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1. Introduction

Underwater vehicle control is a broad subject with a long history, since the
first underwater vehicles were developed in the second half of the 19th century.
Over the past few years work has been made in this area within the project
Precision engagement under water, in Swedish Flexibla verkansystem under
vatten. Focus has been on studying techniques that enable better control of
underwater vehicles, in order to enhance performance for increased accuracy
and agility. Obviously such techniques are important in underwater warfare.
Two important ingredients in such work are better models that incorporate
more detailed dynamics, and control system architectures, including guidance
principles and control laws, that take advantage of these more detailed models.
Additionally, detailed models form a basis for tight integration of control and
navigation systems, which promises to enhance accuracy. This latter issue
is important for controllable weapons effects that is likely to be a tactical
requirement by the Swedish Armed Forces within a few years.

Underwater vehicles operating at moderate speeds are adequately described
by so called Kirchhoff’s equations, whereby inifinite dimensional dynamical
system consisting of the combined fluid and body motions is reduced to a finit
dimensional dynamical system. This report presents some novel results regard-
ing these issues, in particular with respect to detailed models of underwater
dynamics, where Kirchhoff’s equations are generalized in three directions. In
parallel, and partly studied in other projects, our work on and knowledge of
nonlinear controller design has also progressed. Such methods are now a viable
way for design of control laws. Thus, detailed models of dynamic properties
that are suitably adapted to the design process are now becomming essential
to obtain control systems of high performance, and it is not a coincidence that
the methods applied in the work on modelling, as well as study of control
system architectures, are well adapted to these nonlinear design methods.

The first sections describe in some detail the dynamics of submerged bodies
with displacing volumes that possibly contain holes, which in mathematical
terms is phrased not necessarily simply connected, after which follows a section
with a brief introduction to modular control systems. Modularity of software,
as well as electronic and mechanical hardware, is clearly related to standard-
ization. Clever use of standardization within projects has the potential of
reducing costs and extending the feasible life time of the project outcome.
From a researcher’s viewpoint it is mainly the flexibility that is appealing, but
the prospect of reducing life-cycle costs suggests that the subject is important
by itself.
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2. Underwater vehicle dynamics

The dynamics of submerged vehicles is described by Kirchhoff’s equations.
In this chapter a derivation of these equations is given, closely following the
presentation in [6]. The discussion is then generalised to deformable submerged
bodies with nontrivial topology.

2.1 The Lie Group SE (3)

The Lie Group E (3) consists of the isometries of Euclidean space R3. An
element of E (3) has the form

κ : x 7→ Rx + b (2.1)

where R is an orthonormal 3× 3 matrix and b ∈ R3. With the identification
x←→

(
x 1

)T ∈ R4, κ is represented by the multiplication by the matrix

R =
(

R b
0 1

)
(2.2)

and E (3) is identified with the corresponding subgroup of GL (4). It is clear
that the determinant of an element of E (3) equals +1 or −1. The identity
component of E (3) consists of elements with positive determinant, it is de-
noted by SE (3).

The Lie algebra se (3) of SE (3) is then identified with the subset of gl (4)
consisting of matrices of the form

Ω =
(

ω× u
0 0

)
(2.3)

where ω× is the skew-symmetric matrix

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


associated to the vector ω = (ω1, ω2, ω3).

In se (3) the Lie bracket is given by the matrix commutator (as inherited
from gl (4))

[ΩA,ΩB] = ΩAΩB −ΩBΩA =
(

ωC× uC

0 0

)
where ωC = ωA × ωB and uC = ωA × uB − ωB × uA

3
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The Adjoint representation of E (3) on se (3) is the mapping

Ω 7→ AdRΩ =
(

R b
0 1

) (
ω× u
0 0

) (
R b
0 1

)−1

which may be written as(
ω
u

)
7→

(
det(R)R 0

det(R) (b×) R R

) (
ω
u

)
i.e.

AdR =
(

det(R)R 0
det(R) (b×) R R

)
and the corresponding Lie algebra representation (the adjoint representation
on se (3)) is hence given by

adΩ =
(

ω× 0
u× ω×

)
Similarly the coadjoint representation (on se (3)∗) is given by

ad∗Ω =
(

ω× u×
0 ω×

)
Consider now a motion t 7→ (R (t) , b (t)) = R (t). The velocity parameters

(linear and angular velocity) in the body frame Ω and in the spatial frame Ω̃
are then given by

d

dt
R = Ω̃R = RΩ

By means of the AdR-operation, we obtain a handy formalism for changing
between the velocity parameters in the body frame, Ω, and in the spatial frame
Ω̃ = AdRΩ and for reexpressing the velocity parameters with respect to a new
body origin rA, which is given by the formula Ad(1,rA)Ω.

2.2 The dynamics of perfect fluids

Euler’s equations for a homogeneous ideal impressible fluid of density ρ are

ρ (∂tv + (v ·∇) v) = −∇ (p+ ρU) (2.4)
∇ ·v = 0 (2.5)

where U is a potential for the gravity field. The pressure is a priori undeter-
mined, but is determined by solving (2.4) under the kinematic constraint (2.5)
together with appropriate boundary conditions.

Euler’s equations (2.4) may be rewritten as

∂tv +∇
(

1
2
v ·v + p/ρ+ U

)
= v × (∇× v) (2.6)

By taking the curl of (2.6) one obtains that w = ∇ × v satisfies ∂tw =
∇ × (v ×w), so if w ≡ 0 at t = 0, then w ≡ 0 at all t. In all that follows
we restrict our attention to the case where w vanishes identically. This is

4
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necessary for the reduction to a finite dimensional system. Furthermore, in the
presence of an otherwise negligible viscosity, the vorticity will asymptotically
approach zero over time. Assuming that the container is simply connected, we
may then write the velocity field of the fluid as

v = ∇φ (2.7)

and (for suitably chosen φ) Euler’s equations (2.4) and (2.5) take the forms

∂tφ+
1
2
∇φ ·∇φ+ p/ρ+ U = 0 (2.8)

∆φ = 0 (2.9)

Now, consider a system formed by a perfect fluid and a submerged (“solid”)
body B which may be deformable, but such that the perfect slipping boundary
conditions hold:

(v − ṽsolid) ·n = 0

where v and ṽsolid are the velocities of the fluid and B at a point of contact
and n is the unit normal vector of the solid/fluid interface ∂B (oriented in
outwards from B). Assuming that the exterior of the solid is simply connected,
the velocity is given by (2.7) where φ is the (unique ) solution to the exterior
Neumann boundary value problem

∆φ = 0 in R3\B
∂φ

∂n
= ṽsolid ·n on ∂B

φ → 0 as |r| → ∞

When φ is known, the pressure at ∂B may be reconstructed by (2.8).
Let ψr1 (r) = 1

4π|r−r1|
. It follows from Green’s formula that∫

∂B

(
ψr1 (r)

∂φ (r)
∂nr

− φ (r)
∂ψr1 (r)
∂nr

)
dAr =

1
2
φ (r1)

∀r1 ∈ ∂B

whenever ∆φ = 0 in R3\B. If we insert our boundary conditions into this
equation, we obtain an integral equation for determining φ (on ∂B).∫

∂B

(
ψr1 (r) ṽsolid ·n− φ (r)

∂ψr1 (r)
∂nr

)
dAr =

1
2
φ (r1) (2.10)

When φ is known (from solving(2.10)) on ∂B, it may be utilised to determine
φ in R3\B by another instance of Green’s formula∫

∂B

(
ψr1 (r) ṽsolid ·n− φ (r)

∂ψr1 (r)
∂nr

)
dAr = φ (r1)

∀r1 ∈ interior
(
R3\B

)
However, we will not need the latter expression, since the quantity of im-

mediate interest, viz. the kinetic energy of the fluid, may be reexpressed in

5
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terms of quantities defined on ∂B only:∫
fluid

1
2
v2dm =

ρ

2

∫
R3\B

(∇φ)2 dV =
ρ

2

∫
R3\B
∇ · (φ∇φ) dV =

−ρ
2

∫
∂B
φṽsolid ·ndA

(2.11)

In particular, when B is rigid, ṽsolid ·n becomes a linear expression in
(

ω
vO

)
and the fluid’s kinetic energy is consequently a quadratic form in

(
ω
vO

)
, the

explicit coefficients of which may be computed by solving 6 integral equations
of the form (2.10) and computing 21 numbers of the form

∫
∂B φA

∂φB
∂n dA.

2.3 The total kinetic energy

If B in addition to its “rigid motion degrees of freedom” has certain shape
degrees of freedom y = (y1, ..ym), such as rudder angles, the kinetic energy
becomes a quadratic form in (ω,v0, ẏ), depending parametrically on y. This
obviously also holds for total kinetic energy of the body B and the fluid.

In case of a rigid body B the total kinetic energy is thus of the form

T =
1
2
ΩT JΩ =

1
2

(
ω
vO

)T (
J D
D M

) (
ω
vO

)
As is shown in [6], a generalised Steiner’s formula, the formula for changing

reference point (from O to A) is given by

JA =
(
Ad(1,rA)

)T JOAd(1,rA)

and if

Q =
(

Q 0
0 1

)
is a symmetry of the system in the sense that it leaves invariant both the
interior mass distribution in B and the exterior contour ∂B, it holds that

JO = (AdQ)T JOAdQ (2.12)

From the formula (2.12) it follows that if reflection in the plane (O,e3) is
a symmetry, then

JO =

 J11 J12 0
J12 J22 0
0 0 J33


MO =

 M11 M12 0
M12 M22 0
0 0 J33


DO =

 0 0 D13

0 0 D23

D31 D32 0


and that if rotation an angle 2π/k (k ≥ 3) around the axis (O,e3) is a sym-
metry, then

6
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JO =

 J1 0 0
0 J1 0
0 0 J3


MO =

 M1 0 0
0 M1 0
0 0 M3


DO =

 D1 −δ 0
δ D1 0
0 0 D3


It follows that for a highly symmetric cigar-shaped torpedo

JO =

 J1 0 0
0 J1 0
0 0 J3


MO =

 M1 0 0
0 M1 0
0 0 M3


DO = 0

when the rudder angles are zero.

2.4 Kirchhoff’s equations and generalisations

It can be shown [7], [4] that the dynamics of the fluid+body system in the
vorticity free case is given by Lagrange’s equations on SE(3). Furthermore,
the kinetic energy is left invariant on SE(3), so the dynamical system simplifies
into one defined on se(3), given by the Kirchhoff’s equations.

d

dt
(JΩ) + ad∗Ω (JΩ) = M (2.13)

where

J =
(

J D

DT M

)
Ω =

(
ω
vO

)
M =

(
MO

F

)
as above, and M consists of the moment sum MO (w.r.t. O) and force sum F
of the exterior forces acting on the body (including net buoyancy forces and
torques). Recall also that

ad∗Ω

((
LO

p

))
=

(
ω× vO×
0 ω×

) (
LO

p

)
Now the same arguments that are used for deriving Kirchhoff’s equations from
first principles may in fact be used to generalise these in three directions.

7
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• First, we may allow topologically more complicated bodies, such that the
fluid occupies a multiply connected domain. Then a vorticity free fluid
velocity field no longer needs to have a single valued velocity potential. It
can however be shown (essentially by Hodge theory) that a vorticity free
field may be decomposed into one term with a globally defied velocity
potential and another term which is orthogonal to all potential flows and
which, when unactuated, does not affect the solid body’s motion. The
latter term is therefore ignored in the present report.

• Second, a fluid together with a deformable submerged body (with a finite
number of degrees of freedom) still satisfies Lagrange’s equations (cf. [8]),
which in the more general case take the form

d

dt

(
∂T

∂Ω

)
+ ad∗Ω

(
∂T

∂Ω

)
= M

d

dt

(
∂T

∂ẏ

)
− ∂T

∂y
= Qy

where T (Ω, y, ẏ) is the total kinetic energy and Qy is the generalised
force covector associated with the y-variables (rudder moments etc.).

• Third, the assumptions of an infinite fluid surrounding which was used
in the derivation of (2.10) and (2.11) may be relaxed. If the appropriate
boundary conditions at the fluids interface to e.g. a container is taken
into account, a similar Lagrangian formulation of the dynamics is possi-
ble. The equations will then, however, depend strongly on the position
of B. In the case of a flat seabed, for instance, the boundary conditions
lead to a “ground effect” equivalent to as if there were no seabed, but
instead a mirror image body present. This generalisation will not be
discussed further in the present report though.

As a final remark on the Kirchhoff’s equations (with or without a fluid) is
that the choice of reduction point O is completely arbitrary, and that the right
hand side component MO is indeed the moment sum without any “correction
terms”, in contrast with most other formulations of the moment equation w.r.t.
general comoving reduction points.

8
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3. Control principles for underwater vehicles

In the following questions of stability, stabilisation and control of Kirchhoff’s
equations will be addressed.

3.1 Stability

What are the stationary states of the Kirchhoff dynamics, i.e. which are the
equilibrium points of the se(3) dynamical system and to what motions do these

correspond? A stationary point Ω0 =
(

ω0

v0

)
is such that (2.13) is satisfied

with M = 0 and Ω̇0 = 0. This means that(
ω0× v0×
0 ω0×

) (
J D

DT M

) (
ω0

v0

)
=

(
0
0

)
(3.1)

that is (
ω0 × (Jω0 + Dv0) + v0 ×

(
DT ω0 + Mv0

)
ω0 ×

(
DT ω0 + Mv0

) )
=

(
0
0

)
(3.2)

The condition (3.22), ω0 ×
(
DT ω0 + Mv0

)
= 0, leaves us with two possi-

bilities:

• ω0 = 0, i.e. a pure translational velocity field

• ω0 6= 0, in which case DT ω0 + Mv0 = λω0, for some real λ, in other
words,

v0 = M−1
(
λI − DT

)
ω0

In the former case (pure translation), the condition (3.21) reads v0 ×
Mv0 = 0, so either v0 = 0 or v0 is an eigenvector to M . In the ω0 6= 0
case, the condition (3.21) becomes

ω0 ×
(
J + (D − λI)M−1 (

λI − DT
))

ω0 = 0

so ω0 is an eigenvector to J + (D − λI)M−1 (
λI − DT

)
.

This means that, generically when eigenvalues are simple, there are three
distinct one-dimensional families of stationary points Ω0, each one parametrised
by the parameter λ, and such that

• ω0 is the k:th eigenvector to J +(D−λI)M−1 (
λI − DT

)
, (k = 1, 2, 3)

• v0 = M−1
(
λI − DT

)
ω0

9
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These eigenmodes of motion may be considered as “motion primitives”
from which more complicated motions may be built up.

For each of these possible equilibria, the corresponding stability properties
may be assessed by considering the linearised system.

If for instance

JO =

 J1 0 0
0 J1 0
0 0 J3

 (3.3)

MO =

 M1 0 0
0 M1 0
0 0 M3


DO = 0

ω0 = 0

v0 =

 0
0
V


the linearised dynamics is given by

d

dt



δω1

δω2

δω3

δv1
δv2
δv3

 = V



0 0 0 0 M1+M3
J1 0

0 0 0 −M1+M3
J1 0 0

0 0 0 0 0 0
0 M3

M1
0 0 0 0

−M3
M1

0 0 0 0 0
0 0 0 0 0 0





δω1

δω2

δω3

δv1
δv2
δv3


which has three double eigenvalues, 0 and ±iV

√
M3(M1+M3)

M1J1
. The two zero

eigenvalues correspond to the eigenmodes of translation along/rotation around
the symmetry axis (O,e3). The nonzero eigenvalues correspond to coupled
lateral rotational and translational ondulatory motions; the eigenvectors are(

±i
√

M1(M1+M3)
M3J1

0 0 0 1 0
)T

(3.4)

and (
0 ±i

√
M1(M1+M3)

M3J1
0 1 0 0

)T
(3.5)

These modes of motion are similar to that known under the name “Dutch roll”
in aerodynamics.

The linearised motion is qualitatively the same as that of a similarly shaped
body moving freely in space (no surrounding fluid). The linearised dynamics
around this equilibrium is stable, but not asymptotically stable. The nonlinear
dynamics is however unstable.

We also note certain expressions that are constants of motion for the free
motion, here expressed in terms of LO and p given by(

LO

p

)
=

(
J D

DT M

) (
ω
vO

)

10
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These expressions are given by

C0 =
1
2

(
LO

p

)T (
J D

DT M

)−1 (
LO

p

)
C1 =

1
2
p ·p

C2 = LO ·p

The motion constant C0 is of course the energy, while Ċ1 = p · ṗ = p · (−ω × p) =
0 and Ċ2 = L̇O ·p + LO · ṗ = (−ω ×LO − vO × p) ·p + LO · (−ω × p) = 0
are further scalar constants of motion related to the symmetry group. These
constants of motion of course delimit the ways the system can exhibit insta-
bility.

3.2 Stabilisation

In this report only some general principles of stabilisation will be discussed.
In order to stabilise an eigenmode some form of actuation is necessary. In
the formulation suggested in the present report, all such actuation are in fact
interior, in the sense that they involve the extra coordinates y mentioned
above. This can be achieved in two essentially distinct ways:

• By means of interior mobile parts within the vehicle’s hull. Movable
masses may be used to – “statically” – adjust the position of the centre
of mass or the moments of inertia. Flywheels may be used for a more
dynamical adjustment of the body’s inertial properties, e.g. stabilising
unstable rotational modes. This method of stabilisation is utilised in [6].

• By means of mobile parts in contact with the fluid, which thereby changes
the fluid boundary value problem, may be used for the more traditional
vehicle control. Rudders, pumps and propellers belong to this family of
actuators.

In the case of autonomous underwater vehicles, it seems safe to say that a
combination of these types of actuators gives the best means of actuation.

Consider again the motion of a vehicle with extra degrees of freedom

d

dt

(
∂T

∂Ω

)
+ ad∗Ω

(
∂T

∂Ω

)
= M

d

dt

(
∂T

∂ẏ

)
− ∂T

∂y
= Qy

where T (Ω, y, ẏ) is the total kinetic energy and Qy is the generalised force
covector associated with the y-variables. In principle the unactuated part of
the equations also involves derivatives ẏ and ÿ of the auxiliary variables. In the
case of rudders, this would allow for using these for propulsion (swimming).
In practice, rudders would not be used in that way; this effect is negligible.
Ignoring this minuscule effect amounts to changing the dynamical equations
for the vehicle into

JΩ̇ + ad∗Ω (JΩ) = M

11
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which now involve the y only “parametrically”. The residual wrench M may
contain unmodelled dynamics due to viscosity effect etc. In the following dis-
cussion it is ignored. Furthermore, in the dynamical equation Ω̇ = −J−1ad∗Ω (JΩ),
we linearise in the control parameters y. If

J (y) = J (y0) + J′ (y0) δy + o (δy) ≡ J0 + J1δy + o (δy)

we may consider the system

Ω̇ = −J−1
O ad∗Ω (JOΩ) + J−1

O

[
J1J−1

O , ad∗Ω
]
(JOΩ) δy

or, put differently

J0Ω̇ + ad∗Ω (JOΩ) =
[
J1J−1

O , ad∗Ω
]
(JOΩ) δy (3.6)

It may be clear from physical principles that the vehicle is “practically
controllable” with very few independent actuators (rudders). This however
involves genuinely nonlinear effects. The linearised version of (3.6) in the case
(3.3) needs no less than three independent rudder actuators to become linearly
controllable.

In that case the linearised system has the standard form

ẋ = Ax+Bu

where the state variable x is the deviation from the commanded velocity, A
is the matrix −J−1

O ad∗ΩJO, u is the commanded rudder angle deviations δy,
and the columns of B are given by

[
J1J−1

O , ad∗Ω
]
(JOΩ) with different J1 for

different rudders. In this case AkB = 0 for k ≥ 2, and the different J1 must
be such that the corresponding B satisfies

rank (B,AB) = 6

and stabilisation by means of for instance pole placement becomes a standard
procedure.

One possible “generic” method of steering the vehicle is by concatenat-
ing the equilibrium motion primitives, stabilised by the above method. When
changing from one motion primitive to another, the old equilibrium is made
unstable, after which the new desired equilibrium is made stable. If the ma-
noeuvre is slow enough compared to the (linear) dynamics time constants, the
motion may be made one of sliding along a trajectory of equilibria, in a orderly
fashion. This is the technique of gain scheduling.

Other generic control strategies include the use of interior flywheels for
stabilising certain motion primitives, and using the rudders to manoeuvre
between these.
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4. Modular control system for underwater vehicles

This section contains a review of requirements on control systems for under-
water vehicles in particular, although much of it is applicable to other types of
vehicles. Differences in dynamic behaviour between vehicles for different areas
of operation, be it flying, rolling or swimming, comes in mainly in the actual
control law modules that are part of a functioning control system. Future sys-
tem may also have dual behaviour which necessitates the inclusion of modules
with widely spread functionality.

Two strong motivations for modular control systems for autonomous vehi-
cles are the possibility for re-use of design work and code, and secondly that
different modes of control will probably be called for during different phases
of a system’s operational service. If a control system for a particular piece of
hardware is modular by providing well designed logical interfaces and control
functions, the hardware can more easily be used together with other systems
with control systems that can interact with the particular controller. Simi-
larly, if several different controllers exist for some hardware, and all are easily
exchanged or modified due to requirements set by the current users, the con-
trol system in itself is modular. One example of the latter is to use different
controllers during training and real operations, another is the use of differ-
ent controllers for different functionality during distinctive phases of a single
mission.

Further subdividing the operational envelope and creating many controllers
where each is useable in a small patch may be thought of as a special case of
the general idea of modularity. The latter method of designing controllers are
used in real systems, and called gain scheduling, and shall not be treated in
more detail here. Instead we are more interested in large scale features of
control system architectures.

4.1 Control principles

Control principles for unmanned vehicles can be grouped into:

• Interactive control

• Automatic deterministic control

• Automatic reactive control

Interactive control is synonymous with remote control. Automatic or au-
tonomous control is divided into the two groups automatic deterministic con-
trol which handles noise and model errors, and automatic reactive control
which is more capable of handling unexpected events.
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With interactively controlled systems, the operator need not necessarily
be a human. As long as the specifications and details of the interface for con-
trolling the system are followed, the controlling system can be an automatic
or autonomous system by itself. Control system architectures that allow such
interchange of controllers, selecting between physical persons and control mod-
ules that are exercising remote or on-board control are clearly at an advantage
when it comes to flexiblity and adaptivity. Architectures of this type provide
for stacking and layering of autonomous and non-autonomous systems and
must be considered a requirement for enabling the full potential when using a
mix of systems for complex tasks.

4.2 Requirements on control system architectures

Some reasonable requirements on software systems for automatic and au-
tonomous functions in unmanned vehicles include:

• Allow control law modules that are based on different control paradigms.

• It must be possible to implement relevant parts according to standards
for security-critical software, e.g. DO-178B [12] [3] or IEC 61508 [5].

• The system permits simple changes of sensor and actuator configurations.

• The system simplifies the use of identical code in physical platforms as
well as simulations.

• The system integrates well with other software developed or accessible
by the developers and users.

• Useful on different types of platforms and vehicles, for instance au-
tonomous underwater vehicles, AUV, but also surface and air vehicles.

• The system allows operator or operators to control all or parts of the
vehicle and subsystems, independently of level of autonomy.

• Facilitate cooperation between different vehicles and other systems. Ne-
cessitates the capability for communication and opens up the, yet un-
mapped, area of algorithms and methods for implementing collaborative
behaviour.

Most control systems developed today are implemented as software. Develop-
ing safety critical software systems poses special requirements for the desing
and implementation phase, code revision and control etc. This is however not
covered here.

4.3 Control system architectures

A survey of some relevant systems has been made to identify those that at
least partially fulfill the requirements above, or are intended to fit a similar
role as our yet immature system. The findings were as follows.
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4.3.1 AVEC The system Autonomous VEhicle Control (AVEC) is devel-
oped at FOI. It is aimed at providing flexible software for control of mobile
robots. The requirements described earlier in section 4.2 were partly derived
as a result of the work on AVEC.

4.3.2 J-UCAS COS Common Operating System, COS, is a project within
the joint unmanned combat aer system, J-UCAS, run by Darpa, US Air Force,
and US Navy. COS is intended to facilitate cooperation between several aerial
vehicles, ground control stations and other involved actors. The system will
be used on the test aircrafts X-45 and X-47. On the web page [2] it is stated:

The COS will enable interoperability among multiple air vehicles and con-
trol stations, facilitating the integration of other subsystems such as sensors,
weapons, and communications. The COS encompasses the software architec-
ture, algorithms, applications and services that provide command and control,
communications management, mission planning, much of the interactive au-
tonomy, the human systems interface and the many other qualities associated
with the J-UCAS system. The J-UCAS system architecture will ensure intra-
operability between the internal components of J-UCAS and inter-operability
with external elements such as manned aircraft, command and control centers,
and space assets.

4.3.3 ORCA ORCA [10] is a set of software tools for developing com-
ponent based robotic systems. It is an extension of the project Open Robot
Control Software, see section 4.3.4.

4.3.4 OROCOS Open Robot Control Software [11] (OROCOS), has one
more name, Open Realtime Control Service.

4.3.5 MARS Mobile Autonomous Robot Software (MARS) [9] was a project
for developing complete, effective and higly adaptable software for cooperating
autonomous robots. It was finished during the fall of 2004. During the project
several robots and control systems were developed, in particular for technology
for soccer-playing robots.

4.3.6 CARMEN Carnegie Mellon Robot Navigation Toolkit (CARMEN) [1]
is a project aimed at developing open software for control of mobile robots. It
is a part of the MARS project described in 4.3.5.

4.4 Evaluating system architectures

Obviously, the immediate needs of the users impact the decision of selecting
a system architecture for programming autonomous behaviour in. A checklist
based on a specification of the requirements listed by the potential users is
crucial during this phase. The following list of important points is derived
from our work with requirements for a modular control system to be used in
our research vehicles.

• Support for real-time operations?
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• Abstractions for sensors and actuators?

• Abstractions for data and data-flows from sensors?

• Multi-domain system, for water, ground and air?

• How is events and callbacks from sensors and actuators handled?

• Licensing issues?

• Configurability?

• What computer hardware is necessary?

• What operating systems are supported?

• Is there active development, maintenance and a large user group?

• How good is the documentation?

• Is the developing group interested in partnerships around their software?

One final issue is whether the system takes advantage of current standards
and best practices, for instance in digital communication.

4.5 Vehicles and other hardware

Currently, the vehicles and platforms considered for research within our group
is a small UGV, a small torpedoe, and the PLUMS ROV, a remotely operated
submersible with a tether for power and control, is used to carry instruments
for various kinds of experiments. At present the local control system onboard
PLUMS is run on a microcontroller. The aim is to implement control modules
that mimic the current system and allows the user interface to be essentially
the same, while at the same time provide for future upgrades of better con-
trollability and autonomy of certain functions that reduces operator workload.
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