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1 INTRODUCTION 
Computer programs for prediction of optical signatures of targets and backgrounds are valu-
able tools in signature assessment and signature management. Simulations make it possible to 
study optical signatures from targets and backgrounds under conditions where measured sig-
natures are missing or are incomplete. In order to obtain confidence in computational predic-
tions of optical signatures it is important that the “error”, or uncertainty, in these predictions 
can be credible bounded. The process of validating a model or computer program, where 
measurements are compared to computational predictions, provides the basis for characteris-
ing the predictive capabilities of models. This process of validations and predictions is fun-
damentally statistical in several respects. For instance, there are statistical uncertainties in the 
input data used in the simulations as well as in the measurement data to which the computa-
tional predictions are compared.  
 
 The computational results from simulations of optical signatures are often obtained as “im-
ages” (radiance maps in some wavelength band).  Furthermore, measurements (using cameras 
or IR sensors) in a wavelength band of the optical (ultraviolet, visual and infrared) region are 
usually also presented as (calibrated) images. In assessing optical signatures a main interest is 
to find features in such images that are important when it comes to detection, classification 
and identification. Examples of such features can be edge concentration, low-, mid- and high-
pass energy and total energy. Since it is the features that are relevant for assessing signatures, 
it is natural that it is these features that are studied in a validation of computer programs for 
prediction of optical signatures. 
 
At FOI several commercial programs have been used for optical signature predictions (see 
Ref 1 and Ref 2). Two of the commercial optical signature prediction programs available at 
FOI are CameoSim and RadThermIR. CameoSim is an advanced IR program aiming at pro-
ducing high fidelity physics based images originally applied to camouflage assessments. 
RadThermIR is a 3-dimensional (with some restrictions) heat transfer program that uses Finite 
Difference Methods to predict the temperature distribution for a target and after that also pre-
dict the IR radiance. Earlier works on validating the commercial signature prediction pro-
grams at FOI are summarized in Ref 1. The model predictions in these earlier validation ef-
forts were performed in a deterministic manner and therefore the uncertainty in the predic-
tions were unaccounted for. Furthermore, textural features, except the lowest order statistical 
moments, were not analyzed in these validation works. 
 
In this report we will present the progress on developing methods for validation of computer 
programs for simulation of optical signatures. The development is based on two of the model 
validation aspects outlined above, namely the (statistical) assessment of uncertainty propaga-
tion in computational predictions and the validation of image features. In Sections 2-5 we will 
present the work on developing and implementing methods for analyzing and quantifying the 
propagation of input data uncertainties to output data parameters in predictions of optical sig-
natures. Then, in Section 6, we will present the progress on validating image features and, 
finally, in Section 7 we will summarize and outline the continued work on these methods.  
 
 
 
 



  FOI-R--1421--SE 

 6 

2 VALIDATION AND UNCERTAINTY QUANTIFICATION 
In this section we will briefly discuss the different sources of error and uncertainty in a model 
computational prediction. We will also touch upon how these enter the process of validating 
optical signature simulation software against measurements. 

2.1 SOURCES OF UNCERTAINTY AND VALIDATION OF MODELS 

There are usually several sources for uncertainty in the output from a computer model predic-
tion. In this report we will focus on the uncertainty in the result from a computer simulation 
that can be characterized as being due to uncertainties in the model inputs. Model uncertain-
ties and errors, due to the structure or form of the actual model, and implementation errors, 
due to errors and approximations in the (numerical) implementation of models, of course also 
contribute to the uncertainty, or error, of a model simulation. However, here we will not ad-
dress model uncertainties and implementation uncertainties explicitly. The different classes of 
input data used in a typical simulation of optical signatures are illustrated in Figure 1. 
 

  
Figure 1 Computational prediction and validation of optical signatures. 

Considering the schematic computer model simulation of optical signatures in Figure 1, we 
can symbolically view the model (simulation software) as a deterministic mapping (function), 

)(xfy = , of input parameters, ),...,,( 21 nxxx=x , to one or more output parameters, 
),...,,( 21 myyy=y . If the input data have uncertainties, these will propagate through the model 

to uncertainties in the output data. We therefore consider the input data as random variables 
),...,,( 21 nXXX=X , and the output data as random variables ),...,,( 21 mYYY=Y , related to 

the input variables through )(XfY = , see Figure 2. 
 

 
Figure 2 Mapping of input random variables to output random variables. 

 
The schematic computational prediction procedure illustrated in Figure 2 results in output 
quantities being characterized as random variables. These random variables represent the un-
certainty in the prediction due to uncertainties in the input variables. However, these uncer-
tainties do not represent the entire uncertainty or error in a model prediction, as explained 
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above. Therefore, the (only) way to asses the total prediction error is to compare predictions 
to measurements, which themselves may have uncertainties. These comparisons can then 
form the basis for assessing to what extent the total prediction uncertainty or error is due to 
uncertainty propagation from input parameters and how much uncertainty is due to other 
sources, such as deficiencies in the form of the models themselves. We will not describe the 
process for validating computational predictions against measurements in any detail since our 
focus here will be on the uncertainty propagation aspects. However, an overview of important 
issues in validation of computer models is given in Ref 3. 

2.2 MODEL INPUT UNCERTAINTY QUANTIFICATION 

Input data can have uncertainties due to a number of reasons. Commonly, input values are 
uncertain because they are more or less well-founded guesses, so called guessimates, or they 
are estimated from measured data, or the input parameters do not actually correspond to ob-
servable quantities, e.g. in lumped-parameter models. 
 
According to the BIPM/ISO Guide, Ref 4, uncertainties in measured quantities are either 
determined through statistical analysis of a series of observations, Type A uncertainties, or the 
uncertainties are evaluated by other means, including expert judgement, Type B uncertainties. 
 
In the case of Type A uncertainties a set of q  independent observations of input parameter 

iX  are available and statistical moments of these input quantities can be calculated. For our 
simulations it is enough to calculate estimates of the sample mean, ix , the standard deviation 
of the sample mean, iσ , the sample covariance of dependent variables, ),cov( ji xx , and the 
degrees of freedom, 1−= qiν . These statistical quantities are calculated in the standard way 
as presented in for instance Ref 5 or Ref 6.  
 
When using the Monte Carlo procedure for evaluating uncertainty propagation in simulations 
(to be presented in Section 4) it is also necessary to associate probability density functions 
(pdf’s), with statistical moments as above, to the input quantities iX . In the case of Type A 
uncertainties, Gaussian pdf’s, or Poisson pdf’s in some discrete cases, are in many cases the 
best choices but exceptions to this can be found. If some or all of the input quantities are cor-
related, joint (multivariate) pdf’s should be assigned. 
 
In the case of input quantities with Type B uncertainties, the BIPM/ISO Guide, Ref 4, makes 
several recommendations on obtaining uncertainties. All of these recommendations have in 
common the establishment of a range of possible true values of the quantities in question. For 
instance we might know that a parameter x  can only obtain values in the range [ ]dxdx +− , . 
In this case we can associate for instance either a rectangular or a triangular distribution to the 
range of possible values. In the case of a rectangular distribution the mean is x  and the stan-
dard deviation is 3/d . Similarly, for the triangular case the mean is x  and the standard 
deviation is 6/d . It is often assumed that the Type B uncertainties are known and therefore 
they have infinite degrees of freedom, i.e. ∞→iν .  
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3 THE ERROR PROPAGATION METHOD 
In this section we will briefly present a standard technique for analyzing the propagation of 
uncertainty in a model Y = f(X) of the type described in Section 2.1. This type of method usu-
ally only provide information of mean and variance of the output parameters based on ap-
proximations. 

3.1 ERROR PROPAGATION AT FIRST AND SECOND ORDER 

A well established method for evaluating the uncertainty in Y = f(X)  due to uncertainties in 
the input quantities X is through the (lineraized) error propagation approach. This method 
(first order expansion) is the standard approach for analyzing measurement uncertainty in the 
BIPM/ISO Guide, Ref 4. 
 
Assuming the existence and continuity of the first and second order partial derivatives of the 
function f we can expand Y = f(X) in a second-order Taylor series about the mean value x : 
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From Eq. (2) we can approximately calculate the mean y  and the variance 2

yσ  of the output 
parameter Y provided we know the means, variances and covariances of the input parameters, 
and the sensitivity coefficients (partial derivatives), ic , of the considered model. 
 
If we keep also the second order terms in Eq. (1) we obtain a second order analogue to Eq. (2) 
given by: 
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In Eq. (3) we have assumed that the variables iX are independent so that their mutual covari-
ances are zero. 
 
It is clear that Eqs. (2) and (3) are only approximations of the statistical moments. The liner-
arized error propagation, which is the standard method in the BIPM/ISO Guide, Ref 4, is of 
course only exact if )(XfY =  is a linear function of X . A method through which the accu-
racy of the linearized version of error propagation can be improved has been proposed in Ref 
7. The basic idea in this approach is to determine “the best” way to obtain additional samples 
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for calculating the derivative, iXf ∂∂ , of the response with respect to the i’th variable. In the 
standard linear error propagation partial derivatives are calculated at the nominal point x , but 
in Ref 7 the response with respect to a variable is the weighted sum of derivatives at three 
nearby points around the nominal. Therefore, the total variance of a system response is for-
mulated as follows: 
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where the weights { }3,2,1, ∈jjφ  are normalized to 1
3

1

=∑
=j

jφ  and the derivatives are calcu-

lated at the three points δxx −=)1( , xx =)2(  and δxx +=)3( . In Ref 7 a methodology for 
determining the parameters δ and { }3,2,1, ∈jjφ  is presented for the case when X  follow a 
normal distribution or a uniform distribution. 
 
We conclude this subsection by noting that the function f in our model Y = f(X) is usually not 
known explicitly in the applications we have in mind here. This is so because in our applica-
tions f represents the combined result of many physical models and numerical algorithms im-
plemented in complex software for computational predictions of optical signatures. This 
means that the sensitivity coefficients (partial derivatives) cannot be calculated analytically, 
but a numerical method has to be applied. Here we present two finite-difference formulas for 
calculating the sensitivity coefficients, Ref 8: 
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where ix̂  is the unit base vector for coordinate ix . The formula in Eq. (5) has an error on the 
order of ix∆  while Eq. (6) results in an error on the order of 2)( ix∆ . However, Eq. (6) re-
quires one more evaluation of f than Eq. (5): in our case one more simulation run of the signa-
ture software. The increment ix∆  should in principle be chosen as small as possible but not so 
small that it leads to large cancellation errors. Even better approximations, than Eq. (6), of the 
derivatives can of course be obtained, by for instance Richardson extrapolation, but a rough 
“rule of thumb” is to use Eq. (6) with 

ixix σ=∆  and in our example in Section 5 we will use 
this choice.  

3.2 LIMITATIONS OF ERROR PROPAGATION AND EXPANDED UNCERTAINTY 

The error propagation approach has some important limitations. One such limitation was 
mentioned above, namely the truncation of a Taylor’s series expansion until first (or second) 
order terms. This is an approximation that in some cases could need higher order terms to 
reach sufficient accuracy. Another limitation is that the error propagation method provides no 
information about the pdf for the output parameter Y. Knowledge about the pdf, or the corre-
sponding distribution function, for Y is needed to determine confidence intervals for Y. In 
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practical applications of the error propagation method, the distribution of Y is often taken as 
Gaussian. Therefore, the expanded uncertainty )(YU  is computed as the product of the cover-
age factor k and the standard deviation yσ  so that ykYU σ=)( , the coverage factor being 
assimilated to the Gaussian variate. Thus, it is very common to find reported uncertainties 
obtained using a coverage factor k = 2, which gives a level of confidence of 95.45% and the 
reported uncertainty is given as )(YUy ± . Similarly, if the pdf of Y is considered to be 
approximated by a Student’s distribution, then the coverage factor k is taken as the tabulated 
Student’s t-value for a given significance value and effective degrees of freedom, effν . The 
effective degrees of freedom is calculated from the Welch-Satterthwaite equation which is 
given by (Ref 9): 
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As was mentioned in Section 7, Type B uncertainties usually are assumed to contribute with 
infinite degrees of freedom. This rather arbitrary choice can also be seen as a limitation of the 
error propagation method. 
 
In Section 4 we will consider methods which are more general than the ordinary error 
propagation approach and which overcome most of the limitations of the error propagation 
approach. 

4 MONTE CARLO SIMULATION AND RELATED METHODS 
In Section 3 we considered the error propagation method which in many cases, with only a 
small number of model evaluations, can give satisfactory estimates of the uncertainties in out-
put parameters which are due to uncertainties in input parameters. In this section we will con-
sider so called Monte Carlo methods, which are more general than, and can overcome most of 
the limitations of, the ordinary error propagation method. However, the benefits obtained with 
Monte Carlo methods come at a prize: they are in many cases computationally expensive. 

4.1 MONTE CARLO METHODS IN UNCERTAINTY ANALYSIS 

In the standard error propagation approach presented in Section 3, uncertainties in input pa-
rameters characterized by standard deviations (and means) are propagated through the model 
to provide approximate values on mean and standard deviations in the output quantities. In 
Monte-Carlo methods (see for instance Ref 5, Ref 8 and Ref 10), on the other hand, the input 
quantities are given as random variables with pdf’s. The input pdf’s are then propagated 
through the model to form a pdf for the output quantity. Therefore, Monte Carlo analysis is a 
tool for combining ‘distributions’ and thereby, propagating more than just statistical uncer-
tainties. This situation is illustrated in Figure 3. 
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Figure 3 In Monte Carlo methods the uncertainty analysis is performed in terms of 

pdf’s. Distributions are propagated through the model. 

The Monte-Carlo method is a rather general numerical procedure which relies on the simula-
tion of random variables. Monte Carlo simulation is for instance an efficient method for per-
forming numerical integration of (in particular higher dimensional) integrals (see for instance 
Ref 8 and Ref 10). The values of any random variable with any pdf can be ‘simulated’ by the 
suitable transformation of a rectangular random variable, uniformly distributed within the 
interval (0,1). So called pseudo-random numbers, η , uniformly distributed within the interval 
(0,1) can be successfully generated by a number of computational algorithms found in the 
literature (see Section 4.2). From these pseudo-random numbers, the values ξ  of any other 
random variable X with a pdf p(x) within the interval (a,b) can be simulated by solving the 
integral equation:  
 

∫ ==
ξ

ηξ
a

Fdxxp )()(       (8) 

 
In Eq. (8) )(ξF  is the cumulative distribution function for the random variable X . Numbers 
ξ  distributed according to p(x) are therefore given by )(1 ηξ −= F . These calculations can be 
rapidly performed thanks to the high speed of modern computers by using suitable software. 
 
Evaluation of propagation of uncertainty in input parameters using Monte Carlo simulations 
can be summarized in the following steps: 
 

1. The computer model is identified with a function )(XfY =  where  
),...,,( 21 nXXX=X  are n random input variables and Y is a random output variable. 

(Several output variables can also be treated.) 
2. Identify pdf’s )( ixp  for all relevant input parameters (see Section 2.2). In the case of 

correlated random variables iX  and jX , their values are sampled from a joint 
probability density function ),( ji xxp . 

3. Select the number M of Monte Carlo trials. 
4. Generate M samples { }iMii xxx ,..,, 21  of each ix  using, for instance, Eq. (8). These ix  

are then considered as (pseudo) random numbers drawn from a pdf )( ixp . 

Model  
Y = f(X)  

pdf’s for input quantities X 

pdf’s for output quantity Y
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5. Compute M results  { }Myyy ,..,, 21  by evaluating the model )(XfY =  for the M sam-
ples { }iMii xxx ,..,, 21 , i.e. in our case run the optical signature simulation software M 
times. The results { }Myyy ,..,, 21  are then considered to be distributed like the random 
output variable Y. 

 
In step 2 above, the number of Monte Carlo trials, M, should be a “sufficiently” large number. 
What a “sufficiently large” number is depends on for instance the number of input parame-
ters, the shape of the pdf for the output quantity, the pseudo random number generator used, 
and the level of probability required. However, a value of the order of M=50000 is according 
to the experience of some authors, Ref 5, often enough to deliver a two-figure accuracy in 
providing a 95% coverage interval in Y. 
 
By choosing a bin-width for output variable Y  and counting the number of simulation results 
{ }Myyy ,..,, 21  in the different bins, the pdf for the output quantity Y can be estimated, see 
Figure 4. 

 
Figure 4 Example of an estimated pdf from the result of a Monte Carlo simulation. 

From the estimated set of results { }Myyy ,..,, 21  the variance 2
yσ  of the output quantity Y can 

be calculated by: 
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If a coverage probability, p, is selected, the confidence interval for the result can be evaluated 
as 2/)1(2/)1( MpMp yy −+ − , where we have sorted the y values into non-decreasing order. When 
the skewness value of the calculated discrete distribution for Y is near zero, the confidence 
interval becomes symmetric and the expanded uncertainty U(Y) can be approximated by 
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2
)( 2/)1(2/)1( MpMp yy

YU ++ −
=

      (10)
 

 
The corresponding coverage factor can then also be calculated by k = U(Y)/σy. 
 
We mentioned in the beginning of this section that the most severe limitation of the Monte 
Carlo method is that the model simulation runtime could be long in some complex cases. Sin-
gle runs of optical signature simulation software can take from a few seconds up to hours (or 
even more) in run time on a standard single processor PC (Personal Computer), depending on 
the complexity of the problem solved. Therefore it is clear that, for instance, 50000 Monte 
Carlo runs can be a problem in terms of runtime. However, Monte Carlo simulations are well 
suited for distribution on many computers/processors. If we, for instance have 10 identical 
computers available and will perform M= 50000 simulations, the simulations can easily be 
distributed so that “only” 5000 of them are run on each computer and the computing time will 
then essentially decrease to one tenth of the computing time on a single computer. 
 
Another possible approach to attack the problem with expensive (with respect to time) Monte 
Carlo simulations can in some cases be to use a response surface methodology, Ref 11, where 
the computer model (signature simulation program) is replaced by a generated response sur-
face (in some domain of the input parameter space), which can be evaluated much faster than 
the original computer model. We will not discuss this approach here since it is not likely that 
we will make use of it in our applications. 

4.2 PSEUDO RANDOM NUMBER GENERATORS AND OTHER SAMPLING TECH-

NIQUES 

As was explained in Section 4.1 the ability to generate pseudo-random numbers from a 
(continuous) rectangular distribution is fundamental in Monte Carlo methods, since it is the 
basis for generating numbers from any distribution using a formula like Eq. (8). It is therefore 
especially important that the underlying rectangular pseudo random number generator is 
sound. A large number of pseudo number generators can be found in the literature. A good 
review of several pseudo number generators for use in Monte Carlo methods is given in Ref 
12. The Hill-Wichmann generator, Ref 13, is a combination of three so called congruential 
generators. This generator is one of the pseudo random number generators recommended in 
Ref 12 for generating rectangular pseudo-random numbers in the interval [0, 1]. We have im-
plemented the Hill-Wichmann pseudo random number generator and in Figure 5 we show an 
example of pseudo random numbers generated using this routine. 
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Figure 5 1000 pseudo random numbers generated in each of two dimensions with the 

Hill-Wichmann generator. Left figure shows a 2D scatter plot and the right 
figure shows a frequency histogram for the 2000 numbers.  

Once we have decided on a sound generator for generation of pseudo random numbers from a 
rectangular distribution, Eq. (8) or other procedures based on the principle of Eq. (8) can be 
used to generate pseudo random numbers from other distributions. In Ref 5 and Ref 10 easy-
to-use procedures for obtaining values from the most common distributions (e.g. Gussian, 
multivariate Gaussian and Student’s-t) are summarized. For instance, the Box-Muller trans-
form can be used to generate pairs of pseudo random numbers distributed according to N(0,1) 
(Gaussian distribution with zero mean and standard deviation 1). In the Box-Muller transform 
two independent standardized Gaussian variates, 1z and 2z , are obtained from two standard-
ized (uniformly distributed in [0,1]) random variates 1x  and 2x  through the formulas 

211 2cosln2 xxz π−=  and 212 2cosln2 xxz π−= . Samples from a Gaussian distribution 
N(µ,σ²) are easily obtained by taking ZX σµ +=~ , where (0,1)NZ ∈ . 
 
We will finish this section by briefly presenting samplings schemes which are closely related 
to the ordinary Monte Carlo method using pseudo random numbers. These alternative sam-
pling techniques are often referred to as Quasi Monte Carlo Simulations. What separates 
Quasi Monte Carlo methods from ordinary Monte Carlo, is that Monte Carlo use (pseudo) 
random numbers as explained above while Quasi Monte Carlo methods use number sampling 
schemes where the requirement of “randomness” has (partly) been abandoned. In fact, in our 
intended use of Monte Carlo, just like in the use of Monte Carlo for numerical integration, the 
true randomness of the generated numbers is not so much relevant. More important is to sam-
ple the uniform distributions as uniformly as possible under certain restrictions. For a more 
“strict” discussion on the condition of uniformity see for instance Ref 10. One can show, Ref 
10, that Monte Carlo used for numerical integration with pseudo random numbers has an error 
scaling as M/1 , where M is the number of pseudo random number samples. By replacing 
the pseudo random numbers with carefully chosen sequences called quasi random number 
sequences it has been shown (see for instance Ref 10) that the integration error scales as 

MM pln)/1(  for some p, i.e. a considerable improvement compared to ordinary Monte 
Carlo. In this presentation we will not present the precise mathematical arguments for the ad-
vantage, i.e. requiring less simulations, Quasi Monte Carlo has over ordinary Monte Carlo in 
our particular applications. However, it should be quite easy to imagine that the more uni-
formly distributed quasi random sequences will determine, especially the tails of, the distri-
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bution of an output parameter (called Y in previous sections) with significantly fewer simula-
tions than ordinary Monte Carlo. 
 
An example of a quasi random number sequence is the so called Halton sequence. The Halton 
sequence and other quasi random number sequences can be found in Ref 10. We have imple-
mented the (two-dimensional) Halton sequence and in Figure 6 we show the results 
corresponding to those for ordinary pseudo random numbers in Figure 5. From these two fig-
ures we see that the Halton sequence does indeed distribute the numbers more uniformly than 
pseudo random numbers. 
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Figure 6 1000 quasi random numbers generated in each of two dimensions using the 

two-dimensional Halton sequence. Left figure shows a 2D scatter plot and the 
right figure shows a frequency histogram for the 2000 numbers. 

A reasonable question to ask is: If the more uniformly distributed Quasi random numbers re-
sult in a faster convergence than random numbers, then why not use a completely regular grid 
(so called lattice models) in d dimensions to define sampling points? If d is small (less than 
about 3) a regular grid may indeed be preferable. However, if we span a regular grid in d di-
mensions with N points per dimension, the regular grid consist of Nd data points. This will, in 
general, for higher dimensions lead to a much larger number than the necessary number of 
samplings in Monte Carlo or Quasi Monte Carlo Methods. A method which is based on sam-
pling nodes randomly in a regular grid is the so called Latin Hypercube sampling (LHS), see 
for instance Ref 9 and references therein. Latin Hypercube sampling has many of the attrac-
tive features in common with quasi Monte Carlo methods. We will however not present the 
Latin Hypercube approach any further here. 

5 ERROR PROPAGATION IN THERMAL PREDICTIONS USING 
RADTHERMIR – A TEST CASE 

In this section we will present a first step towards implementing some of the methods pre-
sented in Sections 3 – 4 and applying them to uncertainty and sensitivity studies of optical 
signature simulation software. We will use the linearized error propagation method presented 
in Section 3.1 to estimate the uncertainty in output from the thermal signature simulation soft-
ware RadThermIR. The test case we will consider has previously been used in a deterministic 
validation of signature simulation software. 
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5.1 THE VALIDATION TEST CASE AND UNCERTAINTIES IN INPUT DATA 

We have chosen to illustrate the use of error propagation in validation of signature simulation 
software by considering the measurements on, and simulations of, one of the two flat tilted 
panels with different types of coatings which were presented in Ref 2. In Ref 2 the signature 
simulation programs SensorVision, CameoSim and RadThermIR were validated deterministi-
cally against temperature and radiance measurements on the panels. In our analysis of the 
error propagation we will here restrict ourselves to the panel with paint coating and perform 
uncertainty propagation simulations of it using the program RadThermIR. The panels consist 
of different layers that form a flat surface of 1 x 1.2 m2. A cross-section of the panels and a 
photograph of the panels at the measurement site is shown in Figure 7 (the images are from 
Ref 2). Radiance measurements in MWIR and LWIR using IR (Thermovision) cameras were 
performed during a full 24-hour period. Contact temperature measurements, using a Pt 100 
temperature sensor mounted inside the front Aluminium sheet close to the front surface, were 
performed during the same time period and measurements of weather data begun almost 24 
hours before the contact temperature and the radiance measurements. During the first day the 
sky was clear and the weather sunny. The second day the sky was cloudy and at about 13:00 it 
started to rain mixed with snow. Soon after that the experiment was stopped. Radiance data 
and weather data were collected with a time interval of about one minute in between individ-
ual measurements. 

    
Figure 7 Cross section of the panels and a photo of the two panels on stands (paint 

panel to the left). 

After the measurements were completed, calibrated radiance data were calculated and the 
radiance was corrected for atmospheric transmission losses, which gave the radiance at the 
panel surfaces. 
 
In Ref 2 RadThermIR was used to predict surface temperatures and radiance from the panels 
in the two wavelength bands. In these simulations “best-estimate” (mean) values of the input 
data were used. In order to analyse the propagation of uncertainties in input data to the pre-
dicted output quantities we first have to quantify the uncertainties in input parameters. When 
applying the linear error propagation formula in Eq. (2) we need estimates of means, vari-
ances and, for dependent variables, covariances of the input parameters. Determining these 
parameters is a difficult task indeed, especially since some parameters have mean values 
which are “guessimates”. We have tried to follow the guidelines outlined in Section 2.2 but 
our main objective here is to illustrate the use of the error propagation method and not to find 
the best possible (most realistic) choices of input parameter uncertainties. In Table 1 we have 
summarized the data we use for input parameters with uncertainties. 
 
 
 
  

Back 

Aluminium sheet 3 mm
Heat foil 
Aluminium sheet 1 mm
Insulation  40 mm 
Aluminium sheet 2 mm
Mounting bracket 
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Table 1 Input parameter uncertainties.  

Input 
parameter 
class

Input parameter
Type of 

uncertainty 
(A/ B)

Assumed 
distribution

Estimated 
mean

Estimated standard 
deviation

Geometric Aluminium thickness B rectangular 3 mm 0.5/√3=0.29
Heat foil thickness B rectangular 0.5 mm 0.1/√3=0.058
Divinycell thickness B rectangular 40 mm 1/√3=0.58

Environmental surface normal azimuth B rectangular 256° 1/√3=0.58
Thermal Al conductivity B rectangular 201 W/m K (237-201)/√3=20.7846

Al density B rectangular 2770 kg/m3 (2770-2700)/√3=40.41
Al specific heat B rectangular 884 J/Kg K (938-884)/√3=31.18
Heat foil conductivity B rectangular 5 W/m K 0.5/√3=0.29
Heat foil density B rectangular 2000 kg/m3 10/√3=5.8
Heat foil specific heat B rectangular 1000 J/Kg K 10/√3=5.8
Divinycell conductivity B rectangular 0.024 W/m K 0.002/√3=0.0012
Divinycell density B rectangular 48 kg/m3 (55-48)/√3=4.04
Divinycell specific heat B rectangular 1900 J/Kg K 50/√3=28.8675
Solar absorptivity of paint B rectangular 0.805 0.02/√3=0.012
Thermal emissivity of paint B rectangular 0.8 0.02/√3=0.012
Thermal conductance of paint B rectangular 1x10-7 W/cm2 K 1x10-7/√3=5.8x10-8

convection coefficient 1 B rectangular 5.7 0.49/√3=0.2829
convection coefficient 2 B rectangular 3.8 0.87/√3=0.5023

Weather air temperature B rectangular each time step 0.3/√3= 0.173
solar irradiance B rectangular each time step 5.0%
Humidity B rectangular each time step 2/√3=1.15
Wind speed each time step 0.17

 
The mean values for all parameters, including those input parameters not listed in Table 1, 
have been chosen to be the same as those used in the deterministic predictions in Ref 2. One 
could in principle include other input parameters with uncertainties in this list but in the pre-
sent analysis we restrict ourselves to these. Rectangular distributions have been assigned to 
most input parameters. The basis for this is that we have classified the uncertainties as being 
of type B. For some parameters this choice could be questioned but we leave those considera-
tions for later studies. We have furthermore assumed that all input parameters are independent 
random variables. This is surely not so for some of the parameters, for instance the weather 
parameters, but for simplicity (and lack of data for evaluating covariances) we work with in-
dependent random variables here. Finally, the standard deviations listed in Table 1 have all 
been estimated from some kind of, more or less reliable, data. We will not present the argu-
ments and data underlying these choices of standard deviations here. However, we can note 
that the uncertainties in the two convection coefficients in the McAdams convection model, 
Ref 14, are probably somewhat “under conservative” in the way that the estimates of the 
uncertainties used here are only based on McAdams data for smooth versus rough surfaces 
and no other sources of uncertainty in these parameters have been included. 
 
Another complication in determining uncertainties for input parameters in our applications is 
that some of them really should be characterized as stochastic processes and not just as ran-
dom variables. A stochastic process, )(tX , can be described as a parameter dependent random 
variable. For a particular fixed value of t , the stochastic process is an ordinary random vari-
able. The stochastic process can have an autocovariance (and higher order auto- correlations). 
Due to thermal inertia, temperatures and radiances predicted with RadThermIR will depend 
on the weather data histories and not just on the weather at the actual time. The weather input 
quantities should therefore be viewed as stochastic processes. However, RadThermIR per-
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forms its calculations based on discrete time steps, ntttt ,...,, 10= , and therefore we actually 
have n  (in reality n should be chosen as dependent on the thermal time constant) random 
variables for each weather parameter. However, again it is difficult to assess the dependency 
of these n  random variables. We have therefore taken the “conservative”, but perhaps not so 
appealing, approach that the uncertainties in the n  time steps are 100% correlated (in a “worst 
case” combination). This means that we can calculate sensitivity coefficients with respect to 
the weather parameters by applying the same variation in the finite difference formula (Eq. 
(6)) to all time steps. 

5.2 RESULTS FOR TEMPERATURE PREDICTIONS AND COMPARISON WITH 

MEASUREMENTS 

By using the input data uncertainties given in Table 1 we have used the linearized error 
propagation formula in Eq. (2) to calculate the, in RadThermIR, predicted uncertainties in the 
surface temperature and the radiance for the panel with paint coating. In Eq. (2) we identify 
the mapping f with the combined algorithms and models in RathermIR. In this evaluation the 
sensitivity coefficients (partial derivatives) have been calculated using the finite difference 
formula in Eq. (6) for every (5 minute) time step performed in the RadThermIR simulation. In 
Appendix A we show plots of all calculated sensitivity coefficients versus time when surface 
temperature is the output parameter. In Appendix B we show the calculated standard uncer-
tainty in temperature versus time. 
 
In figures Figure 8 to Figure 10 we summarize the results of the error propagation analysis for 
predicted paint panel surface temperature. In Figure 8 we show the predicted mean tempera-
ture and the measured contact temperature versus time. This result is the same as that obtained 
in Ref 2. In Figure 9 we show the predicted mean temperature plus/minus one standard uncer-
tainty, and the measured temperature, versus time. In Figure 10 we show the predicted mean 
temperature plus/minus two standard uncertainties, and the measured temperature, versus 
time. 
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Figure 8 predicted mean temperature and the measured contact temperature versus 

time. 
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Figure 9 predicted mean temperature plus/minus one standard deviation, and the meas-

ured temperature, versus time. 
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Figure 10  Predicted mean temperature plus/minus two standard deviations and the 

measured temperature versus time. 
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In the same way as for panel surface temperatures above, we summarize the results of the 
error propagation analysis for predicted paint panel radiance in Figure 11 and Figure 12. Fur-
thermore, the calculated standard uncertainty in radiance versus time is displayed in Appendix 
B. In Figure 11 we show the predicted mean radiance and the measured radiance versus time. 
In this plot the predicted radiance has been compensated for the lack of sensor response func-
tion modelling in RadTherm (referred to as LPL equivalent radiance in Ref 2). The result in 
Figure 11 is the same as that obtained in Ref 2. Figure 12 shows predicted mean radiance 
plus/minus two standard uncertainties, compensated to yield a LPL equivalent radiance, and 
the measured radiance versus time. When considering the results in Figure 11 and Figure 12, 
one should also bear in mind that there most probably was a constant offset in all radiance 
(Thermovision) measurement results, as explained in Ref 2. The size of this error was esti-
mated to about 0.97 W/(sr m2) in Ref 2. 
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Figure 11  Predicted mean radiance, compensated to yield a LPL equivalent radiance, 

and the measured radiance versus time. 
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Figure 12  Predicted mean radiance plus/minus two standard deviations, compensated to 

yield a LPL equivalent radiance, and the measured radiance versus time. 

From the results shown in Figure 8 to Figure 12 we see that the majority of measured data are 
covered by the plus/minus two standard deviations (coverage factor 2) predictions. The fact 
that not all measurements lie within these limits can be attributed to, for instance: 

1. The coverage factor 2 corresponds to the 95% coverage interval for a Gaussian 
distribution and need therefore not cover all data. 

2. The limitations of the error propagation method discussed in Section 3.2. And also 
numerical errors in calculating the sensitivity coefficients. 

3. “Under-conservative” choices of uncertainties in input parameters and systematic 
“bias” errors in the input parameters. If possible, covariances for dependent parame-
ters should also be used. 

4. Model errors and model uncertainties. 
5. The measured quantities have an uncertainty. (According to Ref 2 the contact 

temperature probes have an estimated uncertainty of approximately 0.1 ºC  at k=2 and 
the measured radiance has an uncertainty in the order of 0.1 W/(sr m2)). Also, as was 
mentioned earlier there was probably a constant offset in the Thermovision measure-
ment results on the order of 0.97 W/(sr m2). 

6. In the comparison of predicted and measured radiances, the compensation to yield the 
LPL equivalent radiance imposes an uncertainty (errors). 

 
Of these contributions, item 2 could be studied through performing an uncertainty analysis of 
RadThermIR using a MonteCarlo type of method (see also Section 7). The presumed prob-
lems mentioned in item 3 could be treated by a more careful study of the input parameter val-
ues and their uncertainties. For instance, as was mentioned above the uncertainties used for 
the convection model parameters are probably under-estimated in our analysis. 
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6 COMPARISON OF MODELED AND SENSOR IMAGES OF VEHI-
CLES 

Images of vehicles generated from modeling software, e.g. CAMEO-SIM, and from field reg-
istrations differ in certain aspects. The main interest here is to find differences in those aspects 
that are important when it comes to detection, classification and identification. Here we will 
mostly deal with detection of vehicles. In this case detection means to find an object, some 
military vehicle, in the terrain. 

6.1 METHODOLOGY 

In order to characterize the vehicle, several features are computed from the image. A small 
local region, usually 16 * 16 pixels, is defined for each pixel. Some features use the image 
directly, other use the magnitude of the Fourier transform of the image. Image features in-
clude mean value, standard deviation and edge concentration. For each region the Fourier 
transform is computed. Several measures are then computed from this transform. They are 
formulated to be orientation invariant. The translation invariance comes directly from the 
Fourier transform. Features include low-, mid- and highpass energy, total energy, and the 
elongeness is also characterized by computing moments on the Fourier transform. In the latest 
implementation Gabor wavelets are used. From the local responses invariant features are 
calculated, similar to the Fourier features. A description of the features is given in Ref 15. An 
interesting observation in that paper was that a single feature, the deviation of the edge con-
centration distribution, correlated with perceptual detection experiments with a correlation 
coefficient of 0.88.  
 
For a more complete description of the vehicle, several features should be used. A demand 
when comparing with perception experiments has always been that the features should have a 
simple and direct connection with a physical property. However, this is not the only goal in 
the current context. We may also want to characterize the differences between modeled and 
real image when this imagery is used in automatic target recognition. 
 
Previously a lot of work was done on finding a set of good features with high discriminative 
capability when it comes to detect vehicles in the terrain, see for instance Ref 1. However, 
images from different wavelength bands may have quite dissimilar feature properties. 
Therefore several features are used here. Earlier studies, Ref 16, have shown that about 3 to 4 
dimensions will be enough if we can choose these dimensions in a good way. This include 
almost always that the feature space is transformed in some way. To find the importance of 
each feature, linear discrimination analysis is used Ref 17. We know the position of the target 
and background features in the feature space. Then it is easy to see how each feature axis is 
oriented with respect to the discriminant line (linear case). The angle between the axes and 
this line is an indication of the importance of a feature. The distance measure applied to the 
target and the background distributions is the Bhattacharrya measure defined as 
 

  
 
where ω1 and ωj represent the two objects to be compared. 
The connection of this measure with detection theory is given in Ref 18 and Ref 19.  
 
 

(11) 
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If the distributions are identical, we obtain the integral over a probability distribution 
function, which by definition is 1. After applying the logarithm, the distance will be 0. If the 
distributions are totally disjunct, we obtain the logarithm of 0 which symbolically can be 
defined as minus infinity. Even if the distribution in Eq. (11) is parameter free, it is difficult to 
estimate a continuous distribution from a sampled image.  
 
To be useful let us assume that we have a Gaussian multivariate distribution   
     

 
 
where µi  och Σi are mean value and covariance matrix for the distribution p. This gives  
 

 
 
Since the covariance matrix is used, many features can be used. A nice feature is the inherent 
normalization which, for example, allows measurements in different wavelength bands to be 
combined in a simple way. 
 
If the features are independent the distance can be further simplified. We obtain 
 

 
 
where only mean values and standard deviations are used. For each feature we get a distance. 
The total distance is simply the sum of the individual Bhattacharrya distances for each fea-
ture. This makes it much easier to estimate the distributions.  
 
Since B is a generalized signal to noise ratio, the name GSNR is proposed which simply is 
defined as 
 
GSNR = 4*B.         (15) 
 
The constant 4 makes GSNR more or less equal to the common snr definition.  
 
According to reference Ref 19 the detection probability may be written as 
 
P(d) ≈ 1 – exp{-kB},        (16) 
 
where d is the distance and the factor k is the number of independent resolution elements the 
sensor sees on the target. It can be expressed as 
 
k = A/F.         (17) 
 
where A is the targets area and F is the area of the sensor footprint on the target.  

(12) 

(13) 

(14)  
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A second measure is called GSNRA, where A indicates that the target and the sensor footprint 
area are taken into account. The relation is 
 
GSNRA = 4*(A/F)*GSNR.       (18) 
 
Here the factor 4 is reintroduced to make the expression for the approximate detection prob-
ability similar to equation (16) 
 
 
P(d) ≈ 1 – exp{-GSNRA}.       (19) 
 
The proposed measure GSNRA used to estimate the similarity between the target and the 
background has a relatively good theoretical foundation and is similar to the classical signal-
to-noise ratio. The area of the target and the sensor resolution enter in an intuitive way.  
 
 

6.2 EXAMPLE 

In a simple preliminary example, feature values have been computed for several gabor fea-
tures. Two vehicles imaged and modeled from above are shown in Figure 13. The image is a 
montage of a real registration and a CAMEO-SIM model. No effort has been put into model-
ing the background in this example.   
 

 
Figure 13   A real (left) and modeled (right) vehicle used for signature comparison. 

Table 2 shows some Gabor feature measures. For each feature, the mean value and the stan-
dard deviation are computed. In addition some other measures are computed. The contrast is 
defined as  
 
Contrast = (ImageMean – ModelMean)/( ImageMean + ModelMean).       (20) 
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LDA is an estimation of the weight given to each feature using linear discrimination analysis. 
The generalized signal-to-noise ration is here calculated for each feature. Gmean is simply the 
fist term in Eq. (14), while Gdev is the second term. Gtotal is the sum of the two terms. Using 
all features simulaneosly gives GSNR = 24.2.  
 
 
Table 2 Feature values for image and modeled vehicle. 

Feature Image Model Contrast LDA GSNR 
 Mean Dev Mean Dev (diff/sum) Weights Gmean Gdev Gtotal 
Low band 0.198 0.127 0.640 0.456 0.528 0.159 0.872 1.323 2.195 
Med band 0.108 0.073 0.274 0.198 0.436 0.045 0.621 0.876 1.497 
High band 0.071 0.051 0.162 0.130 0.388 0.089 0.424 0.773 1.197 
Frac dim 2.263 0.163 2.554 0.251 0.061 0.076 0.949 0.183 1.132 
Frac err -8.927 1.845 -3.112 3.738 0.483 0.334 1.946 0.462 2.408 
Corr len 2.296 0.214 2.014 0.205 0.065 0.059 0.908 0.002 0.910 
Shape 0.242 0.120 0.439 0.239 0.289 0.093 0.543 0.446 0.989 
Edge conc 0.073 0.043 0.162 0.090 0.379 0.111 0.808 0.499 1.307 
Max 0.099 0.063 0.241 0.169 0.418 0.034 0.620 0.842 1.462 
 
Obviously there is a substantial difference for the fractal error feature. However, it is too early 
to draw some more definite conclusion. More experiments have to be done. 
 
For the images in Figure 13 some first order statistics have been measured. In Table 3 several 
measures from the image histogram are shown. Table 4 shows corresponding values for the 
model.  
 
Table 3 Feature values for the image of the vehicle.  

Feature Min Max Mean Dev Skewness Kurtosis 
Low band 0.198 1.117 0.492 0.176 4.002 1.534 
Med band 0.030 0.364 0.156 0.074 0.237 1.819 
High band 0.010 0.117 0.042 0.018 0.004 1.767 
Energy 0.275 1.500 0.690 0.250 8.942 1.520 
Frac dim 2.118 2.486 2.265 0.087 0.335 1.006 
Frac err -6.542 0.594 -3.59 1.482 1714 1.419 
Corr len 1.600 2.300 1.869 0.153 2.517 1.028 
Shape 0.057 0.380 0.180 0.060 0.059 1.404 
Edge conc 0.022 0.083 0.042 0.013 0.002 1.393 
Max 0.058 0.653 0.209 0.107 1.592 2.249 
  
 
Table 4 Feature values for the model of the vehicle.        

Feature Min Max Mean Dev Skewness Kurtosis 
Low_band 0.172 1.901 0.849 0.341 17.709 1.598 
Med_band 0.069 1.483 0.519 0.244 9.305 1.849 
High_band 0.042 0.909 0.343 0.172 2.752 1.897 
Energy 0.319 3.795 1.711 0.702 129.1 1.604 
Frac_dim 2.391 3.290 2.916 0.190 -2.234 1.016 
Frac_err -6.418 3.473 -0.794 2.181 -2713 2.769 
Corr_len 1.600 3.500 2.448 0.423 9.887 1.116 
Shape 0.189 1.327 0.783 0.245 -4.447 1.307 
Edgeconc 0.095 0.609 0.341 0.113 0.248 1.389 
Max 0.051 0.786 0.339 0.145 1.561 1.685 
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Feature images for the registered image and the model are given in the following Figure 14. 
The images used for the feature generation are given in Appendix C. 
 

  
Figure 14  The registered image and the corresponding model. 
 

7 SUMMARY AND FURTHER DEVELOPMENT 
In this report we have presented the progress on developing methods for validation of com-
puter programs for simulation of optical signatures. The development is taking two paths to 
asses different, but related and dependent, aspects of validating the simulation programs. The 
first path is concerned with developing and implementing methods for analyzing and quanti-
fying the propagation of input data uncertainties to output data parameters (i.e. radiance or 
temperature) in computational predictions of optical signature simulations. The objective of 
the second path is to study, analyze and validate the differences between simulated images 
(simulated visual or infrared scenes) and measured images. In particular those aspects that are 
important when it comes to detection, classification and identification are considered. In the 
present report the focus is on detection of vehicles. In this case detection means to find an 
object in the terrain that is some military vehicle. 
 
The work on propagation of uncertainties in optical signature simulation programs has re-
sulted in a number of proposed methods. The proposed methods can be divided into two 
classes: Error propagation methods and Monte Carlo methods. The error propagation methods 
are easier to implement than the Monte Carlo methods and also require (much) less computer 
power. The Monte Carlo methods, however, have fewer limitations than the error propagation 
methods and therefore they can give more reliable results. In this report we have presented a 
first test case using the error propagation method in validation of the thermal signature simu-
lation software RadThermIR. The results are according to expectations but further studies, 
using for instance the Monte Carlo type of methods, is needed (or at least desirable) to asses 
the results. Such further studies will be the objective in the continued work on these methods. 
 
In the work on analyzing differences between simulated and measured images it is proposed 
that several textural features are used to define the discriminative capability when it comes to 
detect vehicles in a terrain. These features for measured and simulated images can then be 
compared. So far, in a preliminary example, several feature values have been computed for a 
measured image and the corresponding simulated image. Further work is needed to draw any 
conclusions on the results. 
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Appendix A Sensitivity coefficients for temperature 
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Appendix B Calculated standard deviations in temperature and 
radiance versus time 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5
Standard deviation for the temperature as a function of time

Time ( h )

T
em

pe
ra

tu
re

 (
 °C

 )

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
Standard deviation for the Radiance as a function of time

Time ( h )

R
ad

ia
nc

e 
( 

W
/(

m
2 sr

) 
)

 



  FOI-R--1421--SE 

 40 

Appendix C Images used for feature generation 

Ten pairs of Gabor feature images. Figures in the left column are feature images correspond-
ing to the registered image and figures in the right column correspond to the modeled image. 
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