out on its own how to get there. There are two dominating approaches
to the subject; planning and reaction. Planning depends heavily on modeling the
world and, in a classical control or optimization manner, finding the best solution by
applying mathematical methods to the model. The resulting output is then used in
the real world and the difference between the predicted and actual outcome is fed back
into the algorithm to correct the world estimate. There exist many proven methods
for analyzing planning algorithms, but the drawbacks are the high computational
demands as the world model gets more complicated.

The other approach is based on reacting directly to sensor input from the surround-
ing world. It borders on the domains of artificial intelligence, Al, and is motivated
by the study of animal and human behaviour. Arkin, [11], uses the terms attention,
behaviours and intentions. Attention controls the sensors so that they focus on what
is important at the moment. This can for example mean a camera focusing on a sus-
pected obstacle or microphones tuning to the sound of walking feet when the robot
expects to meet someone. The point of focusing attention is to reduce the amount of
sensor data that has to be processed. Then the robot has a whole set of behaviours,
such as avoiding obstacles, going towards the goal, slowing down in crowds and so on.
The behaviours are fed by all relevant sensors and output a recommended actuator
response. Finally the intentions of the robot has to accumulate all the recommenda-
tions into one action. If the intention is to reach the goal at any cost, the robot will
listen to the “towards the goal” behaviour unless maybe the “obstacle avoidance”
gives a very strong impulse to stop, because of a massive brick wall ahead. On the
other hand a robot with the intention of guiding visitors through a museum should
give more weight to the “slow down in crowds” behaviour than arriving at the goal.

Figure [2.3] schematically depicts these building blocks of a reactive control sys-
tem. The advocates of reactive control underline that “the world itself is the best
model” and must be superior to theoretical approximations, plus the lesser need for
computation that gives cheaper hardware and faster reactions. Drawbacks are that
the methods of reactive control are difficult to analyze and this gives problems in
guaranteeing properties of the algorithms and makes tuning a trial-and-error process.

2.4 Multi-robot cooperation and formations

Using several robots that cooperate in a group has several advantages over solving
the same task with one single robot, [12]:

FOI-R--1383--SE 10

D Goto
- goa ;
Camera
Avoid
obstacles |—
Microphon 8
.g — = Action
Slow down 8
@ in crowds €
Sonar H
_—
Attention Behaviours

Figure 2.3: The structure of a reactive control system, with sensors governed by
attention, different behaviours that recommend actions and finally the intentions that
decide what recommendation(s) to follow.

1. Redundancy: If one robot is destroyed or gets stuck, the group as a whole can
still function, albeit with reduced performance.

2. Simplicity: Instead of making one robot loaded with advanced sensors, some
tasks can be performed by several simpler robots. They can be serially manu-
factured to lower the overall cost.

3. Flexibility: Groups of simple robots can easily be rearranged or partitioned in
subgroups to adapt to new environments or functions.

4. Distributed sensing: Some tasks such as area surveillance or sweeping are better
solved by groups of sensors than a single one. Robots in prescribed formations
can also do triangulation and satellites can do so called deep space interfero-
metry, which requires sensor spacings far wider than what can be achieved on
a single satellite.

When using groups of robots, it is often beneficial to encode some form of group
cohesion in their navigation algorithms. The groups are then typically categorized as
flocks or formations. In a flock, the members stay together but can have arbitrary
positions inside the group. This is opposed to the term formation, which is used to
describe a rigid configuration of the participating robots. There are some reasons why
moving in flocks or formations can be of interest. First, it facilitates communication
within the group and second, it makes it easier to supervise for an operator, much
like a kindergarten teacher tries to keep the children together during an excursion.
Second, if the group has a sensing task, it may require that they move in a prescribed
formation to coordinate their sensors and get full coverage. Finally, if something
happens to one of the robots, it will be easier to help it if the others are nearby.
Of course there are also situations in a military context when it can be dangerous
to move in flocks, since it may increase the risk of detection. And perhaps the best
strategy for crossing a minefield is not to move in a flock but on a line, following the
path of the first robot.

3. Flocking with obstacle avoidance

In this section we describe the developed algorithm for moving a group of agents to
a target area while maintaining group cohesion and not colliding with obstacles or
other agents. The words robot and agent will be used interchangeably in the following
text. We will also use the term formation in a looser sense than described above, to
describe a group where the robots have assumed a prescribed configuration, but are
free to break it if needed to ensure goal convergence.

3.1 Earlier approaches

There are several approaches to moving in formations and avoiding obstacles de-
scribed in the literature, while the combination of the two is less studied. Many
existing schemes use potential-based methods. In these, every neighbor is assigned
a potential with a minimum at the desired inter-agent distance and the agent is con-
trolled according to the negative gradient of the sum of all potentials. It strives to
move to a position where the potential has a minimum. Obstacles are given potentials
too, that are added to the sum. This approach can lead to an agent being pushed
into an obstacle by a group of neighbors, whose common influence may overcome
the repulsion from the obstacle. A way to overcome this is by giving the obstacle a
repulsive influence that approaches infinity as the distance to it goes to zero. On the
other hand, this risks producing the effect of an agent being pushed into a neighbor
due to the much stronger influence from an obstacle.

Many of the schemes described above also have the disadvantage of representing
obstacles as single points. This works well for circular obstacles, but in case of more
general shapes the approach is less successful. The obstacle can then be represented
by a virtual neighbor placed at the point on the obstacle boundary closest to the
agent. Non convex boundaries can give abrupt changes of the position of the virtual
neighbor, making the agent trajectory irregular and inefficient.

3.2 Combining coverage control and navigation functions

The idea of our algorithm is based on a proposition by Cortes et al., [3], combined
with the concept of navigation functions, [2]. We divide an area @ C R? into so
called Voronoi regions around every agent. The Voronoi regions are then intersected
with the obstacle-free space before the centre of mass is calculated for every region,
weighted with the navigation function. The navigation function is a scalar function
that roughly maps every free point in @ to the length of the shortest obstacle-free
path to the goal. Finally the agents move to the respective centres of mass of each
Voronoi region before the procedure is repeated. If a Voronoi region is unbounded
in any direction, we add virtual mirror neighbors, whose positions are those of all
neighbors, but mirrored in the position of the agent and at a fixed distance.

The new algorithm has several advantages over existing schemes. First it guaran-
tees collision avoidance, both with other agents and obstacles. Second, it often gives
goal convergence in the sense that all agents will be gathered around the goal after
a finite time. Finally, simulation results as well as theoretical analyses of simplified

11

FOI-R--1383--SE 12

settings indicate that a flock of agents moving in an open field will exhibit group
cohesion in terms of forming a hexagonal lattice formation.

In the next sections we describe the coverage control algorithm and navigation
functions in more detail.

3.3 Coverage control

Cortes et al., [3], study the problem of positioning a number of sensors

P = {p17p2 .. -pN}v Di S Q7

in order to observe an area, @, which is assumed to be a convex subset of R?. Let the
probability density for a detectable event be ¢(¢q) and the performance of the sensors
decrease with the distance from the sensor to the event. A cost function can then be
formulated as

H(P) = [minlg il doto)

This can be interpreted as the expected squared distance from an event to the closest
sensor, i.e. E(minj ||q — pil|?).

It turns out that the gradient of this function with respect to the sensor positions
pi is

852/])5]3) = 2My, (pi — Cv,),
where
wo = [ot o
Cv = MLV/VW(q) dq (3.1)

The quantities My and C\, are the generalized mass and centre of mass (centroid),
respectively, and Vj, ¢« = 1,..., N, are the Voronoi regions associated with P, as
defined next.

Definition 3.3.1 (Voronoi partitions) The collection V(P) = {V1,Va,..., VN } is
a Voronoi partition corresponding to the points P = {p1,p2,..., N} if

Vi={a:llg—nill <lla —psll, Vi # i},
where ||.|| denotes the Fuclidean norm. The sets Vi are denoted Voronoi regions.

Cortes et al. propose a solution to the coverage control problem on feedback form
using a gradient descent control law:

Di = —kprop(pi - C’V,-)-

Via a LaSalle argument it is then shown, among other things, that pj converges

asymptotically to the set of critical points of Hy , i.e. points where % = 0.

3.4 Navigation functions

The concept of navigation functions was introduced by Rimon and Koditschek, [13].
The navigation function, NF : Q C R* — R, is an artificial potential that maps all
obstacle-free points in @ to a scalar value. It has only one minimum, local as well as
global, located at the goal.

The original navigation function is, however, not very well suited for computation.
Ogren et al., [2], have suggested a modified version that is piecewise differentiable
and has local maxima of measure zero. It is constructed as follows:

13 FOI-R--1383--SE

w— b —
~r— o —

Figure 3.1: An example of a navigation function in a subset of (). The grid spacing
is assumed to be 1 and the goal point by definition has the value 0. Note how the
two points of value 9 form a ridge of measure zero.

1. Make a grid covering @) and remove all vertexes and edges that are on the inside
of obstacles.

2. Designate one of the vertexes as the goal.
3. For each remaining vertex, calculate the shortest distance to the goal.

4. For points inside grids, NF' is obtained by linear interpolation of the values at
the three adjacent vertices. The grid is divided along a diagonal, chosen so that
the resulting two triangles have the same slope or meet in a maximum, not a
minimum. Finally the value is obtained by interpolation on the vertices of the
triangle that covers the point.

Figure[3.1] shows an example of navigation function values in a subset of Q) around
the goal.

3.5 Proposed algorithm

As mentioned in the problem formulation, we consider a group of kinematic robots pj
that have the following dynamics:

pi(k+1) pi(k) + ui(k)

lluil| < umax

A

To calculate the control of vehicle j € {1... N} we let

By ={pi : lIpi *ij < Rmax, i # J}

define the set of neighbors within sensing radius. We also define Sj as the sensor
coverage area of agent j, i.e Sj = {q : ||/¢ — pj|| < Rmax}, and we let Lj be all parts
of @ that are within the line of sight from agent j. The following algorithm is carried
out by vehicle j at each iteration:

FOI-R--1383--SE 14

0. Initialization: Set d to the desired inter-vehicle distance. The design para-
meter k¢ is discussed below, but can normally be set to ky = 1. Finally choose
a small scalar € > 0, which will be the minimum step length.

1. Mirror neighbors: If pj is not inside the convex hull of its sensed neighbors,
Pj, i.e. the Voronoi region is unbounded in some direction, then for each p; € Fj
create a new momentary mirror neighbor p; as

pi=pj —d o
|lpi — pj

Let Py = Pj U {pi}.

2. Voronoi region: Calculate Vj from the position of the neighboring vehicles
and mirror neighbors,]3J

3. Centroid: Calculate Cy according to (3.1)), with ¢(¢q) = e K¢'NF(@ and V =
V} n Lj n Sj .

4. Choice of target: Calculate pj’ from the following optimization problem:

min -l = Oy I, (3.2)

J

s.t. NF(pj') < NF(pj) — €, (3.3)
pi' €V}, (3.4)
pi’ € Lj, (3.5)
Hpj/ — DPj || < Rmax/2~ (3.6)

If there is no feasible solution, set pj’ = pj.

5. Execution: Apply the control uj = pj’ — pj and repeat from step 1.
One could make a few remarks on the algorithm:

Remark 3.5.1 (Mirror neighbors) The purpose of the mirror neighbors is to achieve
flocking in open areas. Without them the vehicles at the boundary of a flock will tend
to “float away”. This effect is reversed by introducing the mirror neighbors.

Remark 3.5.2 (Decentralization) The algorithm is completely decentralized as it
only requires that the robot has knowledge about its surroundings, up to the sensor
radius. There are two alternative ways for the robots to know the positions of their
neighbors: FEither they have a means of communicating their position to all neighbors,
or every robot is equipped with a sensor that can measure the positions of all nearby
robots. Avoiding ambiguities in the Voronoi partitioning requires that all robots make
the partitioning at the same time instances (which can be solved by accurate on-board
clocks or centralized time-keeping as in the GPS system) or that the update interval
18 sufficiently short in relation to the speed of the robots.

3.6 Properties of the algorithm

In this section we give some theoretical results on the properties of the proposed
algorithm. We consider the issues of safety, goal convergence and formation stabil-
ity. We also suggest some modifications that have not yet been integrated into the
algorithm. As stated above, the highest priority has been given to safety so that
neither the robots nor stationary objects in the surroundings will be damaged. This
is guaranteed by the following proposition.

Proposition 3.6.1 (Safety) There will be no collisions with obstacles or other vehicles.

15 FOI-R--1383--SE

Proof. The Voronoi regions will be correct at least to the radius of Rmax/2, since
the sensor can see to the radius of Rmax. Thus the inner part of the Voronoi region,
to which the step is restricted by and (3.6), will never be entered by another
agent. The step will furthermore never collide with an obstacle due to . a

This result can also be expanded to a robot with non-zero dimensions. The
obstacles then need to be grown by one robot radius and all Voronoi region bound-
aries have to be moved inwards by the same distance. Even if two robots step to the
very boundaries of their Voronoi regions, there will still be a margin that prevents a
collision.

Under very special circumstances, described in section [3.6.1], the robots can find
themselves in situations where they have not reached the goal but still cannot find
feasible points to go to. This seems to lead to a stable, but not asymptotically stable,
dead-lock that stops some robots from reaching the goal. Such a complete locking
has never occurred in simulations, instead the algorithm has produced reliable goal
convergence in all tested environments. The following result describes this:

Proposition 3.6.2 (Goal convergence) The agents will move towards the goal un-
til they reach a configuration such that the optimization problem 7(@ has no
feasible solution for any agent.

Proof. This follows from condition and the fact that NF(z) > 0, with
equality only at the goal. O

We would ideally want to prove that the robots will stay together in a collected
formation when moving in open fields, where N F’ has a constant gradient. Simulations
have showed that the robots tend to form a hexagonal lattice, which seems logical as
it provides a configuration where all inter-robot distances are d, as encoded in the
mirror neighbor mechanism. In the following analysis, when referring to the hexagonal
lattice formation we shall mean the formation depicted in Figure [3.2] There are still
some open research problems, but judging from the special cases where we have been
able to prove formation stability and the appealing behaviour in the simulations, we
have confidence in the mechanism of mirror neighbors.

2k
15-
1k

05F

< © <

-25 -2 -15 -1 -05 0 05 1 15 2 25

Figure 3.2: We denote the above formation the hexagonal lattice formation. In the
figure, some agents are numbered according to how many neighbors they have at
distance d.

The following lemma shows that the hexagonal lattice formation is a stationary
configuration, but does not guarantee stability.

Lemma 3.6.3 (Hexagonal Lattice) Assume constraint is not active. If the
vehicles are in a open area with constant NF gradient, then the hexagonal lattice
formation with inter vehicle distances d is a stationary configuration for all vehicles.

FOI-R--1383--SE 16

Proof. If all the vehicles are positioned in the hexagonal lattice formation, then
so will all the mirror neighbors. Thus all vehicles will have identical perfect hexagons
for Voronoi regions. The fact that the gradient of N F' is constant in the region makes
the NF values of two different hexagonal regions differ by a constant term only,
NF(q1) = NF(q2)+ M, where ¢; and ¢, are the same positions in different hexagons.
This makes ¢(NF(q1)) = ¢(NF(qz)+M) = e Ke(NF@)+M) — 4,(NF(q;))e kM e
¢ differs by a constant factor. Finally, since a constant factor does not influence Cy
the motion of all vehicles will be identical and the configuration is stationary. O

In one dimension it can be proved that two robots will converge to the inter-vehicle
distance d:

Lemma 3.6.4 (One-dimensional two vehicle stability) Let two vehicles move
in one dimensional space towards the goal. If they are within sensing range of each
other, all other vehicles or obstacles are beyond the distance Rmax and constraint

is inactive, then the two vehicles will converge exponentially to the preferred distance
d.

Proof. In one dimension for 2 < 0 we get NF = —x and thus ¢(z) = ekeX.
For symmetry reasons, both Voronoi regions will have width ¢. A region having its
leftmost boundary at © = b has the following mass and centroid:

b-+c okab
My = / ekoX dp = —— (M€ — 1)
b k(P
1 b+c K
Cv. = —/ x e¥* do
Ve My Jy
— T [ekec _
b+ o (ke = 1)[6 (kpc—1) +1]

Apparently the relative position of the centroid in the Voronoi region does not
depend on b. We are thus free to place the origin of our new coordinate system
inbetween the two vehicles and let the equal distance to each of them be a/2. After
one iteration the new inter-agent distance apew becomes

d+a d+a
new = CVQX_CV1X:O_(_T): 9 -
Assuming that a = d + § we see that
d4+a d+d+9 1)
Gnew = B) = B =d+ §

Thus the deviation from the preferred distance is halved at every iteration step
and the convergence is exponential. O

The fact that the two lemmas above show results that are independent of kg
indicates that we can get clues to the general behaviour of the formation by using the
simplification ko = 0.

Lemma 3.6.5 (Three-vehicle flocking) Assume there are three vehicles within sens-
ing range of each other and all other vehicles and obstacles are beyond the distance
Rmax- If these three vehicles are controlled according to with kg = 0, assum-
ing the constraint s inactive, then the vehicles will converge to an equilateral
triangular formation with the side d.

Proof. Consider vehicle p, and note that its Voronoi region will be a parallelo-
gram due to the placement of the mirror neighbors. This set will furthermore satisfy

17 FOI-R--1383--SE

Figure 3.3: The setting for Lemma [3.6.5] The solid lines denote the Voronoi region.
Using ko = 0, Cy is at the geometric centre of the parallelogram.

constraint (3.5) and assume initially that it also satisfies constraint . In a par-
allelogram, the centroid is at equal distances from any pair of two opposite edges.
Without loss of generality we consider one vehicle with distance = to one of its two
neighbors and a being the separation of the two sides, as depicted in Figure [3:3]

A motion from pj to the centroid Cv now yields the following change in the x
direction.

Az =

N I N
—
ol |
+ N8

= N8
|
8
:_/

—
S8
|

We see that x — d and thus all three sides of the triangle tend towards length d. This
qualitative behavior can also be seen to hold in cases where constraint is active.
This is due to the fact that the circle is centered at pj. O

In a more general setting, with an arbitrary number of robots, we can show that
a robot far away from the formation will move towards it:

Lemma 3.6.6 (General flock cohesion) If the vehicles are controlled only accord-
g to , with ke = 0 and disregarding and @), then a vehicle not contained
in the convex hull of its neighbors, Pj, will move such that at least one neighbor will
be closer than, or at a distance d, and at least one will be at d or farther away.

Proof. Let the position of a vehicle, not contained in the convex hull of its neigh-
bors, be pj and the positions of all its neighbors, Pj, be p;j. Assume ||pj — pil| > d,
for all 4. Since pj is not in the interior of the convex hull of its neighbors, we can
draw a line through pj, separating the neighbors from their mirror images. Let L be
the one such line that maximizes the distance to the closest mirror neighbor. We will
now argue that Cy is on the side of L containing the real neighbors.

If the neighbors were at a distance d from pj, then L would split Vj into two
parts differing only by a 180-degree rotation, having Cy somewhere on the line L.
Furthermore, Vj would have two corners where L intersects its boundary.

Moving the neighbors back to their true positions will therefore only grow the part
of Vj on the neighbors’ side, thus moving Cy towards this side as well.

FOI-R--1383--SE 18

Therefore, pj will move towards the neighbors, until the assumption ||pj — pi|| > d
no longer holds. The opposite argument, with ||pj — pi|| < d, is completely analog-
ous. O

The main difficulty when analyzing the algorithm is that it is nonlinear and the
influence of one neighbor generally depends on the positions of other neighbors as
well. While being difficult to analyze, it is well suited for computer simulations, so
we have simulated a setting with a group of robots in a hexagonal lattice formation.
We then perturbed the position of one robot at a time, while keeping all others fix.
The original configuration is illustrated in Figure 3.2

Three different positions in the formation are indicated in Figure [3:2], numbered
according to how many close neighbors they have. We have analyzed every such
position in the lattice numerically by perturbing the agent while fixing all neighbors.
The mirror neighbors are of course not fix, since their positions depend on the position
of the agent being tested. For every relative perturbation Apj from the original
position pj we plotted the ratio

g = 1Cvi—nill S
|1 Ap; |

This gave a scalar field U : R? — R. If, for small perturbations Apj , the scalar
field is less than one, this means that the centroid will always be closer to the original
position than the perturbed position. As the agent will go to its centroid, this means
that it will eventually return to its original position after a perturbation. This does
not constitute a formal proof, since we have only perturbed one agent and stability
requires that all agents can be perturbed simultaneously and since we have only
sampled U at a finite number of points. However, as we will see below this method
has produced some interesting results.

It was found that with the current strategy for mirror neighbors, position 4 in
the lattice is not asymptotically stable. When the agent is perturbed so that it is
just inside the convex hull of its neighbors, it has no mirror neighbors. This means
that its Voronoi region will extend far outside the formation, until it is truncated at
Rmax. This is illustrated in Figure [3.4], where the truncation at Rmax is not taken
into account. The agent will break away from the formation when it moves towards
the distant centroid. In the next iteration it will find itself outside the convex hull of
its neighbors, create mirror neighbors and move towards the formation again. Despite
this effect, in Figure [£.3]a group moving over an open field displays an almost perfect
formation. We think that this could be because the sensor radius Rmax = 3 is so
small in comparison to the preferred distance d = 2 that the protruding Voronoi
region does not extend very far. The effect is more evident in Fenix, where the sensor
radius has been chosen to twice the preferred inter-robot distance. On open fields,
vehicles at the edge of the formation exhibit a zig-zagging motion that may be stable
in a limit cycle sense, but not asymptotically stable.

We decided to test a modified strategy for the mirror neighbors: An agent always
mirrors all neighbors within the distance 1.5d. If it is still not inside the convex hull
of its neighbors and the mirror neighbors, it mirrors all other neighbors within the
sensing radius. Using this strategy, we tested all positions in the lattice, with prom-
ising results. We got U < 1 for all displacements ||Apj|| < 0.25d, which indicates
that all positions are asymptotically stable. We also found that

l|Apj|| = 0= U — 0.75.

It seems intuitive that U should approach the same value for all positions, since
for very small displacements all agents experience similar surroundings of six sym-
metrically distributed neighbors and mirror neighbors. This modified mirror neighbor
strategy has not yet been integrated into the algorithm and tested in simulations of
a complete moving group.

19 FOI-R--1383--SE

L L L L L L
1 2 3 4 5 6

Figure 3.4: When the agent at position 4 is perturbed inwards, it has no mirror
neighbors. Its Voronoi region then extends too far and its centroid is at a large
distance from the formation. This makes the agent leave the formation.

The above lemmas and simulations lead us to believe that, when using the modified
strategy for mirror neighbors, the robots will gather to form a formation when moving
over an open field where the gradient of NF' is constant. This is also indicated by
the simulations described in the following sections.

3.6.1 Dead-locks Under very special conditions one or more robots can find
themselves in situations where they have not reached the goal but still cannot find
feasible points to go to. We will first study how this can happen to one single robot.

A single robot that gets very close to a corner before turning it, can find that
there is no point within its line of sight that satisfies the condition that the navigation
function has to decrease by at least € in every step, (3.3]). The situation is described
further in Section below. There are feasible points where N F' decreases, but
not by as much as prescribed by condition . The condition was originally included
to guarantee an upper bound on the goal convergence time, but as this has proved
insufficient the obvious suggestion would be to remove it. We have not fully analyzed
this yet, but as described in section [£:2.3], we have already included a mechanism
in the simulations that has the same effect. Another reason for requiring that the
navigation function decreases monotonically is to get more appealing trajectories,
where the robots never step backwards, and this is of course sacrificed if is
removed.

There have also been situations where several robots have blocked each other
when rounding corners or entering passages. Two examples of such situations are
depicted in Figure[3:5] This has never led to a permanent blocking in the simulations,
as round-off errors and other numerical effects have eventually moved the agents
enough to resolve the blocking. This indicates that the blockings are at least not
asymptotically stable, as is confirmed for case A by the following analysis.

Example 3.6.7 (Dead-lock stability) A blocking situation as depicted in Figure
A, where the Voronoi boundary L has a —45° slope and NF(p1) = NF(p2) <
NF(qc) +€— 0, where § is a small arbitrary scalar, is not asymptotically stable.

Proof. Note that all points satisfying are to the right of the obstacle but
below L, so they belong to the Voronoi region of agent p, but is out of its line of
sight. As the level curves of NF' all have +45° slope, there is no point within the line
of sight from po that satisfies condition unless the agent moves above the line
L. So for small movements of any of the agents, agent p, will remain stationary.

FOI-R--1383--SE 20

A B

Figure 3.5: Two examples of situations when several robots are blocking each other.
The dashed lines depict the boundaries of their Voronoi regions and the goal is located
in the downwards direction.

To study how agent p; is affected by small movements of both agents, we will
without loss of generality study small movements of L. It can be translated (as in
Figure[3.6] A) or rotated (Figure [3.6] B), or a combination thereof. Assume that V; is
the Voronoi region of agent p; and that p™is the point in V; such that

NFE(pY'< NF(q)Vqe W,

i.e. the best position in V.

In Figure [3.6] A we see that a small translation o < § of L, corresponding to a
small movement of both agents, will lead to a decrease a of NF(p), which is not
enough to fulfill constraint .

. L
Lo AN)

=

A

A B

Figure 3.6: The two possible types of movements for the separator line L between
two agents; translation (A) and rotation (B).

Even for very small clockwise rotations of L, as depicted in Figure B, NF(pH!
will decrease with a large value. But for p™to be a feasible point, it has to fulfill
constraint (3.6)), i.e. be within the distance Rmax/2 from the agent. So for small
displacements of the agents, L will not rotate enough to reveal points that simul-
taneously satisfy constraints and . Consequently, even a combination of a
sufficiently small rotation and a translation will not lead to agent p; finding a feasible
target point, so agent p; will also remain stationary for small movements of any of
the agents. Thus, for a sufficiently small displacement, none of the agents will move.
That means that the equilibrium is stable but not asymptotically stable. O

Even though the blockings do not seem to be asymptotically stable, they still delay
the goal convergence considerably. This is most clearly seen in Fenix where many
robots are to pass a narrow bridge, as described in section [5.6] We have therefore

21 FOI-R--1383--SE

devised a modification of the algorithm that will allow robots to detect a blocking and
give way to others. The symmetry can easily be broken using individual ID numbers,
assigned to every robot.

The suggested modification can be described as:

e Remove constraint (3.3)).

e If a robot takes a step in a direction where N F' increases and there is at least
one neighbor within its sensing radius that has a lower ID, it signals that it will
stand still during a predefined period of time (typically one iteration).

e During this time, all surrounding robots can intrude on its space by calculat-
ing asymmetric Voronoi regions. Instead of making boundary lines half-way
between the two robots, they can for example use 95% of the distance and leave
5% to the robot giving way.

The reason to take a step away from the goal is typically that there is a congestion
ahead, so the above criteria should be able to detect that. Simulations have showed
promising results, where a group of robots typically approach a narrow passage, take
one step back and then stand still with the exception of the one with the lowest ID.
Then all others start moving again, back away and stand still to let the robot with
the next lowest ID through, and so on. We have made preliminary simulations of this
algorithm under the same conditions as described in Figure [£.I] and it decreased the
number of iterations required for goal convergence approximately from 500 to 200.
Testing this more thoroughly and analyzing it in theory is an interesting direction of
future work.

4. Simulation in Matlab

In this chapter we present some results from computer simulations, performed in
Matlab. A group of 20 robots is simulated in two different settings. First we study
an environment with irregular and non convex obstacles to underline the advantage
of not having to make geometric assumptions about obstacle shape. We then test the
same group in an open field to explore the formation properties.

4.1 Results

Figure [4.] shows four snapshots of a group of 20 robots, moving from the starting
point in the lower right corner of the area to the goal in the upper right part, marked
by an x. The vehicle positions are depicted by stars for the first and third snapshot
and by dots for the second and fourth snapshot. The robots first perform a split/rejoin
manoeuvre, then squeeze the formation when passing the corridor and finally gather
around the goal. Due to the constraint NF(k 4+ 1) < NF(k) — €, the agents are
distributed only in the third quadrant around the goal. In Figure the preferred
inter-agent distance is d = 1 and the maximum sensing radius is Rmax = 3. The
parameter kg is chosen to 1.

Figure shows the same setting, but with £y = 0. This removes the influence of
the NF on Cy and the only thing driving the vehicles towards the goal is constraint
(3.3). This causes the vehicles to move much slower, but as can be seen in the figure,
the spacing during the corridor traversal is somewhat wider. The snapshots are not
taken at the same time instances in the different Matlab plots.

To explore the flocking behavior in detail two simulations are run in an open area
with no obstacles. Figure[£.3]shows an almost perfect hexagonal lattice resulting from
the settings kg = 1, d = 2 and Rmax = 3. This was indicated, but not guaranteed,
by the preliminary results in the theoretical analysis. The distance between agents
agrees well with the preferred distance used.

Surprisingly enough, setting ky = 0 gives less group cohesion, as seen in Figure
{4 The transversal inter-agent distances are fairly correct, but the flock seems to
have drifted apart in the direction of motion. The explanation is to be found in
constraint (3.3)). If kg is high enough, will be satisfied by Cy itself, and the
resulting behavior will be as if the constraint were not there. If, however kg, is low
enough, as in the ko = 0 case, the vehicles would stand still in perfect formation if it
were not for constraint . The constraint forces the vehicle to move in a direction
other than Cy , thus obstructing the formation maintenance.

4.2 TImplementational aspects

This sections describes some issues that we faced when implementing the algorithm.

4.2.1 Numerical integration The formula for the centroid (3.1) requires calcu-
lating a surface integral over the intersected Voronoi region V' = V; N Lj N Sj. To do
this we made a grid

G={q:q=pj+025(nex+mey), n,m € Z} (4.1)

23

FOI-R--1383--SE 24

30

25
*

5 i 0 R o o
S
0 ! ! ! 9|69|e|
0 5 10 15 20
The agents

Figure 4.1: A group of 20 agents moving around irregular obstacles.
are depicted by stars for the first and third snapshot and dots for the second and
fourth. The parameters are Rmax = 3, d = 1 and ky = 1. This gave the fastest goal
convergence, at the expense of flock spacing in the corridor between the obstacles.

25 FOI-R--1383--SE

30

10+ o
5| Co
S
O | | | **
0 5 10 15 20

Figure 4.2: A group of 20 agents moving around irregular obstacles. The agents are
depicted by stars for the first and third snapshot and dots for the second and fourth.
The parameters are Rmax = 3, d = 1 and ky = 0. The group takes longer to reach
the goal, but the inter-agent spacing is more appealing.

FOI-R--1383--SE 26

201
18- -
16
14+ *

12+ * *

10+ * *

0 L L L L L L L L L J
0 2 4 6 8 10 12 14 16 18 20

Figure 4.3: A group of 20 agents moving in a free field. The agents are depicted by
dots for the first and third snapshots, and by stars for the second. The parameters
are Rmax = 3, d = 2 and ky = 1. The group assumes an almost perfect hexagonal
lattice formation.

i.e. a grid with spacing 0.25 that contains pj. The motivation for choosing grid
spacing 0.25 was that is also the spacing of the grid used for calculating the navigation
function. All points in the grid were then tested against conditions 7 and
the mass and centroid were calculated as

My = Z ¢(q) (42)

qev NG
1
Cvx = Wy Z Tq0(q) (4.3)
qeVv NG
1
CVy = m Z yq¢(Q)- (4-4)
qeVvV NG

4.2.2 Line of sight Condition as well as finding the intersected Voronoi
region for integration as described above require a method to determine if a given
point is within line of sight from the agent. Since the obstacles are given on bitmap
form there is no vector representation of their boundaries, so the only information
that can be extracted from the map is whether a specified point is occupied by an
obstacle or not. The method also has to be reasonably fast, as the test is to be
performed on all points included in the integration.

To satisfy these requirements we chose to use an approach from computer graphics,
[14]. The idea is to study only the first octant, i.e. all points in the angle interval
0-45° from the agent. For every point we make a binary matrix of which other
points are obscured if the generator point is occupied by an obstacle. The matrix
corresponding to the generator point (1, 0.75) is illustrated in Figure Points that
correspond to a one in the matrix are plotted, those that correspond to a zero are

27 FOI-R--1383--SE

16

14+ *

12 * *

10- *

0 L L L L L L L L L J
0 2 4 6 8 10 12 14 16 18 20

Figure 4.4: A group of 20 agents moving in a free field. The agents are depicted by
dots for the first and third snapshots, and by stars for the second. The parameters
are Rmax = 3, d = 2 and ky = 0. Due to the requirement that NF' has to decrease
monotonically, the formation keeping is disturbed.

not. The generator point is marked by a star (but is set to zero in the matrix). Since
we have information on the obstacles only in the grid points, the calculation is very
conservative, assuming that the obstacle occupies one grid length above and below
the generator point. The analysis is performed only for generator points in the first
octant (including the 45° diagonal), but points outside this sector may be marked as
obscured.

By transposing the matrices, flipping them up—down and left-right we can use the
same set for analyzing occupied points in any octant, thereby reducing the amount
of memory required for the precalculated data. Finally all matrices corresponding to
occupied points are superimposed on the grid, using an AND operation, leaving only
the points that are not obscured by any obstacle.

4.2.3 Finding the optimal step Step five in the algorithm is formulated as
an optimization over all points that fill the conditions 7, but in the actual
implementation we have to make a finite list of candidate points. We use three types
of candidate points, described below in order of priority.

As the first candidate we use the centroid itself, since it is obviously the choice
minimizing ||pg — Cv ||?>. The only difficulty is testing condition (3.5, i.e. that there
is free sight from the agent to the centroid. We have chosen a safe approach, testing
the four points in G that surround the centroid. If they are all within line of
sight, the centroid is considered to be feasible too and the agent steps directly there.

If that is not the case we test which of the feasible points in G have a lower
navigation function value than the present position, and give each of them a scalar
value |[pg — Cv ||>. Among all remaining candidates, we step to the one with the
lowest value.

When trying this approach we discovered that agents sometimes got stuck when

FOI-R--1383--SE 28

25F

05F

0 05 1 15 2 25 3

Figure 4.5: An illustration of the table showing what points are obscured, viewed
from the origin, if the point with coordinates (1, 0.75), marked by a star, is occupied.
The double arrow indicates the assumed obstacle shape, one grid length above and
below the generator point.

turning sharp corners. The situation is depicted in Figure [4.6] where the goal is
situated far up left, outside the figure. The agent is denoted by a diamond shaped
symbol, standing in the grid square just below the corner. The thin lines are level
curves of NF(q) and the dots are the points in G. Due to a “ridge” in the navigation
function, no point belonging to G has a lower navigation function value than the
present position, so the agent would stand still. In situations like this we introduce
four special candidate points

(,9)right = (27 +09-(z* —x),y),
(,9)up = (2,97 +09-(y" —y)),
(T, Yert = (27 +0.9- (27 —2),y),
(%, Y)down = (x, y +09- (y_ -9)),

where (x,y) are the coordinates of the agent and ™ is the x-coordinate of the vertex
in the obstacle grid closest to the right of the agent. The other coordinates =, y*
and y~ are defined analogously.

The special candidate points are thus mirror images of the agent, mirrored in the
four sides of the obstacle grid square that the agent stands in. But because of the
0.9 factor the mirror images are closer to the sides than the agent, so one of them
always has a navigation function value that is a little lower than that of the present
position. This candidate point is then chosen, although the decrease of the navigation
function might not be as large as prescribed by . It is important to note that the
creation of the special candidate points does not violate the presented algorithm, but
is a consequence of the discretization needed for computer implementation. Equations
7 are formulated as an optimization over a continuous set, so we are free
to test any candidates in the set. The violation instead lies in the special candidate
point not fulfilling equation 7 which also represents a form of discretization. A
suggestion on how to overcome this in future versions was given in section [3.6

29 FOI-R--1383--SE

3.6

34r

54 5.6 5.8 6 6.2 6.4

Figure 4.6: An agent about to turn a corner, making use of one of the four special
candidate points denoted by stars. The agent is denoted as a diamond shape, the
dots are points ¢ € G and the lines are level curves of the navigation function NF(q).
The goal is far up left, outside of the figure.

4.3 Practical experiences

The aim of this section is to briefly account for some issues that we have encountered
during the development of the algorithm. Hopefully it could be useful for someone
trying to implement the algorithm or develop it further.

4.3.1 Trimming the integration regions to a convex shape The first and
greatest problem has been that of rounding sharp corners. Our initial thought was
that just intersecting the Voronoi regions with the obstacle-free space and then in-
tegrate over this area, V', to find Cyy might move the centroid away from the corner
enough for the robot not to collide with it. So in this early version, the robot always
stepped directly to the centroid, without checking if it was safe. This did not always
work, instead the robots in some situations tended to cut the corners as depicted in
Figure [£.7]

We quickly concluded that one way to ensure an obstacle-free step to the centroid
would be to make sure that the integration region was always convex. So we worked
for a while on strategies for trimming the region into always being convex while still
preserving enough of its original shape to get forward motion at all times. It proved
difficult, so eventually we instead reformulated the problem into an optimization
framework 7. This gave the possibility to explicitly require that the path
chosen be within line of sight, thereby guaranteeing us against obstacle collisions.

Another problem with the first approach was that agents could “see through” thin
walls, including points that were within Rmax but on the other side of obstacles in
the integration. This could lead to an agent stepping right into or through a wall,
but was solved when we required that all points in the integration region had to be
within line of sight.

FOI-R--1383--SE 30

Figure 4.7: An agent cutting a corner because there is no constraint that the target
point of a step has to be in line of sight from the agent. The agent is depicted as a
diamond shape, the dots are points that belong to the integration region V and the
line shows the calculated step. The goal is outside the figure, far up left.

4.3.2 Voronoi regions in vertex form When calculating the Voronoi regions
we first used an elaborate scheme for finding the vertexes of the region. This included
also finding “virtual” vertexes, where an unbounded region was truncated at the
distance Rmax from the agent. It was based on the idea of first finding the separator
lines half way between the agent and every neighbor, and then walking along the
innermost polygon formed by the lines (or by arcs centered at the agent and with
radius Rmax). This lead to long calculations and numerical problems when several
lines crossed very close. So we eventually settled for another representation of the
Voronoi region; that of normal vectors of the separator lines. Every neighbor p; to
agent pj generates a separator line with normal vector

DPj — DPi
€j TR
llpi — pill
and a scalar
1
bi = [pi+ i(pj —pi)] - ei.

Any point ¢ then belongs to the Voronoi region if and only if ¢-ej > b for all neighbors
1. The condition can be formulated as a matrix multiplication to test for all separator
lines at the same time, so it executes very efficiently in Matlab.

5. Implementation in Fenix

As a complement to testing our algorithm in Matlab, we wanted a more realistic
environment. FOI has developed a system consisting of physical robots and a graph-
ical computer simulator, sharing a common controller interface. So an application
programmer can make a program for the computer environment and then reuse the
same code in the physical robots. The simulator software is called Fenix, and this
chapter describes the system and our implementation.

5.1 System overview

Figure 5.1: One of the radio-controlled cars at FOI.

The physical robots in the FOI testbed for robot controllers are redesigned ra-
dio-controlled cars (Figure . Every car is equipped with a card-PC, actuators
for thrust (and thus braking) and steering, a WLAN transceiver for short-range com-
munication and a GPS receiver for navigation. The platform is rugged enough for
outdoor terrain use, although the surface needs to be reasonably smooth because of
the diameter of the wheels. At the moment only two cars are operational, so to better
demonstrate the flocking properties of our algorithm we decided to implement it in
Fenix. It has a ready-made car model whose actuators have the same interface as
the actuators of the physical car. The information available to the controller is also

31

FOI-R--1383--SE 32

the same as in reality. The controller can extract the position of the car (although
there is no error as in a GPS measurement) and, as will be explained in subsection
[6-3], inter-agent communication is simulated by using a global list of positions where
every single agent can only get a list of its neighbors within a specified radius. As
described in the background section, a side-effect of having a GPS receiver on the car
is that it has access to a very accurate time estimate. This is used to synchronize
all cars and make them plan their next step at the same time. This is crucial for
avoiding ambiguities in the Voronoi partitioning of the available space.

In this section the terms target and goal will be used for two different things. The
goal is the global goal determined before executing the program and it is the same
for all robots. The term target refers to the individual target that is assigned to
each individual robot by its flocking algorithm, and it is updated at every replanning
interval.

5.2 Implementational issues

This section describes some problems that arose when implementing the algorithm in
a more realistic environment, and the solutions to them.
In Section [3.5] is described how we find the centroid of every Voronoi region by

integration:
1

Cv = Miv/v q9(q) dq

$g) = e~ NF @,

This worked well in Matlab, where the world had the dimensions 10 x 10 units.
The highest NF value was around 30, so (given that ke = 1) ¢ € (9-10714,1), which
lies well within the range of the floating-point type of Matlab. But when we enlarged
the world by almost a factor 1000, this was no longer true. The C++ variable types
and mathematical functions could not handle numbers that small. Just changing
kg, i.e. scaling the navigation function, did not work either, as it gave centroids
that almost coincided with the geometric centroids. The solution was normalize the
navigation function in the region around the agent and use

with

#(q) = e Ko (NF@=NF(p;))

where pj is the position of the agent. This way we both reduced the deviation from
1 and distributed the NF values more evenly around 1 to make better use of the full
range of the floating-point types.

We have also expanded all obstacles by 4 m to compensate for the width and
length of the robots. Our algorithm ensures that the centre of the robot does not
collide with anything, but this sometimes lead to the robot going too close to the
edge of an obstacle.

5.3 Software structure

The application programmer makes a C+4+4 class that implements a controller for
the car and is called at every update interval by the simulation engine. In principle
the same code could then be transferred to the card-PC of the physical cars and
used there as well. The structure of this software is described in this section, which
is mainly intended for someone who wants to reuse the existing code or get hints
for a similar programming task. It assumes that the reader has basic knowledge
of C++4 and object-oriented programming and it does not add significantly to the
understanding of the more abstract overall algorithm.

All objects in the simulated world are created by an object factory, i.e. an under-
lying program that takes input from a script file and then creates as many instances

33 FOI-R--1383--SE

Vehi cl eCont ai ner

ID
pos
i

ID
pos

ID
pos

ID
pos

ID
pos

ID
pos

ID
pos

ID

ID
pos

pos

position of [ID]
neighbors of [ID]

ID, SensorRadius ID, position, neighbors

D PreferredDistance SheepDogs
position Fl ocki ngAl gori t hm Calculate mirror
\ neighbor positions
Neighbors => mirror neighbors MirrorNeighbors
Neighbors + mirror n. => ID, position, neighbors
Vehi cl eSteering => \oronoi region Ve f
‘or onoi
Control I er Magnus Calculate Voronoi
Drive the car straight towards Voronoi region - occupied region
the current target, without points - obscured points (i.e. VoronoiRegion
leaving the current Voronoi not in line of sight) => remove(x.y)
region => integration region

Gbscuri ngvask
Report ID and position to the Integration using NF => Maintain amap of | -
global list and replan (with => centroid the integration
FlockingAlgorithm) at region Precalculated table of
synchronized intervals Check that the centroid is a CurrentMask which points obscure which
feasible target, otherwise X,y)
choose a point as close as
possible to the centroid or,
in worst case, stand still Calculate NF(x,y) once
when the program starts

NF(x,y) Navi gat i onFuncti on

Steering Position

xy) - -
M i Keep record of which _ Heightmap file
Br:‘:zts on/off vetoewy poin'tjs are occupied by (height <k => obstacle)
CurrentTarget, obstacles
& o

(x,y) occupied or not

O O (Cass or function names are given in bol dface.)

Figure 5.2: Software structure of the car controller

of different objects as the file specifies. It also connects the objects to each other
and initializes them as described in the script. An example of this is that the car
is described as a chassis, connected by springs to four wheels. Then actuators are
initialized and connected to the wheels and finally an instance of the VehicleSteer-
ingControllerMagnus class is created and given handles to the actuators. When
the script file specifies that 20 cars should be created, 20 similar instances are set up
and connected, with one VehicleSteeringControllerMagnus object each. A manager
class places the cars at different positions so that they will not collide from the start.

The basis of the car controller is the VehicleSteeringControllerMagnus class, that
issues the actual actuator commands. They are of three types; first the steering
command that has to be in the interval (—1,1), with -1 meaning full steering to the
left. Then there is the thrust command that is also in the interval (—1,1), with 1
meaning full forward thrust and -1 full reverse thrust. Finally there is a separate
braking command that overrides the thrust command. It has only two states: on or
off, and when the brakes are on the thrust does not matter, the wheels are braking
hard. The VehicleSteeringControllerMagnus class contains a few important variables:

e mIDNumber: The global ID of the car that is controlled by this instance. It is
issued by the VehicleContainer class as described below.

e drivingMode: The state of the controller state machine, described in subsection

B4

e planningMode: The state of the replanning state machine, responsible for re-
calculating the current target and Voronoi region at synchronized intervals. It
also reports the position of the car to the global list (VehicleContainer) before
replanning, so that all positions in the list are updated.

e currentTarget: The coordinates of the current target that the controller should
drive to.

FOI-R--1383--SE 34

e mVoronoiRegion: The Voronoi region that the car has to stay inside to avoid
colliding with other cars.

The workings of the controller are described in subsection [5.4], but its task is to
drive the car straight to the current target, without leaving the Voronoi region. The
higher-level flocking algorithm guarantees that this straight path is free of obstacles.

The VehicleContainer class has only one global instance. It maintains a list
of all cars and their position. The first time a car reports to the list it is issued an
ID number that will identify it during the current execution of the program. The list
contains global information on all cars, but they can only access the list by specifying
their ID number and a sensor radius, and then a list of neighbors within the sensor
radius from the position of the car is returned. So the controller only has access to
local information.

The actual flocking algorithm as described in earlier sections is run in the Flockin-
gAlgorithm function. Every execution of the function calculates one iteration step
in the algorithm. It first compiles a list of possible mirror neighbors by calling the
SheepDogs function. Then the mirror neighbors are combined with the actual neigh-
bors and the whole list is used to create a VoronoiRegion instance, containing the
boundaries of the Voronoi region around the car.

Then an integration grid is created, centered at the position of the agent and
containing only points that are within the sensor radius Rmax. It is created by and
stored in an ObscuringMask object. Every point in the grid is tested to see if it
lies inside the Voronoi region and is free from obstacles. If not, the ObscuringMask
object is given the command to remove the point from the grid as well as the points
that are obscured by the point in question. This is done using precalculated masks
that are stored in memory to make the process faster. When all points are tested the
centroid is calculated by equations (4.2H4.3).

For the calculation of the centroid, the algorithm needs the navigation function,
NF. It is maintained by a global instance of the class NavigationFunction, that
gets its original data from the same file that the graphics engine uses to determine
the contours of the ground. This is an image file (in Windows 24-bit bitmap format),
where dark colours mean low areas and light colours indicate high regions. Regions
with an altitude below a predefined threshold are considered as obstacles. (This might
appear counter-intuitive, but we chose to use ditches and holes as obstacles for two
reasons: first of all it is self-indicating if a car has hit an obstacle, as it gets caught in
the ditch, and secondly this makes it easier to see all cars than in the case of walls.)
The NavigationFunction object also contains coordinates for the global goal. When
these coordinates are changed or initialized, the values of NF are calculated over the
whole world.

Finally the FlockingAlgorithm function has to check that the centroid is in the line
of sight and that it its NF value is an improvement compared to standing still. If not,
all points that were evaluated in the integration are tested to see if they are feasible
candidates for being the next target. Among the feasible candidates the one closest
to the centroid is chosen. If there are no candidates among the integration points,
four special candidates are computed, as described in [£:2.3], and tested according
to the same criteria as the centroid. If there are no candidates whatsoever, the
next target is chosen to the current position, to make the car stand still. The final
choice of target is returned together with the current Voronoi region to the calling
VehicleSteeringControllerMagnus object.

5.4 Robot dynamics and controller

The low-level controller, implemented in the VehicleSteeringControllerMagnus object,
has the following task:

35 FOI-R--1383--SE

e Drive the car from an arbitrary position and orientation to the target specified
by higher level algorithms.

e The orientation of the car at the target is not important.

e There is line of sight from the start position to the target, but if the car has to
manoeuvre it must not leave its Voronoi region.

Since the controller does not know in what direction the car will have to go in the
next iteration, we decided not to put any constraints on the final orientation of the
car. Instead we prioritized to quickly reach the target.

The car model in the simulation environment is modeled after the US Army HM-
MWYV all-terrain vehicle that is four-wheel driven, weighs 2.3 tons and measures
about 5 by 2 metres. Since its physical dimensions are so much larger than those of
the radio-controlled cars the simulated world has been enlarged to a width of several
kilometres. To make this section more general we have avoided specifying numerical
values, but the values used for our simulations are listed in section [5.5}

A

Figure 5.3: A model for the car.

Our car model is depicted in Figure [5.3] When steering, the wheels actually turn
each around their own vertical axis and not around a common axis as in the model,
but the effect is the same. How does the heading 6 change over time? Let us assume
that the car moves with a constant steering angle §. It will then follow a circle with
radius r, and basic trigonometry tells us that

L
— = tand. 5.1
- an (5.1)
During the time dt the car will travel the distance v dt along the circle. The heading
then changes as
dt=rdo= Y Y- Vs
vdt =r — = — = —tand.
dt r L
The coordinates of the rear of the car evolve depending on # and v and to account
for the inertia of the car we added an integrator to the speed dynamics. The whole

FOI-R--1383--SE 36

model becomes, [15]:

T = wcosl
¥y = wvsinb,
6 Y tané
= — tan

L

Vo= u

In [15] it is shown that the time-optimal path for such a vehicle consists of a number
of circular arcs of minimum turning radius, combined with straight line segments.
Both the position and orientation of the car at the start and end points can be
specified, but as stated above, we decided to relax this by just specifying the final
position. Using these results, we decided on a simple and robust controller that starts
by turning towards the target with a minimum turning radius and a constant speed,
chosen not to give slipping, and then to drive straight ahead at a higher speed until
it reaches the target. The speed is maintained by a simple P-controller:

u = ky (Udesired - 'U)-

The surface of the simulated environment is rather slippery, so if the car uses too
much thrust there is a risk of slipping. We therefore chose k, = 0.5, which empirically
proved a good compromise between fast acceleration and avoiding slipping even when
the reference signal, vgesired, changed fast. After a few accidents when the above
P-controller tried to slow down by reversing the thrust and thereby lost the grip, we
added a simple rule that if the speed is more than 2 m/s above the desired (when
the P-controller saturates), we use the brakes to slow down instead, as this gives a
much better grip. When turning, the steering angle 6 is given its maximal or minimal
value, depending on direction, and the speed is adapted to avoid slipping while still
efficiently performing the manoeuvre. When the car is turned towards the goal it
switches to driving straight ahead with a higher speed and a P-controller that directs
the car towards the target:
I

5max

(5.2)

where 3 is the angle between the velocity vector and the relative vector from the car

to the target, chosen to be positive when the target is to the right of the car.

100
ool
sl
7ol
sl

50

Braking distance (m)

401

301

20+

101

0 I I)
0 50 100 150
Initial speed (km/h)

Figure 5.4: The braking distance, s m, as a function of speed, v m/s. The stars
denote measured values and the line is the interpolating curve s = 0.033v + 0.048v2.

37 FOI-R--1383--SE

Finally the car needs to be stopped at the target and this is done by “bang-bang
control”. We constantly predict the braking distance as a function of the current speed
and hit the brakes when that distance plus five metres (a safety margin) remains to the
target. When testing the brakes at different speeds we obtained the data in Figure[5.4}
We made a least-square fit with a second-degree polynomial, as the braking distance
is usually a function of the kinetic energy, which in turn is proportional to the square
of the speed. It showed that the constant term was in the order of a few centimeters,
so we neglected it and made a new least-square fit to a simpler polynomial of the type

s=av+bv?

where we got the values a=0.033 s and v=0.048 s?/m. The applicability of this
approach is confirmed by the excellent fit of the curve, depicted in Figure [5.4]

The controller above worked well, except for so called small-scale controllability
problems, i.e. when the target was very close to the original position of the car.
Everyone who has driven a car knows that it is easier to drive it to a point fifty
metres away than a point just one metre to the side. The problem of small-scale
controllability concerns areas that cannot be reached by the above scheme of a forward
turn and driving straight. Figure [5.5] depicts the different zones around the car,
particularly the near zones N and Ngr where this occurs. The radius R is the
turning radius of the car and was determined by testing on flat ground. All other
target locations could be reached by the controller. So we added two backing states
when the car drives backwards in a circle of minimum radius until it points in the
direction of the target. To reach targets in N, the car reverses with full right steering
along the boundary of Nr, which makes its forward direction sweep over the whole
of Ni_. The opposite works for targets in Ng. The car then drives straight ahead to
the target as described above.

Figure 5.5: The different target zones for the car controller. N ¢ Fi and Nr & FRr.
R is the turning radius of the car. A target right behind the car can be considered to
belong to any of the zones Fr or F} .

Then the problem of not leaving the Voronoi region remains. As the higher-level
algorithm guarantees that the target will be inside the convex Voronoi region, this
will only be an issue if the car has to turn before driving straight ahead. When doing
this it constantly predicts its position two time steps ahead and checks that it will be
inside the Voronoi region and not occupied by an obstacle. If the predicted position
is not feasible, the car reverses both its forward velocity and steering, so a right
forward turn becomes a left backwards turn and vice versa. This is what a human

FOI-R--1383--SE 38

driver does when parallel parking. If the car risks leaving the Voronoi region when
reversing to reach a target in a near zone, it drives straight ahead for 10 m (or until
it reaches another Voronoi boundary) and then replans the whole manoeuvre. This is
not necessarily optimal, but it was an easy way to find a strategy that works even in
this very odd case. Figure [5.0] illustrates three possible trajectories of the controller.

X X
a b [

Figure 5.6: Three trajectories produced by the car controller. The triangle shows the
initial position and orientation of the car, and the x is the target location. In a) the
car has sufficient space to turn, while in b) the dashed line shows the boundaries of
the Voronoi region that must not be passed. In ¢) the target is in the near left zone,
so the car reverses before driving straight ahead.

We implemented this as a state machine, as described in Figure 5.7 To prevent
unnecessary manoeuvering when the car was very close to the target we chose a dis-
tance D, inside which the car is considered “close enough” so it stands still. After
every replanning, i.e. a new calculation of target and Voronoi region, the state ma-
chine is reset to the START state. If only one or very few cars are used, the targets are
sometimes placed so far ahead that the cars have not reached the targets, and thus
have high speeds, when replanning. When this happens we decided to skip the low
speed turning phase and make the course corrections at high speed instead to make
the motion smoother. To avoid skidding off the desired path because of too steep
turns, this is only allowed if the new target is within an angle « from the forward
direction.

5.5 Values used for the simulations

We have deliberately avoided specifying values of many constants mentioned in the
above text, so as to make it more general and applicable to any size and type of
car-like robot. In this section we specify the values for the simulations that will be
discussed in the next section.

Figure[5.8|shows a map of the simulated world, where the black areas are obstacles.
We chose to use ditches, about 15 m deep, as obstacles instead of walls or hills for two
reasons. Firstly it enables us to overlook the whole course and see all cars at once.
Secondly, if a car hits a wall it might bounce off the obstacle without the observer
noticing it, while if it falls into a ditch it stays there.

39 FOI-R--1383--SE
Table 5.1: Values used for the simulations in section [5.6l
Quantity Variable Value Remark
name

Grid spacing for integration 10 m

and NF

Width and length of the 2048 m

world

Maximum height of the world 20 m

Integration factor ke 0.05 Defined in Section

Replanning interval tr ls A short interval gives smooth
motion, but longer intervals im-
prove formation stability.

Sensor radius Rmax 200 m

Preferred distance d 100 m This is adapted to the granular-
ity of the integration grid.

Car controller update interval | ¢c 50 ms This was set by the simulation
engine.

Near-target distance D 10 m This is how close to the target
the car controller is “satisfied”
and stops.

Straight ahead angle 10° Within this angle from the for-
ward direction the controller con-
siders the target to be straight
ahead, and uses the control law
=)

High-speed turn angle @ 30° See the controller state diagram
(Figure .

Maximum speed 110 km/h | The desired speed when driving
straight ahead towards the tar-
get.

Curve speed Ve 20 km/h | The desired speed when making
minimum-radius turns.

Prediction horizon 1.5s When making turns, the control-
ler predicts the position of the
car this far ahead in time, to
check that the position is safe.
It is chosen to be the approxim-
ate braking time when traveling
at curve speed.

Turning radius R 10 m See Figure [5.5] The actual ra-
dius was measured to 8 m, so this
includes a margin.

Maximum turning angle Omax 30° Estimated value, but agrees well

with .

FOI-R--1383--SE 40

d+>D AND

"HighSpeed” | Straightahead | d-<D [~ 77" ‘

sTAND sTiLL = ¢ . T === STAND STILL '
‘

towards target

d T>DAND NOT "HighSpeed"

Target in FL r Target in FR
Target Target id '
ANALOGOUSLY | NL in NR Reverse left outside | Eorward right
,,,,,,,,,,,, turn - : turn
I ! ¥ outside
| START |
ANALOGOUSLY “-- -4~ Reverse left
dT <D0 turn target straight target straight
outside ahead ahead
OR done out- target straight
side ahead
Straight ahead
10m
y y

Straight ahead -
towards target

"HighSpeed" means that v>V, AND the target is
T located within an anglea from the forward direction.

Figure 5.7: State diagram for the car controller, where the left part is omitted as it is
analogous to the right side. The zones are named according to Figure [5.5], dr is the
distance to the target and D is the distance “close enough” to the goal. Dashed boxes
are references to another state, repeated for clarity. The speed v refers to the speed
used for minimum-radius turns. The condition “outside” means that the predicted
position of the car is outside the Voronoi region.

5.6 Results

We have simulated three scenarios in the world described in Section B.5F First we
tried letting one single car start at position A and drive to the goal, then we started a
group of ten cars at A to see how they coped with the obstacles and finally we started
a group of 20 cars at B to study formation stability.

The single car reached the goal in 1 min 13 s. When turning the corners of the
obstacles it slowed down to the curve speed v¢, which delayed the driving considerably
but increased safety. It hit the target head on, without any need to make additional
corrections before coming to a complete stop.

The group of ten cars also arrived safely at the goal, and reached the configuration
depicted in Figure after 2 min 45 s. There was a tendency of the cars blocking
each other when driving onto the narrow bridge at C, but it never led to a locking
situation with all cars standing still. There were no collisions even at the start, when
the cars were lined up only ten metres from each other. The small-scale behaviour
of the controller worked well, carefully backing or turning away from the others. We
tried starting the group from different positions around the world and the obstacle
avoidance worked well, except for some rare cases when the cars stood still for a long
time waiting for their “turn” to pass a narrow bridge. When standing still the cars
slide slowly to the side due to imperfections in the simulation engine, and this could
lead to tipping over the edge into a ditch. This sliding mechanism has, on the other
hand, also resolved some locking situations when several cars have blocked each other
at narrow entrances.

When simulating the group of 20 cars, the computer could not run the simulation

41 FOI-R--1383--SE

Figure 5.8: A map of the simulated world that measures 2 x 2 km? . The black areas
are obstacles in the shape of ditches. The goal is indicated, as well as starting points
A and B and the entrance of a narrow passage at C.

in real time due to the increased processing load. In a physical, truly distributed
implementation this would not be a problem, as the only added complexity for the
individual agent is that of computing more boundaries for the Voronoi region. It was
discovered that the stability of the formations depended on the replanning interval ¢,
of the algorithm. Long intervals gave the cars time to reach their targets between every
iteration, so the algorithm worked much like in the simplified Matlab environment.
As can be seen in Figure [5.10], the cars do not form a truly hexagonal lattice but
stay well collected. The reasons that they do not form a lattice are probably that
the surface is uneven, which acts as a disturbance, and that robots on the side of the
formation tend to zig-zag ahead as described in section B.6] When the replanning
interval was shortened the cars rarely made it to their targets. This smoothed the
motion since they did not stop, but it disturbed the formations much like the case
described in section [4.1], as the cars did not really go to the centroids of their Voronoi
regions.

Figure 5.9: A screenshot from the simulation program showing ten cars at the goal,
marked by a tree.

Figure 5.10: A screenshot from the simulation program, showing twenty cars moving
in a loose formation. The goal is located outside the picture, far up to the left.

6. Sensor deployment

The preceding sections have described an algorithm for moving a flock of robots from
arbitrary starting points to a goal, using sensors mainly as a means of detecting
obstacles or other robots. We now study how to use the sensors to detect an external
event, once the group has reached the goal area. A simple way of switching from
navigation to a sensor-coverage strategy is presented and this can be done in the
same algorithm framework as described above.

This is a useful approach for military applications, where the most popular use
for mobile robots so far is as sensor platforms. Robots can be sent into dangerous
areas, they can stay inactive and wait for very long periods of time without any
need for supplies and UAVs can be made much smaller and thus stealthier than
manned aircraft containing support systems for the pilot. As the costs for the needed
hardware decrease even further, small robots can be used in masses for missions that
were earlier too unimportant or unqualified for military personnel. An example of
this is given by Rybski et al., [16], who describe a system of rovers. They are larger
robots that carry small scouts that can be launched in areas of interest. The scouts
can roll or jump with limited control and are equipped with sensors and radio links
to relay sensor data to the rover.

6.1 Sensor types

There are many sensor types that can be of interest in military applications, such as:

e Cameras, working in the infrared or visible spectrum. The images can be fully
or partially processed by the robot or simply fed to an operator that does the
interpretation. An example of partial processing can be detecting motion or
tank-like objects in the image and then alerting an operator, which reduces the
workload of the operator in case of a large amount of sensors.

e Artificial noses sniffing for explosives, even those who are contained in under-
ground mines. [17]

e Down-looking radar, used for minesweeping.

e Microphones, listening for the sound of artillery firing. The location of the firing
unit can then be determined by solving for the time of arrival of the sound wave
to different robots.

e Antennas, used both to detect and possibly record enemy radio traffic and also
for locating the transmitter.

e The robot itself can be used as a “sensor” for brute minesweeping. The operator
simply drives along a desired path to see if the robot triggers a mine.

The behaviour of the individual robot as well as the flock has to be adapted
to the type of sensor used. Artificial noses and down-looking radar have a limited
footprint, so the robots need to sweep the area of interest. Others are non-isotropic,
such as cameras or directional microphones, and thus require that the direction of

43

FOI-R--1383--SE 44

the robot is controlled as well as the position. There is also a class of sensors used
for triangulation, be it with antennas or microphones. The positions of the sensors
then have to be chosen not only with respect to the distance to the transmitter but
also the angle to get good resolution in the estimated transmitter position. In the
next section we will describe how our algorithm can easily be modified to maximize
the combined sensing performance of the whole group for a class of isotropic sensors.

6.2 Switching from navigation to sensing

The algoritm described in section [3.5] is largely based on the coverage control al-
gorithm suggested by Cortés et al., [3]. They consider isotropic sensors working in
an environment where a detectable event can occur with a given probability density.
They formulate a cost function for the sensor performance of the whole group and
show that it is minimized by a gradient descent control law. We replace the probab-
ility density with a navigation function to get goal convergence, but one can easily
switch to a sensing behaviour by just going back to using the probability density. The
mirror neighbor mechanism must be inhibited, but the framework of the algorithm
remains the same.

To test this we introduced an Area of Deployment (AoD), a circle with radius
Raop centered at the goal. In this area we assumed a simple probability density

b(q) = e~la—dc1*

where gg is the goal point. When the robots have entered the AoD they switch to
the following algorithm:

1. Calculate Vj from the position of the neighboring vehicles.

2. Calculate Cy according to (3.1), with ¢(q) = e 119-9%I" and V = v n
{a:lg —pll < Rmax}-

3. Calculate pgq from the following optimization problem:

Héin (pa — Cv)3, (6.1)
d
s.t. pd € Vj, (6.2)

l[pd — pl| < Rmax/2.

If there is no feasible solution, set py = pj.

4. Apply the control uj = pg — pj and repeat from the top.

The above algorithm can be modified to include obstacle avoidance, but we chose
to require that the AoD is chosen by the operator to be an obstacle-free area. The
reason for this is that otherwise the robots could get caught in non convex obstacles,
since the gradient of the probability distribution does not “flow around” obstacles
like the NF. Constraints f still guarantee safety from inter-robot collisions,
though. A simulation, using the same obstacles as in Figure [£.1], with the goal at the
coordinates (17,27) and Raop = 3 showed the result illustrated in Figure

30

25

O 1 1 1)
0 5 10 15 20

Figure 6.1: A group of 20 agents moving around irregular obstacles and then switching
to a sensing behaviour in the Area of Deployment around the goal, marked by an x.
The agents are depicted by dots for the first and third snapshot and stars for the
second. The parameters are Rmax =3,d =1, kg =1 and Raep = 3.

7. Conclusions

This report presents a new algorithm for navigating groups of robots from one place
to another without colliding with each other or obstacles, regardless of their shape.
When the robots are moving in open fields they stay together in a formation that
facilitates inter-robot communication and provides good overview for an operator.
We use navigation functions to find the shortest unobstructed path to the goal and
the centroids of Voronoi regions to avoid collisions while still inducing motion towards
the goal. Finally we have added the concept of mirror neighbors, which keeps the
flock together and produces formations in open fields. Simulations have shown that
the algorithm performs well and we have been able to prove that there will be no
collisions. It provides a clear order of priority between the different requirements,
where safety has precedence over goal convergence, which in turn is more important
than formation keeping.

The algorithm has the advantage of being decentralized, meaning that every robot
needs only information about its closest surroundings and there is no central coordin-
ator. The computational demands are almost unaffected by the number of particip-
ating robots, which makes the algorithm suitable for scaling to large groups. Finally
one can easily switch from navigation to sensing behaviour within the framework of
the algorithm by just replacing the navigation function by a probability distribution
of the event that is to be detected.

If the algorithm is to be used for controlling underwater vehicles or other kinds of
robots that can move in three dimensions, it can be extended to allow for that. All
components, such as the navigation function, Voronoi regions, centroids and mirror
neighbors can be generalized to higher dimensions in a straightforward manner. As
the algorithm is designed for a kinematic robot model (that can assume any velocity
without limitations in acceleration), it is not suited for controlling vehicles such as
UAVs. As was the case for the cars in Fenix, this requires a lower-level controller that
steers the robots between the waypoints generated by our algorithm. This lower-level
controller also has to handle situations when the waypoint is not moving, which could
prove difficult in the case of an aircraft.

7.1 Suggestions for future work

Ideas for future work can roughly be divided into two categories: studying and improv-
ing the navigation algorithm and adding more behaviours when the group switches
to sensing in the target area.

Concerning the navigation algorithm, we still have no complete proofs of formation
stability. Formally, the question could be stated as: Under what conditions will a
flock of robots following the proposed algorithm form a hexagonal lattice formation
when moving over an open field where the navigation function forms a plane? And
will that formation be stable? To avoid dead-locks, it would also be of interest to
modify the algorithm to allow the robots to give way based on some criterion. This
could simply be the ID of each robot, as explained in Section [3.6.1], who has the
lowest N F value or maybe a reaction-diffusion system as described in [18]. To further
reduce the problem of crowding around bottlenecks, the preferred distance d could be
adapted according to the speed of the robot or the whole group. When going fast,

47

FOI-R--1383--SE 48

they could maintain large distances, while in narrow spaces it would be acceptable
to go closer. The distance d could also be controlled by an operator, who switches
the value depending on the terrain and threat level. While navigating, there could
also be “fuzzy” obstacles, such as enemy sites or other places associated with a cost,
rather than physical obstacles. Maybe one can add some scalar penalty function to
the NF before calculating the centroids, so as to make the robots reluctant to go
close to that point.

‘When the robots reach the goal area and switch to a sensing behaviour, it would be
of interest to expand the proposed sensor-placement strategy to allow for non-isotropic
sensors or triangulation tasks. The robots could form a giant antenna array, either
for localizing a jammer or avoid it or for transmitting home despite heavy jamming.
Maybe an antenna array can be formed iteratively by the robots moving around while
transmitting, until the resulting radiation pattern has the desired form?

Finally one could imagine that the probability density function (PDF) mentioned
in section [6] is dynamically updated according to sensor data. A discovered event
(e.g. an enemy vehicle) can generate a narrow peak in the PDF, which will attract
the robot whose Voronoi region it belongs to. No other robots will be affected by
it. If the single pursuing robot loses contact with the event, its position is predicted,
with an added uncertainty. In lack of new sensor readings the peak in the PDF is
gradually smoothed and when the pursuer cannot cover all of it due to the limited
sensor radius, more robots will be attracted and will help in reaquiring the event.
If the event is discovered again, the peak is narrowed again and the closest robot
takes over the pursuit. Such a sequence of detection, prediction and reaquisition is
illustrated in Figure

5 5 5
4 4 4
3 3 3
LL LL LL
= o a
a8 o o
2 2 2
1 1 1
0 0 0
0 500 1000 0 500 1000 0 500 1000
(m] [m] (m]
D E F
5 5 5
4 4 4
3 3 3
L LL LL
a S a
o o o
2 2 2
1 /\) /M\ 1 /\
0 0 0
0 500 1000 0 500 1000 0 500 1000
[m] [m] [m]

Figure 7.1: A sequence showing in one dimension how the PDF is dynamically up-
dated to reflect the sensor data. Figure A shows the PDF before the robots have
detected anything. They will distribute evenly around the peak at x = 700m. In B,
a robot has detected a target, which generates a peak in the PDF. If there are no
more indications, the peak is moved according to the estimated velocity of the target
and widened to represent the increasing uncertainty of its position. This is depicted
in Figures C-E. Finally, a robot detects the target again in Figure F, which leads to
a new peak in the PDF.

Bibliography

1]

[10]

[11]

[12]

[13]

[14]

M. Lindhé, P. Ogren and K-H. Johansson. Flocking with obstacle avoidance using
methods from coverage control. Presented at the Reglermdte 2004 at Chalmers
University of Technology, Sweden, May 26-27, 2004.

P. Ogren and N. E. Leonard. A Convergent Dynamic Window Approach to
Obstacle Avoidance. To appear in IEEE Transactions on Robotics and Auto-
mation.

J. Cortés, S. Martinez, T. Karatas, F. Bullo. Coverage Control for Mobile Sensing
Networks. Accepted for publication in IEEE Trans. on Robotics and Automation.

J. L. Fuller. Robotics: Introduction, Programming, and Projects. Prentice Hall,
1999.

Ny Teknik. “Arméns nya robotbil kor Okenrally”.
http:/ /www.nyteknik.se/art /27529, last visited on 2004-03-15.

C. R. Weisbin, J. Blitch, D. Lavery, E. Krotkov, C. Shoemaker, L. Matthies and
G. Rodriguez. Miniature Robots for Space and Military Missions. IEEE Robotics
& Automation Magazine, vol. 6, no. 3, pp. 9-18, 1999.

N. Tomatis, I. Nourbakhsh, K. Arras, R. Siegwart. A Hybrid Approach for Ro-
bust and Precise Mobile Robot Navigation with Compact Environment Modeling.
Proceedings of the 2001 IEEE International Conference on Robotics & Automa-
tion, Seoul, Korea, May 21-26, 2001.

R. G. Brown and P. Y. C. Hwang. Introduction to random signals and applied
Kalman filtering. John Wiley & Sons, 1992.

Datasheet for the Lassen LP GPS receiver module, from Trimble Navigation
Limited. http://www.trimble.com/lassenlp.html, last visited on 2004-05-24.

Datasheet for the Trimble 5800 RTK GPS surveying system, from Trimble Nav-
igation Limited. http://www.trimble.com/5800.html, last visited on 2004-05-24.

R. C. Arkin. Behavior-Based Robotics. Massachusetts Institute of Technology,
1998.

Y. Uny Cao, A. S. Fukunaga and A. B. Kahng. Cooperative Mobile Robotics:
Antecedents and Directions. Published in Autonomous Robots, volume 4, issue
1, 1997.

E. Rimon and D. Koditschek. Exact Robot Navigation Using Artificial Potential
Functions. IEEE Transactions on Robotics and Automation. pp. 501-518, Vol. 8,
No. 5, October 1992.

J. Hall. A Fast Algorithm for Calculating Shading and Visibility in a
Two-Dimensional Field. http://www.cs.pdz.edu/ idr/graphics/los.html, last vis-
ited on 2004-03-11.

o1

FOI-R--1383--SE 52

[15] D. Anisi Optimal Motion Control of a Ground Vehicle. Master Thesis Re-
port at the Swedish Defence Research Agency, July 2003. (Report number
FOI-R-0961-SE)

[16] P. E. Rybski, N. P. Papanikolopoulos, S. A. Stoeter, D. G. Krantz, K. B. Yesin,
M. Gini, R. Voyles, D. F. Hougen, B. Nelson and M. D. Erickson. Enlisting
rangers and scouts for reconnaissance and surveillance. IEEE Robotics € Auto-
mation Magazine, vol. 7, no. 4, pp. 14-24, 2000.

[17] Information on the research on artificial noses
by the Walt Group at Tufts University, MA.
http://ase.tufts.edu/chemistry/walt /research/projects/ExplosivesDetectionPage.htm.,
last visited on 2004-05-28.

[18] Y. Ikemoto, Y. Hasegawa, T. Fukuda and K. Matsuda. Zipping, Weaving : Con-
trol of Vehicle Group Behavior in Non-signalized Intersection. Proceedings of the
2004 IEEE International Conference on Robotics € Automation, New Orleans,
LA, April 2004,

	Introduction
	Problem definition
	Report outline
	Reader's guide

	Background
	Motivation for robotics
	Challenges in mobile robotics
	Actuators
	Positioning
	Control and processing
	Communication

	Autonomous navigation
	Multi-robot cooperation and formations

	Flocking with obstacle avoidance
	Earlier approaches
	Combining coverage control and navigation functions
	Coverage control
	Navigation functions
	Proposed algorithm
	Properties of the algorithm
	Dead-locks

	Simulation in Matlab
	Results
	Implementational aspects
	Numerical integration
	Line of sight
	Finding the optimal step

	Practical experiences
	Trimming the integration regions to a convex shape
	Voronoi regions in vertex form

	Implementation in Fenix
	System overview
	Implementational issues
	Software structure
	Robot dynamics and controller
	Values used for the simulations
	Results

	Sensor deployment
	Sensor types
	Switching from navigation to sensing

	Conclusions
	Suggestions for future work

	Bibliography

