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1. Introduction 
With the shift of the perceived nuclear, biological and chemical warfare (NBC) threat from 
large-scale actions to terrorist actions in urban areas, the demand for detailed simulations of 
releases and dispersion in complex geometries has attained a much higher priority. 
Contaminant Transport (CT) analysis treats air- borne pollutants released in industrial 
accidents, smoke, as well as chemical/biological/radiological agents released in war situations 
or terrorist attacks. This is now a pressing international problem. A realistic CFD- based 
plume prediction model of CT in urban areas can be used to address: 
 
� sensor placement and threat analysis; 
� contaminant release from targets, e.g., bunkers; 
� CT effects on surrounding civilian population, e.g., dosages indoors and outdoors; 
� contaminant release from missile intercepts; 
� base protection against terrorist attacks, e.g., evacuation, shelter-in-place, and 
    performance degradation; 
� education and training of rescue teams and services. 
� pyroclastic flows, e.g., visibility; 
� in situ mitigation of contaminants, e.g., destroying a contaminant while airborne near 
    the source, and assessing the effectiveness of mitigation strategies; 
 
The combination of very complex geometries with unsteady buoyant and stratified flow 
physics make whole-domain scalable field studies needed to guide and test model 
developments complicated and computationally expensive. Simulations of the dispersion of 
airborne pollutants in urban scale scenarios must predict both the flow conditions as well as 
the associated behavior of the pollutants, which may be gases, liquids or solids. Relevant 
physical processes to be modeled include: capturing complex vortex shedding and 
recirculation behind buildings as well as the associated subgrid scale (SGS) stochastic 
backscatter; producing a consistent, stratified urban boundary layer; generating realistic wind 
fluctuations; and additional deposition and resuspension of selected contaminants. 
 
Here is presented an initiative to extend the capabilities and the understanding of the processes 
that are related to urban dispersion. The results can then be used developing simpler models 
and templates.  
Chapter 2 gives an introduction to CFD in general with a presentation of the numerical model. 
The ability of the model to handle the increase in complexity from a smooth surface to urban 
geometry is studied by first evaluating a simulation of a channel flow in chapter 3. A 
validation study on a surface mounted cube then follows in chapter 4. Finally an application 
study on flow within an urban geometry is presented in chapter 5.  
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2. LES model 
2.1. Introduction 
Computational Fluid Dynamics (CFD) can be viewed as the use of computers to predict fluid 
flow, in contrast to analytical and experimental methods which also frequently are used to 
study fluid mechanics. CFD is commonly accomplished by numerical solution of the Navier 
Stokes Equations (NSE), which are the governing equations of fluid flow, [1]. Numerical 
solution is the only practical way of solving these equations due to their intrinsic non-linearity 
and corresponding extensive range of eddy scales. The ratio of the largest eddies (with a size 
of λI) to the smallest Kolmogorov eddies (with size λK) can be related to the Reynolds number 
Re=UL/ν, where U is a characteristic velocity, L a characteristic length and ν the viscosity, i.e. 
the ratio of inertial to viscous forces, as λ I/λ K=Re3/ 4 . This implies that the degrees of freedom 
(or number of grid points) required in a Direct Numerical Simulation (DNS), in which all 
scales are resolved, scale as Re9/4. For high Re-numbers, present-day computers are not 
powerful enough to handle such problems and therefore alternative methods have to be 
devised for turbulent flow simulations. However, with the constant improvement in computing 
power available CFD has been used more and more in research and in industry, to enhance 
understanding of fluid dynamics and as part of the design process. The sort of simulations 
which ten years ago would have required an expensive parallel computer or a vector machine 
can now be carried out on rather inexpensive desktop machines. This increase in available 
power has lead to an increasing interest in more advanced CFD methods and to the desire to 
study even more complex problems such as combustion, magneto-hydrodynamics and free 
surface flows. CFD has already made a profound impact on industrial R&D, in areas such as 
automotive industry, engine design, ship hydrodynamics and aerospace. However, the ranges 
of problems that can be solved are limited by the turbulence treatment currently used. 
All turbulence modelling methods start by distinguishing between a ‘mean’ component of the 
flow and a ‘fluctuating’ component which is associated with the turbulence, [2]. In the 
commonly-used Reynolds Averaged Navier Stokes (RANS) methods, [3], the starting point is 
an ensemble average of the flow (sometimes time-averaging or averaging over homogeneous 
directions are used instead) to generate the RANS equations. These are then explicitly solved, 
together with models for the fluctuating, turbulent component. In Large Eddy Simulation 
(LES) methods, [4-7], an explicit or implicit spatial filtering operation is applied to separate 
the large-scale resolvable flow component (corresponding to the ‘mean’ component) and the 
small-scale component. Applying this filtering operation to the NSE provides a set of 
equations of the large scale flow, together with small scale components which effects on the 
large scale flow has to be modelled separately. Since the width of the filter is usually based on 
the computational grid spacing, the components are referred to as Grid Scale (GS) and Sub 
Grid Scale (SGS) components. Splitting the flow in this way based on a length scale means 
that some parts of the turbulence – the large eddies – are being simulated explicitly. Since 
turbulence is a stochastic, or almost stochastic, process, this means that the simulation must be 
time-dependent, and since turbulence is inherently three-dimensional, the simulation must also 
be three-dimensional. For turbulent flows where the mean flow is stationary or two-
dimensional, RANS methods are considerably cheaper. However, many important and in-
teresting flows do not fall into any of these categories in which case LES become competitive. 
LES hold the promise of providing more information about the flow, since LES inherently 
simulates the dynamics of the large-scale flow, including parts of the intermediate scale 
turbulence. LES is also potentially more accurate, [7] since the LES-equations being solved 
are closer in form to the NSE, which they reduce to when the mesh is refined, which is not the 
case for RANS, [8]. LES methods as applied to simple flows are now fairly well understood – 
to quote Spalart: “Away from boundaries and without chemistry, Large Eddy Simulation 
(LES) appears well understood, and in the authors opinion there is little to gain by refining the 
SGS model (Fureby et al 1997)”, [9]. The boundaries, however, themselves remain a 
stumbling block, [10]. 
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2.2. Large Eddy Simulation Models 
Here we outline the classical LES formulation, give a few examples of alternative 
formulations and finish with a discussion of the near-wall complication. 
 
2.2.1. Mathematical Formulation 
In LES the flow variables are decomposed into large- scale components (denoted by overbars) 
and small-scale (subgrid) components (denoted by primes) by applying a filtering1 operation, 
 

f (x,t)=G∗f(x, t)= G(x−z,∆)f(z,t)D∫ d3z,   (1) 

 

where G is the filter function and ∆ the filter width. Applying the filtering operation to the 
NSE yields, 
 

∇⋅v =mρ ,
∂ t (v )+∇⋅(v ⊗v )=−∇p +∇⋅S −∇⋅B+mv,

 
 
 

  (2) 

 

where v  is the velocity, p  the pressure, S =2νD  the viscous stress tensor, D =1
2(L +L T ) the 

rate-of-strain tensor, L =∇v  the velocity gradient tensor, and ν the viscosity. Specific to the 
LES model (2) are the subgrid stress tensor B=v⊗v−v ⊗v  and the commutation errors are 
mρ=[G∗,∇]v  and mv=[G∗,∇](v⊗v+pI−S) , where [G∗,∇]f=∇f−∇f  is the commutation 
operator, [12-13]. Only the resolved scales are thus retained in LES whereas the subgrid scale 
flow physics is grouped into B, which has to be modelled using a functional expression of the 
type B(x,t)=B[v ( ′ x , ′ t );x,t]. Physical arguments and mathematical analysis, e.g. [13-15], sug-
gest that: (i) B is invariant under a change of frame; (ii) B is positive definite symmetric, pro-
vided that G(x,∆) is symmetric; and (iii) that the inequalities k=1

2trB≥0 , k2 ≥||B||2  and detB≥0 
must be satisfied for B to be positive definite. Furthermore, the commutation error terms, mρ 
and mv, reflect the fact that filtering and differentiation do not generally commute, [13, 16]. 
The effects of mρ and mv on the resolved flow are not yet fully understood and must be further 
examined, [16], and in the meantime, these terms are usually grouped into the subgrid stress 
tensor B that is subject to modelling. 
 
2.2.2. Subgrid Modelling     
We usually separate between Functional modelling, which consists of modelling the action of 
the subgrid scales on the resolved scales, and Structural modelling, which consists of mod-
elling the subgrid stresses without incorporating any knowledge about the interactions between 
the subgrid and the resolved scales, [6]. However, for the purpose of this paper we prefer to 
instead separate between isotropic and anisotropic subgrid models since high Re-number 
complex flows often are characterized by anisotropic flow on a wide range of scales – 
typically reaching into the range of scales that require modelling, as e.g. in the near-wall 
region. The most frequently used subgrid models belong to the first category, viz., 
 

,   ,2 2
1

3
2 BDIBB trkk kD =−=−= ν   (3) 

 

                                                  
1 The filtering function is an operator that returns the filtered field and additionally sub grid scale terms that needs 
to be modelled as they are unknown quantities. 
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where νk is the (scalar) subgrid eddy-viscosity. To close (3) we need models for the eddy-
viscosity νk and the turbulent kinetic energy k, and for this we assume the existence of typical 
length and velocity scales and we infer separation between resolved and subgrid scales. 
Among these we have the One-Equation-Eddy-Viscosity Model (OEEVM), [17], 

 

∂ t (k)+∇⋅(kv)=2νk ||D ||2 +∇⋅((ν+νk )∇k)+cε
k3/2

∆ ,
νk =ck∆k1/ 2,

 (4) 

 

and the Smagorinsky (SMG) model, [18], 
 

k=cI∆
2 ||D ||2,   νk =cD∆2 ||D ||,   (5) 

 

where the model coefficients (cI, cD, ck and c�) are evaluated either from a |k|-5/3 inertial sub-
range behavior  resulting in constant coefficients, or from a dynamic procedure, producing 
spatio-temporally varying coefficients. Different dynamic calculation methods have been 
suggested, such as the dynamic Smagorinsky Model (DSMG), [19], the One-Equation 
Dynamic Localization Model, (DLM), [20], the Localized Dynamic Kinetic Energy Model 
(LDKM), [21-23], as well as the Lagrangian Dynamic Model (LDM), [24]. 
 For anisotropic flows, with anisotropy extending into the range of subgrid scales, more 
advanced subgrid models are required. Structural models are superior (at least from a theoreti-
cal standpoint) to functional models in such flows since they do not rely on the local isotropy 
assumptions on which the functional models are based. Among the best examples of structural 
models are the Mixed Model (MM) of Bardina et al., [25], 
 

B=v ⊗v −v ⊗v −2νk D ,   (6) 

 

and the Differential Stress Equation Model (DSEM), Deardorff, [26]. The DSEM uses a 
modelled transport equation for the subgrid stress tensor B, 
 

∂ t (B)+∇⋅(B⊗v )=−(L BT +BL T )+∇⋅(νk ∇B)−cm
k1/2

∆ BD + 2
5 kD D +(2

3 cm −cε)
k3/2

∆ I,  (7) 

 

where νk =ck∆k1/ 2  and k= 1
2trB . The model coefficients are estimated from isotropic 

turbulence, and take the values cm=4.13, ck=0.07 and cε=1.35. Anisotropic functional models 
have been developed by Carati & Cabot, [27], and Abba et al., [28], using fourth-rank tensor 
eddy-viscosities, by Horiuti, [29], using multi-level filtering, and by Schumann, [17], and 
Sullivan et al, [30], using a decomposition of B into isotropic and anisotropic components. 
 
2.2.3. Near-Wall Flow Physics and Modelling 
Close to a solid wall, to the leading order in y, being the distance from the wall, the resolvable 
velocity v  can be expanded in a Taylor series of the form, 
 

v =(b 1y)e1 +(c 2 y2 )e2 +(b 3y)e3,   (8) 
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where ei, i=1,2,3, are unit vectors in the streamwise, wall-normal and spanwise directions, and 
b1, c2 and b3 are random functions. Similarly for Bij, 
 

















−
−−
−−−

=
22

3
2
3

3
2323

42
2

2
2

2
2323

3
2121

22
1

2
1

)(
)()(
)()()(

ybbsym
ycbcbycc
ycbcbycbcbybb

Bij  (9) 

 
The LES model is thus required to satisfy not only the boundary condition v =0  but also the 
conditions (9) on B when y→0. Considering the SMG model, (3)-(5), we have that 
∂v 1/∂x2=b 1  and ∂v 3 /∂x2 =b 3  so that B12=−cD∆2 (b 1

2 +b 3
2 )1/ 2 b 1  and unless 2/3y∝∆  incorrect as-

ymptotic behaviour at the wall is obtained. For example, if (3) is to be used, a necessary 
requirement is that k∝y2  and 3yk ∝ν , when y→0, in order for B to comply with (9). Most 
structural models satisfy (9) automatically but many models must be modified to satisfy (9). 
This can be done using: 
Damping functions, D, that act as regularization prefactors to νk, such that νk =Dνk . Typically 

  D=(1−exp(−(βy+ )3))1/ 2 , where y+=u τy/ν  is the viscous length scale, u τ=τw
1/2  the friction velo-

city, τw the wall shear stress and v i
+ =v i /u τ  a non-dimensionalized velocity component; 

Dynamic modelling based on Germanos identity, L=T− ˜ B , [19-20], in which L=v ⊗v −v ⊗v  
and T=v⊗v−v ⊗v . By assuming that B and T can be closed with models of the same functional 
form i.e. B=−2cD∆2||D ||D  and T=−2cD∆ 2||D ||D  we now have that LD=cDX−cDY , where 
X=−2∆2||D ||D  and Y=−2∆ 2||D ||D , respectively. Hence, in the least-squares sence we have 
cD=M⋅L/M⋅M , where M=X−Y .  
Dynamic modelling based on the self-similarity between B and L=v ⊗v −v ⊗v , [21-23]. This 
may be used to evaluate the coefficient ck and cε in the OEEVM (4). Bounds for ck and cε are 
determined from the realizabilty constraints. 
Models for the eddy-viscosity coefficients that include viscous effects, cf. [31]. If the model 
coefficients (cD and ck) are derived from more elaborate versions of the energy spectrum than 
the inertial subrange spectrum E=K0ε

2/3|k|−5/3 , e.g. the Pao spectrum E=exp(− 3
2 K0 (|k|λ K)4/ 3) , it 

is found that these coefficients are not constants but complicated functions of the mesh Re-
number Re∆ =∆2||D ||/ν . This can be interpreted as models with scale-dependent coefficients 
and improves the predictive capabilities for transitional and wall-bounded flows. 
Alternatively we may use wall models. The simplest wall models are based on analytical ex-
pressions for the wall shear stress, τw, and they provide an algebraic relationship between the 
local wall stresses and the tangential velocities at the first off-wall nodes. Such algebraic 
models all imply the logarithmic law of the wall for the mean velocity, which is not generally 
valid in complex flows. The equations governing for the wall-layer can be approximated by, 
 

∂ y(ν(∂ yv i )−Biy )=gi;  gi = ∂ip +∂ tv i + ∂ j (v iv j)− fi ,  (10) 

 

[4]. Assuming that g i=0 the stress ν(∂y v i)−Bi 2  is independent of y, and since Biy=0 on the 
wall (10) can be integrated analytically to give the law-of-the-wall, 
 

v + =
y+    if   y+ ≤y0

+ ,
1
κ ln|y+ |+B   if   y+ >y0

+ ,
 
 
 

  y0
+ ≈11.225,  (11) 
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where κ≈0.41 is the von-Karmán constant and B≈5.2. If g i=∂ip  it is still possible to integrate 
(10) analytically to recover the modified law-of-the-wall, 
 

2

2

02

1
0

+    if   ( , ),

ln | |    if   ( , ).

y
i iu

y
i iu

y p y y u p
v

y p B y y u p

+

τ

+

τ

+ + +
τ

+

+ + +
τκ κ

 ∂ ≤ ∂= 
+ ∂ + > ∂

 (12) 
 

For the full case, ig ( )i t i j i j ip v v v f= ∂ + ∂ + ∂ − , equation (10) has to be solved numerically. 
This approach has successfully been used by Wang, [32] and by Wang & Moin, [33], in which 
(10) is solved on an embedded near-wall grid to determine τw, using a mixing length model. 
Alternatively, (11) or (12) can be used to modify the subgrid model by adding a subgrid wall-
viscosity νBC to the viscosity ν on the wall so that the effective viscosity, ν+νBC, becomes, 
 

ν+νBC =τw /(∂vy /∂y)P =uτyy,P / vy,P
+ ,   (13) 

 

where the superscript P denotes that the quantity is to be evaluated at the first grid point away 
from the wall. This model can, in principle, be combined with any other subgrid model, and in 
the notation +WM is added to the baseline subgrid model name. 
 
2.2.4. Monotone Integrated LES 
In Monotone Integrated LES (MILES) the discretization effectively filters the NSE across the 
grid using an anisotropic kernel. When founding MILES on concepts like the Flux Corrected 
Transport (FCT), [35], the functional reconstruction of the convective fluxes is done using a 
flux-limiting method combining a high-order flux-function with a low-order dispersion-free 
flux-function using a non-linear flux-limiter Γ. Moreover, the functional reconstruction of the 
viscous fluxes is typically performed using linear interpolation. Similar approaches have been 
used by several other authors, [36-40], and are discussed in greater detail in [10], and 
references therein. Physical considerations motivating MILES have been presented in [40], 
and some formal properties were recently documented using databases of free and wall-
bounded flows, [41]. The modified equations provide the most suitable platform for 
comparing MILES and LES and following Fureby & Grinstein, [40], the implicit subgrid 
model is, 
 

B=C(∇v)T +(∇v)CT +β2 (∇v)d⊗(∇v)d,   C=β(v⊗d),  (14) 

 

where d is the inter-cell distance and β=β(Γ). Because of the tensorial nature of the subgrid 
viscosity MILES offers an attractive alternative to conventional subgrid models when seeking 
improved LES for inhomogeneous flows. 
 
 

2.3. Numerics 
The application of LES to engineering problems requires not only good subgrid models and 
fast computers, but also accurate and robust numerical methods. Unstructured grids are 
desirable since the time required for generating unstructured grids is usually considerably 
lower than for block-structured grids. To this end the Finite Volume (FV) method is 
appropriate. However, non-dissipative schemes that conserve not only momentum but also 
kinetic energy are required for successful LES computations. Discrete conservation of kinetic 
energy ensures robustness without numerical dissipation, which compromises accuracy. 
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 In the FV-method, the domain D is partitioned into non-overlapping cells ΩP. The cell-
average of the field f over the Pth cell is fP= 1

δV fΩ∫ dV so that Gauss theorem may be used to 
formulate the semi-discretized LES-equations. By integrating these in time, using e.g. a multi-
step method, [42], the discretized LES-equations (i.e. equations (2) and (18)) become, 
 

β i∆t
δVP

[Ff
C,ρ]n+i

f∑ =0,
(αi (v )P

n+i + β i∆ t
δVP

[Ff
C,v +Ff

D ,v ]n+i
f∑ )i=0

m∑ =−βi (∇p )P
n+i ∆t +βif P

n+ i∆t,

 
 
 

 (15) 

 

where m, αi and βi are parameters of the scheme, whereas Ff
C,v=(v ⋅dA) f v f , Ff

C,ρ=(v ⋅dA)f  and 
Ff

D,v =(ν∇v −B)f dA  are the convective and viscous fluxes. In order to obtain 2nd order accu-
racy, a cell-centered scheme is used, utilizing linear interpolation for the convective fluxes and 
central difference approximations for the gradients in the viscous fluxes. Conservation of 
kinetic energy is automatically satisfied. Time-integration is carried out by a three-point 
scheme defined by m=2, α0=1/2, α1=–2, α2=3/2, β0=β1=0 and β2=1, and hence, 
 

aP(v )P
n+2 =H(v )−(∇p )P

n+2 +(f )P
n+2 ,

H(v )= aN (N∑ v )N
n+2 + 1

2∆t (v )P
n − 2

∆t (v )P
n+1,

 
 
 

 (16) 

 

where the coefficients aP and aN are functions of the dependent variables. By combining (151) 
and (152), we obtain the Poisson equation, 

 

∇⋅(aP
−1(∇p )n+2 )= (aP

−1[H(v )+(f )P
n+2 ])f ⋅dAf∑ (17) 

 

where the Laplace operator is discretized in a standard manner and Ff
C,ρ  is evaluated from the 

interpolated velocity field v f
n+2 =(aP

−1[H(v )−(∇p )P
n+2 +f P

n+2 ])f . The scalar equations are usually 
solved sequentially, with iteration over the explicit source terms to obtain rapid convergence, 
with the additional requirement that the Courant number Co<0.4. 
 While tetrahedral cells allow complex geometries to be easily meshed, they are not 
well suited for turbulent flows – our experience shows that hexahedral cells are preferable 
since they give more accurate solutions. The grid may hence be a combination of arbitrary 
polyhedral cells, with mainly hexahedral cells but using e.g. tetrahedral cells in regions that 
are difficult to mesh with ordinary hexahedral cells. 
 

3. Flow without any blocking obstacles 
3.1. Fully Developed Turbulent Channel Flow 
The first test case to be discussed is a fully developed turbulent channel flow at (bulk-) Re-
numbers between 15,000 and 800,000. The channel is confined between two perfectly smooth 
parallel plates 2h apart, where h is the channel half-width. The flow is driven by a fixed mass 
flow in the streamwise (ex) direction defining the mean velocity 〈v 〉 . No-slip conditions are 
used in the cross-stream (ey) direction and periodic conditions are used in the spanwise (ez) 
direction. As initial conditions a parabolic velocity distribution is used. After reaching a statis-
tically steady state the runs were continued for another 40·h/uτ time-units to collect appropriate 
statistics. The friction velocity is u τ=τw

1/2  and τw is the wall-shear stress. The size of the 
channel is 6h×2h×3h in the streamwise, cross-stream and spanwise directions, respectively. 
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Instead of varying the grid we vary the mass flow to obtain three target Re-numbers: Reτ=395, 
2030 and 10,000, of which the first correspond to the DNS data, [43-44], and the second to the 
experimental data, [45]. The grid consists of 603 cells with uniform spacing in the stream- and 
spanwise directions whereas geometrical progression is used in the ey direction to cluster the 
grid towards the walls. Runs and nominal parameters are collected in Tables 1 and 2, 
respectively. 
 
Table 1. Channel flow grids. 

Re ∆x1
+ min(∆x2

+) ∆x3
+ 

395 40 0.3 20 
2030 200 2 100 
10,000 1000 11 500 

 
 
 

Table 2. Nominal parameters of the channel flow runs 
Run Re Grid Subgrid model Cf 
Dean [53] 395  — 0.00655 
I 403 603 OEEVM 0.00648 
II 402  OEEVM+WM 0.00653 
III 399  LDKM 0.00654 
IV 405  MILES 0.0065 
V 404  DES 0.0061 
VI 404  HOM 0.00647 
Dean [53] 2030   0.00435 
VII 2036 603 OEEVM 0.00421 
VIII 2046  OEEVM+WM 0.00439 
IX 2049  LDKM 0.00436 
X 2021  MILES 0.0433 
XI 2054  DES 0.0423 
Dean [53] 10000   0.00253 
XII 10087 603 OEEVM 0.00212 
XIII 10076  OEEVM+WM 0.00238 
XIV 10054  LDKM 0.00244 
XV 10065  MILES 0.00259 
XVI 10034  DES 0.00261 

 
In Figure 1 are shown the main flow features of the channel flow in terms of vortex lines, 
contours of 〈v x 〉  and iso-surfaces of the second invariant of the velocity gradient 
Q=1

2(||W||2−||D||2 ) . The location of a vortex line is given by the equation dx/ds=ω|/|ω |, where s 
is the distance along the vortex line. This equation is integrated using a 3rd order Runge-Kutta 
method together with a 2nd order linear interpolation scheme to compute ω  from the grid 
points. By correlating iso-surfaces of Q with v  close to the wall it is found that vortices above 
the low-speed streaks are often ejected away from the wall, as found in experiments and LES 
and DNS, producing hairpin vortices stretched by the ambient shear. By this mechanism 
vorticity produced in the viscous region is advected into the boundary layer, making it 
turbulent. As in DNS and other LES the hairpin vortices are often asymmetric – with one leg 
stronger than the other. The spanwise resolution is found more important for the accurate 
prediction of the coherent structure dynamics than the streamwise resolution. The wall-normal 
resolution is critical for the correct prediction of τw, which, in turn, is important for making 
correct estimates of the drag. 
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(a) (b) 

 

Figure 1. Perspectives of fully developed turbulent channel flow simulations at (a) Reτ=395 
and (b) Reτ=10000. Both datasets presented are obtained with the LDKM. 
 
In Figure 2 we compare our LES predictions of the time-averaged streamwise velocity 〈v x 〉  
(integrated over x and z) with the DNS data, [45], experimental data, [45], and analytical ex-
pressions. In Figure 2a we plot 〈v x 〉/u τ  against y/h from the wall, whereas in Figure 2b we 
plot 〈v x 〉/u τ  against y+=yu τ/ν . For Rτ=395 all LES models examined (cf. Table 2) show 
excellent agreement with the DNS data across the entire channel. The integrated difference 
along the cross-stream coordinate, y, is smaller than 2% of the bulk velocity for any model. 
Hence, when the flow is very well resolved the details of the subgrid model are of little 
importance to the resolved flow, since most of the energy (about 98%) and structures are re-
solved on the grid. For Rτ=2030 we still see good agreement between LES and experimental 
data, but with somewhat larger scatter in the LES data. This case is reasonably well resolved, 
with about 90% of the energy belonging to the resolved scales. For Rτ=10,000 we do not have 
any data to compare with, but we may compare (asymptotically) with the lower Reτ-number 
velocity profiles and the log-law. The scatter among the LES models is now larger, and we 
find the best agreement between the log-law and the LES results for DES,( see [10], and 
references therein), and LDKM followed, in turn, by MILES, OEEVM+WM and OEEVM. 
The DES model is successful since the Spalart-Allmares model works for zero pressure-
gradient boundary-layers, [34]. The LDKM is successful since νk responds to the 
accumulation of energy in the small scales by adjusting the dissipation before it contaminates 
the resolved scales. MILES performs since it mimics the anisotropies of the resolved flow, 
[40]. OEEVM+WM works since the channel flow is dominated by two boundary layers, for 
which the wall model is tailor-made, but the OEEVM appears unable to capture the near-wall 
boundary layer very well. 
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Figure 2. Time-averaged streamwise velocity profiles. (a) in linear scaling and (b) in 
logarithmic scaling for fully developed turbulent channel flows at Reτ=395, 2030 and 10,000. 
 
In Figure 3 we compare LES predictions of the resolved kinetic energy k=1

2〈 ′ v i
2 〉 , where 

′ v =v −〈v 〉  are the velocity fluctuations, (integrated over x and z) with experimental data, [48], 
DNS data, [45]. For Rτ=395 very good agreement with the DNS results is obtained across the 
entire channel for any LES model. For Rτ=2030 the agreement between LES and data is only 
fair; best agreement is obtained with the LDKM and worst agreement is obtained with the 
DES model. The trend is that the predicted profiles are wider than the measured profiles, and 
that the LES models cannot capture the peak in k, at about y+≈15, but overpredicts it by about 
15%. For Rτ=10,000 the scatter between the LES predictions is wider. 
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Figure 3. Turbulent kinetic energy, k, profiles for fully developed turbulent channel flows at 
Reτ=395, 2030 and 10,000. 
 
In Figure 4 we compare LES predictions of the resolvable shear stress R xy=〈 ′ v x ′ v y 〉 , with ex-
perimental data, [43], and DNS data, [45], for the total shear stress Rxy=〈 ′ v x ′ v y 〉 . Both Rxy-
profiles are bounded by Rxy=u τ

2y/h , which constitute an upper bound for Rxy. For Rτ=395 
excellent agreement with the DNS results is obtained between 0.3<y/h<1, and between 
0<y/h<0.3 R xy<Rxy, as a consequence of the action of the subgrid model, that covers almost 
80% of this difference. For Rτ= 2030 and Rτ=10,000 similar results are observed, but since Rxy 
is expected to follow Rxy=u τ

2y/h  asymptotically with increasing Reτ-number, the fraction of 
Rxy to be covered by the subgrid model is increasing, thus putting larger demands on the 
subgrid model. The only exception from the general behaviour is the DES model, which 
however gives good predictions for other quantities examined. At present we do not know the 
cause of these anomalities. 

 

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

R
xy

/u
t2

y/h  
 

Figure 4. Reynolds shear stress, Rxy, profiles for fully developed turbulent channel flows at 
Reτ=395, 2030 and 10,000. 
 



FOI-R--1403--SE 
 

17 

3.2. Conclusions 
Comparing statistics from the LES with the correlations of Dean, [48], U C /Um ≈1.28⋅Rem

−0.016  
and Cf ≈0.073⋅Rem

−0.25 , where UC is the mean centerline velocity and Rem =Um 2δ /ν , shows 
good agreement at Reτ=395, but at Reτ=2030 and 10,000 this agreement declines. In general, 
however LDKM, DES and MILES give best agreement. This is related to the resolution; at 
Reτ=395 the mean streak-spacing is well-resolved, whereas for the remaining Reτ it is not. For 
Reτ=2030 and 10,000 the mean streak-spacing seems to be related to the spanwise resolution. 
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4. The Flow around a Surface Mounted Cube 
 

4.1 Introduction 
To validate LES algorithms used for simulation of atmospheric flow and dispersion, at least 
partially, we should make a comparison with laboratory experiments. To validate the flow 
model, we have chosen the Martinuzzi and Tropea experiment on a surface mounted cube in a 
channel [50]. We start, however, with a short review of results on the flow around surface 
mounted cubic obstacles.  

4.2 Review of some earlier results.  
Early experimental results are presented in [48], where two cases are considered. The first one 
is a uniform (except for a boundary layer with height much smaller than the cube height) 
laminar upstream flow, and the second one is a sheared turbulent upstream flow (a simulated 
atmospheric boundary layer). In both cases there are separating shear layers at the leading 
edges of the cube. In the laminar case it was observed that with increasing Reynolds number 
(based on the cube height and the free stream velocity), the shear layer separating from the top 
of the cube moved upwards, caused by the transition point moving closer to the leading edge. 
Beyond a Reynolds number 30 000 the shear layer appeared to be turbulent from the leading 
edge, and no further variations occurred beyond that value.  
The main observation of [48] was that compared to the laminar case, in the turbulent case  the 
separating shear layers reattach to the body surface (probably intermittently), and that the size 
of the wake is significantly reduced. Hence, to predict the extent of the wake it is important to 
have both an accurate upstream mean velocity profile and accurate description of the upstream 
turbulence.  
 
In [49], the flow pattern around a surface mounted cube is investigated, based on oil—film 
visualization experiments and topological considerations, assuming that the average velocity 
field is continuous. This flow pattern is confirmed in [50] where more detailed measurements 
are presented.  
 
 

Figure 5. Average velocity streamline pattern for flow around surface mounted cube, from 
Martinuzzi and Tropea [50], reproduced by permission. The main vortex structures are seen in 
this Figure, the horseshoe vortex, the lateral side and roof vortices and the arch vortex behind 
the cube. The arch vortex, however, is an artifact of the averaging and not clearly seen in the 
instantaneous flow.  
 
The main observed phenomena are the following:  streamwise vortices are generated within 
the shear layer upstream of the cube, and affect the flow near the obstacle, reorganizing the 
recirculation region and influencing the downstream recovery region. The main vortex 
structures are: the horseshoe vortex, the wake vortex and lateral vortices on the top and lateral 

Horseshoe 
vortex 

Arch vortex

Roof vortex

Side vortex 



FOI-R--1403--SE 
 

19 

sides of the cube. The horseshoe vortex system is in the region upstream the wall—obstacle 
junction, is extending over the whole width of the obstacle and deflected downstream. Vertical 
vortices behind the cube entrain the surrounding fluid and convect it along the plane of 
symmetry. Exchange of flow between the separation regions is found, confirming the results 
of Hunt et al.[49], that there are no closed separation bubbles. However, it must be emphasized 
that, as is pointed out in [51], the flow is highly intermittent, especially between the main 
upstream separation line and the time averaged location of the center of the horseshoe vortex. 
Hence the features of the mean flow need not always be present in the instantaneous flow 
field. For example the arch vortex behind the cube is an effect of a quasi-periodic vortex 
shedding from the upstream vertical corners that resembles a von Karman street, i.e., vortices 
formed at each lateral side of the cube, released alternately and periodically. Also, the locus of 
the horseshoe vortex varies considerably in the instantaneous field [52]. It is found in [50] that 
the flow oscillates between roughly two states, characterized by different vortex locations, and 
hence the instantaneous velocity probability density function (PDF) is bimodal. This is 
confirmed in the LES of [52], where it is also observed that the choice of subgrid model 
affects the length of the recirculation zone considerably.  
 

4.3 LES results for the surface mounted cube 
We base our numerical simulation on the Martinuzzi and Tropea [50] experiment. The cube 
has side length H=25[mm], and the locations of measuring points are in Figure 1. The 
streamwise (in the mean flow direction), crosswise (normal to the bottom surface) and 
spanwise (parallel to the bottom surface, perpendicular to the main flow direction) coordinates 
are denoted x, y, z, and the corresponding velocity components are denoted u, v, w.  
 

 
          (a)       (b) 
Figure 6.  Measurement points  a)  close to the cube  and b) over the  whole domain. 
Figures 6 a and b are from the Martinuzzi and Tropea dataset, reproduced by permission. At 
each point a vertical profile consisting of about 30 points is measured. The mean flow 
direction is in the direction of the x-axis.  
 
 
We choose the same computational domain as in [52] and [53], namely –3 < x < 7, 0<y<2, -
3<z<3. Two grids are used, a coarse grid with 83x31x57 cells on the boundary, and a fine grid 
with 100x38x71 cells on the boundary. The total number of cells in the coarse grid is 154809 
and in the fine grid 285050.  
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  (a)        (b) 
Figure 7. a. The computational mesh in streamwise view (a) coarse mesh and (b) fine mesh. 
We see the left half of the cross-section of the mesh, viewed in the downstream direction. The 
mesh is generated from a number of blocks, where in each block the number of cells in each 
direction is specified as well as a clustering factor, the ratio between the thickness of the last 
and the first cell in each direction of the block. Close to walls, the cells are clustered towards 
the walls, to capture the boundary layer.  
 
 

   
 
 
 
    (a)      (b) 
Figure 8. a. The computational mesh in spanwise view (a) coarse mesh and (b) fine mesh. 
Here, we see the mesh cross-section with the center plane, seen from the left side of the 
channel. Cells are clustered towards walls the same way as in the streamwise cross-section 
seen in Figure 7.  
 
 

 
 
Figure 9.  Coarse mesh, spanwise view. Here we see the centerplane cross-section of the mesh 
over the entire computational domain. Note the slight stretching of the cells towards the inlet 
(left) and the outlet (right).  
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Figure 10.  Fine mesh, spanwise view. Similar as Figure 9, for the fine mesh.  
 
The first model we have considered is the MILES model.  
The second model is the OEEVM+WM model (4), including a ”clipping condition” ensuring 
that the modeled turbulent kinetic energy k > 10-10. Hence we have an obstacle problem for the 
modeled turbulent kinetic energy k, cf. [55].  
We use the same inlet boundary condition as [53], namely a specified constant velocity profile 
(mean profile from [50]), corresponding to the mean profile of fully developed turbulent 
channel flow. Normal derivative of p is zero (Neumann boundary condition), and the modeled 
turbulent kinetic energy k is zero (Dirichlet boundary condition). In contrast, [52] use data 
from a turbulent channel flow simulation. For the outlet we have Neumann condition for U, k, 
Dirichlet condition for p, and, finally, at walls we impose no-slip condition on U, p, i.e., 
Dirichlet condition on U, Neumann condition on p, and for k we impose Neumann condition.  
 
The results below indicate that we are able to reproduce the main features of the flow.  
 

Figure 11. Average flow streamlines from the experiment by Martinuzzi and Tropea, (1993).  
 

    

 
 
 

  (a)      (b) 
Figure 12. MILES with wall model, a), coarse grid, b), fine grid. Blue signifies 
regions with low velocity, red signifies regions with high velocity. We see a similar 
streamline pattern for both grids. We also see good agreement with the streamline 
pattern of the experiment (figure 11) except for the location and form of the 
horseshoe vortex in front of the cube, which in the simulation is located too far 
upstream and more stretched in the flow direction, compared to the experiment 
(Figure 11).  
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Fig. 14a. Mean streamwise velocity component at x/h=-1, y/h=0, one cube length upstream 
from the front face of the cube.  We see excellent agreement between MILES on the coarse 
and fine grid (except close to the bottom), indicating that the influence of the MILES subgrid 
model is small in this region. The horseshoe vortex (negative velocities near the bottom) is 
seen in the simulations, but not in the experiment. This effect is even more accentuated for the 
OEEVM model.  Outside the horseshoe vortex region, the mean velocity is somewhat 
overestimated in the simulations.  

   
Figure 13. OEEVM with wall model, coarse grid. The only visible differences compared to the 
MILES model is a somewhat higher separation line from the leading edge of  the cube and an even 
more upstream position of the center of the horseshoe vortex.  
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Figure 14b. Variance of the streamwise velocity component at x/h=-1, z/h=0, one cube-length 
upstream from the front face of the cube. The simulations overestimate the turbulence close to 
the walls, and underestimate the turbulence in the interior of the domain. The turbulence level 
is smaller for the OEEVM model.  
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Figure 14 c. Average streamwise velocity component at x/h=-0.25, z/h=0, one quarter of a 
cube length upstream from the front face of  the cube. Excellent agreement between all models 
and experiment for y/h>0.8. Experiment shows a distinct boundary for the horseshoe vortex. 
The horseshoe vortex formation in the simulations are smoother, and the strength of the 
horseshoe vortex is somewhat underestimated.  
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Figure 14 d. Mean streamwise velocity component at x/h=0.5, z/h=0, at the midpoint on top 
of the cube. The roof vortex (negative velocities) close to the roof  (y/h=1) is clearly seen in 
the experiment, and underestimated in the simulations. Good agreement between simulations, 
indicating that most of the turbulence is resolved (i.e., the influence of the subgrid model is 
small), and hence that discrepancies between simulations and experiment is due to upstream 
conditions.  
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Figure 14 e. Mean streamwise velocity component at x/h=1.25, z/h=0, one quarter of a cube 
length downstream from the back face of the cube, in the wake region. The wake vortex region 
(negative velocitities) is clearly seen both in experiment and simulations. The strength of the 
wake vortex is underestimated in all simulations.  
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Figure 14 f. Variance of the streamwise velocity component at x/h=1.25, z/h=0, one quarter of 
a cube length downstream from the back face of the cube. Comparatively better agreement 
between simulations and experiments, compared to the upstream profile (Figure 14 b). Peaks 
in the variance are seen close to the bottom (y/h=0) and top (y/h=2), as well as close to the 
roof of the cube (y/h=1), where the largest variance is found, due to the turbulence generated 
by the leading edge of the top of the cube. We also see a larger amount of variance for 
0<y/h<1, due to turbulence generated by the leading vertical edges of the cube.  
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Figure 14 g. Mean streamwise velocity component at x/h=2, y/h=0, two cube lengths 
downstream from the back face of the cube in the wake region. The wake vortex region 
(negative velocitities) is clearly seen both in experiment and simulations. The strength of the 
wake vortex is underestimated in all simulations 
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Figure 14 h. Mean streamwise velocity component at x/h=4, y/h=0, four cubelengths 
downstream from the back face of the cube, downstream from the wake region. No wake 
vortex region is visible in the mean field (mean velocities are positive).  

 
 
4.4 Conclusions 
 
As can be seen in Figures 12 to 14, we are able to reproduce the main features of the average 
flow, with the present grids and models. However, for second order statistical moments, our 
results deviate considerably from experimental results. More effort must be put into 
reproducing the correct flow conditions upstream from the cube. The mean flow close to the 
cube is rather insensitive to the choice of subgrid model on the present grids, suggesting that 
most of the turbulent kinetic energy is present on the resolved scales.  
 

4.5 Suggestions for further work 
 
To achieve correct inlet boundary conditions on the present domain, we may considerably 
extend the domain upstream to obtain a LES for a fully developed channel flow in the 
upstream part of the domain. This approach is used e.g., in [52]. We have such simulations on 
a prolonged computational domain in progress, but preliminary results indicates no significant 
differences on the results close to the cube, and downstream from the cube.  Rather, the 
velocity profiles a few cube lengths upstream from the cube deviates more from the 
experimental profiles, suggesting that more work has to be done to achieve the correct 
upstream conditions.  
 
On non-orthogonal meshes, the FOAM algorithm used here is not strictly of second order, 
because a first order skewness error is introduced on each non-orthogonal cell. This error 
corresponds to a diffusion term, cf. [54], p. 124. The size of the skewness error on the cube 
mesh should be investigated. The skewness error term can in principle be implemented in 
FOAM by a deferred correction approach, thereby giving a second order algorithm also on 
non-orthogonal meshes.  
 
At the moment it seems unclear to what extent the sample averages have converged in the 
statistical sampling phase of the LES, since some of them are very irregular. We should 
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develop FOAM tools to address this problem.  
 
Considering Figures 15 (a) and (b) the flow pattern clearly differ considerably from the mean 
flow pattern. Se also Figure 16. Simulation of dispersion with LES should be tested and 
evaluated with dispersion experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                          
 
 
 
 
 
 
 
 
 

  (a)        (b) 
Figure 15. Streamlines of (a) instantaneous velocity field and (b) time-averaged velocity field. 
The streamlines in the time-averaged velocity field is smoother.  

  (a)        (b) 
Figure 16. Surface streamlines in (a) experiment (Martinuzzi and Tropea, 1993) and (b) in 
OEEVM with wall model, fine grid. We see a clear discrepancy in the surface streamline 
patterns of the simulation and the experiment. The influence region of the cube in the surface 
streamline pattern is much larger in the simulation compared to the experiment.  
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5. Flow Simulation in Urban Environment 
5.1 Background 
Dispersion of hazardous gases and other contaminants in urban environments is of interest. 
Gases and contaminants can be released through actions of terrorism or accidents and be 
dispersed by the wind. The large scale and complexity of the urban geometries cf. Figures 17 
and 18, in combination with the large-scale flow field of the weather induced winds give a 
very complex flow field in an urban environment. The wind can vary both in direction and 
velocity in a way that is hard to predict by intuition. This can transport the contaminants in 
other directions and over other distances than in a more homogenous and open landscape. 
Therefore, it is important to be able to compute how dispersed matter is spread by the wind to 
be able to make an accurate decision of the hazard range, develop action plans and also to plan 
evacuation routes. Modern computational fluid dynamics (CFD) tools in combination with 
modern computers will hopefully make it possible to predict the flow field in a part of a town 
with reasonable accuracy. Here, the flow field in the Old Town of Stockholm has been 
simulated for a westerly wind of 2 m/s at 10 metres above the surface with a logarithmic 
profile, to demonstrate the potential in using CFD for prediction of dispersions in urban 
environments. 
 

 
Figure 17, View over the Old Town with the royal palace at the right end of the figure, from 
Skeppsholmen at the eastern end of the computational domain. Photo: Urban Svennberg. 
 

 
Figure 18. View over the parliament, Royal Palace, Riddarholmen and the northern part of the 
old town, From the City Hall (Stadshuset) at the north-west corner of the computational 
domain. Photo: Urban Svennberg. 
 

5.2 Grid generation 
The Old Town of Stockholm is chosen since it is a well known and central part of Stockholm, 
the capital city of Sweden, it contains the royal palace, the parliament and a number of 
governmental buildings. 
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Further more, it has natural limits since it is located on a few islands, the inflow and outflow 
boundaries for westerly wind is located over large water areas, the Riddarfjärden and 
Strömmen at least if the island Skeppsholmen is ignored at the outflow boundary. The location 
of these boundaries over water simplifies the boundary conditions. The location and size of the 
computational domain is plotted as a red rectangle in the map in Figure 19a, the corresponding 
computational domain is plotted in Figure 19b.   

  
          (a) 

          (b) 
Figure 19, a: Map over central Stockholm with the computational domain marked with a red 
box, b: The computational domain with the simplified geometry 
 
The buildings are built during a period of more than 400 years giving a mixture of 
architectural ideas, forms and sizes of the buildings and the streets and passages between 
them. Both narrow (approx 1.5 m) passages and wide streets are present, both straight streets 
with equally sized buildings in and squared pattern and curved streets with irregular formed 
houses complicates the geometry. This geometry has to be simplified to make it possible to 
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generate a grid of good quality to perform the computations. Houses that are connected to each 
other have been considered as blocks, all roofs are flat (which they certainly not are in the real 
world) with a height equal to a estimated effective averaged height for the block, blocks with 
significantly differences in height have higher and lower parts but still with flat roofs on each 
part, no trees, cars or moored ships are included, most of the bridges are simplified or ignored, 
a few streets/passages have been ignored, a few vertical slopes of the ground have been 
replaced with steep slopes, and the houses at the north side of the domain have also been 
ignored. Windows and all other small details of the houses have been ignored since the 
resolution possible to achieve is not sufficient to resolve those. A few cylindrical parts of 
buildings and backyards are replaced with square ones for the same reason. The number of 
buildings/blocks have in this way been reduced too approximately 110.  
The size of the computational domain is 1 750 x 830 x 1000 m in the streamwise, crosswise 
and vertical directions respectively. If the number of computational cells are limited to 4 000 
000, the average side of the cells would be 3.3 m. The cells are clustered around the buildings 
so that the narrowest passage between houses/blocks at least has three cells across. This makes 
the largest cells in the air volume above the town considerably larger. The computation 
described here is made using 1 622 897 cells, a finer computation, using 4 123 160 cells, is 
planed for to quantify the numerical errors, most of the refinement is made in the vicinity of 
the houses. This grid is also smoother than the coarse one.  
The inflow boundary supplied a log-linear velocity profile with a wind speed of 2 m/s at 10 
meters height. The utflow uses transmissive boundary conditions for the flow to be able to 
pass through, while the lateral and upper boundaries use a symmetry plane boundary 
condition. 
 No-slip conditions are applied at the water surface, the ground and the house roofs, while slip 
condition is applied at the house walls and the side and top boundary of the bounding box. The 
house walls should be considered as no-slip walls to be physically correct but that would 
require a considerably higher number of cells to resolve the boundary layer here. The lack of 
resolution would result in to high a blockage ratio in the narrow streets and passages, reducing 
the flow in an unphysical way. Therefore, slip condition has been chosen to get a more 
realistic flow.  
The computational grid is a structured grid made with hexahedral elements. A structured grid 
built with hexahedral elements have numerical advantages over unstructured grids based on 
tetrahedral elements, the disadvantage is that it is much more complicated to generate a 
structured grid for complex geometries. Most of the houses can be considered as squared 
blocks and therefore simple to grid by a structured hexahedral mesh. But since a large part of 
the old town is old it has a variety of geometries. After simplification we have a few blocks of 
polygonal form with almost triangular shape. These blocks concentrates the gridlines in the 
structured mesh giving undesirable high concentrations of grid lines in some areas. A few 
buildings with circular arcs give quite skewed cells. The western part of the old town has a 
nice almost Cartesian topology but it is not aligned with the main flow direction. The eastern 
most line of buildings also has a rectangular topology but slightly curved. The north end of 
this line is parallel to the western part of the old town while the south end of this row meets 
the western blocks under almost 90 degrees angle. Since it is a structured grid these gridlines 
have to stay parallel all the way giving high concentration of cells at the southern end of the 
old town and also an area with highly skewed cells. Here, four blocks have been replaced with 
one continuous block to reduce skewness. A computational grid of good quality should be as 
orthogonal as possible and have smooth transitions between areas of different grid densities. 
The geometry of the old town makes it impossible to achieve that everywhere. This coarse 
grid was completed to make sure that the skewness not was too severe and that the sudden 
changes in resolution in some areas were not to severe for the solver to give a solution. A few 
adjustments had to be done before the code ran swiftly. The results computed on this coarse 
grid will be used both for comparison with the results on the finer grid and as a starting 
solution for the finer grid.  
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5.3 Solver 
The size and complexity of city geometry gives a very wide band of scales that are of 
importance for the flow field. It is prohibitively expensive to resolve all of them already for 
one building. The fact that we have more than 100 buildings does not make it easier. LES 
reduces the need for resolution but still, it is prohibitively expensive to have a resolution fine 
enough for to scientifically guarantee an accurate and reliable result. RANS or even potential 
flow methods reduce the need for resolution to a more satisfactory level but we would only get 
the time averaged flow field. The large-scale fluctuations, that RANS do not capture, in the 
vortex and recirculation structures are responsible for much of the transport of the 
contaminants. Still, this coarse grid, that we can afford, in combination with MILES do 
capture many large-scale time dependent phenomenon that are of importance for the 
dispersion of contaminants. There are no full-scale measurements to use as reference. 
Therefore, this computation is only a demonstration of what will be possible with more 
computational resources. There is a need for a series of computations and experiments on 
simpler cases ranging from a single cube mounted on a flat surface through a number of cubes 
in different configurations all the way to city like geometries to be able to validate 
computations like this one in the Old town, presented here.  

5.4 Results and discussion 
The computations reveal a very complex flow field containing many interesting flow 
structures such as large vortices behind buildings like the royal palace and the parliament 
buildings. These results are for the instantaneous velocity field. The computations have not 
been run for long enough time to reach a statistically converged state, where the time averaged 
velocity field is reliable. Backflow is found both behind and in front of buildings with walls 
perpendicular to the westerly wind. One example of this is the royal palace in Figure 20, 
where the wind 2m above the ground is plotted as velocity vectors coloured by the magnitude 
of the flow velocity, where red represent 1.5 m/s and blue 0 m/s. The main winddirection is in 
the positive x direction while the wind mostly goes in the opposite direction in both the outer 
and inner courtyard of the royal palace at this level, 2m above the ground. Another example is 
a place called Köpmansbrinken in the eastern part of the old town, see Figure 21. Here, the 
approaching wind coming through the street Köpmangatan have the expected direction but the 
ground is going down hill here generating a recirculation zone, giving wind in the opposite 
direction in the other streets approaching this place. 
 
A Karman Vortex Street can be found around the top of the German church (Tyska kyrkan) at 
the central part of the Old Town. The plots in Figure 22 contain the velocity profiles at 50m 
above the sea level that is approximately 20m above the roofs of the houses in the surrounding  
area. The resolution is not sufficient to get a complete vortex street but there are significant 
traces of it in the wake. In Figure 22a it can also be seen that there are no vortex street behind 
the top of the church close to the Royal Palace (Storkyrkan). This is probably due to the coarse 
grid resolution in this area. 
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Figure 20, Wind velocity vector 2m above the ground around the royal palace. 
 
 
The area behind the parliament contains a large vortex structure, see Figure 23. This area is 
partially covered by trees in the real world, see Figure 24. These trees will probably reduce the 
velocities and the rotation of the vortices here. This is an effect that is not captured since it is 
not straightforward to implement a correct damping function simulating the nature of a tree. A 
tree reduces the wind velocity but it does not stop it totally and the reduction is dependent on 
how many branches and leaves the tree has in different parts of it.  
 
The old town contains many houses and around each of them there can be found interesting 
flow fields. The results presented here are preliminary and therefore it is pointless to and 
would be too lengthy to describe them all in detail, therefore, just e few examples have been 
chosen here. Figure 25 below, show the complex flow field through 1000 streamlines initiated 
at randomly chosen points at the house walls and computed in both directions in the 
instantaneous velocity field. 
 

5.5 Conclusions 
A computation using MILES has been performed for the flow field in the Old Town of 
Stockholm for a westerly wind velocity at 10 meters height of 2 m/s. The geometry has been 
simplified to make the computations possible. The resolution of the grid is not fine enough to 
capture all the details of the buildings and the effect of the simplifications is thus reduced. The 
instantaneous flow field is reported since the computational time is not long enough to get 
statistically converged results and thereby a correct average flow field. These results will be 
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used as a starting point for the computation of dispersions both on the coarse grid reported 
here and a finer grid mentioned above. The results here reveal a very complex flow field in the 
urban environment. They also show that it is possible to compute such flow fields with large 
enough computers. 
 

 
Figure 21, Wind velocity vector 2m above the ground at Köpmanbrinken in the eastern part of 
the old town. 
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  (a)        (b)  
Figure 22, a:Wind velocity contours at 50m above sea level, b: close up including velocity 
vectors at the top of the German church (Tyska kyrkan) 
 

 
Figure 23, Velocity contours and vectors at a plane 2m above sea level and a vertical plane 
with constant x coordinate right behind the parliament. 
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 (a)         (b) 
Figure 24, Photos of the area behind the parliament. Photo: Urban Svennberg. 
 

 
Figure 25, Streamlines initiated at 1000 randomly chosen points at the house walls and 
computed in both directions in the instantaneous velocity field.   
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6. Summary 
LES can be used to simulate wind flow in an urban environment but it is shown that there are 
some improvements left for future work. The validation studies for the channel flow and flow 
around a surface mounted cube show that the mean flow is well described but the variances 
(<u^2>), have some discrepancy to measured values, although the result seem to be rather 
insensitive to the choice of sub grid models. This suggests that most of of the turbulent kinetic 
energy is present on the resolved scales. One of the sub grid models that showed good results 
in both tests was MILES and therefore it was used for the simulation of flow in Gamla Stan. A 
difficulty in performing a simulation of Gamla Stan was the construction of the geometry. As 
a hexahedral grid was used it was not possible to achieve a uniform resolution. To achieve a 
sufficient resolution on the lee side of a grid spreading object, like the house of parliament, an 
unnecessary high resolution is required on the windward side. 
The computations reveal a very complex flow field containing many interesting flow 
structures 
such as the large vortices behind buildings like the royal palace and the parliament buildings. 
These 
results are for the instantaneous velocity field. 
 Atmospheric flow in general includes atmospheric stability which is important both for the 
mean flow and for dispersion. In this study a neutral stratification is assumed as a first step. 
Studies of atmospheric stability using LES is performed separately [56].   
 
Dispersion will also probably be sensitive to the configuration of the buildings or other 
obstacles. Next step is to simulate dispersion within the flow here presented. Validation 
studies of dispersion simulation with LES will be performed as a next step comparing 
simulations with experimental data such as flows in wind tunnels, water channels etc..  
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8. Abbreviations 
CT   Contaminant Transport  
GS   Grid Scale  
SGS   Sub Grid Scale  
CFD   Computational Fluid Dynamics  
NSE   Navier Stokes Equations  
Re  Reynolds number (=UL/ν) 
DNS   Direct Numerical Simulation  
RANS   Reynolds Averaged Navier Stokes 
LES   Large Eddy Simulation  
SMG   Smagorinsky model 
DSMG  Dynamic Smagorinsky Model 
OEEVM  One-Equation-Eddy-Viscosity Model  
DLM   One-Equation Dynamic Localization Model 
LDKM  Localized Dynamic Kinetic Energy Model  
LDM   Lagrangian Dynamic  
MM   Model Mixed Model 
DES  Detached Eddy Simulation 
DSEM  Differential Stress Equation Model  
MILES  Monotone Integrated LES 
FCT   Flux Corrected Transport  
WM  Wall Model  
FV   Finite Volume  
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