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1. Background 
 

The static electric field caused by corrosion currents exists around most ships. It is 
important to study the possibility to reduce the electric signature by transmitting current from 
anodes to the hull, since there exist sea-mines that use the static electric field as trigger. A 
system that would control the electric signature would consist of current transmitting anodes 
and hull-mounted potential measuring electrodes. The importance of accurate modeling a 
complex surface geometry is evident for electric potential measurements close to such 
surface. In a physical scale model experiment [1], where current transmitting anodes and 
potential measuring sensors were mounted onto the hull, a commercial boundary element 
code, using the full geometry, predicted the measured potential accurately. 

The implemented boundary element code is intended to be used in the research on active 
reduction of the corrosion and static electric signatures as a forward model in an inverse 
solver or a regulator. 
 
 
2. Introduction 
 

The relation between the potential and the normal current density on a surface could be 
expressed as an integral equation. In the Dirichlet problem the potential on the surface B∂  is 
given and in the Neumann problem the normal current density on the surface is given. Two 
different types of problems are associated with these boundary conditions, the interior and the 
exterior problem. The discretization of the surface into faces is usually done with curved 
triangular or quadrilateral faces approximated by some set of basis function defined by its 
node points. Onto these faces the seeked density function is expanded into another set of basis 
function, chosen in order to preserve some characteristics of the density function such as 
continuity, continuous tangential derivative etc. From this discretization it is possible to 
derive a set of linear equations that solve the integral equation, i.e. calculate the coefficients 
of the chosen set of basis functions. 
 
 

eB  

 

iB  

B∂  
 
 

Figure 1. The interior domain Bi enclosed by the surface B∂  with the unit normal pointing 
into the exterior domain Be. 

 
 

In our application the surface B∂  is the hull of a ship and thus we are interested in the 
exterior domain Be corresponding to the water region. The work presented here is a 
formulation and implementation of the exterior integral equations for calculating the electric 
potential field resulting from a Dirichlet or a Neumann boundary condition using a boundary 
element approach. The surface is defined by curved triangular faces, where an isoparametric 
expansion is applied, i.e. the surface curvature and the density function on the surface B∂  is 
discretized into the same set of basis function. We have chosen a Lagrangian expansion, 
which is interpolatory within each face, where the continuity of the density functions is 
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enforced by choosing the node points to be the collocation points. The theory is derived for a 
general order of Lagrangian polynomial and implemented for a quadratic expansion. 
 
 
3. Theory 
 
3.1. Potential Theory 
 

From the existence theorem of harmonic functions we know that for a given potential or 
normal derivative of the potential on a Liapunov1 surface, there exist a unique potential in the 
interior domain Bi that assume the given values on the surface. For the exterior domain Be the 
theorem holds provided that we have O(r -1) behavior of the potential field as r → ∞. The 
derived equations are valid for the exterior domain. We assume that all sources are located on 
a perfectly conducting surface and that the exterior domain is source free, i.e. the divergence 
of the current density vector is zero 
 
 0)( =⋅∇ rJ  ;       eB∈r .   (1) 

 
For a homogeneous conducting medium, the postulate of irrotational static electric fields 
imply that 
 
 0)( =×∇ rJ  ;       eB∈r .   (2) 

 
The current density can thus be written as the gradient of a scalar field )(rφ , known as the 
current potential, 
 
 )()( rrJ φ−∇= ;       eB∈r .   (3) 

 
Substituting (3) into equation (1) yield a Laplacian equation in )(rφ  
 
 0)( =∆ rφ ;       eB∈r .   (4) 

 
Since all the sources are located on B∂  it follows that )(rφ  has an O(r -2) behavior as r → ∞. 
The electric potential )(rV  relates to the current potential as  
 

 
σ

φ )(
)(

r
r =V ;       eB∈r ,   (5) 

 
where σ  is the conductivity of the medium in the exterior domain. 
 

                                                 
1 A Liapunov surface is defined by 0,10;)(cos 1 >≤<′−≤⋅ ′

− DDnn νν
rrrr , 

which is slightly stronger than C1, but weaker than C2. 
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3.2. Integral formulation 
 

The current potential field is written either as a single layer representation (6) or as a 
double layer representation (7) 
 

 ∫
∂

′′′=
B

rdg )(),()( rrrr γφ ;       eB∈r    (6) 

 ∫
∂

′′′
=

∂
∂

B

rd
g

n
)(

),(
)( r

rr
r µφ ;       eB∈r  ,   (7) 

 
where ),( rr ′g  is the solution to the fundamental Laplacian equation 
 

),(),( rrrr ′=′∆− δg ,   (8) 
 
and )(r′γ  and )(r′µ  are density functions. The nomenclature for the normal derivative with 

respect to r is written as nn ∂
∂=∇⋅  and with respect to r′  as nn ′∂

∂=∇′⋅′ . In a homogenous 

medium the fundamental solutions is defined by 
 

 
rr

rr
′−

=′
π4

1
),(g  ,   (9) 

 
which imply that 
 

 
n

g

n

g
′∂
′∂=

∂
′∂ ),(),( rrrr

. (10) 

 
The type of representation is chosen so that a Fredholm integral equation (FIE) of a 

second order is obtained. It is well known that a second order FIE is preferable to a first order 
FIE since the kernel matrix is diagonal heavy and thus well conditioned. 
 
 
3.3. Exterior Neumann problem 
 

With the normal derivative of the current potential )(rφn∂
∂  given on B∂ , we have chosen 

a single layer representation of the current potential field as [2], 
 

 ∫
∂

′′′=
B

rdg )(),()( rrrr γφ ;       eB∈r . (11) 

 
By differentiation of equation (11) we obtain 
 

 ∫
∂

′′′∇=∇
B

rdg )(),()( rrrr γφ ;       eB∈r  (12) 

 ∫
∂

′′′
=

∂
∂

∂
∂

B

rd
g

nn )(
),(

)( r
rr

r γφ ;       eB∈r . (13) 

 
As we move the field point in equation (13) to the surface,  
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we obtain a FIE of the second kind for )(r′γ  in terms of )(rφn∂
∂  as 

 

 )()(
),(

)( 2
1 rr

rr
r γγφ −′′′

= ∫
∂

∂
∂

∂
∂

B

rd
g

nn ;       B∂∈r . (14) 

 
With the source density )(r′γ  known we may calculate the electric potential )(rV  

utilizing equations (11) and (5) and the current density )(rJ  from equation (12) and (3). The 
potential on the surface is calculated just outside of B∂  using (11), utilizing that the potential 
is continuous across an interface. 
 
 
3.4. Exterior Dirichlet problem 
 

With the current potential )(rφ  given on the surface, we have chosen to represent the 
current potential field with a double layer approach as [2] 
 

 ∞

∂

+′′= ∫ ′∂
′∂ φµφ

B

rd
n

g
)()(

),(
rr

rr
;       eB∈r , (15) 

 
where ∞φ  is the current infinity potential. As we move the source point in equation (15) to the 

surface we obtain a FIE of the second kind for )(r′µ  in terms of ))(( ∞−φφ r  as 
 

 )()(
),(

)( 2
1 rr

rr
r µµφφ +′′′

=− ∫
∂

∞ ′∂
∂

B

rd
g

n
;       B∂∈r . (16) 

 
To ensure an O(r -2) behavior at infinity, the current potential must fulfill the condition 
 

 0)())(( =′′−′∫
∂

∞
B

rdrr λφφ , (17) 

 
where )(r′λ  is the solution to 
 

 1)(),( =′′′∫
∂B

rdg rrr λ ;       B∂∈r , (18) 

 
which is a FIE of the first kind. 
The current density in Be is calculated by differentiating equation (15), which result in 
 

 ∫
∂

′′′
∇=∇

′∂
∂

B

rd
g

n
)(

),(
)( r

rr
r µφ ;       eB∈r . (19) 

 
With the source density )(r′µ  known we may calculate the electric potential )(rV  

utilizing equations (15) and (5) and the current density )(rJ  from equation (19) and (3). The 
normal current density on the surface is calculated just outside of B∂  using (19), utilizing that 
the normal current density is continuous across an interface. 
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3.5. Discretizing the integral equations 
 

A general set of Lagrangian basis function of order M can represent a function F on a 
triangular element as [5] 
 

 ),,(),,( 321
0 0

321 LLLQeLLLF
M

i

iM

j
ijkijk∑∑

=

−

=

= ;       Mkji =++ , (20) 

 
where eijk is the value of F at the nodes. The basis functions have the following properties 
 

 











==

>−=

=

∏
−

=

)0(;1),(

)0(;)(
1

),(

),(),(),(),,(

0

1

0

321321

sLMR

skML
s

LMR

LMRLMRLMRLLLQ
s

k
s

kjiijk

!
. (21) 

 
For an isoparametric expansion the curvature is described as 
 

 

21

321
0 0

)det(~

),,(~

dLdLrd

LLLQ
M

i

iM

j
ijkijk

J

rr

=

=∑∑
=

−

= , (22) 

 
where rijk is the coordinate of the appropriate node and J is the Jacobian. The unit normal 
vector is written as 
 

 
)det(

)det(
n~

J
J= , (23) 

 

pointing from the parametric surface B
~∂  into the exterior domain Be. From the discretization 

(20-23) we have that the integration of the surface B∂  yield  
 

 

















≈′′′

≈′′′

≈′′′

∑∑∑ ∫∫

∑∑∑ ∫∫

∑∑∑ ∫∫

= =

−

= ∂∂

= =

−

= ∂∂

= =

−

= ∂∂

′∂
∂

′∂
∂

∂
∂

∂
∂

N

n

M

i

M

j B

nijk
n

v

B

N

n

M

i

M

j B

nijk
n

v

B

N

n

M

i

M

j B

nijknv

B

n

n

n

rdQ
g

erdf
g

rdQ
g

erdf
g

rdQgerdfg

nn

nn

1 0

1

0 ~

1 0

1

0 ~

1 0

1

0 ~

~)(
)~,(

)(
),(

~)(
)~,(

)(
),(

~)()~,()(),(

L
rr

r
rr

L
rr

r
rr

Lrrrrr

 , (24) 

 
assuming that the surface has been discretized into N faces and that we have a mesh 
dependent function v(n,ijk) that identify the collocation points given the face index n and the 
node index ijk. The numerical integration of each face is performed using a Gaussian 
quadrature rule for triangles. 
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3.6. Numerical implementation 
 

Applying a collocation approach, where the collocation points in the simplex coordinate L 
is { }M

k
M
j

M
i ,, , the basis function )(LijkQ  has unity value at node ijk and vanishes at every other 

node. Hence, the contribution from the singularities and the part )(2
1 rγ−  and )(2

1 rµ+  in 

equation (14) and (16) will be added to the diagonal entries in the kernel matrix. In the 
Neumann case the kernel matrix is calculated as 

 

 










−−=

=

∑

∑∑∑ ∫
= =

−

= ∂ ∂
∂

1

~)(
)~,(

1 0

1

0 ~
,

p
pqqq

N

n

M

i

M

j B

nijk
n

vp

AA

rdQ
g

A
n

n
L

rr

, (25) 

 
and in the Dirichlet case the kernel matrix is calculated as 
 

 










−=

=

∑

∑∑∑ ∫
= =

−

= ∂
′∂

∂

p
pqqq

N

n

M

i

M

j B

nijk
n

vp

AA

rdQ
g

A
n

n1 0

1

0 ~
,

~)(
)~,(

L
rr

. (26) 

 
The singularities Sq in (25) and (26), which contribute to the diagonal entries, have been 
approximated by 
 
 ∑−−=

p
pqq AS 2

1  , (27) 

 

using that 1)( =∑ LijkQ  and that 2
1)~,(

−=′∫
∂

′∂
∂

B

n rd
g

n

rr
 when B∂∈r . 

We end up with a system of linear equations 
 
 )()(),( rbrxrrA =′′ , (28) 
 
where ),( rrA ′  is the kernel matrix, b(r) is the boundary condition at r and )(rx ′  is the 
coefficients to the set of Lagrange basis functions (20) and also the solution to the integral 
equations (14) and (16). 
 
 
4. Numerical validation 
 

We have chosen to validate our code against a known analytical solution in the Dirichlet 
case, where we will show the convergence of the solutions as a function of the surface 
discretization. We will also do a comparison with a commercial code on a more complicated 
geometry. In these examples we have chosen the conductivity 1=σ  S/m and thus the current 
potential )(rφ  has the same amplitude as the electric potential )(rV . 
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4.1 Analytical validation 
 

Given the potential on the surface of a sphere, the potential in the exterior to that sphere 
could be calculated analytically by means of multipole technique. A relevant problem is that 
of two different potentials, corresponding to two non-polarizable materials with different 
electrochemical potential next to each other. Assuming the origin at the center of a sphere 
with radius 8=R m, the boundary condition yielding 
 

 




>−
<−

=
0V2.0

0V8.0
)(

z

z
V r . (29) 

 
The electric infinity potential is thus V5.0−=∞V . Spheres with different number of faces are 
created in order to study the convergence of the solution. Here we have approximated the 
sphere with 8, 32 and 144 faces. 
 

   
Figure 2. Spheres consisting of 8, 32 and 144 faces used to study the convergence of the 

solution compared to the known analytical. 
 

 
Figure 3. The electric potential at the field point applying the Dirichlet boundary condition. 
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Figure 4. The current density at the field point applying the Dirichlet boundary condition. 

 
 
The solutions are validated on a line where z varies between 30− m and 30 m and 10=x m 
and 0=y m. We can see from figure 3 how the solution converges toward the analytical 

solution. Already for the 8 faces solution we obtain V5.0−=∞V  with high accuracy. Figure 4 
further enhance the convergence of the solution, where the differences in current density will 
vanish as the mesh around 0=z  (the discontinuity) is further refined. 
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4.2 Boundary element codes comparison 
 

In order to test the solution on a more complicated geometry, we have to compare our 
code with an existing commercial. We have created the model in the commercial program and 
exported that geometry to our code. 

 
Figure 5. A scale model of a submarine with length 0.9m, where the hull is given an electric 

potential of 8.0− V and the area at the stern is given an electric potential of 2.0− V. 
 
 
The electric potential and the current density are calculated along a line straight beneath the 
submarine model. The obtained results are shown in figures 6-7. 
 
 

 
Figure 6. The potential )(rV  along a line straight beneath the submarine model. The blue 

line shows the potential from our code and the dashed red line shows the potential obtained 
from the commercial code. 
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The potentials have similar appearance, as shown in figure 6. The solution of ))(( ∞−φφ r , 
obtained from solving (16), is about the same as the solution from the commercial code, 
whereas the ∞φ  contribution, from the solution of (17-18), differs slightly, i.e. our code has 

calculated 7832.0−=∞φ A/m, and the commercial code has calculated 7835.0−=∞φ A/m. 
 
 

 
Figure 7. The current densities along a line straight beneath the submarine. The blue and the 
green line show the x-current density and the z-current density from our code. The dashed red 

lines show the results from the commercial code. 
 
The current density solution is almost identical as a result of the good coherence between the 
solutions of ))(( ∞−φφ r  for our and the commercial code. 

The Neumann case is considered to be validated as the Dirichlet case is validated. The 
kernel in the Neumann case is the transpose of the Dirichlet matrix (10), which we have 
validated and the singular contribution is the same (27). The calculation of ∞φ  is performed 
separately and does not effect the Neumann solution. 
 
 
5. Discussion 
 

The relatively good accuracy that we have seen will probably be enough for our 
applications. However, it is straightforward to enhance the code to higher order polynomial 
expansion. For quadrilateral faces a little work has to be done. 

With full control over the forward model, the work with the inverse solvers and regulators 
to controlling the corrosion and the electric signature will be simplified. The created interface 
with the commercial boundary element code will also be useful in further evaluations and 
researches. 
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